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Abstract This study develops a direct optimal growth algorithm for

three-dimensional transient growth analysis of perturbations in channel flows which

are globally stable but locally unstable. Different from the traditional non-modal

method which is based on the Orr-Sommerfeld and Squire (OSS) equations that

assume simple base flows, this algorithm can be applied to arbitrarily complex base

flows. In this algorithm, a re-orthogonalization Arnoldi method is employed to

improve the orthogonality of the orthogonal basis of the Krylov subspace generated

by solving linearized forward and adjoint Navier-Stokes (NS) equations. The

linearized adjoint Navier-Stokes equations with specific boundary conditions of the

channel are deduced, and a new convergence criterion is proposed. The algorithm is

then applied to the plane Poiseuille flow in a channel. The effects of spanwise width

of the channel and Reynolds number on the transient growth of perturbations are

studied. The results show that optimal flow field leading to the largest growth of

perturbations is characterized by high- and low-speed streaks and the corresponding

streamwise vortical structures. The algorithm is validated by comparing the results

obtained from the OSS equations method. A lift-up mechanism that induces the

transient growth of perturbations is discussed.

Key words transient growth, Poiseuille flow, Arnoldi method, Krylov subspace,

adjoint equations
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1 Introduction

Linear stability theory is concerned with whether a laminar base flow changes its

state when perturbations with infinitesimal amplitude are added. If the state changes,

then the base flow is unstable. If the base flow returns to the original state, then it is

stable. To date, several numerical methods have been developed successfully for

linear stability analysis, e.g. modal stability analysis, non-modal stability analysis and

the so-called direct optimal growth analysis.

Traditionally, the linear stability of a flow has been analyzed using the modal

approach. In this approach, the asymptotic behavior of small perturbations to a steady

or time-periodic base flow is usually considered. This behavior is determined by the

eigenvalues of the linear operator derived from the linearized Navier-Stokes (NS)

equations, because the eigenvalues characterize the evolution of the perturbations. For

some flows, especially for those with instability driven by thermal or centrifugal

forces, e.g., Rayleigh-Bénard convection and Taylor-Couette flow, the predictions of

modal analysis agree well with laboratory experiments[1, 2].

Despite remarkable accomplishments of the modal analysis, many questions are

left unanswered. For example, discrepancy exists between the computed critical

Reynolds number and the observed ones in many wall-bounded shear flows, and the

theoretically predicted structures are not always observed in unforced experiments[3].

The drawback of this modal approach is associated with the non-orthogonality of the

eigenmodes of the linearized flow system. As a consequence, non-modal analysis

theories[4] are needed for many problems. This theory, referred to here as the transient



growth theory, emphasizes the linear nature of the non-modal amplification

mechanism and is based on the observation that an initial perturbation that is not a

pure eigenmode may undergo transient growth, even though all eigenmodes decay

monotonically. This transient growth may lead to nonlinear instability or otherwise

change the path of instability, leading to, e.g., bypass transition to turbulence. Among

this form of initial perturbations, the one which yields the largest amplification is

referred to as being “optimal”.

If the evolution of the perturbtations are governed by the Orr-Sommerfeld and

Squire (OSS) equations[5], it is possible to directly evaluate the eigenvalues of the

operator matrix. However, it is difficult, and in some cases impossible, to build the

operator matrix for general complex base flows. Therefore, a direct optimal growth

method (also called matrix-free method) for both modal and non-modal instability

was recently presented by Barkley et al.[6] Because this method is suitable for stability

analysis of flows with arbitrary complexity, it has been applied in stability analysis of

various flows, e.g., flow over a backward-facing step[7], stenotic flows[8-10], flow past a

circular cylinder[11, 12], vortex pair systems[13], flow through a sudden expansion in a

circular pipe[14] and flow over a turbine blade[15]. In this method, a Krylov subspace

can be constructed to approximate the eigenmodes of large matrix by explicitly

solving the linearized NS equations and their adjoints by iterations. This method,

however, depends on the specific boundary conditions of the flow. Thus, the

linearized adjoint Navier-Stokes equations should be determined if it is applied to

base flows with other boundary conditions.
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In this paper, we improve the direct optimal growth method and apply it to the

plane Poiseuille flow in a channel , which has been not addressed before. A detailed

derivation of linearized adjoint NS equations of the channel flow with specific

boundary conditions is presented, and the direct numerical simulation (DNS) based on

the spectral method is then used to solve the linearized NS equations and

corresponding adjoint ones. The algorithm based on the Krylov subspace, which

approximates the perturbation growth is reformed by using a re-orthogonalization

Arnoldi technology in order to improve the orthogonality of the orthogonal basis of

the Krylov subspace. The improved algorithm is then combined with the DNS method

to fit the temporally developed global instability in such flow. Based on the

algorithmic strategy, the effects of Reynolds number and spanwise width of the

channel on the transient growth of perturbations are investigated. A mechanism that

induces transient growth of perturbations in channel flow is discussed.

2 Numerical method

2.1 Transient growth of infinitesimal perturbations

Considering a general incompressible flow U in a three-dimensional domain (),

the linearized NS equations of infinitestimal perturbations can be expressed as:

tu =  (U)u – (u)U  p + 2u with u=0 in  (1)

Here u and p are the infinitesimal perturbation velocity and kinematic pressure,

respectively;  is the fluid viscosity defined by  = Q/Re, where Q is the

constant-volume-flow rate, Re is the bulk Reynolds number; U is the base flow. In

this study, we choose the laminar plane Poiseuille flow solution as U, whose



non-dimensional profile is given by

U(y) = 1 – y2
(2)

where y is the coordinate in the direction normal to the channel walls and y  [−1, 1].

The linear evolution of a perturbation from t = 0 to a later time t under Eq. (1)

can be expressed concisely as the action of a linear evolution operator A(t) on the

initial perturbation u(x, 0):

u(x, t) = A(t)u(x, 0) (3)

Usually, the modal analysis focuses on the asymptotic behavior of the

perturbations, which is characterized by the eigenvalues of the system and the

evolution of the eigenmodes. However, owing to the non-orthogonality of the

eigenmodes of the linearized NS equations, the dynamics of interest may not be of the

form of an exponential function of time multiplying a fixed modal shape, therefore,

the eigenvalue problem in modal analysis is not directly relevant[2,5]. Thus, a transient

growth method is preferred to quantify such dynamics, which is concerned with the

maximum energy growth for all possible initial perturbations over a finite time

interval.

Typically, the total kinetic energy, E, of a perturbation field over the full flow

domain is chosen to quantify the size of the perturbations[5], derived from the L2 inner

product of the perturbed velocity, u:

  31 1, d
2 2

E x


  u u u u (4)

here (·,·) is the standard L2 inner product in space. Transient growth is described by

the growth of the energy norm of the perturbations over a given time interval, and can



be quantitatively measured by the ratio of final energy at time t to initial energy at

time 0. Setting the norm of the initial perturbations to unit, i.e., ||u(0)||=1, the transient

energy growth over interval t is:

2

*

( ) ( ) ( ( ), ( )) ( ( ) (0), ( ) (0))
(0)

( (0), ( ) ( ) (0))

E t t t t t t
E

t t

  



u u u A u A u

u A A u
(5)

where, A*(t) is the adjoint evolution operator of A(t).

The goal of transient growth analysis is to find the maximum energy growth and

the corresponding initial perturbations, i.e., the optimal growth and the optimal

perturbations. From Eq. (5), it is obvious that seeking the optimal growth is equivalent

to finding the leading eigenvalue of operator A*(t)A(t), and the corresponding

eigenmode is the optimal perturbation. Let λj and vj denote an eigenvalue and the

corresponding normalized eigenmode of A*(t)A(t), respectively, we have

   *
j j jt t A A v v , 1j v (6)

Thus, the maximum energy growth at time t, denoted as G(t), can be derived as

max(0) 1

( )( ) max max
(0) jj

E tG t
E

 
 

  
u (7)

2.2 Linearized adjoint NS equations

A*(t) in Eq. (5) represents the evolution operator for the linearized adjoint

equations of perturbations with the same boundary conditions as the linearized

equations. In this section, we derive the linearized adjoint NS equations with the

specific boundary conditions for channel flow.

The linearized adjoint NS equations can be divided into three parts, that is, the

advection term, the viscous and pressure term, and the time derivative term. Let H be

an operator representing one of these three terms, then H and its adjoint operator



H*must satisfy the following relation based on the L2 inner product in the domain of

space Ω and time [0, τ]:

     * * *, ,u H u u H u

(8)

for arbitrary functions u and u* with homogeneous boundary conditions in the wall

normal direction and periodic boundary conditions in the streamwise and spanwise

directions.

For the advection term, we define advection operator DN as:

      ( )  DNuUuu UUu Uu (9a)

or

( ) | ( )i j j i j i jU u U u   DNu (9b)

According to the definition of inner product in Eq. (4), one obtains

 * * 3, ( ) ( )d x


 u DN u u DN u  * 3 * 3d di j j i i j i ju U u x u U u x
 

    

   * * 3 * 3ˆ d d di j i j j i j i i j i ju U u n S u U u x u U u x
  

         (10)

   * 3 * 3d dj i j i i j i ju U u x u U u x
 

       

  * * 3 * *d ,j j i j i j iU u u U u x


        DN u u

The boundary conditions in the channel flow presented in this study are such that

perturbations on the no-slip wall are zero and are periodic in the streamwise (x) and

spanwise (z) directions. Thus, the surface integral
* ˆ di j i ju U u n S


 in Eq. (10) is zero,

and the adjoint advection operator DN* can be expressed as follows according to Eq.

(8),

* * * *|i j j i j i jU u u U    DN u (11a)



or

   * * * * *T
     DN u U u u u (11b)

The viscous and pressure terms in Eq. (1), as well as the continuity equation, are

all linear hence can be treated together. These terms can be written as

2

0 p
    
       

u
(12)

According to the definition of inner product in Eq. (4), we have

2 *

*,
0 p p

       
             

u u

   2 * * 3dp p x


         u u u

      * * * * * * 3dk i k i k i k iu u u u p p p p x


                  u u u u (13)

 * * * 3dk i k iu u p p x


         u u

  * 2 * * * 3dk i k i i k iu u u u p p x


            u u

Note that  * 3d 0k i k iu u x


   ,  * 0k i k iu u


     ,  * 3d 0p x


  u and

 * 3d 0p x


  u in Eq. (13), by the divergence theorem and the boundary conditions.

Thus, Eq. (13) can be rewritten as follows,

2 *

*,
0 p p

       
             

u u      2 * * * 3dp p x


           u u u u

2 *

* ,
0 pp

       
               

uu
(14)

From Eqs. (8) and (14), we can see that the adjoint operator of the coupled linear

operator is the same as itself; that is, this operator is self-adjoint.

The adjoint operator of the time derivative term in Eq. (1) can be deduced as



follows,

 * * 3

0
, dt t d x t





   u u u u * *3
0

ddt t xt



  uuuu

* 3 * 3

0
0

d dtd x x t
 

 

       u u u u  *3 *

0
dd,t txt




uuuu(15)

Equation (15) shows that the adjoint of the time derivative term is -∂tu*.

According to Eqs. (11), (14) and (15), the adjoint of the linearized NS equations

for infinitesimal perturbations are written as

   * * * * 2 *T
t p         u U u U u u with * 0 u in  (16)

2.3 Algorithm of direct optimal growth

Equation (6) indicates that the main purpose of the transient growth is searching

for the leading eigenvalue (λmax) of the combined operator A*(t)A(t) and the

corresponding eigenvector. In the direct optimal growth method, a Krylov subspace

{u0, Mu0, M2u0, …, Mku0} is first constructed by acting the operator M for initial

vector u0 repeatedly, here operator M represents A*(t)A(t). That is, the Krylov

subspace can be obtained from the repeatedly integrating the linearized forward and

subsequent adjoint NS equations for u0. Subsequently, a standard QR decomposition

is employed to obtain the orthogonal basis of the Krylov subspace, which is used to

obtain the eigenmode information of the linearized system. However, it is sometimes

ill-suited to construct the orthogonal basis of the Krylov subspace by the standard QR

decomposition. Because sometimes the application of the Krylov subspace on specific

flows are ill conditioned and the orthogonality of the orthogonal basis of the Krylov

subspace is getting worse along with construction process of the Krylov space.

Actually, it is the orthogonal basis of the Krylov subspace, not the Krylov subspace

Lenovo
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itself, that is used in applications. Thus, it is preferred to use the classical Arnoldi

technique[16] to improve the orthogonality, which does not construct the Krylov

subspace but directly calculates the orthogonal basis of it by the standard QR

decomposition. In addition, to further improve the orthogonality of the orthogonal

basis, a re-orthogonalization technique can also be employed on the basis of the

classical Arnoldi method.

Figure 1 gives the orthogonality of the orthogonal basis of the Krylov subspace

for present study, here the orthogonality used in the figure is defined as ||QTQ-I||2, in

which I is unit matrix, and Q is the orthogonal basis which is derived by standard QR

decomposition of Krylov subspace (method I), the classical Arnoldi technique

(method II) and the re-orthogonalization Arnoldi technique (method III), respectively.

It can be seen that the orthogonality by the method I is getting much worse than the

other two methods with iteration. And the orthogonality by the method III is slightly

better than that by the method II.

iteration
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classical Arnoldi
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Fig. 1 Orthogonality with iteration by different methods for a plane Poiseuille flow in the
channel. The spanwise width of the channel is , Re=2670 and t=10.

We now give the procedure for the algorithm of direct optimal growth based on

the re-orthogonalization Arnoldi technique to compute the leading eigenvalue (i.e., the

maximum growth) and the corresponding eigenvector (i.e., the optimal initial



perturbation) of the linearized channel flow.

Define a set of orthogonal basis of a k-dimensional Krylov subspace as:

Qk≡ span{q0, q1,…, qk-1} (17)

(i) Initialize: Provide a positive integer kmax as the maximum dimension of Qk in

Eq. (17), a residual norm tolerance tol (which is the measurement of convergence in

iterations) and an initial vector q0with unit norm. Set k=0.

(ii) Integrate linearized forward and adjoint NS equations (Eqs. (1) and (16)),

taking qk as the initial perturbation:

for (int k = 0; k < kmax; k++) {

w = A*Aqk;

(iii) Perform orthogonalization procedure of classical Arnoldi method by using a

modified Gram-Schimdt approach:

for (int i = 0; i <= k; i++){

;T
ik ih  q w

w = w – hikqi;

}

(iv) Perform the re-orthogonalization procedure to improve the orthogonality of

orthogonal basis of the Krylov subspace:

for (int i = 0; i <= k; i++){

;T
is  q w

hik = hik + s;

w = w – hikqi;

}

(v) Calculate the leading eigenvalue λmax and the corresponding eigenvector vmax

of H, which consists of hik from step (iv). In other words, hik is the element of H.



Compute the Ritz eigenvector Qkvmax. Calculate hk+1,k and the residential norm rn as :

hk+1,k = ||w||2;

if k>0 then rn=|| ( )
max
k - ( 1)

max
k  ||2;

where ( )
max
k and ( 1)

max
k  are the leading eigenvalues in k-th and (k-1)-th iterations,

respectively.

if rn >tol, calculate qk+1=w/hk+1,k and goto step(ii).

} The program ends.

In step (ii), we use the DNS based on the standard Fourier-Chebyshev spectral

method[17] to integrate the linearized forward and adjoint NS equations. In this

simulation, the Chebyshev-τ method and the no-slip condition are used in the

non-homogeneous wall-normal direction (y-direction), while Fourier expansion is

used in the homogeneous directions, i.e., the streamwise (x) and spanwise (z)

directions of the channel. A Chebyshev-τ influence-matrix method, including a

τ-correction step, is employed for the viscous and pressure term to ensure that the

computed solutions satisfy both the incompressibility constraint and the momentum

equation. The aliasing errors in the x- and z-directions are removed by truncation

according to the 3/2-rule. The time advancement is carried out by using a

semi-implicit backward-difference scheme with third-order accuracy. This numerical

method has been well tested in our previous studies[18, 19].

Note that the magnitude of hk+1,k is used to judge the convergence of the

iterations in [6]. However, the convergence of hk+1,k is not necessary in this study

since we are focusing on the optimal growth. Therefore, we take rn=|| ( )
max
k – ( 1)

max
k  ||2 as

the measure of convergence in our computations, and discuss the validity in section



3.3. In this study, we set tol=110-4. Usually convergence can be obtained in about

6-13 iterations.

3 Results and discussions

In this paper, we investigate the transient growth of perturbations of plane

Poiseuille flow in the channel. Note that, in this case, the base flow is in parallel to the

homogenous streamwise direction (see. Eq. (2)). However, the algorithm presented in

this work is applicable to any complex base flows in a channel, i.e., there is no

limitation on the form of U in Eqs. (1) and (16). The reason to choose the

Poiseuille-type base flow in this work is twofold. Firstly, we intend to validate the

algorithm by the OSS method. Secondly, the effects of the spanwise width (Lz) and

Reynolds number (Re) of the channel flow on the transient growth of perturbations

are investigated. The channel box, i.e., the computational domain, has a fixed

streamwise length of Lx=π, and a fixed wall-normal height of Ly=2 (ranged from -1 to

1), and variable spanwise width Lz. Table 1 gives the computational cases with the

different values of Lz and Re.

Table 1 Computational cases

cases
Re=2670

cases
Re=1000

Lz nxnynza Lz nxnynz
1
2
3
4
5
6
7
8
9

8/3
4/3
7/6


5/6
2/3
7/12
1/2
1/3

3233192
323364
323364
323364
323364
323332
323332
323332
323332

10
11
12
13
14
15
16
17

12/5
2
8/5
6/5


4/5
3/5
2/5

323364
323332
323332
323332
323332
323332
323332
323332

anx and ny and nz are the grid points in x, y and z directions, respectively.



3.1 Effects of Lz and Re on transient growth

Figure 2 firstly gives the profiles of transient growth (optimal growth), G(t), of

perturbations at different Lz for Re=2670. One can see that, in all cases, G(t) increases

with time until it reaches the maximum value (defined as Gmax), and then decreases.

Besides, Fig. 2(a) shows that the maximum growth Gmax in each case increases with

spanwise width Lz for Lz between 1/3π and π. Beyond Lz > , Gmax no longer

increases, as is shown in Fig. 2(b). Figure 3 gives the variations of G(t) for various

spanwise widths at Re=1000. The profiles of G(t) and corresponding Gmax for

Re=1000 show the similar behavior with those at Re=2670.
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Fig. 2 Transient growth at different spanwise widths for Re=2670.
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Fig. 3 Transient growth at different spanwise widths for Re=1000.



Figure 4 further depicts the variations of the maximum growth, Gmax, with the

spanwise width for both Re numbers. It is clear that Gmax increases at small Lz until it

reaches its largest value at Lz= and then fluctuates and eventually tends to a constant.

In addition, Gmax shows similar behaviors for both Re numbers, except that the value

of maximum growth for Re=1000 is smaller than that for Re=2670 at the same

spanwise width. Figure 5 plots tmax vs Gmax for the two Re numbers, where tmax is

defined as the time when G(t) reaches Gmax. One can see the good linear relationship

between tmax and Gmax. This relationship implies that the variations of tmax along with

Lz is similar to Gmax vs Lz in Fig.4.
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Fig. 4 Maximum growth vs spanwise Fig. 5 Maximum time vs maximum
width for Re=1000 and Re=2670. growth for Re=1000 and Re=2670.

To understand the dependence of Gmax on Lz, we choose three typical spanwise

widths of the computational box to inspect the optimal streamwise velocity

perturbation, u, at tmax for Re=1000, as is shown in Fig.6. Note that the structures of

the optimal perturbation field are x-independent, therefore only structures in y-z

section are shown. It can be seen that the alternating low speed and high speed regions

in z direction are observed. In addition, such alternating regions occur both in the

upper and bottom parts of the channel with half phase-shift in z direction. The high



and low speed regions actually represent the high-speed and low-speed streaks in

optimal flow field. The occurrence of these streaks implies that the most dangerous

state to destabilize the flow is the streaky structure which has been observed in

transitional and developed boundary layer flows[20]. Due to periodicity in z direction,

the streaks always appear in pairs (one low-speed streak and one high-speed streak).

Smaller spanwise width leads to narrower spacing between the low and high speed

streaks (Fig. 6(a)), whereas for spanwise width Lz= the spacing between the streaks

is optimal and the appropriate shape of the streaks is shown (Fig. 6(b)). When the

spanwise width of the computational box is further extended to 2 (Fig. 6(c)), the

shape and the spacing of the streak remain the same as those in the case with spanwise

width . These results indicate that  is the critical size to attain the maximum growth

of the perturbations, as also shown in Fig. 4.
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Fig. 6 Optimal perturbations for Re=1000. (a) Lz=3/5π, tmax=30; (b) Lz=π, tmax=45; (c) Lz=2π,

tmax=45.

The results of Fig. 4 also show that the critical size  is independent on the

Reynolds number. Considering the wavelike solution of the perturbations in z

direction, that is, u=ûei(z), where  is the spanwise wave number, we have



 =2  /Lz

(18)

Thus, we can explore the variations of Gmax/Re2 along with β, as shown in Fig.7. It is

obvious that the curves overlap for both Re=2670 and Re=1000 and that Gmax/Re2

reaches the peak when β=2. In other words, the maximum growths reach peak at β=2

regardless of variations of Re number.
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Fig. 7 Gmax/Re2 with spanwise wave number for Re=1000 and Re=2670.

3.2 The mechanism that induces the transient growth

Due to the independence of the maximum growth of perturbations on the

Reynolds number (see Figs. 4 and7), we choose the case with Re=2670 and Lz=π to

further analyze the mechanism inducing the transient growth of the perturbations.

Figure 8 gives the evolution of the component-wise r.m.s. with time. It can be seen

that the perturbations in the wall-normal and spanwise components (vrms and wrms) are

larger than those in streamwise component (urms) initially and that the latter rapidly

increases and reaches the maximum at t=125 (see vertical line in Fig. 8). These results

indicate transfer of energy from vrms and wrms to the urms during the time evolution and

therefore imply that the lift-up mechanism[4] is active.

Lenovo
如果把这个式子代入波形解中，有u=ucap*exp(i*2pi*z/Lz)，我觉得对只有展向波数的解，应该就是这个形式。
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Fig. 8 Component-wise r.m.s. values when optimizing for time t=125.

Figure 9 shows the distributions of streamwise vortices and velocity vectors of

the perturbations in y-z section at time t=1 and t=125 at the optimal initial condition.

At the early period (Fig. 9(a)), there is a pair of strong positive and negative

streanwise vortices alternating in z direction, due to the larger vrms and wrms at t=1 in

Fig. 8. The drastic upward and downward perturbation velocities at z=(0) and z=1/2,

respectively, induce the perturbative motion in wall-normal direction which is the

source of the lift-up mechanism. As time evolves (Fig. 9(b)), perturbation velocities in

the y-z section and the corresponding streamwise vorticity decrease. The energy is

extracted and transferred to the streamwise direction which leads to stronger

streamwise perturbation velocity at t=125, as is shown in Fig. 8.
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Fig. 9 Streamwise vortices (colors) and perturbation velocities (vectors) in y-z section for case
with Re=2670 and Lz=π. (a) t=1, (b) t=125.

3.3 Validity of the algorithm

Recall that perturbation growth reaches its maximum at =2 in Fig.7, regardless

of the Reynolds number. This conclusion is consistent with the result obtained at

Re=1000 by Reddy and Henningson[21] and that at Re=5000 by Butler and Farrell[4],

both computed from the OSS equations for Poiseuille flow. To further validate the

algorithm presented in this work, we compute the optimal growth at =2

(corresponded to Lz=) for Re=2670 in two other ways. One is to use the OSS

equation with =2 given. The other is to cross-check the growth of the optimal initial

perturbation over time[6] with spanwise width Lz=. For the cross-check, the

perturbation growth can be expressed as

3 3

33

1 ( ) ( )d ( ) ( )d( ) 2
1(0) (0) (0)d(0) (0)d
2

t t x t t xE t
E xx

 




 
 



 


u u u u

u uu u
(19)

where u(0) is the optimal initial perturbation and u(t) is the perturbation at time t,

which is carried out by linearized forward DNS codes by taking u(0) as initial

perturbation.

Figure 10 compares the optimal growth of the perturbation calculated in the three

ways. It can be seen that the profile of G(t) computed by our algorithm agrees well

with that by the OSS equations. However, the cross-check method under-predicts G(t).

This is probably due to the mesh resolution of DNS. The maximum values of

perturbation growth (Gmax) for our algorithm, the OSS method and the cross-check

method are 502.4, 502.6 and 483.6, respectively. Therefore the relative error of our

Lenovo
文献中用OSS方程计算Poiseuille流不是在channel中进行的，而是直接对方程求瞬态问题的特征解。所以这里就不出现plane或channel了。



result is only 0.04% compared with the OSS method. These comparisons verify the

accuracy of the algorithm in this work.
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Fig. 10 Transient growth by different methods for case of Re=2670. The solid line is the result
by present work with Lz=π, the dashed line is the result by cross-check method, and the symbol

represents the result by OSS method at β=2.

It should be noted that the direct optimal growth method in this paper is suitable

for complex base flows, such as U(x, y, z, t), to which the OSS method is not

applicable. In the future work, such complex flows in channel will be employed to

investigate the transient growth behaviors of the perturbations.

4 Conclusions

In this study, we improve the direct optimal growth method, which is proposed

by Barkley et al.[6], and develop an algorithm that compute the transient growth

behavior of perturbations in channel flows. In this algorithm, a re-orthogonalization

Anoldi method is adopted to improve the orthogonality of orthogonal basis of the

Krylov subspace; the linearized adjoint NS equations are deduced to meet the specific

boundary conditions of channel flow; in addition, a convergence criterion based on

the residential norm of leading eigenvalue is proposed to obtain the solutions.

The algorithm is applied in the simple plane Poiseuille flow in a channel box.

The effects of spanwise width of the channel and Reynolds number on transient

Lenovo
这个方法中算出来的每个时刻（例如t=100）的最优初始流场作为初始场进行线性正向计算，运算到t=100，得到扰动能量值。由于图10是包络线，因此曲线是每个时刻都从头计算到该时刻的结果，而不是单一过程的每个时刻。
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关于结论重新安排了一下结构，主要讲三个意思（每个意思一段）：第一个是算法的创新（包括重整化、线化伴随方程的推导和新的收敛判据），第二个是算法在Poiseille流中的应用。第三个是算法的有效性和可扩展性说明。
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growth of perturbations are discussed. The largest optimal growth of perturbations is

found to be at spanwise width Lz=π for both Re=1000 and Re=2670 cases. The width

corresponds to the spanwise wave number =2 that has been observed in literatures.

The optimal initial flow field shows that the structures of high- and low-speed streaks

and streamwise vortices induce the lift-up mechanism and therefore lead to the

transient growth of perturbations.

The algorithm is well validated by the results of the OSS equations and of the

cross-check method for a plane Poiseuille flow. However, it is not limited to such

flow but is suitable for any complex base flows in channel.
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