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ABSTRACT

The synchronization of large eddy simulations to direct numerical simulations via a data assimilation scheme is investigated in Kolmogorov flows,
where the large scales of the velocity field in large eddy simulations are replaced by those in the direct numerical simulations. We show that, when
the amount of assimilated data exceeds a threshold given by a threshold wavenumber, all large eddy simulations with the same subgrid-scale model
converge to an orbit that is synchronized with the direct numerical simulations in phase. The threshold wavenumbers for the standard and dynamic
Smagorinsky models are smaller than those for the dynamic mixed model and are reduced when the filter scale increases. The error in the synchro-
nized large eddy simulations is examined in detail. We reveal that for larger filter scales, unexpectedly, the velocity simulated with the standard and
the dynamic Smagorinsky models can be more accurate than the one calculated with the dynamic mixed model. The robustness of the results is
assessed in simulations where the assimilated data are perturbed by random noise and in homogeneous turbulence which is driven by a linear forcing
term. Good synchronization is still obtained in both cases. The Smagorinsky models still display better performance than the dynamic mixed model.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0089895

I. INTRODUCTION

Data assimilation (DA) is a practice where one synthesizes obser-
vational data and numerical simulations to improve prediction.
The approach has been used in numerical weather prediction, but it has
only recently been applied to the simulations of turbulent flows. A
review of various DA approaches can be found in Kalnay.1 The com-
mon methods being used in turbulence simulations include the varia-
tional approaches,2–9 the ensemble approaches,1,10 and other sequential
assimilation methods.11–17 In many cases, DA is used to improve the
simulations based on the Reynolds-averaged Navier–Stokes equation
(NSE),3,9,10,18 but it has recently been coupled with large eddy simula-
tions (LES) or direct numerical simulations (DNS). The aim, in this
case, is to recover the chaotic instantaneous turbulent fields based on
incomplete measurement data. Thus, the problem can be viewed as one
of chaos synchronization.19,20 The most simple form of synchronization
is the so-called complete synchronization, where the chaotic orbits of
two identical dynamical systems exactly replicate each other asymptoti-
cally. Yoshida, Yamaguchi, and Kaneda11 investigate the complete
synchronization of two isotropic turbulent flows via a simple data
assimilation scheme where the Fourier modes from one flow with wave-
numbers less than km are replaced by those in the other. It is found that
complete synchronization is achieved only if km> kc, where kcg � 0:2

with g being the Kolmogorov length scale. The problem is revisited in
Lalescu, Meneveau, and Eyink12 with a different forcing scheme as well
as anisotropic grids, and kcg � 0:15 is found. When km is smaller than
kc, only partial synchronization can be achieved. Vela-Martin15 docu-
ments the features of partial synchronization in isotropic turbulence
and shows that strong vorticity is better synchronized than weaker vor-
ticity. Nikolaidis and Ioannou16 show that Couette flows can be syn-
chronized by assimilating streamwise Fourier modes with wavelength
exceeding a threshold value. Channel flows are investigated by Wang
and Zaki.17 Data from layers with different orientations are assimilated.
Scaling of the thickness of the layers needed for synchronization is
established. Nudging is used in Leoni, Mazzino, and Biferale13,14 to syn-
chronize isotropic turbulence with or without rotation and infer system
parameters and reconstruct the large-scale structures of the flows.

These recent works focus on the synchronization between two
DNS with identical system parameters. In reality, the simulations of
high Reynolds number flows often rely on coarse-grained models such
as LES. Thus, one needs to ask what is achievable when one synchro-
nizes LES with the data obtained from the full flow. This problem is
addressed in Buzzicotti and Leoni21 using the nudging method,
in which the filtered Navier–Stokes equation (NSE) is supplemented
by a linear forcing term which nudges the LES velocity toward the
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DNS one. Nudging is applied at all length scales with fairly strong
nudging strength. It is found that the error between the nudged LES
velocity and DNS velocity can be minimized by choosing the parame-
ters in the subgrid-scale (SGS) models judiciously. The observation
shows that nudging (and more generally DA) can be used to optimize
model parameters. More recently, Zauner et al.22 apply nudging in a
simulation of the flow around a square cylinder. They observe the syn-
chronization of low-frequency vortex shedding with relatively sparse
data although the model they used is the unsteady Reynolds-averaged
Navier–Stokes equation rather than LES.

Despite these recent works, several questions remain unclear
regarding the synchronization between LES and DNS. First of all,
because LES and DNS are non-identical systems, only partial synchroni-
zation in the form of phase synchronization (PS) can be achieved, where
the phases of the two systems converge to each other asymptotically
while the amplitudes remain out of sync.20 One key question regarding
this partial synchronization is how much data are needed to achieve it
for different subgrid-scale (SGS) models because arguably an SGSmodel
requiring less data to sync with the DNS potentially is advantageous.
Our first objective is to answer this question. The second objective is to
quantify and compare the error of the partially synchronized LES veloc-
ity for several canonical SGS models, with the synchronization of the
vorticity given specific attention. We consider turbulent flows in a
three-dimensional (3D) periodic box and focus on the DA scheme used
in Yoshida, Yamaguchi, and Kaneda.11 Three SGS models, the standard
Smagorinsky model (SSM), the dynamic Smagorinsky model (DSM),
and the dynamic mixed model (DMM), are compared. To obtain infor-
mation on the robustness of the results, we also consider cases where
the assimilated data are contaminated by noise and a different flow
which is driven by a different forcing mechanism.

We introduce the governing equations and the methods in Sec.
II. The numerical methods and the results are discussed in Sec. III.
Section IV summarizes the main observations from the results.

II. GOVERNING EQUATIONS

To demonstrate phase synchronization, traditionally, one would
define the phase of the systems and show that the phase synchronizes
over time. However, there is no natural way to define the phase of a 3D
turbulent velocity field. We, thus, use the following indirect approach.
We consider a master system M and two identical slave systems A and
B that are different from M (c.f. Lalescu, Meneveau, and Eyink12). The
data fromM are assimilated into A and B in exactly the same way. Since
M and A are governed by different equations, it is impossible to achieve
complete synchronization between them (or between M and B).
However, if complete synchronization is achieved between A and B,
then their states converge toward an orbit which depends only on the
assimilated data fromM. We may then assert that this orbit of A and B
is in phase synchronization with the orbit ofM.

Therefore, in this investigation, we consider a master system M
which is governed by the NSE, and two identical slave systems A and
B which are governed by the filtered NSE (fNSE). The NSE reads

@tuþ ðu � rÞu ¼ �rpþ �r2uþ f ; (1)

where u is the velocity, p is the pressure (divided by the constant den-
sity), � is the viscosity, and f is the forcing term. In the majority of
cases, we will consider

f � ðaf cos kf x2; 0; 0Þ (2)

with af ¼ 0:15 and kf¼ 1. The velocity is assumed to be incompress-
ible so that

r � u ¼ 0: (3)

Customarily, the flow driven by forcing terms of this type is called the
Kolmogorov flow.

The filtered Navier–Stokes equation (fNSE) is given by

@tu þ ðu � rÞu ¼ �rp þr � ð�sÞ þ �r2u þ f þ f s; (4)

where the over-line represents filtering with filter length D, u is the
filtered velocity, p is the filtered pressure, and s is the SGS stress tensor
with

sij ¼ uiu j � uiu j:

When multiple slave systems are simulated together with the master
system, the same SGS model is used in the slave systems, so they are
identical except for the initial velocity.

The additional forcing term f s in Eq. (4) symbolically represents
the effects of DA. The DNS (i.e., the master system M) and the LES
(the slave systems) will be simulated concurrently. At each time step,
the Fourier modes of the LES velocity field with jkj � km, k being the
wavenumber, are replaced by those from the DNS velocity field. As
such, these Fourier modes in the DNS are continuously assimilated
into the LES velocity fields.

We compare three canonical SGS models. These models have
been extensively studied; therefore, only the necessary formulae are
given. For details see, e.g., Meneveau and Katz.23 The first model is the
standard Smagorinsky model (SSM) with

sij ¼ �2ðcsDÞ2jsjs ij; (5)

where cs ¼ 0:16 is the Smagorinsky coefficient, D is the filter length,
and sij is the filtered strain rate tensor given by

s ij ¼
1

2
ð@jui þ @iu jÞ (6)

and jsj � ð2sijsijÞ1=2. The second model is the dynamic Smagorinsky
model (DSM) which is also defined by Eq. (5), but c2s is calculated
dynamically from

c2s ¼
hLijMijiv
hMijMijiv

; (7)

where h i
v
represents volume average, and

Mij ¼ �2D2 4jes jes ij � gjsjsij
h i

; Lij ¼ guiu j � eu i
eu j; (8)

in which e denotes filtering with filter scale 2D. Equation (7) is
derived from the Germano identity following the dynamic proce-
dure.23 Finally, the dynamic mixed model (DMM) is also considered,
which is defined by

sij ¼ �2ðcsDÞ2jsjsij þ cnlD
2@kui@ku j: (9)

Following the dynamic procedure, the equations for c2s and cnl are
found to be
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c2s ¼
hLijMijivhNijNijiv � hLijNijivhMijNijiv

hMijMijivhNijNijiv � hMijNiji2v
; (10)

cnl ¼
hLijNijivhMijMijiv � hLijMijivhMijNijiv

hMijMijivhNijNijiv � hMijNiji2v
; (11)

where

Nij ¼ D
2 4eAik

eA jk � gAikA jk

h i
(12)

with Aij � @jui being the filtered velocity gradient.

III. NUMERICAL SIMULATIONS AND RESULTS

Equations (1) and (4) are solved with the pseudo-spectral method
in a periodic box V ¼ ½0; 2p�3 which is discretized uniformly with
NDNS and NLES grid points, respectively, in each direction for the DNS
and the LES. The two-thirds rule24 is used to dealiase the advection
term so that the maximum effective wavenumber is NDNS=3 for the
DNS and NLES=3 for the LES. Time stepping uses an explicit second-
order Euler scheme with a first-order predictor and a second-order
corrector based on the trapezoid rule.6

The Fourier components of the initial velocity field are randomly
sampled from a Gaussian distribution with unit variance and then are
rescaled so that the energy spectrum E(k) of the velocity field is given
by

EðkÞ ¼ 16
ffiffiffi
2

p
u20ffiffiffi

p
p k4

k5p
e�2k2=k2p ; (13)

where u0 ¼ 0:66 and kp¼ 3. As such, the total kinetic energy of the
velocity field is 3u20=2. The energy spectrum peaks at kp and falls off
rapidly as k increases so that practically the initial field contains only
large-scale motions.

Starting from the initial velocity field, the simulations are run for
a period of time until the flows are fully developed in which state the
statistics of the velocity becomes stationary. At this point, data assimi-
lation is initiated. As a result, the results presented below do not
depend on the initialization of the simulations.

Table I summarizes the parameters for the DNS from which the
assimilated data are extracted and the number of grid points for the
corresponding LES. To investigate how the amount of data being
assimilated affects the results, for each set of parameters in the table,
multiple values of km are computed. In total, around 1100 runs of
DNS and LES are conducted.

To fully resolve the small scales of the flows in DNS, it requires
kmaxg � 1:5, where kmax is the maximum effective wavenumber.24 In
the current investigation, kmaxg is 1.8, 2.1, and 2.0 for the cases with

NDNS being 128, 192, and 256, respectively. Therefore, the flows are
well resolved.

A. The phase synchronization between LES and DNS

We begin with the first objective: the complete synchronization
of two identical LES (slave systems A and B, with different initial con-
ditions) with data assimilated from the same DNS (system M). The
three systems are simulated concurrently.

The synchronization between A and B is measured with the syn-
chronization error

EABðtÞ ¼
1

2ð2pÞ3
ð

V

ðuA � uBÞ � ðuA � uBÞdV ; (14)

with uA and uB being the velocity in systems A and B, respectively.
The results for selected cases are shown in Fig. 1 to illustrate the gen-
eral features. The lines represent EAB for the SSM with four different
km values. The most prominent observation is that the error decays
exponentially for sufficiently large km, showing that A and B will syn-
chronize completely as t ! 1. The figure also shows that a threshold
value exists for km below which the error does not decay over time.
With the parameters considered in Fig. 1, the threshold for SSM is
km � 5. The symbols in Fig. 1 represent EAB for the DSM (empty
circles) and the DMM (solid circles) with km¼ 9. The error for DSM

TABLE I. Parameters for the DNS. N3
DNS (N

3
LES): number of grid points in DNS (LES). dt: time step size used in both DNS and LES. dxDNS: the grid size in DNS. u

0: root-mean-square

velocity. �: viscosity, �: average viscous energy dissipation rate, k: Taylor length scale, Rek � u
0k=�: the Taylor–Reynolds number, and g � ð�3=�Þ1=4: Kolmogorov length scale.

sK � ð�=�Þ1=2: Kolmogorov length scale.

NDNS Rek NLES dtu0=dxDNS u0 � g � k sK

128 75 64, 96 0.074 0.63 0.072 0.042 0.0060 0.71 0.30

192 90 64, 96, 128 0.077 0.65 0.074 0.033 0.0044 0.61 0.24

256 112 64, 96, 128 0.078 0.66 0.077 0.024 0.0020 0.51 0.20

FIG. 1. The synchronization error as a function of time. Lines: SSM, Solid line:
km¼ 9, dashed line: km¼ 7, dash-dotted line: km ¼ 5:5, and dotted line: km¼ 5.
Empty circles: DSM with km¼ 9 and solid circles: DMM with km¼ 9. For NLES ¼ 64
and Rek ¼ 112.
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clearly decays much slower than that for SSM, which implies two LES,
supplemented with DSM, synchronize slower than those supple-
mented with SSM. For km¼ 9, the systems with DMM as the model
do not synchronize at all. Thus, the synchronization can happen with
very different rates for different models.

Figure 1 shows that, for sufficiently large km, the synchronization
error can be fitted with an exponential function

EAB 	 exp ð�at=sKÞ; (15)

where sK is the Kolmogorov time scale of the DNS velocity and a is
a coefficient referred to as the decay rate. a can be found as the slope
of the linear regression of the data for ðt=sK ;�log EABÞ. The values
of a for different km and filter scale D, or equivalently the cutoff
wavenumber kD ¼ p=D, have been found and plotted in Fig. 2. We
focus on km around the threshold value kc � 0:2g�1 reported in
Yoshida, Yamaguchi, and Kaneda.11 For clarity of the figures, only
results for NLES ¼ 64 and 96 are presented. The results show that, as
expected, the decay rate increases with kmg for all models. However,
other parameters being equal, the decay rate for SSM is the largest,
the one for DSM is the second, and the one for DMM is the smallest.
The results for different Reynolds numbers are distinguished with
symbols of different shapes, whereas symbols of the same shape but
with different sizes indicate different kD. Therefore, it is clear that,
for SSM and DSM, a increases with Rek but decreases with kD.
However, for DMM, a shows no clear dependence on kD or Rek.

The km value for which a¼ 0 is the threshold wavenumber kc. If
km < kc, then synchronization between the two LES (in systems A
and B, respectively) is impossible. To find kc in a given case, we start
from a km value for which EAB decays exponentially over time. The
value of km is then decremented by 0.5 repeatedly, with EABðtÞ calcu-
lated in each case, until a km value is found for which EABðtÞ does not
decay. The average of the final two values of km is taken to be kc. This
means that the true value of kc falls between kc6 0:25.

The normalized threshold wavenumber kcg is plotted against
D=g in Fig. 3(a) and kDg in Fig. 3(b). The error bars indicate the values
corresponding to kc6 0:25. Consistent with Fig. 2, kcg increases with
kDg for SSM and DSM, while it undulates around a value close to 0.2
for DMM. For large kDg; kcg approaches, the DNS value 0.2, which is
to be expected. For a given kDg, the threshold is the smallest for SSM,
somewhat larger for DSM, and the largest for DMM.

The results in Figs. 2 and 3 depict a consistent picture: the rate of
synchronization and the data needed to synchronize two identical LES
with DMM are roughly the same as those needed to synchronize two
identical DNS, whereas the synchronization of LES with SSM or DSM
requires less data and can be achieved quicker. In the case with the
smallest kDg (hence, largest D=g) shown in Fig. 3, the ratio between kc
for SSM and DMM is approximately 0:13=0:21, which means the data
needed for SSM is only ð0:13=0:21Þ3 � 24% of those for DMM. This
is a significant saving.

The slave systems are synchronized because their conditional
Lyapunov exponent (with the assimilated data given) is negative.20 As
SSM and DSM are slightly more dissipative than DMM, it is perhaps
not surprising that the LES with these two models has smaller condi-
tional Lyapunov exponents, and hence is easier to synchronize.

The results in Fig. 3 suggest that the values of kcg for SSM and
DSM may decay and asymptote toward small constants as kDg
decreases further. However, simulations with much smaller g are

needed to ascertain the behavior, which are beyond our computational
capacity at the moment.

The fact that less data are needed to synchronize the LES with
SSM and DSM as the SGS models to DNS do not immediately suggest

FIG. 2. The decay rate for (a) SSM, (b) DSM, and (c) DMM as a function of kmg.
Circles: Rek ¼ 75, squares: Rek ¼ 90, and diamonds: Rek ¼ 112. Larger sym-
bols: NLES ¼ 96 and smaller symbols: NLES ¼ 64. The inset in (c) shows the val-
ues of kDg corresponding to the curves in (a)–(c).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 065108 (2022); doi: 10.1063/5.0089895 34, 065108-4

VC Author(s) 2022

 2
9
 J

a
n
u
a
ry

 2
0
2
4
 1

5
:1

5
:0

8



that the LES velocity obtained with SSM or DSM is more accurate
compared to those obtained with DMM. This issue is addressed next.

B. The error in the synchronized LES velocity

We turn to the second objective, i.e., the relationship between the
DNS velocity (the master system M) and the LES velocity (the slave
systems). In this part, km is always chosen to be higher than the thresh-
old value kc, and only one LES, denoted as system S, is simulated
simultaneously with the DNS (master system M). However, for each
set of parameters, five simulations (solving concurrent systemsM and
S) are conducted, and the statistics of the errors are averaged over the
five realizations.

Let u be the LES velocity in system S. We will need to compare u
with filtered DNS data. We use v to denote the filtered DNS velocity
field. v is obtained from the DNS velocity in the master system M by
filtering the latter with a cutoff filter24 with cutoff wavenumber kD.

Our focus will be the point-wise difference between instanta-
neous velocities u and v. Nevertheless, we will also document the

energy spectra of the two velocity fields. Let ûðk; tÞ and v̂ðk; tÞ be the
Fourier coefficients of u and v, respectively. Let Evðk; tÞ and Euðk; tÞ
denote the energy spectra of v and u at time t, respectively, where

Evðk; tÞ ¼
1

2

þ

Sk

hjv̂ðk; tÞj2idSk (16)

and

Euðk; tÞ ¼
1

2

þ

Sk

hjûðk; tÞj2idSk; (17)

where h i indicates ensemble average over the five realizations. To
characterize the point-wise difference between u and v, a suitable sta-
tistic is the energy spectrum of u � v. The spectrum of u � v is
defined by

Edðk; tÞ ¼
1

2

þ

Sk

hjûðk; tÞ � v̂ðk; tÞj2idSk: (18)

Since the Fourier modes with jkj � km in u and v are the same due to
data assimilation, Edðk; tÞ ¼ 0 for k � km. The total error in u com-
pared with v, denoted by EðtÞ, can be found from Ed according to

EðtÞ ¼
ðkD
0

Edðk; tÞdk ¼
ðkD
km

Edðk; tÞdk: (19)

EðtÞ measures the error in the Fourier modes with jkj > km. In other
words, it measures the error in the scales that are not affected by DA
directly.

We also introduce a spectral correlation function

qðk; tÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffi
EuEv

p
þ

Sk

hûð�k; tÞ � v̂ðk; tÞidSk: (20)

Note that qðk; tÞ ¼ 1 for k � km because ûðk; tÞ ¼ v̂ðk; tÞ when
jkj � km. qðk; tÞ measures the correlation between the Fourier modes
of u and v, and hence complements the information provided by
Edðk; tÞ and EðtÞ. With qðk; tÞ, a correlation wavenumber can be
defined

kqðtÞ ¼
ðkD
0

qðk; tÞdk: (21)

kqðtÞ gives a measure of the range of wavenumbers in which the two
fields are well correlated. Using the fact that qðk; tÞ ¼ 1 for k � km,
we have

kqðtÞ ¼ km þ
ðkD
km

qðk; tÞdk: (22)

Thus, we can introduce a dimensionless correlation wavenumber

k
qðtÞ ¼
kq � km

kD � km
¼ 1

kD � km

ðkD
km

qðk; tÞdk; (23)

which presents kqðtÞ as a fraction of the full range of wavenumbers
above km. Obviously, 0 � k
q � 1 and a larger k
q indicates better
agreement between u and v.

The parameters introduced above are time dependent. We will
use subscript T to denote their time-averaged values. Thus, EuTðkÞ
is the time-averaged energy spectrum for u. Similarly, we have

FIG. 3. The threshold wavenumber kcg as a function of (a) D=g and (b) kDg.
Circles: SSM, squares: DSM, and diamonds: DMM. The error bars represent
kcg6 0:25g.
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parameters EvTðkÞ; EdTðkÞ, ET , and k
qT which are the time-averaged
values of Ev, Ed, E, and k
q, respectively.

Finally, we let

KD �
ðkD
km

Evðk; t ¼ 0Þdk; (24)

where t¼ 0 is the time when DA is initiated. KD is used to normalize
EðtÞ and ET .

We are ready to present the analyses of the data. We start with
the contours of the velocity fields shown in Fig. 4 which provide an
intuitive visualization of the effects of data assimilation. The two distri-
butions display a remarkable similarity in their large-scale structures,
as a consequence of data assimilation. The LES field, shown in Fig.
4(a), misses some of the small-scale features that we can observe in the
DNS field, shown in Fig. 4(b). This is to be expected as LES does not
resolve all the scales in the DNS fields. Our main focus is to quantify
the errors in the small scales of the LES fields.

We now present selected results for EðtÞ to illustrate some gen-
eral quantitative features. Figure 5 plots EðtÞ=KD for Rek ¼ 112 and

kmg ¼ 0:21. The figure shows that EðtÞ decreases over time and then
levels off. Therefore, the data assimilated at large scales propagate
toward the small scales and push the small scales of the LES velocity
fields toward the DNS velocity. The stationary value of EðtÞ decreases
with increasing kDg for all three models. Interestingly, the errors for
SSM and DSM are significantly smaller than that for DMM for the
case with kDg ¼ 0:5. DSM and DMM only become more accurate
than SSM when kDg is increased.

The data assimilation process does affect the small scales of the
instantaneous LES velocity fields. However, it does not visually alter
their statistics. This observation is demonstrated in Fig. 6 with the
time-averaged energy spectra. The spectra are obtained for the cases
where kmg ¼ 0:21 which corresponds to km ¼ 9. As a result, the LES
spectra agree with the DNS one for km < 9 simply due to the fact that
the Fourier modes in the LES fields are exact copies of those in the

FIG. 4. The instantaneous distribution of (a): ux from LES with SSM and (b): vx
from DNS. Rek ¼ 112; kDg ¼ 0:5; kmg ¼ 0:21.

FIG. 5. The normalized error EðtÞ=KD. Solid symbols: SSM, lines: DSM, and empty
symbols: DMM. kDg ¼ 0:5: circles and solid line; kDg ¼ 0:8: squares and dashed
line; kDg ¼ 1:0: diamonds and dotted line. For kmg ¼ 0:21 and Rek ¼ 112 only.

FIG. 6. Energy spectra for SSM (circles), DSM (squares), and DMM (diamonds) com-
pared with the DNS energy spectrum (dashed line), for Rek ¼ 112; kmg ¼ 0:21, and
NLES ¼ 64 only. Dotted line: the �5=3 Kolmogorov spectrum.
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DNS field. The LES energy spectra for k approaching kD display well-
known features. Namely, we observe the SSM underestimates the high
wavenumber end of the spectrum. On the other hand, DSM and
DMM reproduce the DNS spectrum quite well, due to their ability to
adjust the model coefficients via the dynamic procedure. This result
illustrates the point we mentioned above that DA does not signifi-
cantly alter the statistics produced by the SGS models. However, as we
have demonstrated briefly in Fig. 5 and will investigate in more detail
later, it can significantly improve the prediction of the instantaneous
point-wise distribution of the velocity fields, which is the main benefit
of DA in this case.

We now look into the statistics of the instantaneous difference
between u and v in more detail. The time-averaged error ET and the
time-averaged dimensionless correlation wavenumber k
qT are plotted
in Figs. 7 and 8. Figure 7(a) shows, first, for a given kmg, the correla-
tion between the LES and the DNS fields increases with kDg. This
behavior is to be expected as the LES is more accurate for larger kDg.
Second, for a given kDg; k



qT does not always increase with kmg.

This occurs because k
qT measures only the correlation of the Fourier
modes with km � jkj � kD. For large km, the correlation is predomi-
nantly determined by motions with wavenumbers close to kD which
have larger errors due to the errors in the SGS models, thus degrading
the correlation. This effect is not obvious when kD is sufficiently large
compared with km, but it is rather pronounced for the cases where
kDg ¼ 0:5. Third, for the case with the smallest kDg, k



qT for SSM is

the highest among the three models (at least if kmg is not too large).
Thus, for larger filter scales, LES with SSM synchronizes with DNS
better than LES with other models.

The above observations are consistent with the result for the
mean error ET=KD shown in Fig. 7(b). Notably, the normalized
error for SSM is the smallest for kDg ¼ 0:5, which is about 30% at
kmg ¼ 0:21 as opposed to approximately 60% for DMM. DMM
becomes more accurate for larger kDg. Arguably, DSM displays the
best overall performance. Figure 8 shows the results for Rek ¼ 90,
which depicts similar trends.

The spectral distribution of the error in the LES velocity is shown
in Fig. 9, where EdTðkÞ=EvTðkÞ is plotted against a normalized
wavenumber

FIG. 7. (a): Dimensionless correlation wavenumber k
qT as a function of kmg. (b):
ET=KD as a function of kmg. For Rek ¼ 112. Circles: kDg ¼ 0:5, squares:
kDg ¼ 0:8, and diamonds: kDg ¼ 1:0. Solid lines: SSM, dash lines: DSM, and
dash-dotted lines: DMM.

FIG. 8. Same as Fig. 7 but for Rek ¼ 90. (a): Dimensionless correlation wavenum-
ber k
qT as a function of kmg. (b): ET=KD as a function of kmg.
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k
 ¼ k� km

kD � km
:

For clarity, only results for kDg ¼ 0:5 and 0.8 are plotted.
Interestingly, for kDg ¼ 0:5, the synchronization error in the velocity
obtained with SSM is the smallest across all wavenumbers, which
explains the observation from Fig. 7 that the total error is the smallest.
For kDg ¼ 0:8, Fig. 9 shows that the error for the DSM is the smallest
for k
 values up to 0.8, but it becomes bigger than the one for SSM for
k
 > 0:8. The results for kDg ¼ 1:0 are not shown, but they also dis-
play similar features.

The inset plots Edðk; tÞ=EvTðkÞ for a selected case, which illus-
trates how the error spectrum changes over time. As is expected, the
error at a given k decreases over time, which shows that the effects of
data assimilation propagate from large scales to small scales.

C. The synchronization of the vorticity field

The vorticity field provides insights into the small scales of the
velocity field. It is instructive to examine the synchronization of the
vorticity since it might be affected more significantly by the synchroni-
zation error in the small scales.

We let xs � r� u be the vorticity of the LES velocity and use
x

m � r� v to denote the filtered vorticity calculated from filtered
DNS data. The strength of the vorticity fields is represented by the nor-
malized entrophy

X
s ¼ xs

ix
s
i

hxm
i x

m
i i

; X
m ¼ xm

i x
m
i

hxm
i x

m
i i

; (25)

for the LES and the filtered DNS vorticity, respectively. Note that both
are normalized by the same value hxm

i x
m
i i.

The instantaneous distributions of Xs and X
m are illustrated in

Figs. 10–12 with 2D slices of the fields at arbitrary chosen times in the
stationary stage. The figures depict the prevalence of concentrated
strong vortical structures. It is observed that LES, regardless of the SGS
model being used, reproduces the instantaneous shapes and locations

of the structures very well. The SSM appears to underestimate the
strength of the vortical structures and fewer strong structures are
observed. On the other hand, DSM and DMM appear to somewhat
overestimate the entrophy.

The above qualitative observations are confirmed by the joint
probability density functions (PDFs) between X

s and X
m, which are

shown in Fig. 13, and the correlation coefficients qx in Table II, where
qx is defined by

qx ¼ hðXs � hXsiÞðXm � hXmiÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXs � hXsiÞ2ðXm � hXmiÞ2

q : (26)

The correlation is very high in all cases, and they are stronger, for all
three models, when kDg is larger. For LES with the coarser grids
(kDg ¼ 0:5), the SMM result has the highest correlation with the fil-
tered DNS data, whereas the best correlation is observed for DSM for
kDg ¼ 0:8. The correlation coefficients capture the correlation
between fluctuations of Xs and X

m at the order of the magnitude of
their standard deviations. Correlations between large fluctuations are
illustrated by their joint PDFs. Figure 13(a) shows the joint PDFs

FIG. 9. The normalized time-averaged spectral error EdT ðkÞ=EvT ðkÞ as a function
of the normalized wavenumber k
. Circles: SSM, squares: DSM, and diamonds:
DMM. Solid symbols: kDg ¼ 0:5 and empty symbols: kDg ¼ 0:8. Inset: the spec-
tral error Euðk; tÞ=EvT ðkÞ for the SSM at different times where, from top to bottom,
t=sK ¼ 0; 3:62; 7:25; 10:87; 14:50. For kmg ¼ 0:21 and Rek ¼ 112.

FIG. 10. The instantaneous distribution of the normalized entrophy from (a): filtered
DNS data and (b): LES data with SSM. Rek ¼ 112; kDg ¼ 0:5; kmg ¼ 0:21.
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calculated for the three models at kDg ¼ 0:5. Compared with the con-
tours of the joint PDFs calculated with DSM and DMM, those calcu-
lated with SSM are more elongated along the diagonal, which suggests
that the correlations for larger fluctuations are also stronger for the
SSM. The contours for SSM tilt toward the lower side of the diagonal,
indicating that SSM tends to underestimate the large fluctuations,
which is consistent with Fig. 10. The contours for DSM and DMM are
mostly symmetrical with respect to the diagonal, which shows that
there is systematic under- or overestimation. However, the contours
spread wider around the diagonal, which explains why the correlations
for these two models are smaller than that for SSM. For kDg ¼ 0:8,
the joint PDFs are shown in Fig. 13(b). The joint PDF for DSM clearly
indicates the strongest correlation between X

s and X
m since the con-

tours align with the diagonal much better than those of the joint PDFS
for SSM and DMM.

The alignment between the vorticity vectors x
m and x

s is
another indicator of the synchronization between the LES and the
DNS velocity fields. Figure 14 plots the PDF of cos ðxm;xsÞ, where
ðxm;xsÞ denotes the angle between x

m and x
s. Perfect alignment

corresponds to cos ðxm;xsÞ ¼ 1. Figure 14 shows that the LES

vorticity is strongly aligned with the filtered DNS vorticity, which
shows that assimilation of large-scale velocity does improve the predic-
tion of vorticity fields. For kDg ¼ 0:5, the alignment is the strongest
for SSM, consistent with previous results. For kDg ¼ 0:8, the align-
ment improves for all models. The alignment obtained with DSM
becomes the strongest, while the alignment obtained with DMM is still
the worst.

Vortex stretching is the main mechanism that controls the
strength of the vorticity field. Mathematically the effect is captured by
the so-called vortex stretching term. For LES, this term is given by

Ps
x � xs

is ijx
s
j ¼ xs

ix
s
j@jui; (27)

which can be calculated from the LES velocity u. For DNS, the vortex
stretching term can be calculated from the same expression, with u

replaced the filtered velocity v and x
s replaced by x

m. We calculate
the correlation coefficient qP of P

s
x and Pm

x , where

qP ¼ hðPs
x � hPs

xiÞðPm
x � hPm

x iÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPs

x � hPs
xiÞ

2ðPm
x � hPm

x iÞ
2

q (28)

FIG. 11. The instantaneous distribution of the normalized entrophy from (a): filtered
DNS data and (b): LES data with DSM. Rek ¼ 112; kDg ¼ 0:5, kmg ¼ 0:21.

FIG. 12. The instantaneous distribution of the normalized entrophy from (a): filtered
DNS data and (b): LES data with DMM. Rek ¼ 112; kDg ¼ 0:5, kmg ¼ 0:21.
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and their joint PDFs. The results are shown in Fig. 15 for kDg ¼ 0:5
and 0.8.

For the smaller kD (hence, larger D), Fig. 15(a) shows that the
correlation is the strongest for SSM with qP ¼ 0:75, and slightly
weaker for DSM with qP ¼ 0:64. With qP ¼ 0:58, the correlation for
DMM is the weakest. The contours of the joint PDF for SSM are tilted
toward the horizontal axis, which shows that SSM somewhat

underpredicts the large fluctuations in vortex stretching. On the other
hand, DSM and DMM tend to overpredict it. Overall, the joint PDF
for SSM concentrates around the diagonal better than the joint PDF
for the other two models, which is consistent with the observed higher
correlation for SSM.

The correlation between LES predictions and DNS values for the
vortex stretching term is increased when D is decreased, as shown in
Fig. 15(b) by the values of qP as well as the shapes of the joint PDFs.
The vortex stretching term calculated with DSM now displays the
strongest correlation with its counterpart in DNS. The result calculated
with SSM is still better correlated with the DNS data than the result
calculated with DMM, which is consistent with previous results (c.f.
Fig. 14). The joint PDFs show that SSM still tends to underestimate
the large fluctuations in Ps

x, whereas DMM tends to overestimate
them. Meanwhile, this systematic deviation is not observed in the joint
PDF for DSM, as the contours are mostly symmetrical with respect to
the diagonal.

D. Effects of noise

We have so far assumed the data being assimilated into the LES
velocity are obtained from DNS, hence, noiseless. In practical applica-
tions of data assimilation, the data very often are obtained from experi-
ments, and hence contain errors. To understand how the
synchronization between the LES and DNS velocities might be
changed in those circumstances, we conduct a set of numerical experi-
ments with noise introduced into the data before they are assimilated.

The noise is introduced through a phase-scrambling process.
Recall that v̂ðk; tÞ is the Fourier coefficient of the DNS velocity with
wavenumber k and ûðk; tÞ is that of the LES velocity. We may write

v̂ðk; tÞ ¼ jv̂ðk; tÞjei/ðk;tÞ; (29)

where /ðk; tÞ is the phase angle of v̂ (/ is also known as the argu-
ment). To introduce noise into the assimilated data, instead of letting
ûðk; tÞ ¼ v̂ðk; tÞ, we let

ûðk; tÞ ¼ jv̂ðk; tÞjei/ðk;tÞð1þd/Þ (30)

FIG. 13. The joint PDFs of the normalized entrophy for (a): kDg ¼ 0:5 and (b):
kDg ¼ 0:8. Gray scale and red lines: SSM, dashed lines: DSM, and dash-dotted
lines: DMM. Values of the contours: 10�2; 10�1, 1 (started from outermost)
Rek ¼ 112; kmg ¼ 0:21.

TABLE II. Correlation coefficient qx for the normalized entrophy.

kDg SSM DSM DMM

0.5 0.87 0.81 0.78

0.8 0.89 0.93 0.86

FIG. 14. The PDF of cos ðxm;xsÞ with Rek ¼ 112 and kmg ¼ 0:21. Solid sym-
bols: kDg ¼ 0:5 and empty symbols: kDg ¼ 0:8. Circles: SSM, squares: DSM,
and diamonds: DMM.
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at each time step for jkj � km, where d/ is a uniformly distributed
random number in the interval ½�D/;D/� for some given D/. d/ can
be different for different k and t. Equation (30) shows that the phase
angles of different Fourier modes are perturbed randomly before the
Fourier modes are assimilated into the LES velocity field.

Apart from assimilating the data using Eq. (30), the rest of the
numerical experiments is essentially the same as before. We consider
only DNS with 2563 grid points and kmg ¼ 0:21, but LES with two
resolutions NLES ¼ 64 and NLES ¼ 96 are tested. D/ ¼ 0:2 is used,
which means that the phase angle / can be modified by up to 620%
randomly. Due to the noise, the total error in the assimilated Fourier
modes with jkj � km is about 5% of the total kinetic energy contained
in these modes. Therefore, the amplitude of the noise is rather
significant.

We present two key results, those of k
qT and ET=KD. The val-
ues for k
qT are shown in Table III. The values are labeled with

“Noisy.” The table also includes the values from the noiseless case as
a comparison. The values for the noiseless case are the same as those
in Fig. 7 (with kmg ¼ 0:21). The values for ET=KD are collected in
Table IV.

The values in the two tables show that the correlation between
the LES and the DNS is reduced by the noise, but strong correlation is
still observed. The correlation is degraded somewhat more strongly for
larger kD. For kDg ¼ 0:5, the values of ET=KD essentially have no dif-
ference with or without noise. They are increased slightly by the noise
for kDg ¼ 0:8 but remain small.

The results in these tables show that good synchronization
between the LES and the DNS velocities is still achieved despite that
the assimilated data contain significant errors.

E. Dependence on the forcing scheme

A natural question one may ask is how we may generalize the
results to other flows. Although it is beyond the scope of this investiga-
tion to establish comprehensively the universality of the results we
have obtained, we present in what follows some key results obtained
with the same setup but a different forcing term. These results provide
an initial assessment of the universality of the results we have obtained
so far.

For this purpose, we use the linear forcing in Rosales and
Meneveau,25 where

f ¼ Apu (31)

with Ap being a constant. As is commented by Rosales and
Meneveau,25 this forcing scheme is useful in the modeling of non-
homogeneous problems. Besides, the forcing applies to all scales of the
velocity field and, as such, is qualitatively different from the forcing in
Kolmogorov flows investigated in Secs. IIIA–IIID. In particular, the
forcing term can be viewed as an elementary model for the effect of

FIG. 15. The joint PDF of the vortex stretching terms with (a) kDg ¼ 0:5 and (b)
kDg ¼ 0:8. Solid lines and gray scales: SSM, dashed lines: DSM, and dash-dotted
lines: DMM. Values of the contours: 10�2; 10�1, 1 (started from outermost). Inset:
correlation coefficients. Rek ¼ 112 and kmg ¼ 0:21.

TABLE III. The time-averaged dimensionless correlation wavenumber k
qT obtained
with noiseless or noisy data. Rek ¼ 112. kmg ¼ 0:21.

kDg SSM DSM DMM

Noiseless 0.5 0.69 0.65 0.57

0.8 0.79 0.81 0.76

Noisy 0.5 0.64 0.61 0.51

0.8 0.70 0.71 0.68

TABLE IV. The time-averaged synchronization error ET=KD obtained with noiseless
or noisy data. Rek ¼ 112. kmg ¼ 0:21.

kDg SSM DSM DMM

Noiseless 0.5 0.37 0.42 0.60

0.8 0.20 0.13 0.18

Noisy 0.5 0.35 0.41 0.60

0.8 0.25 0.22 0.25
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the mean velocity gradient.25 Therefore, a flow with this forcing
scheme captures some generic features of more complex flows while,
at the same time, is simple enough so that the physical mechanisms
behind any new observations can be understood.

We will conduct DNS with 2563 grid points only in this investiga-
tion, and the assimilated data are noiseless. The synchronization
between the DNS fields and LES with 643, 96,3 and 1283 grid points is
considered. Ap ¼ 0:2 is used, which is in the range of values tested in
Rosales and Meneveau.25 The statistics are calculated the same way as
described in Sec. III B. In order to compare the results with those in
Sec. IIIB, the parameters in Table I are used to normalize the results
where appropriate.

The basic features of the simulations are illustrated by the energy
spectra given in Fig. 16, which can be compared with the spectra in
Fig. 6. The main observation is that the broad features of the DNS spec-
trum are captured by the SGS models. However, comparing Fig. 16
with Fig. 6, one can see that high wavenumber ends of the spectra calcu-
lated with the DSM and the DMM are significantly lower, showing that
the models become overly dissipative in the current case. As a result,
the improvement they can produce over the SSM is less significant.

The synchronization error is characterized by k
qT and ET (c.f.
Fig. 7). k
qT is plotted in Fig. 17. Comparing the results in Fig. 17
with those in Fig. 7, the similarity is that, in both cases, k
qT increases
with kmg. Apart from the smallest kmg; k



qT also increases with kD.

These observations demonstrate the general effects of data assimila-
tion persist in this new case. Meanwhile, there are some differences
as well. First, now the SSM consistently produces the highest correla-
tion, even for simulations with small kDg. The values of k



qT for DSM

and DMM at higher kD are lower than those shown in Fig. 7. This
observation may be explained in terms of Fig. 16 since it shows that
the energy spectra produced by the DSM and DMM display a higher
discrepancy with the DNS spectrum. Second, k
qT is generally smaller
than its value shown in Fig. 7. For kmg ¼ 0:21, the decrease in k
qT is
especially significant. This result suggests that, in this case, the
threshold value of kc might be slightly higher so that the phase syn-
chronization between the DNS and the LES requires higher km to
achieve (see also Fig. 18).

IV. CONCLUSIONS

We investigate the synchronization between LES and DNS veloc-
ity fields in a periodic domain when a simple data assimilation scheme
is applied, where the low wavenumber modes in the former are
replaced by those in the latter at each time step. The problem arises
from the practice of data assimilation where measurements or experi-
mental data are assimilated in some ways into numerical simulation
dynamically to improve simulation results. LES with the standard
Smagorinsky model, the dynamic Smagorinsky model, and the
dynamic mixed model are conducted. Generalizations to noisy data
and flows driven by different forcing terms are also investigated. The
main conclusions of the analyses are as follows:

1. There is a threshold wavenumber such that LES is synchronized
in phase with DNS as long as all Fourier modes with smallerFIG. 16. The time-averaged energy spectra EuT ðkÞ for kmg ¼ 0:21 and NLES ¼ 64.

FIG. 17. The dimensionless correlation wavenumber as a function of kmg for simu-
lations with linear forcing. For Rek ¼ 112. Circles: kDg ¼ 0:5, squares:
kDg ¼ 0:8, and diamonds: kDg ¼ 1:0. Solid lines: SSM, dash lines: DSM, and
dash-dotted lines: DMM.

FIG. 18. The time-averaged synchronization error ET=KD as a function of kmg for
simulations with linear forcing. For Rek ¼ 112. Circles: kDg ¼ 0:5, squares:
kDg ¼ 0:8, and diamonds: kDg ¼ 1:0. Solid lines: SSM, dash lines: DSM, and
dash-dotted lines: DMM.
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wavenumbers are assimilated, but no synchronization can be
achieved if fewer Fourier modes are assimilated.

2. The threshold wavenumber is the smallest for the standard
Smagorinsky model and the largest for the dynamic mixed
model, whereas the one for the dynamic Smagorinsky model lies
in between.

3. The threshold wavenumber for the standard and dynamic
Smagorinsky models decreases as the filter scale increases,
whereas the one for the dynamic mixed model does not depend
on the filter scale.

4. With larger filter scales, the total synchronization error for the
standard Smagorinsky model is the smallest among the models.
The vorticity field also correlates with the DNS vorticity field bet-
ter than other models even though strong vorticity fluctuations
are somewhat underestimated. For smaller filter scales, the
dynamic Smagorinsky model becomes more accurate.

5. Though there are quantitative differences, good synchronization
is still obtained with noisy data or in flows with a linear forcing
term. The advantages of the Smagorinsky models are still
observed in these cases.

The observations suggest that, in data assimilation applications,
the standard and dynamic Smagorinsky models might have advan-
tages that have not been appreciated before. We conjecture that the
better synchronization is due to the dissipative nature of these models.
We should emphasize, however, that the results are obtained in a flow
with periodic boundary conditions. The natural next step is to investi-
gate the performance of the models in the simulations of wall-
bounded turbulent flows with data assimilation. Wall-bounded flows
present additional questions as to the roles of near wall turbulent
coherent structures and the wall boundary conditions for the models.
These questions will be the focus of future research.
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