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Abstract—Smart mobility becomes paramount for meeting
net-zero targets. However, autonomous, self-driving and electric
vehicles require more than ever before an efficient, resilient
and trustworthy computational offloading backbone that expands
throughout the edge-to-cloud continuum. Utilizing on-demand
heterogeneous computational resources for smart mobility is
challenging and often cost-ineffective. This paper introduces
SMOTEC, a novel open-source testbed for adaptive smart mo-
bility experimentation with edge computing. SMOTEC provides
for the first time a modular end-to-end instrumentation for
prototyping and optimizing placement of intelligence services
on edge devices such as augmented reality and real-time traffic
monitoring. SMOTEC supports a plug-and-play Docker con-
tainer integration of the SUMO simulator for urban mobility,
Raspberry Pi edge devices communicating via ZeroMQ and
EPOS for an AI-based decentralized load balancing across edge-
to-cloud. All components are orchestrated by the K3s lightweight
Kubernetes. A proof-of-concept of self-optimized service place-
ments for traffic monitoring from Munich demonstrates in
practice the applicability and cost-effectiveness of SMOTEC.

Index Terms—Edge Computing, Smart Mobility Experimenta-
tion, Testbed, Dynamic Resource Allocation, Traffic Monitoring.

I. INTRODUCTION

The penetration of smart mobility, including autonomous,
self-driving and electric vehicles, is transforming cities, pro-
viding new opportunities for more efficient and sustainable
transport. From such penetration, socio-technical infrastruc-
tures emerge as complex and interdependent: connected vehi-
cles generating novel traffic flows require coordinated mobility
services to meet safeguards and net-zero goals, while generat-
ing massive privacy-sensitive (training) data. These require in
turn real-time processing by resource-intensive artificial intelli-
gence (AI) algorithms. Via flexible utilization of computational
resources, the edge-to-cloud continuum turns out to be an
enabler paradigm for the smart mobility niche. So far, the
research community lacks of general-purpose instruments for
low-cost and low-complexity prototyping, deployments and
experimentation of smart mobility solutions based on edge
computing [1]–[3]. But also the edge computing research
community is over-relying on synthetic data and simulation
tools of limited realism [4], [5].

This is a research gap that this paper bridges via a new
testbed: Smart Mobility Services On The Edge Computing

(SMOTEC). SMOTEC is designed to support scientists of
different disciplines (computing, transport, social and environ-
mental science) to study problems that interlink smart mobility
and computation. This includes the impact of smart mobility
applications (e.g. self-driving operations, augmented reality,
traffic monitoring and control, multi-modal transportation)
on edge-to-cloud computing infrastructures (e.g. optimized
resource allocation, load balancing) and vice versa. SMOTEC
maps spatio-temporal service requests of mobile agents (vehi-
cles, pedestrians, cyclists, drones, etc.) to heterogeneous com-
puting resources within the edge-to-cloud continuum, while
possessing autonomic capabilities to improve quality of service
(QoS) via self-adaptive service placements [6].

SMOTEC is designed on generic and extensible Applica-
tion Programming Interfaces (APIs), whose implementation
integrates the SUMO urban mobility simulator [7], intercon-
nected Raspberry Pi devices (referred to in the rest of this
paper as Pis) for edge computation [8] and the multi-agent
collective learning approach of EPOS [6], [9], [10] for load
balancing and optimizing service placements within the edge
infrastructure. All these modules can be easily replaced by
other ones to meet the needs of different application and
experimental scenarios. Users’ configurations are quick and
simple by running code in containers without incurring the
overhead of virtualization or security infrastructure of bare-
metal privileged access. A distributed load-balancing scenario
of service placement for monitoring traffic flows in Munich
city is demonstrated as a proof-of-concept.

The contributions of this work are outlined as follows: (i) A
general-purpose and modular testbed model for adaptive smart
mobility experimentation based on edge computing infrastruc-
ture. (ii) An instantiation of the testbed model via the plug-
and-play integration of the SUMO simulator, the interactive
Pis and the EPOS learning algorithm for service placements.
(iii) An open-source software artifact1 2 to encourage further
work, applicability and adoption of the proposed testbed. (iv)
Insights from the applicability of SMOTEC to a load balancing
scenario for traffic monitoring in Munich.

This paper is organized as follows: Section II compares

1https://doi.org/10.5281/zenodo.8167871
2https://github.com/DISC-Systems-Lab/SMOTEC



SMOTEC with related work. Section III illustrates the testbed
design model. Section IV introduces the implemented testbed
architecture of SMOTEC. Section V introduces the workflow
of a smart mobility application scenario. Section VI illustrates
a proof-of-concept evaluation of SMOTEC. Section VII con-
cludes this paper and outlines future work.

II. RELATED WORK

SMOTEC is distinguished from existing edge comput-
ing testbeds [11]–[17] in terms of its capabilities, gener-
ality/abstractions and applicability. Most are developed to
support customized use cases, e.g., benchmarking artificial
intelligence algorithms [12], [14], offloading approaches [13],
hardware paradigms [17], [18], custom workloads [11], [15],
[16], or edge networking [15], [16], [19]. These testbeds
come with a limited scope, providing restricted deployments,
openness, modularity/configurability and do not easily scale.

Xu et al. [20] propose piFogBedII to support testing of
mobile fog applications. PiFogBedII is an enhancement of Pi-
FogBed [21], built with Pis by adding mobility and migration
management strategies. PROWESS [22] is a general-purpose
edge computing testbed for evaluating resource constrained
applications as a set of containers. Fogbed [23] leverages
Docker containers and a mininet virtual network to support
adding and removing containers in the network topology at
any time during experimentation. EdgeNet [24] is a kubernetes
cluster that consists of a master node which manages a set of
globally distributed worker nodes. The main limitation of these
works [19]–[24] is a lack of online adaptation to the environ-
ment settings, meaning that the resource allocation/migration
decisions require manual offline interventions by users.

TRAPP [25] is a testbed for smart mobility services [26] that
brings together transport domain knowledge (SUMO traffic
microscopic simulator) and domain-independent multi-agent
distributed intelligence (collective learning with EPOS [9],
[10]). This provides significant flexibility for online adapta-
tions in distributed optimization of traffic flows [26]. This
paper makes a significant advancement to TRAPP by ex-
panding its scope to edge computing and allowing for the
first time to experiment and study in an integrated way the
full continuum of mobility-to-edge-to-cloud infrastructures.
SMOTEC leverages SUMO as its mobility service provider.
It can be replaced with a real-time mobility service or spatial
and transport modeling tools such as Harmony [27].

In overall, the proposed testbed is a significant advancement
in the field by offering a remarkable level of online, automated
and scalable resource adaptations: service placements are
autonomously managed during runtime using decentralized
intelligence, while providing high realism of smart mobility
via a plug and play integration of SUMO or other simulation
modules and real-time mobility monitoring services.

III. TESTBED DESIGN MODEL

SMOTEC supports researchers and developers to prototype
and test edge computing services with simulated and real-
world smart mobility workloads. As shown in Figure 1,

SMOTEC is by design a distributed system that consists of
at least one orchestrator and a set of edge nodes. Although an
orchestrator is basically an edge node with more functionalities
to coordinate the edge infrastructure, the orchestrator and edge
nodes can be separate entities and part of a geographically
distributed pool of interconnected computational resources.
The testbed modules are outlined in this section.
Edge nodes: The edge infrastructure offers distributed stor-
age/processing capabilities, these are edge nodes in the vicinity
of end-users to run smart mobility services with real-time low-
latency requirements. An edge node refers to the combination
of a base station (or access point) and its co-located edge
servers in mobile radio networks. The testbed supports for het-
erogeneous edge nodes, from well-provisioned and centralized
servers to far-flung and lightly provisioned embedded devices.
Agents: SMOTEC introduces two types of agents: mobile
agent and edge agent. A mobile agent is an abstraction
of a mobile device such as (autonomous) vehicle equipped
with a set of sensors (e.g., GPS, camera) for perceiving the
surrounding environment (e.g., position, speed) and a set of
actuators (e.g., display, acceleration). The mobile agent is in
charge of sensing the location of the mobile device and creat-
ing/removing communication links with edge nodes according
to the mobility profile. Mobility is determined during runtime
by the location of the mobile device in relation to the fixed
edge nodes. An edge agent runs on an edge node and is
responsible for responding to the requests from mobile agents.
It decides where to deploy the requested services for the end
users to meet QoS requirements and serve its hosted services.
Connector: Cellular networks have a wide and high-speed
communication range, which allows a base station to preserve
connectivity and continuously serve a mobile agent (e.g., vehi-
cle). The upcoming 5G/6G cellular networks are leading tech-
nologies for native mobile edge computing capabilities [28],
[29] to support mobility applications such as augmented reality
with high network capacity and throughput/bandwidth. In
SMOTEC, the connector manages the communication network
and is responsible for communication between edge agents and
service distributor. It connects mobile agents and their serving
edge agents together, while synchronizing data pipelines.
System orchestrator: The management layer, referred to as
orchestrator, maintains a comprehensive view on available re-
sources and running services in the edge network. The testbed
API also runs on the orchestrator and enables developers to
initiate an experiment with access to SMOTEC resources and
APIs. The orchestrator has a small footprint (Minimum: 1
CPU core and 512MB RAM) that can be as light as a Pi.
In summary it is responsible for (i) scaling up and down the
available resources as required by running applications, (ii)
allocating and releasing the storage, networking, and computa-
tional resources provided by the service distributor, (iii) storing
application images for faster instantiation when required, (iv)
providing support for fault and performance monitoring by
sharing data about resources and running applications with
the monitor module.
Service distributor: It manages the task of selecting the



appropriate hosts for the requested services by mobile agents.
The distributor receives edge agent placement selections that
takes into consideration service requirements, e.g. CPU and
memory, available edge resources, and locations of mobile
agents. This module supports user’s selection of a service
placement strategy or can implement placement policies in
the form of Docker container.
Service: SMOTEC provides smart mobility applications that
run in a mobile edge computing environment. A service makes
efficient use of the network for the subscribed mobile agents.
Monitor: It provides an overall view of resources and their
utilization. Information exchanged among agents is recorded
in a persistent directory as an experimentation output.

IV. TESTBED ARCHITECTURE AND IMPLEMENTATION

This section introduces the architecture, implementation,
and configuration of an easy-to-use edge computing testbed
system providing a flexible and modular experimental envi-
ronment for smart mobility applications via APIs. A 6-node
prototype of SMOTEC comprising of one orchestrator and
five edge nodes is set up. The testbed provides services to
the mobile agents in the form of networked Docker containers
hosted on edge nodes and managed by the K3s master node.
Deploying services in the form of Docker instances provides
a virtualized isolated environment for service execution at
each edge node. The general architecture and the essential
components of the proposed testbed are illustrated in Figure 1.
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Fig. 1. The architectural model and implementation of SMOTEC.

Experimentation testbed: The Pis shown in Figure 2 are used
in the implementation of the testbed: Model 4B, Quad core
SoC 1.5GHz, 8GB RAM, and 128GB Storage. A TP-Link 16-
Port Desktop Gigabit Ethernet Switch is used to connect the
edge nodes to the access network via Cat 6 Ethernet cables.
SMOTEC API: It is the core of the testbed. Users define
experiments as (i) a set of edge nodes along with their
geographic location and resource specifications of processing
power, memory, and storage, (ii) a set of mobile agents (vehi-
cles) with their mobility profile and service requirements such
as processing power and memory. The services are provided
in the form of Docker containers and instantiated according
to their resource requirements for allocations of RAM and
CPU. SMOTEC follows a modular development; users may
test their own smart mobility services in the form of containers.
For this, users provide access to their service containers either
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Fig. 2. The SMOTEC testbed infrastructure.

via Docker Hub or a private Docker repository. The testbed
API interacts with the orchestrator to instantiate the agents on
Pis, and then instantiate service containers from pre-created
Docker container images. SMOTEC containers are allocated
and scheduled using a combination of the K3s scheduler and
the service distributor outlined in next subsections.
K3s: K3s is a lightweight Kubernetes distribution, which is
fast to start up and easy to auto-update. It has small memory
footprint, simplified configuration and reduced resource usage
for resource-constrained IoT and edge environments. The
testbed orchestrator, i.e. K3s master, is the module interfacing
with the testbed API and managing the edge resource allo-
cation and releasing. Each of the Pis is a K3s worker node
enriched with an edge agent for integration with the testbed.
Raspberry Pi: SMOTEC is built using low-cost Pis, which
can be easily deployed at large-scale. Multiple sensors can be
connected to these single board computers to support various
smart applications. Each Pi has a fixed location (Cartesian
coordinates) provided by developer. Pis are connected to the
orchestrator by joining the K3s cluster as workers.
Agents and Docker container: SMOTEC implements both
edge agent and mobile agent in the form of containers. Docker
containers are fast with easy startup, lightweight, and prefer-
able for a smooth transition of tested application programs to
production environments. Docker containers are also used to
deploy the service distributor and users’ services on Pis.

SMOTEC instantiates an edge agent on each Pi to make
available and manage edge node functionality, from commu-
nication to computation. It connects the edge nodes to the
connector and guarantees the continuity of the running ser-
vices via related service migrations. SMOTEC does not make
any assumption about edge nodes; the only user information
required is the available resources and the location of edge
nodes. Such abstraction allows SMOTEC to support the het-
erogeneous edge resources. This also allows the management
of related edge servers and access points as a single entity.

A mobile agent container emulates a mobile device and
guarantees the security of internal containers. It is in charge
of maintaining the agent’s connection with the cluster and
interacts with its requested service during agent’s movement.
A mobility module runs on mobile agents to update the
mobility profile of the agent and the distance of itself to its
current connected edge agent; if the distance is higher than a



threshold, it sends a connection (handover) request to another
edge agent with the lowest distance, see Figure 3. At the
same time the mobile agent sends a notification to its current
connected edge agent to inform the agent about the migration.

The developed mobility API can be used to implement
different mobility models. The evaluation scenario involves
a real-world map of Munich city, imported to the SUMO sim-
ulator [7] to accurately simulate realistic vehicle movements.
The mobility module parses the mobility database information
stored in a csv format. Each csv file represents the mobility
profile of a vehicle as a sequence of traversed points during
simulation. Each point includes agent’s x and y coordinates
on the map, its speed in meters per second, the direction in
radiant, and the time in which this data is collected.

 

 

 

 

 

AP0 AP1 

Source cell 
Destination cell 

Coverage range Switch Connection 

Handover range 

Fig. 3. Handover procedure during vehicle movement

ZeroMQ: SMOTEC leverages ZeroMQ as the connector of its
components. ZeroMQ is an asynchronous messaging library
for edge computing applications. In a real-world scenario,
wireless base stations connect edge servers and vehicles. In
SMOTEC, edge agents are an abstraction of edge servers
and their co-located base station in which ZeroMQ handles
the networking part. Here the wireless base stations connect
to the wired network nodes, whose location in the network
corresponds to wireless base stations in a mobile backhaul net-
work. This emulated infrastructure is compatible with the edge
computing model in the 5G network proposed by ETSI [30].
EPOS as a decentralized service distributor: Upon receiving
a service request from a mobile agent, SMOTEC automatically
determines the Pi that satisfies the service requirements and
configures the service Docker container on that Pi. SMOTEC
utilizes EPOS [9], [10], a decentralized multi-agent system
for multi-objective combinatorial optimization, to balance the
input workload across the network [6], while minimizing
deadline violations, service deployment cost and services that
do not meet hosting requirements.

EPOS performs collective decision-making among edge
agents that autonomously generate a set of service placement
plans from which they make a choice such that their com-
bination satisfies network-wide (e.g., minimizing over-utilized
edge nodes) and individual objectives (e.g., minimizing service
execution cost). Then, service containers are scheduled on the
selected Pis via the K3s master. The edge agents get informed
about the EPOS placement decisions via message passing.
EPOS can be replaced with any other coordinator in the form
of a Docker image without requiring further reprogramming.

Grafana/Prometheus: Users can monitor the real-time sta-
tus of every edge node through the provided open-source
interactive data-visualization platform of Grafana3, including
CPU,memory, and network utilization. Users can customize
configured dashboards on Grafana. An output directory that
contains the output of the testbed modules is generated.

V. TESTBED WORKFLOW

Assume an application that monitors, in real-time, a number
of vehicles passing from different sections of a city. The
application consists of two modules: a vehicle flow monitor
module referred to as ’collector’ running on edge nodes and a
client module referred to as ’view’ running on end-user devices
(e.g., vehicle). As the end-device moves, the view module is
connected to the collectors to get an updated local view of
traffic; each edge agent periodically exchanges the monitoring
data to the collector modules running on its neighbor nodes
to provide a shared view of the traffic observed over the city.

The testbed lifecycle includes two stages as shown in
Figure 4: (i) prepare and deploy, (ii) execute. Suppose that
the user generates one service Docker image, as the collector,
stored on the Docker Hub. The image runs on edge agents.
The user utilizes mobile vehicles to continuously monitor the
traffic volume of a road over a period of time. For this, at
the prepare and deploy stage, the user provides the number of
edge nodes and their location, the number of vehicle agents
passing through the city of the experiment along with their
mobility profiles. This input data and the dataset of mobility
profiles are in the form of json and csv files, respectively.

The testbed carries out the experiment by deploying Docker
images for every testbed component. At startup, vehicle agents
connect to their closest edge agent in their coverage area to
forward their service requests. The edge agent generates a
set of service placement plans considering the available edge
resources and QoS requirements. Then, the agent coordinates
its placement decisions with other edge agents using EPOS
to find an system-wide optimized placement. Based on the
selected hosts, where services are placed, the edge agent
schedules the service deployment of the collector via K3s API.
At the same time, the edge agent notifies the vehicle agent
about its service host with which the agent can communicate.

VI. EVALUATION

A proof-of-concept implementation of SMOTEC with the
traffic monitoring application of Section V are illustrated.
For simplicity we run the experiments using three Pis: one
orchestrator and two Pis receiving traffic monitoring data from
a 7km2 area of Munich city center. For this test, the service
distributor and vehicle agents run on orchestrator.

Experimentation involve 10 vehicles connected to Pis to
receive traffic monitoring services. Two scenarios are eval-
uated: (i) homogeneous, in which all vehicles make the
same service requests of CPU (230 MIPS) and memory (350
MB), (ii) heterogeneous, in which all service requests come

3Grafana. Available at https://grafana.com/ (Accessed 17 July 2023)
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Fig. 4. Traffic monitoring application workflow

with different CPU and memory resources, randomly within
[200, 300] MIPS and [300, 400] MB respectively. The CPU and
memory capacity of Pis is 2000 MIPS and 4000 MB. EPOS
balances the service load by running for 50 learning iterations
to minimize the variance of the load over the two Pis.

The conducted experiments compare a baseline approach
(where all received requests from vehicles are served via
their connected Pi) with the SMOTEC approach of service
distribution with a balanced CPU/Memory utilization of Pis,
as shown in Figure 5 and 6. Each service request originates
from one vehicle. The utilization metric shows to what extent
Pis are utilized (placed workload/capacity). In the baseline
case, the utilization of the one Pi varies from 0.7% to 99%,
while the other Pi remains under-utilized (<27% utilization). In
the heterogeneous case, SMOTEC shows a CPU and memory
utilization for both Pis of up to 62% and 45%, and in the
homogeneous case, up to 58% 45% for both Pis, respectively.
This is due to the different placement policy of EPOS in
SMOTEC for balancing the load on network resources.

Fig. 5. Homogeneous scenario: Number of service requests and load
distribution for each of the two Pis.

The workload balance, measured by the utilization vari-
ance among the two Pis, is 0.078 and 0.088 for the homo-
geneous and heterogeneous scenarios in baseline. Via load

Fig. 6. Heterogeneous scenario: Number of service requests and load
distribution for each of the two Pis.

balancing, the utilization variance drops to 0.004 and 0.007
respectively. SMOTEC manages to effectively balances by
more than 92% the workload using the integrated EPOS
service distributor. Regarding the communication cost, two
messages are exchanged between each edge agent and the
service distributor for service placement, two messages for a
service request and three more messages for a communication
handover between a mobile agent and the edge network
(totally: Num.mobileagent(2 + 3 ∗ Num.handover) + 2 ∗
Num.edgeagent).

VII. CONCLUSION AND FUTURE WORK

The proposed testbed provides a significant missing instru-
mentation for inter-disciplinary research on smart mobility
based on edge computing. Experimentation with SMOTEC
becomes easier, simpler and less costly. This is because intelli-
gent smart mobility services running on Docker containers can
be easily deployed to heterogeneous edge-to-cloud resources
via the K3s lightweight Kubernetes, while automatically load
balancing service placements in a fully decentralized way.

SMOTEC APIs generate rich data of high realism for edge
computing research that have been so far hard to acquire,
evident from simulation approaches dominating related work
with low realism. Via a plug-and-play integration of smart
mobility modules such as SUMO, complex traffic monitoring
scenarios on edge computing can be studied experimentally.
This proof-of-concept is demonstrated along with optimized
service placements that reduce overloaded edge nodes.

Future work will explore the integration of other smart
mobility modules beyond SUMO, and in particular, real-time
smart mobility services for augmented reality and autonomous
vehicles. We aspire to encourage and advance research on the
co-optimization of coupled smart mobility and edge computing
infrastructures for meeting net-zero targets.
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