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A B S T R A C T

Smart City applications, such as traffic monitoring and disaster response, often use swarms
of intelligent and cooperative drones to efficiently collect sensor data over different areas of
interest and time spans. However, when the required sensing becomes spatio-temporally large
and varying, a collective arrangement of sensing tasks to a large number of battery-restricted
and distributed drones is challenging. To address this problem, this paper introduces a scalable
and energy-aware model for planning and coordination of spatio-temporal sensing. The coor-
dination model is built upon a decentralized multi-agent collective learning algorithm (EPOS)
to ensure scalability, resilience, and flexibility that existing approaches lack of. Experimental
results illustrate the outstanding performance of the proposed method compared to state-of-the-
art methods. Analytical results contribute a deeper understanding of how coordinated mobility
of drones influences sensing performance. This novel coordination solution is applied to traffic
monitoring using real-world data to demonstrate a 46.45% more accurate and 2.88% more
efficient detection of vehicles as the number of drones become a scarce resource.

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, can form swarms for self-organization and collaboration in
airborne mobile ad hoc networks. Nowadays, swarms of drones emerge in Smart Cites for spatio-temporal sensing (Wu et al.,
2016; Inoue, 2020; Butilă and Boboc, 2022). They are assigned tasks to execute such as collecting sensor data in areas of interest.
For instance, swarms can capture images/videos of traffic-related information on public roadways; measure air temperature and
humidity to support sustainable crop production; transmit real-time reports of natural disasters such as fire and car accidents; or
accurately deliver goods in densely populated areas. In transportation system, drones can be used for an accurate monitoring of
traffic to detect traffic congestion at early stage. This allows traffic operators to apply mitigation actions that decrease the carbon
footprint of a sector with one of the highest carbon emissions worldwide (Butilă and Boboc, 2022; Barmpounakis and Geroliminis,
2020).

To assist swarms of drones to complete sensing tasks efficiently, autonomous control of swarms and assignment of sensing tasks
become a niche. Coordinated sensing involves the assignment of different sensing tasks to each drone while meeting the sensing
requirements, drone capabilities and constraints (Poudel and Moh, 2022). Earlier work is proposed to address the task assignment
problem for efficient and large-scale spatio-temporal sensing by swarms of drones (Fu et al., 2019; Yanmaz et al., 2018; Zhou et al.,
2020). Considering the heterogeneity and number of tasks, the problem is formulated as an NP-hard combinatorial optimization
problem to find the optimal assignment of sensing tasks. Task assignment algorithms designed to solve spatio-temporal sensing
problems range from market-based methods (Alighanbari and How, 2005) to swarm intelligence (Mac et al., 2018).
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However, mainstream approaches for UAV sensing task assignments do not achieve scalability, resilience and flexibility. This is
ecause they rely on the centralized decision making while sacrificing a significant autonomy from drones (Poudel and Moh, 2022;
upe et al., 2015). Therefore, the goal of this paper is to tackle instead a decentralized task assignment problem; drones collectively
rrange and self-assign their sensing tasks, which is a highly complex research endeavor. On the one hand, coordinating the sensing
asks of drones is complex, i.e., large areas of interest, with varying sensing requirements and time-constrained missions. Certain
reas with traffic jams or accidents may require for drones more fine-grained sensor measurements than areas with more regular
raffic patterns. On the other hand, the inherent limitations in battery capacity influence spatio-temporal coverage. To tackle this
omplex task self-assignment problem, a decentralized and energy-aware coordination of drones at scale is introduced. Autonomous
rones share information and allocate tasks cooperatively to meet complex sensing requirements while respecting battery constraints.
urthermore, the decentralized coordination method prevents single points of failure, it is more resilient and preserves the autonomy
f drones to choose how they navigate and sense (Nik and Moazami, 2021).

A novel coordination model is designed using a multi-agent collective learning algorithm for multi-objective combinatorial
ptimization. It is selected because of its remarkable scalability (support of a large number of software agents/drones), efficiency
low communication and computational cost) and resilience, while preserving the privacy and autonomy of agents (Pournaras et al.,
018; Pournaras, 2020; Pournaras et al., 2020). The self-assignment problem of sensing tasks by a swarm of coordinated UAVs is
lso validated within a novel prototyping testbed deployed in indoor sensing environments (Qin et al., 2022; Fanitabasi et al., 2020).
urthermore, a novel plan generation strategy with three policies is designed to produce effective navigation and sensing alternatives
or flexible drones. A power consumption model (Stolaroff et al., 2018) is used in the proposed strategy to estimate the energy
onsumption of these alternatives. This can make the coordination of drones energy-aware as each drone determines its sensing
asks based upon its energy consumption restrictions, while improving the sensing performance. Finally, extensive evaluations are
onducted using analytical methods, simulated and real-world data including comparisons to the state-of-the-art baseline methods.

The contributions of this paper are outlined as follows:

1. A first study of the task self-assignment problem for spatio-temporal sensing by a swarm of interactive drones;
2. A decentralized coordination model by integrating multi-agent collective learning (Pournaras et al., 2018) to improve

scalability, resilience, and flexibility of spatio-temporal sensing;
3. A plan generation strategy with three policies based on a power consumption model (Stolaroff et al., 2018) to make the

coordination model energy-aware and achieve a highly efficient navigation and sensing of drones.
4. An open dataset (Qin and Pournaras, 2022) containing all the plans of the studied scenario. They can be used as benchmarks

to encourage further research on this problem.
5. Analytical results to understand more rigorously how coordinated mobility of drones influences sensing performance.
6. A comprehensive empirical understanding of how a large spectrum of factors such as the number of dispatched drones, the

spatial granularity of sensing, the number of base stations and the required amount of collected data influence the sensing
performance.

7. A traffic monitoring model using coordinated drones validated as accurate and efficient using real-world data.

The rest of this paper is organized as follows: Section 2 positions this work in literature. Section 3 introduces the designed
oordination model of spatio-temporal sensing. Section 4 illustrates our proposed plan generation method. Section 5 introduces the
xperimental settings, Section 6 illustrates the experimental evaluation and Section 7 concludes this paper. The appendices contain
he power consumption model, the analytical results with proofs of theorems and further information on the experimental settings.

. Related work

The assignment of sensing tasks within a swarm of intelligent and cooperative drones includes applications of traffic monitoring,
isaster response, smart farming, last-mile delivery, etc. Poudel and Moh (2022). The UAV task assignment problem is earlier
efined as a Traveling Salesmen Problem for combinatorial optimization (Gao et al., 2018; Wu et al., 2021; Chen et al., 2018).
n optimal task assignment for drones is found at specified places, subject to constraints including task emergency, time scheduling
nd flying costs. The digraph-based methods are introduced to formulate the problem of reaching optimal sensing efficiency in terms
f coverage, inspection delay, events detection rate and the cost of flying trajectories. Nevertheless, existing models do not address
he energy impact of task assignment since small-scale spatio-temporal scenarios do not drain the batteries of drones significantly.
lthough earlier work focuses on solving the energy-aware task assignment problem for large-scale and efficient sensing, it relies on
centralized system and does not consider the time of sensor data collection (Motlagh et al., 2019; Zhou et al., 2018; Bartolini et al.,
020). This paper models the cost of plans calculated by the total power consumption of flying and hovering (Stolaroff et al., 2018),
hich is used to optimize the decentralized coordination of swarms, while accounting for the battery constraint of each drone.

In the view of the optimization approaches shown in Table 1, scholars introduce algorithms that require a centralized
omputation, such as particle swarm optimization (Gao et al., 2018), genetic programming (Wu et al., 2021) and wolf pack
earch (Chen et al., 2018). Chen et al. (2018) introduce a deadlock-free algorithm to prevent two or more drones from waiting
or each other in a simultaneous task, and leverage the classical interior point method and wolf pack search algorithm to solve
he uncertainty problem, including the uncertainty of the flying velocity, task effectiveness and communication. Bartolini et al.
2019) leverage a greedy approach by removing redundant target points from trajectories to maximize the weighted coverage while
2

especting energy constraints (with 5 drones to cover 225 target points). However, these centralized methods face the risk of single
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Table 1
Comparison to related work: (✓) indicates criteria covered, (✕) indicates criteria not covered.

Criteria Ref.: Gao et al.
(2018)

Wu et al.
(2021)

Chen et al.
(2018)

Bartolini
et al. (2019)

Alighanbari and
How (2006)

Chen et al.
(2022)

Elloumi et al.
(2018)

This paper

Sensing-
efficiency

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Energy-
awareness

✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓

Scalability ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✓

Resilience ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

Flexibility ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓

Coordination ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓

Table 2
Notations.
Notation Explanation

 , The set of dispatched drones; the set of grid cells
𝑢, 𝑈 The index of a dispatched drone; the total number of dispatches
𝑛,𝑁 The index of a grid cell; the total number of grid cells
𝑇𝑛 The target value (or sensing requirements) at cell 𝑛
𝑆𝑢,𝑛 The sensing values collected by drone 𝑢 at cell 𝑛
𝜏𝑢 The total flying time of drone 𝑢 without hovering (seconds)
𝑃 𝖿
𝑢 , 𝑃

𝗁
𝑢 Flying and hovering power consumption of drone 𝑢 (Watt)

𝐸𝖿
𝑢 , 𝐸

𝗁
𝑢 Flying and hovering energy consumption of drone 𝑢 (Joule)

𝐶𝑢 , 𝑒 The battery capacity of drone 𝑢 (Joule); energy utilization ratio
𝐽𝑢 The set of visited cells
𝑓 The frequency with which drones collect sensing data (unit of sensing value per second)
𝑝, 𝑃 The index of a plan; the total number of plans
𝐵 The index of a base station for departure/return
𝐾𝐵 The travel range or cells close to base station 𝐵
𝑚,𝑀 The index of a time unit in a plan; the total number of time units in a plan
ℎ𝑚,𝑛 The element of the plan to represent whether a drone occupies the cell 𝑛 at time unit m
𝑉𝑚 , 𝑉 ∗

𝑚 The total number of vehicles at time unit m; the number of vehicles observed by drones at time unit m

point of failure (Omidshafiei et al., 2017). If the central control station fails, the task assignment process cannot recover or mitigate
such failure.

Distributed task assignment algorithms include the robust decentralized task assignment (RDTA) (Alighanbari and How, 2006)
nd the consensus-based bundle algorithm (CBBA) (Chen et al., 2022). RDTA improves robustness and reduces communication cost
sing the decentralized planning, wherein the drones plan independently and communicate a set of candidate plans. CBBA combines
he distributed structure of market-based mechanisms and situation awareness with a consensus strategy that converges and can
void conflicts between the tasks executed by drones. Both algorithms coordinate autonomous drones, and can ensure scalability and
lexibility of multi-UAV systems to adapt to complex sensing scenarios. Nevertheless, they do not address the constraints of energy
onsumption. Moreover, the resilience of the algorithms is not verified, in contrast to earlier work on EPOS shown to preserve its
earning capacity in dynamic and unstable networked environments (Pournaras et al., 2020). The proposed method in this paper
vercomes scalability and resilience barriers, while leaving drones with a significant level of autonomy to make a flexible cooperative
election of tasks to execute. Furthermore, the prototyping problem of moving from simulation, to live deployment of decentralized
ocio-technical systems, and ultimately to a robust operation of a high technology readiness level (TRL) as well as online iterative
raffic optimization is addressed in earlier work, with EPOS as a case study (Fanitabasi et al., 2020; Gerostathopoulos and Pournaras,
019).

Although drones have shown a potential to advance traffic monitoring in accuracy, safety and cost savings (Outay et al., 2020),
here is a very limited related work that focus on the task assignment in this scenario. Elloumi et al. (2018) propose a road traffic
onitoring system that generates adaptive UAVs trajectories by extracting information about vehicles. Although this approach shows
igh performance in collecting traffic vehicle data, it does not address energy constraints and varying tasks over different time spans.

. System model

This section introduces the coordination model to solve the decentralized task assignment problem for spatio-temporal sensing
y a swarm of drones. Table 2 illustrates the list of mathematical notations used in this paper.

.1. Scenario and architecture

Consider a swarm of drones that perform sensing over a grid — a 2D map over the spatial illustrative model shown in Fig. 1. A
ispatch 𝑢 is defined as a sensing task between the departure and return of a drone. In this scenario, a finite number of base/charging
tations, from where drones depart and return, are set with fixed coordinates in the area. Drone are equally distributed over these
3
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Fig. 1. Overview of the decentralized energy-aware coordination model for spatio-temporal sensing by a swarm of drones.

base stations, and have to return to the original base stations from which they depart. In addition, let  be the set of 𝑁 points of
interest, each is regarded as a grid cell that covers an area in the map. The main goal of drones is to coordinate their visits to cells
to collect the required data.
Sensing map requirements. In the context of a sensing task, each cell at a time period has specific sensing requirements that
determine the hovering duration and data acquisition of drones. Such sensing requirements can be determined by a continuous
kernel density estimation, for instance, monitoring cycling risk based on requirements calculated by past bike accident data and
other information (Castells-Graells et al., 2020; Qin et al., 2022). A high risk level in a cell represents higher sensing requirements
over this area (e.g., the accidents or crucial intersection of traffic flow). Thus, a higher number of sensing values is set at this cell,
which requires drones to hover a longer time over the cell to measure accurately. For example, see Fig. 1. It is assumed that the cell
𝐴 requires the total sensing values of 300 at a time period. The sensing requirements of cells at a time period are set as the targets
encoded by a vector of size 𝑁 , e.g., {300, 240, 360, 240, 360}.
Plan generation. To coordinate the assignment of sensing tasks, the drones use the decentralized multi-agent collective learning
method of EPOS, the Economic Planning and Optimized Selections (Pournaras et al., 2018; Pournaras, 2020). Given the sensing
map, each drone, controlled by a local software agent, autonomously generates a finite number of discrete navigation and sensing
alternatives, which provide flexibility for the drones to choose in a coordinated way. Each alternative has sensing details as well
as an estimated energy consumption; the alternatives are referred to as the possible plans and each comes with a (normalized) cost
respectively. For instance, a plan encoding that a drone travels and hovers over the cells 𝐴, 𝐶 and 𝐷 to collect respectively 12, 10
and 10 sensing values over a time period is encoded with: {12, 0, 10, 10, 0} with 𝑁 = 5. The energy consumed by a drone that carries
out its planned tasks is calculated via a power consumption model (Stolaroff et al., 2018) with input the specification of the drone
(weight, propeller, and battery parameters). This model can estimate the cost of navigation and sensing plans, and emulates the
outdoor environments (Qin et al., 2022).
Plan selection and execution. To make coordinated plans selection, the agents of the drones connect into a tree communication
structure within which each interacts with its children and parent in a bottom-up and top-down fashion to improve plan selections
iteratively (Pournaras et al., 2018). The objective of this method is to select the optimal plan for each agent such that all choices
together add up to maximize the sensing quality: the overall sensing data collected by all agents matches well the required data
(target, see Fig. 1). In contrast, the mismatch is a result of over-sensing and under-sensing. For instance, in Fig. 1, the sensing value
of 372 for which drones hover over the cell 𝐶 exceeds the requirements of 360 (over-sensing), whereas drones hover over the
cell 𝐸 to collect 222 sensor values that is lower than the requirements of 240 (under-sensing). Over-sensing causes excessive data
that needs further processing, waste of energy consumption, high storage and privacy cost, while under-sensing fails to satisfy
sensing requirements. As a consequence, the generation and selection of high-quality plans are required to eliminate over-sensing
and under-sensing.

3.2. Problem formulation

The goal of the proposed system is to find the optimal plan for each drone 𝑢 ∈  , i.e., determining which cells a drone visits
and how many sensor values it collects over a time period. Apart from preventing over-sensing and under-sensing, the formulated
4
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problem aims to maximize the accomplishment of sensing tasks under the energy constraints for drones. Therefore, the problem is
formulated as follows:

min
𝑆𝑢,𝑛 ,𝑢∈ ,𝑛∈

∑

𝑛∈
(𝑇𝑛 −

∑

𝑢∈
𝑆𝑢,𝑛)2, (1)

min
𝑆𝑢,𝑛 ,𝑢∈ ,𝑛∈

(1 −
∑

𝑢∈
∑

𝑛∈ 𝑆𝑢,𝑛
∑

𝑛∈ 𝑇𝑛
), (2)

𝑠.𝑡.
∑

𝑢∈

∑

𝑛∈
𝑆𝑢,𝑛 ≤

∑

𝑛∈
𝑇𝑛, (3)

𝑃 𝖿
𝑢 ⋅ 𝜏𝑢 + 𝑃 𝗁

𝑢 ⋅

∑

𝑢∈ 𝑆𝑢,𝑛

𝑓
≤ 𝐶𝑢. (4)

where 𝑆𝑢,𝑛 is the sensor values collected by the drone 𝑢 at cell 𝑛, 𝑢 ∈  , 𝑛 ∈  ; 𝑇𝑛 is the target value at cell 𝑛; Objective (1)
easures the over-sensing and under-sensing using a quadratic function (Allen-Zhu and Hazan, 2016). Objective (2) measures

he accomplishment of sensing tasks. Eq. (3) limits the total sensor value collected by drones to the required one at maximum.
onstraint (4) models the energy constraint of the drone 𝑢, where 𝑃 𝖿

𝑢 and 𝑃 𝗁
𝑢 are the flying and hovering power consumption

espectively (Stolaroff et al., 2018); 𝜏𝑢 is the total flying time that drone 𝑢 travels without hovering; 𝑓 is the frequency with which
rones collect sensor data as they hover over a cell.

EPOS optimizes sensing quality via a coordinated selection among alternative plans generated locally by the drones (i.e., navi-
ation and sensing options). However, plans generation also results in a series of new problems, including how to select the cells, how
o determine collected sensing values, how to calculate the energy cost of a plan, and how to prevent more than two drones to occupy the
ame cell at the same time. Therefore, this paper proposes a novel plan generation strategy to solve these problems such that drones
oordinate efficiently to achieve high-quality sensing.

Algorithm 1: The local plan generation strategy for each drone.
Input: Power consumption of drone 𝑢 for flying 𝑃 𝖿

𝑢 and hovering 𝑃 𝗁
𝑢 , the battery capacity 𝐶𝑢, the targets 𝑻 = (𝑇1, ..., 𝑇𝑁 ) and

their coordinates, the base station 𝐵 for departure/return and its travel range 𝐾𝐵 , the total number of visited cells
|𝐽𝑢|, the number of generated plans 𝑃 .

1 Initialization: Initialize a set of plans P̂ = ∅;
2 for each plan index 𝑝 ∶= 1, ..., 𝑃 do
3 Path calculation: Find 𝐽𝑢 via the K-nearest search within the range 𝐾𝐵 ;
4 Find the shortest path among visited cells and base station 𝐵 via the greedy algorithm;
5 Energy calculation: Calculate the flying energy 𝐸𝖿 (𝐽𝑢) based upon the path; Determine the energy utilization ratio 𝑒

based on 𝑝 via Eq. (5);
6 Calculate the maximum hovering energy 𝐸𝗁(𝐽𝑢) via Eq. (6);
7 Calculate the total sensing values 𝑆(𝐽𝑢) to collect via Eq. (7) and the total targets 𝑇 (𝐽𝑢) via Eq. (9);
8 Sensing allocation: Allocate the sensing values 𝑆𝑢,𝑛 proportionally to the visited cells via Eq. (8);
9 Plan generation: Calculate the cost of the plan 𝐸(𝐽𝑢) via Eq. (10);
10 Generate the plan P of size 𝑁 ×𝑀 , and add it to the set P̂ of sensing plans with 𝐸(𝐽𝑢);
11 end
Output: Set of plans P̂ for drone 𝑢.

4. Proposed method

Algorithm 1 outlines the following steps of the proposed plan generation strategy for a swarm of drones.
nitialization. Given a drone 𝑢, the inputs of the algorithm are listed: The flying and hovering power consumption are calculated

based on the power consumption model (Stolaroff et al., 2018). The parameters of drone 𝑢 {𝑚𝑏, 𝑚𝑒, 𝑑, 𝑟, 𝑣, 𝐹𝑑 , 𝜖} and environmental
parameters such as air density and air speed are determined (see Table 3 and Appendix A). Each drone 𝑢 also needs the information
of the map including the coordinates and sensing requirements of cells, as well as the base stations of departure and return.

Next, according to the objective functions of Eq. (1) and (2), the total number of visited cells |𝐽𝑢| is determined empirically
see Section 6.1) using one of the three policies: (1) min sensing mismatch, (2) min mission inefficiency, and (3) balance. Min sensing
ismatch focuses on avoiding over-sensing and under-sensing, while min mission inefficiency minimizes the uncollected sensing
ata. The policy for balance is a trade off between the first two policies. The policy of min sensing mismatch has a larger number of
isited cells, while min mission inefficiency has a lower one. The two theorems in Appendix B provide the theoretical foundations
ehind the design of these policies. The algorithm also initializes the set P̂ for the plans of drone 𝑢.
ath calculation. At the beginning of each round, the algorithm finds the set of visited cells indices 𝐽𝑢 via the K-nearest search.
t selects the first cell randomly from 𝐾𝐵 (a range of cells close to base station 𝐵). This range is calculated based on the relative
istance between base stations. Then, the algorithm searches the nearest cell (within 𝐾𝐵) to the previous selected one until finding

other |𝐽𝑢| − 1 cells. After this, the algorithm finds the shortest possible path among the cells of 𝐽𝑢 and the base station 𝐵 via the
greedy algorithm for traveling salesmen problem (Kizilateş and Nuriyeva, 2013), and calculates the traveling time 𝜏 excluding
5
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Table 3
Notations for drones (Stolaroff et al., 2018).
Notation Description Value

𝑚𝑏 mass of drone body 1.07 kg
𝑚𝑒 mass of battery 0.31 kg
𝑑 diameter of propellers 0.35 m
𝑟 number of propellers 4
𝑣 ground speed 6.94 m∕s
𝐹𝑑 drag force 4.1134 N
𝜖 power efficiency 0.8
𝐶 battery capacity 275 kJ
𝑓 sensing frequency 60

hovering. Note that the drone returns to 𝐵 at the end of period, and thus the path starts and ends at 𝐵. Taking an example in Fig. 1,
the first plan of Drone 1 has the set of visited cells {𝐴,𝐶,𝐷}.
Energy calculation. The algorithm determines the maximum energy consumption 𝐸𝑚𝑎𝑥

𝑢 of the drone before calculating the collected
sensor values and the corresponding energy cost. The algorithm uses the energy utilization ratio 𝑒 to compute the maximum energy
constraint 𝐶𝑢 ⋅ 𝑒. The ratio can be expressed as:

𝑒 = 1 −
𝑝

𝛿 ⋅ 𝑃
, (5)

where 𝛿 is a constant to determine energy utilization. The ratio limits the energy consumption of drones, and gives them flexibility
to select plans with varying cost, i.e. energy consumption. Next, the algorithm calculates the hovering energy consumption 𝐸𝗁(𝐽𝑢)
sing the flying power consumption 𝑃 𝖿

𝑢 :

𝐸𝗁(𝐽𝑢) = 𝐶𝑢 ⋅ 𝑒 − 𝐸𝖿 (𝐽𝑢),

= 𝐶𝑢 ⋅ 𝑒 − 𝑃 𝖿
𝑢 ⋅ 𝜏(𝐽𝑢).

(6)

The total sensor values to collect among 𝐽𝑢 visited cells 𝑆(𝐽𝑢) is then calculated as follows:

𝑆(𝐽𝑢) =
∑

𝑛∈
𝑆𝑢,𝑛 =

𝐸𝗁(𝐽𝑢)
𝑃 𝗁
𝑢

⋅ 𝑓, (7)

where 𝑃 𝗁
𝑢 is the power consumption for hovering. Both 𝑃 𝖿

𝑢 and 𝑃 𝗁
𝑢 are computed by the power consumption model (Stolaroff et al.,

018) (see Appendix A).
ensing allocation. To determine 𝑆𝑢,𝑛 in each cell 𝑛, the algorithm allocates the collected sensor values among 𝐽𝑢 visited cells
roportionally to the target; a higher number of sensor values is collected from the cell with a higher target value. The equation is
hown as follows:

𝑆𝑢,𝑛 =

{

𝑆(𝐽𝑢) ⋅
𝑇𝑛

𝑇 (𝐽𝑢)
, 𝑛 ∈ 𝐽𝑢

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (8)

𝑤ℎ𝑒𝑟𝑒 𝑇 (𝐽𝑢) =
∑

𝑛∈𝐽𝑢

𝑇𝑛. (9)

The proportional sensing allocation aims to improve the matching between the total sensor values collected and the required ones.
We also prove its high performance by comparing it to the equal allocation (mean) 𝑆𝑢,𝑛 =

𝑆(𝐽𝑢)
|𝐽𝑢|

(see Section 6.1).
Plan generation. With the energy consumption of hovering and flying, the algorithm computes the cost of the plan 𝐸(𝐽𝑢):

𝐸(𝐽𝑢) = 𝐶𝑢 ⋅ 𝑒. (10)

urthermore, the algorithm avoids more than two drones occupying the same cell at the same time. It generates a plan encoded
y a matrix of size 𝑁 × 𝑀 , where 𝑀 denotes the total number of time units. Each element in the matrix can be represented by
𝑢
𝑚,𝑛 ∈ {0, 1}, 𝑚 = 1, 2,… ,𝑀 , 𝑛 = 1, 2,… , 𝑁 , ∑𝑢 ℎ

𝑢
𝑚,𝑛 ≤ 1

∑

𝑚 ℎ𝑢𝑚,𝑛 ≤ 𝑀 , ∑𝑛 ℎ
𝑢
𝑚,𝑛 ≤ 𝑁 , where ℎ𝑢𝑚,𝑛 = 1 denotes the drone occupies

he cell 𝑛 at time unit ℎ, whereas ℎ𝑢𝑚,𝑛 = 0 denotes the drone does not occupy the cell. The targets in EPOS are also set as a matrix
f size 𝑁 × 𝑀 , whose elements are set as 1 to prevent more than two drones occupying the same cell at same time. Finally, the
lgorithm adds the plan and its energy cost to the set P̂.

. Experimental methodology

This section introduces the experimental settings including the sensing map, the drones and the learning algorithm at first. The
6

etrics and baselines used for the performance evaluation are also introduced.
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Table 4
Parameters of the EPOS algorithm (Pournaras et al., 2018).
Parameters Value

Number of agents/drones 1000
Number of plans per agent 64
Network communication topology balanced binary tree
Number of repetitions 40
Number of iterations 40
Non-linear cost function Min RSS (Unit-Length)
Energy utilization parameter 𝛿 = 8
Behavior of agent 𝛽 = 0
Number of tested maps 200

5.1. Experimental settings

Sensing map. A square area of size 1600 × 1600 m split into a finite number of cells is studied. Each cell is defined as a rectangular
square that can be captured by the cameras of drones (see Fig. 1). The target values, or the sensing requirements of hovering time
are distributed according to a Beta distribution. The base (charging) stations are uniformly distributed in the map. There are three
types of scenarios for the experimental evaluation of this paper:

• Basic synthetic scenario. It has 4 base stations, 64 cells and the total target values of 20000 to collect over 48 time periods,
which correspond to one day. Each period lasts 30 min and is divided into 12 time units, each of equal length. We dispatch
1000 drones over all periods, during which approximate 20 drones sense the area (camera recording) in parallel. The purpose
to use this map is to compare the performance of different plan generation policies in the proposed method.

• Complex synthetic scenario. It varies the parameter settings such as the number of dispatches, the number of base stations and
cells as well as the total target values. The goal is to assess the scalability of the proposed method in different experimental
conditions.

• Transportation scenario. It originates from the central business district of Athens, where a swarm of drones use cameras to record
traffic flows. The goal is to assess the accuracy and efficiency of the proposed method in the real-world traffic monitoring.
More details are given in Part 6.4 of this section.

rones. We assume that drones are of the same type (DJI Phantom 4 Pro), equipped with the same type of battery (6000 mAh LiPo
S) and camera (4K) to capture images/videos (Company DJI, 2022), and thus they have the same power consumption (Stolaroff
t al., 2018) and battery capacity. To ensure the camera of a drone covers the whole area of a cell (see Fig. 1), the minimum hovering
eight of drones is determined at which the field of view of the camera and the cell overlap. Based on the distance between any
wo cells 𝐷 (approximately 200 m in the basic synthetic scenario), the hovering height 𝐻 is computed using the pixels 𝖯𝖷, focal
ength derived from the camera calibration 𝑐𝑘 and ground sampling distance 𝖦𝖲𝖣, with the formula: 𝐻 = 𝖦𝖲𝖣 ⋅ 𝑐𝑘∕𝖯𝖷 (Wierzbicki,
018). Thus, in this paper, each drone is equipped with a 4𝐾 camera, sensing from a minimum height of 82.4 meter based on the
ixels and field of view that a 4𝐾 camera has. The drone parameters and their description are summarized in Table 3.
earning algorithm. We generate plans for each of the 1000 agents. All generated plans are made openly available to encourage
urther research on coordinated spatio-temporal sensing of drones (Qin and Pournaras, 2022). Each agent in EPOS is mapped to a
rone. During the coordinated plan selection via EPOS,1 agents self-organize into a balanced binary tree as a way of structuring their

learning interactions (Pournaras et al., 2018). The shared goal of the agents is to minimize the residual sum of squares (RSS) between
the total sensor values collected and the total required target values, both in unit-length scaled. The RSS is a proxy to optimize the
two objectives defined in Eq. (1) and (2), and can be formulated as: log10(

∑

𝑛∈ (
∑

𝑢∈ 𝑆𝑢,𝑛−𝑇𝑛)2). The algorithm repeats 40 times by
changing the random position of the agents on the tree.2 At each repetition, the agents perform 40 bottom-up and top-down learning
iterations during which RSS converges to the minimum optimized value. For the validation of the proposed algorithm, a number of
1000 basic synthetic scenarios are generated, each with a new distribution of cells and target values. The algorithm requires at least
200 sensing maps as input to output stable results (see Fig. 7(b) in Appendix C). Therefore, a number of 200 random tested maps
re set for the following experiments. The computational cost of EPOS is 𝑂(𝑃 ⋅ 𝐼) for each agent and 𝑂(𝑃 ⋅ 𝐼 ⋅ log𝑈 ) for the system,
here 𝐼 is the total number of iterations. The communication cost is 𝑂(𝐼) for each agent and 𝑂(𝐼 ⋅ log𝑈 ) for the system. Earlier

omparisons of this complexity with state-of-the-art approaches demonstrate the cost-effectiveness of EPOS (Pournaras et al., 2018).
able 4 summarizes the optimization parameters of EPOS.

.2. Metrics and baselines

To evaluate the sensing quality, i.e., the accomplishment of sensing targets, we introduce two performance metrics:

1 EPOS is open-source and available at: https://github.com/epournaras/EPOS.
2 More information about the influence of the tree topology and agents’ positioning on the tree is illustrated in earlier work (Nikolic and Pournaras, 2019;

ournaras et al., 2020).
7
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Table 5
Performance of two implementations in Greedy-sensing.

Implementation Global view Local view

Sensing Mismatch 2.79 3.21
Mission Inefficiency (%) 19.80 26.11

Table 6
Results for the number of visited cells in Round-robin.

Number of visited cells: 5 6 7 8 9 10

Sensing Mismatch 2.24 2.40 2.34 1.86 3.01 3.79
Mission Inefficiency (%) 25.93 40.42 62.59 75.51 85.69 96.68

• Sensing mismatch. It denotes the approximation error3 between the total sensing values collected and the target values. A low
sensing mismatch prevents the cases of over-sensing and under-sensing (Qin et al., 2022). It is formulated as 𝑙𝑜𝑔10 of Eq. (1).

• Mission inefficiency. It denotes the ratio of sensing values in all cells that are not collected by the drones during their mission
over the total target values in all cells. It is formulated as Eq. (2).

In simple words, the sensing mismatch measures the data sampling quality, while the mission inefficiency measures the
completeness of the required collected data.

A fair comparison of the proposed method with related work is not straightforward as there is a very limited number of relevant
decentralized algorithms. These algorithms (Alighanbari and How, 2006; Chen et al., 2022) cannot be directly applied to this large-
scale task assignment problem while respecting the energy constraints of drones. For this reason, we use as baselines for comparison
three state-of-the-art centralized sensing methods capable of performing multi-drone task optimization: (1) Greedy-sensing (Bartolini
et al., 2019), (2) Round-robin (Alwateer and Loke, 2019) and (3) Min-energy (Pournaras et al., 2018).

• Greedy-sensing. It requires a drone to complete the required sensing tasks of the cells one by one without violating the battery
constraint. This method reduces the number of visited cells and traveling distance compared to the proposed method; drones
spend more energy on sensing than traveling. We implement the method on a centralized coordinator that has a global view
of the remaining sensor values required such that over-sensing and under-sensing are prevented. Table 5 illustrates the higher
performance of the method with a global view vs. a version with a local view, i.e., no knowledge of the remaining sensor
values required.

• Round-robin. It comes in sharp contrast to Greedy-sensing. Drones visit the same number of cells and spend more energy on
traveling than Greedy-sensing. According to the results shown in Table 6, the number of visited cells is divided equally into 8
for each drone as it has the minimum sensing mismatch.

• Min-energy. It minimizes the total energy consumption and does not sacrifice energy for improving sensing quality. This method
is implemented by changing the behavior of EPOS agents to 𝛽 = 1 such that the agents select the plans with the lowest energy
consumption cost. No coordination is performed in this case.

6. Performance evaluation

This section assesses the different system parameters and illustrates the results of the three evaluated scenarios: basic synthetic,
complex synthetic and transportation scenario. Analytical results about how coordinated mobility influences the sensing performance
are illustrated in Appendix B.

6.1. Effect of different parameters

The purpose of the evaluation in this section is to understand how different parameters influence the system performance. We use
the results of this section to make an empirical choice of these parameters for the rest of the evaluation scenarios. The calculations
presented here can be automated for any scenario within a hyper-parameter optimization, which is though not the focus of this
paper.

We use EPOS-balance and the basic synthetic scenario to test the mobility range, the number of generated plans, energy utilization,
the proportional sensing allocation and the behavior of agents in EPOS.
Mobility range. Three policies of plan generation are compared in EPOS: balance, min sensing mismatch and min sensing inefficiency.
A simple test is implemented in the basic synthetic scenario to compare different numbers of visited cells set in the input, see
Algorithm 1. As shown in Fig. 2(a), the higher the number of cells a drone visits, the higher the flying energy is, and the lower
the allocated hovering/sensing energy is, which increases the mission inefficiency. To balance the sensing mismatch and mission

3 Error and correlation metrics such as the root mean squared error, cross-correlation or residuals of summed squares can estimate this matching, which is
8
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Fig. 2. Performance comparison for different parameters of the proposed method.

inefficiency, the policies of min sensing mismatch (|𝐽𝑢| = 1|2, the strategy chooses 1 or 2 cells randomly), min mission inefficiency
(|𝐽𝑢| = 3|4), and balance (|𝐽𝑢| = 1|2|3|4) are empirically designed. Thus, three policy-based methods for EPOS are proposed that are
referred to as EPOS-mismatch, EPOS-inefficiency and EPOS-balance respectively.
Number of plans. See Fig. 2(b), as the number of generated plans increases, both sensing mismatch and mission inefficiency decrease
and converge to 64. Thus, 64 plans for each agent are generated in EPOS.
Sensing allocation: proportional vs. mean. Fig. 2(c) illustrates the performance comparison between proportional and mean
sensing allocation defined in Eq. (8). The mean sensing allocation has higher inefficiency than proportional one. Using the Mann–
Whitney U test, the sensing mismatch distribution of the two methods comes with 𝑝 = 0.08, the one of mission inefficiency has
𝑝 = 0.003. The results demonstrate a statistically higher performance when sensor values collected are proportional, i.e. a similar
mission mismatch but a 1.56% higher mission efficiency.
Energy utilization. Fig. 2(d) illustrates the changes of minimum energy utilization ratio 𝑒 (when 𝑝 = 𝑃 in Eq. (5)) and the combined
cost as the parameter 𝛿 increases. The combined cost is the sum of normalized total energy consumption, sensing mismatch and
mission inefficiency. According to the results, a 𝛿 = 8 is selected for the experimental settings.
Agents’ behavior and Pareto optimality. Fig. 2(e) illustrates the effect of agents’ behavior by varying the parameter 𝛽 (Pournaras
et al., 2018). As 𝛽 increases from 0 to 1, agents reduce the energy cost of their selected plans, while increasing the sensing mismatch.
This is because drones with higher 𝛽 choose a plan with lower energy cost, i.e., the plan with lower energy utilization ratio 𝑒, and
the total sensing values collected is reduced according to Eq. (6) and (7). To minimize the 𝑙𝑜𝑔10 RSS, the value of 𝛽 = 0 is selected
in the proposed methods, while 𝛽 = 0.2 is the calculated Pareto optimal point referred to as EPOS-Pareto, minimizing the combined
cost.

6.2. Evaluation on the basic synthetic scenario

As shown in Fig. 3, the three optimization methods based on EPOS coordinate drones to select the plans with the minimum
energy utilization ratio 𝑒 and result in the lowest total energy consumption except Min-energy (𝛽 = 1.0) and EPOS-Pareto (𝛽 = 0.2).
The coordination of drones achieves the lowest sensing mismatch compared to baselines. Therein, EPOS-balance (with a total
energy consumption of 271467 kJ and sensing mismatch of 2.02) has the mission inefficiency of 19.6% that is close to Greedy-
sensing ; EPOS-mismatch sacrifices mission efficiency to obtain a very low sensing mismatch among three policies, and just 0.12
higher than Round-robin; EPOS-inefficiency has the lowest mission inefficiency of 12.49% among all methods. In contrast, without
coordination, the Min-energy method lowers energy consumption to 233, 484 kJ at a cost of higher sensing mismatch (3.74) and
mission inefficiency (47.5%). Greedy-sensing and Round-robin also come with higher sensing mismatch (2.79) and mission inefficiency
(75.51%) respectively.

Fig. 3(d) illustrates the combined cost calculated from Figs. 3(a)–3(c). The proposed method is superior to baseline methods
especially when combining all performance metrics.
9



Transportation Research Part C 157 (2023) 104387C. Qin and E. Pournaras
Fig. 3. Performance comparison of the six methods on the basic synthetic scenario: 4 base stations, 64 cells and 20 000 total target values.

Fig. 4. Performance comparison under varying parameters: total target values (10 000 and 20 000), the number of cells (64 and 128), the number of base
stations (heatmap triplets: up = 4, down = 16), and the number of drone dispatches (from 200 to 1000).

6.3. Evaluation on the complex synthetic scenario

There are four dimensions we study here: (1) the number of dispatched drones used in the sensing mission, (2) the total target
values to collect, (3) the number of cells into which the same map is split, and (4) the number of base stations. Fig. 4 shows the
performance comparison between EPOS-balance, Greedy-sensing and Round-robin methods.
Number of dispatches. Take an example of the complex synthetic scenario (target = 20000, cells = 64, base stations = 4). As
the number of dispatches increases, the total energy consumption of EPOS-balance rises, while mission inefficiency decreases
proportionally (from 271467 kJ, 83% to 54268 kJ, 19% in Figs. 4(a) and 4(c)). This shows that drones take full advantage of energy
resources to collect sensor values efficiently. Compared to Round-robin, EPOS-balance collects more data (exceeds the average of
38.5%) with a lower number of dispatches and energy. Furthermore, as the number of dispatches decreases, EPOS-balance shows
a lower increase of sensing mismatch (increased by 4.21%) than Greedy-sensing (increased by 26.17%). If some drones fail to
be dispatched due to attacks or other factors, EPOS-balance is proved to effectively mitigate the penalties of over-sensing and
under-sensing, which validates the resilience of the proposed method.
Total target values. If the total target values to collect decrease from 20000 to 10000, the mission inefficiency of EPOS-balance
reduces to 0 and the energy consumption keeps constant when the number of dispatches exceeds 500. This is because the total
10
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Fig. 5. A swarm of 10 drones hovering over the central business district of Athens over five days to record traffic flows in a congested area of a 1.3 km2 with
more than 100 km lanes of road network, around 100 busy intersections, more than 50 bus stops and close to half a million trajectories. There are 5 drones
that depart from cell 𝐻1 and travel to the cell 1, 2, 3, 5 and 10 (shown in blue), whereas the other 5 drones set off from 𝐻2 and hover over the rest of cells
(shown in green) (Barmpounakis and Geroliminis, 2020).

target values represent the total hovering time of drones, and EPOS-balance does not waste energy resources when drones complete
their sensing tasks. In Fig. 4(b), the sensing mismatch of Greedy-sensing is highly sensitive to the change of target values. It increases
by 1.09, while EPOS-balance increases only by 0.34.
Number of cells. If the number of cells increases from 64 to 128, the size of each cell decreases, and the distance between any two
cells decreases, which reduces the travel distance of drones. As a consequence, drones spend more energy on collecting sensor values
according to Eqs. (6) and (7), which reduces the mission inefficiency. In Fig. 4(c), EPOS-balance shows a higher decrease in mission
inefficiency (decreased by 4%) than Greedy-sensing (decreased by 1%) as the number of cells increases. Furthermore, EPOS-balance
collects higher quality data with a lower number of cells and drones as shown in Fig. 4(b).
Number of base stations. If the number of base stations increases from 4 to 16, the travel distances of drones reduce and the total
sensor values collected rise. As a result, mismatch and inefficiency of EPOS-balance decrease. EPOS-balance shows an overall superior
performance as targets and base stations vary.

In summary, EPOS-balance has the lowest sensing mismatch (close to Round-robin) and mission inefficiency (close to Greedy-
sensing) as the variables in the environment change. This confirms that EPOS-balance has the highest performance in overall under
the same battery constraints and different sensing scenarios.

6.4. Traffic monitoring by coordinated drones

This paper shows the significant and broad impact of the proposed coordinated sensing method on a transportation scenario,
where a swarm of drones perform traffic monitoring. The evaluation uses real-world data from vehicle trajectories collected by
a swarm of drones in the congested downtown area of Athens, Greece (Barmpounakis and Geroliminis, 2020). This application
scenario envisions a large-scale and long-term monitoring of traffic congestion using coordinated drones to measure and predict
traffic patterns. As shown in Fig. 5, a swarm of 10 drones hover over 10 cells for 20 time periods to record traffic streams of 6 types
of vehicles: car, taxi, bus, medium vehicle, heavy vehicle and motorcycle. Each drone departs from and returns to one of the two base
stations and hovers up to 25 min at a single cell.
Sensing model. We model the application scenario of coordinated drones that perform traffic sensing. To improve the sensing
quality, we calculate the required sensing tasks (or targets) to be proportional to the spatio-temporal normalized distribution of
vehicles shown in Fig. 6(a). We assume that typical distributions can be derived from historical data (Barmpounakis and Geroliminis,
2022). The higher the likelihood a vehicle type drives through a cell, the higher the target value is, and 𝑇𝑛 ≤ (25×20), 𝑛 = 1, 2,… , 10.
Over 20 time periods (30 min), a certain number of drones in each period is dispatched.
Metrics and Baselines. The performance metrics are adjusted to evaluate more directly the observability of vehicles in this traffic
monitoring scenario: accuracy and efficiency. Accuracy 𝐴 denotes the correlation between the distributions of observed vehicles and
actual existing ones. Efficiency 𝐸 denotes the ratio of actual vehicles captured by the drones over the total ones. They are formulated
as follows:

𝐴 = log10(
1

∑𝑀
𝑚=1(𝑉 ∗

𝑚 − 𝑉𝑚)2
), (11)

𝐸 =
∑𝑀

𝑚=1 𝑉
∗
𝑚

∑𝑀
𝑚=1 𝑉𝑚

, (12)

where 𝑉𝑚 indicates the total number of vehicles at time unit 𝑚 acquired from pNEUMA (Barmpounakis and Geroliminis, 2020) (we
set one minute as a time unit), and 𝑉 ∗ denotes the number of vehicles monitored by drones at time unit 𝑚 using the proposed
11
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Fig. 6. The comparison results among six types of vehicles (car, taxi, bus, medium vehicle, heavy vehicle, and motorcycle) in a downtown area of Athens based
on the open traffic monitoring data collected by a drone swarm.

method, 𝑉 ∗
𝑚 =

∑

𝑛∈ ℎ𝑢𝑚,𝑛 ⋅ 𝑉𝑚. Moreover, the Greedy-sensing method is used as the baseline. It requires a low energy consumption
and emulates the vehicles data collection in pNEUMA (Barmpounakis and Geroliminis, 2020).
Experimental results. Fig. 6 illustrates the performance comparison between the proposed EPOS-balance and the baseline for
varying numbers of dispatched drones used in traffic monitoring. The results in Fig. 6(b) show that the accuracy of EPOS-balance
among six types of vehicles is significantly higher and more stable than that of Greedy-sensing when the number of dispatches is lower
than 200. This is because with the total of 200 drones’ dispatches under Greedy-sensing, each cell within each period is monitored by
exactly one drone. With a lower number of drones’ dispatches (i.e., scarce resources), however, EPOS-balance coordinates drones to
monitor all cells over all time periods, preventing over-sensing and under-sensing. Fig. 6(c) illustrates that EPOS-balance is relatively
more efficient than Greedy-sensing with no more than 160 dispatches. This is because EPOS-balance coordinates drones to collect
sensor values that are proportional to the distributions of vehicles, which increases the number of vehicles observed by drones.
Note that there is a strong linear relationship between the threshold for the number of dispatches (see Fig. 6(c)) and the entropy of
vehicles distribution (see Fig. 6(a)), with a Pearson coefficient correlation of 0.93 and corresponding 𝑝-value of 0.007.

In summary, for lower than 160 dispatches, EPOS-balance is approximately 46.45% more accurate and 2.88% more efficient than
Greedy-sensing among six vehicle types monitored. This verifies the remarkable performance of the proposed method under a scarce
number of drone resources, requiring less than 80% of the drones to achieve equivalent or higher performance than Greedy-sensing.

7. Conclusion and future work

In conclusion, this paper illustrates a decentralized coordination model to solve the task self-assignment problem for scalable,
resilient and flexible spatio-temporal sensing by a swarm of drones. To ensure energy-aware and efficient coordination of sensing,
12
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this paper introduces a novel plan generation strategy with three policies. Extensive experiments demonstrate that the proposed
method is adaptive to complex sensing scenarios and has better sensing performance than existing methods. The evaluation on
real-world data shows that the designed model has a strong potential in optimizing traffic monitoring in the Smart Cities using a
limited number of drones.

Nevertheless, the proposed method can be further improved towards several research avenues: (1) Use of real-world datasets
n other applications of Smart Cities, including last-mile delivery, disaster response, and smart farming. (2) Use of other learning
ethod, such as multi-agent reinforcement learning algorithm, to extend the study of coordinated drones with charging capabilities

nd obstacle/collision avoidance. (3) Use of efficient wireless communication technology and special hardware to implement the
oordination capability on board and online.
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ppendix A. Power consumption model

Drones spend energy to surpass gravity force and counter drag forces due to wind and forward motions. A drone controls the
peed of each rotor to achieve the thrust 𝑇 and pitch 𝜃 necessary to stay aloft and travel forward at the desired velocity while

balancing the weight and drag forces. For a drone with mass 𝑚𝑏 and its battery with mass 𝑚𝑐 , we define the total required thrust
as follows:

 = (𝑚𝑏 + 𝑚𝑐 ) ⋅ 𝑔 + 𝐹𝑑 , (13)

where 𝑔 is the gravitational constant, and 𝐹𝑑 is the drag force that depends on air speed and air density. For steady flying, the drag
force can be calculated by the pitch angle 𝜃 as:

𝐹𝑑 = (𝑚𝑏 + 𝑚𝑐 ) ⋅ 𝑔 ⋅ 𝑡𝑎𝑛(𝜃). (14)

Building on the model in Stolaroff et al. (2018), the power consumption with forward velocity and forward pitch is given by:

𝑃 𝖿 = (𝑣 ⋅ 𝑠𝑖𝑛𝜃 + 𝑣𝑖) ⋅

𝜖
, (15)

where 𝑣 is the average ground speed; 𝜖 is the overall power efficiency of the drone; 𝑣𝑖 is the induced velocity required for given 𝑇
and can be found by solving the nonlinear equation:

𝑣𝑖 =
2 ⋅ 

𝜋 ⋅ 𝑑2 ⋅ 𝑟 ⋅ 𝜌 ⋅
√

(𝑣 ⋅ 𝑐𝑜𝑠𝜃)2 + (𝑣 ⋅ 𝑠𝑖𝑛𝜃 + 𝑣𝑖)2
, (16)

where 𝑑 and 𝑟 are the diameter and number of drone rotors; 𝜌 is the density of air.
Moreover, the power consumption for hovering of a drone is calculated by:

𝑃 𝗁 =  3∕2
√

1 2
. (17)
13

𝜖 ⋅ 2𝜋 ⋅ 𝑑 ⋅ 𝑛 ⋅ 𝜌

https://figshare.com/articles/dataset/EPOS-based_Plans_for_Drones/21432804
https://figshare.com/articles/dataset/EPOS-based_Plans_for_Drones/21432804
https://figshare.com/articles/dataset/EPOS-based_Plans_for_Drones/21432804
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Fig. 7. Figures for Appendices B and C.

Appendix B. Mobility and sensing quality: Analytical results

Two theorems are introduced that link the performance metrics of mission inefficiency and sensing mismatch with the mobility
of the coordinated drones, in particular with their flying coverage modeled by the number of visiting cells.

Theorem B.1. In a mission of a swarm of drones  , starting from their base stations, flying with a constant ground speed over an area
consisting of 𝑁 cells to collect sensor data, and returning back consuming all energy of their battery, the mission inefficiency is proportional
to the number of random visited cells |𝐽𝑢|:

𝛼1 ⋅ |𝐽𝑢| → 𝑓1(𝐽𝑢) = 1 −
∑

𝑢∈ 𝑆(𝐽𝑢)
∑

𝑛∈ 𝑇𝑛
, (18)

if the drones collect sensor values over the visited cells proportionally to required target values, where 𝛼1 is a positive constant and 𝑓1(𝐽𝑢) is
the function of mission inefficiency according to the optimization objective of Eq. (2).

Proof. Based on Eq. (6) and (7) and since each drone uses all its battery capacity for flying and hovering, the number of collected
sensor values over the cells 𝐽𝑢 is:

𝑆(𝐽𝑢) =
∑

𝑛∈
𝑆𝑢,𝑛 =

𝐶𝑢 ⋅ 𝑒 − 𝑃 𝖿
𝑢 ⋅ 𝜏(𝐽𝑢)

𝑃 𝗁
𝑢

⋅ 𝑓. (19)

Eq. (2) can be reformulated as:

1 −
∑

𝑢∈
∑

𝑛∈ 𝑆𝑢,𝑛
∑

𝑛∈ 𝑇𝑛
= 1 −

∑

𝑢∈ 𝑆(𝐽𝑢)
∑

𝑛∈ 𝑇𝑛
∶= 𝑓1(𝐽𝑢), (20)

given that ∑𝑢∈
∑

𝑛∈ 𝑆𝑢,𝑛 =
∑

𝑢∈ 𝑆(𝐽𝑢). The total flying time 𝜏(𝐽𝑢) of a drone 𝑢 can be modeled as:

𝜏(𝐽𝑢) ≈ (|𝐽𝑢| − 1) ⋅ 𝜏 + 2 ⋅ 𝜏𝐵 , (21)

where 𝜏 is the mean expected traveling time between any two random cells and 𝜏𝐵 is the mean expected traveling time between the
base station of the drone and a random cell. Assume the number of random visited cells increases from |𝐽𝑢| to |𝐽 ′

𝑢|, where |𝐽𝑢| < |𝐽 ′
𝑢|.

Then, the total flying time without hovering is also likely to increase as 𝜏(𝐽𝑢) < 𝜏(𝐽 ′
𝑢) given that each drone 𝑢 flies with a constant

ground speed. The influence 𝑓1(𝐽 ′
𝑢) − 𝑓1(𝐽𝑢) on the mission inefficiency based on Eq. (20) is calculated as follows:

𝑓1(𝐽 ′
𝑢) − 𝑓1(𝐽𝑢) =

∑

𝑢∈ (

𝐸𝑞.(19)
⏞⏞⏞
𝑆(𝐽𝑢) −

𝐸𝑞.(19)
⏞⏞⏞
𝑆(𝐽 ′

𝑢) )
∑

𝑛∈ 𝑇𝑛

=

∑

𝑢∈
𝑃 𝖿
𝑢 ⋅𝑓
𝑃 𝗁
𝑢

∑

𝑛∈ 𝑇𝑛
⋅ (

𝐸𝑞.(21)
⏞⏞⏞
𝜏(𝐽 ′

𝑢) −

𝐸𝑞.(21)
⏞⏞⏞
𝜏(𝐽𝑢) )

≈

∑

𝑢∈
𝑃 𝖿
𝑢 ⋅𝑓
𝑃 𝗁
𝑢

∑

𝑛∈ 𝑇𝑛
⋅ 𝜏 ⋅ (|𝐽 ′

𝑢| − |𝐽𝑢|)

′

(22)
14

← 𝛼1 ⋅ (|𝐽𝑢| − |𝐽𝑢|).
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Since all parameters in
∑

𝑢∈
𝑃 𝖿𝑢 ⋅𝑓

𝑃 𝗁𝑢
∑

𝑛∈ 𝑇𝑛
⋅ 𝜏 are positive, 𝛼1 > 0, and therefore the mission inefficiency is proportional to the number of

andom visited cells. ■

heorem B.2. In a mission of a swarm of drones  , starting from their base stations, flying with a constant ground speed over an
rea consisting of 𝑁 cells to collect sensor data, and returning back consuming all energy of their battery, the sensing mismatch is inverse
roportional to the number of random visited cells |𝐽𝑢|:

𝛼2 ⋅ |𝐽𝑢| → 𝑓2(𝐽𝑢) =
∑

𝑛∈
(𝑇𝑛 −

∑

𝑢∈
𝑆𝑢,𝑛)2, (23)

if and only if |𝐽 ′
𝑢| + |𝐽𝑢| < 𝑁 when increasing the number of visited cells from |𝐽𝑢| to |𝐽 ′

𝑢| and if the drones collect sensor values over the
visited cells proportionally to required target values, where 𝛼2 is a negative constant and 𝑓2(𝐽𝑢) is a function of sensing mismatch according
to the optimization objective of Eq. (1).

Proof. Fig. 7(a) assists this proof. Since sensor values over the different cells are collected proportionally to the required target
values 𝑇𝑛, the collected sensor values are modeled by 𝑥𝑛 + 𝑣𝑛 =

∑

𝑢∈ 𝑆𝑢,𝑛, ∀𝑛 ∈ {1,… , 𝑁}, and 𝑥𝑛 ≤ 𝑇𝑛. Each 𝑥𝑛 corresponds to the
collected sensor values with an optimal matching to the required target values (min RSS), while 𝑣𝑛 ∈ {+𝑐𝑛,−𝑐𝑛, 0} models mismatches
such that ∑𝑛∈ (𝑥𝑛 + 𝑣𝑛) ≈

∑

𝑛∈ 𝑥𝑛, and thus ∑

𝑛∈ 𝑣𝑛 ≈ 0. Moreover, the mission inefficiency in the optimal collected sensor data
𝑥𝑛 is given by 𝛾 such that 𝛾 ∶= 𝑇𝑛 − 𝑥𝑛. The optimal matching between 𝑇𝑛 and 𝑥𝑛 denotes that 𝛾 ≥ 0 is constant ∀𝑛 ∈ {1,… , 𝑁}.
Therefore, it holds that:

∑

𝑛∈
(𝑇𝑛 −

∑

𝑢∈
𝑆𝑢,𝑛) =

∑

𝑛∈
(𝑇𝑛 − (𝑥𝑛 + 𝑣𝑛))

≈
∑

𝑛∈
(𝑇𝑛 − 𝑥𝑛)

≈ 𝑁 ⋅ 𝛾 > 0

(24)

Eq. (24) can be squared to calculate the sensing mismatch 𝑓2(𝐽𝑢) as follows:

𝑓2(𝐽𝑢) =
∑

𝑛∈
(𝑇𝑛 − (𝑥𝑛 + 𝑣𝑛))2

=
∑

𝑛∈
(𝛾 − 𝑣𝑛)2

= 𝑁 ⋅ 𝛾2 − 2𝛾 ⋅
∑

𝑛∈
𝑣𝑛 +

∑

𝑛∈
𝑣2𝑛

= 𝑁 ⋅ 𝛾2 +
∑

𝑛∈
𝑐2𝑛 .

(25)

The higher the 𝑐𝑛 is, the higher the 𝑓2(𝐽𝑢).
The distribution of the mission inefficiency values 𝑇𝑛 − (𝑥𝑛 + 𝑣𝑛) among 𝑁 cells is determined by the selection of the cells by

each drone. By assuming that each of the 𝑈 drones chooses the visiting cells randomly (with replacement), the distribution among
𝑁 cells can be explained by a Binomial distribution:

𝑃 (𝑋 = 𝑘, 𝐽𝑢) =
(

𝑈
𝑘

)

⋅ 𝑝(𝐽𝑢)𝑘 ⋅ (1 − 𝑝(𝐽𝑢))𝑈−𝑘, (26)

where 𝑝(𝐽𝑢) is the probability that a drone 𝑢 chooses |𝐽𝑢| number of cells from the total of 𝑁 cells that do not contain the cell 𝑛.
This results in mismatch at cell 𝑛 that either originates from (i) an under-sensing 𝑣𝑛 = −𝑐𝑛, if a drone 𝑢 has a high probability 𝑝(𝐽𝑢)
to miss cell 𝑛 from 𝐽𝑢, or (ii) an over-sensing 𝑇𝑛 − (𝑥𝑛 + 𝑣𝑛) = 𝐶 + 𝑐𝑛 if this probability is low (see Fig. 7(a)). The probability 𝑝(𝐽𝑢)
can be formulated as:

𝑝(𝐽𝑢) =
(

𝑁 − 1
|𝐽𝑢|

)

∕
(

𝑁
|𝐽𝑢|

)

= 1 −
|𝐽𝑢|
𝑁

, (27)

which expresses that the higher the number of visiting cells is, the lower the probability of drone 𝑢 to miss a cell 𝑛.
The mismatch 𝑐𝑛 at cell 𝑛 for a drone visiting 𝐽𝑢 points can be modeled by a Binomial distribution:

𝑐𝑛(𝐽𝑢) ∶= 𝑘𝑛(𝐽𝑢) ⋅ 𝑆𝑛(𝐽𝑢), (28)

with the expected values of 𝑘𝑛(𝐽𝑢) denoting the average number of drones that miss cell 𝑛 and 𝑆𝑛(𝐽𝑢) denoting the average number
of collected values by each drone 𝑢. The expressions of these values are formulated as follows:

𝑘𝑛(𝐽𝑢) = 𝑈 ⋅ 𝑝(𝐽𝑢), (29)

𝑆𝑛(𝐽𝑢) =
∑

𝑢∈
𝑆(𝐽𝑢) ⋅

𝑇𝑛
𝑈 ⋅

∑

𝑛∈ 𝑇𝑛
. (30)
15



Transportation Research Part C 157 (2023) 104387C. Qin and E. Pournaras

u

p

A

s

R

A

A

A

A

B

B
B

B

B

B

C

C

C

C
E

F

F
G

G

I
K

M

M

N

By increasing the number of sensing cells from |𝐽𝑢| to |𝐽 ′
𝑢|, the influence 𝑓2(𝐽 ′

𝑢)−𝑓2(𝐽𝑢) on the sensing mismatch can be formulated
sing Eq. (25) as follows:

𝑓2(𝐽 ′
𝑢) − 𝑓2(𝐽𝑢) =

∑

𝑛∈
[

𝐸𝑞.((28),(29),(30))
⏞⏞⏞
𝑐𝑛(𝐽 ′

𝑢)
2 −

𝐸𝑞.((28),(29),(30))
⏞⏞⏞
𝑐𝑛(𝐽𝑢)2 ]

=
∑

𝑛∈

𝑇𝑛
∑

𝑛∈ 𝑇𝑛
⋅

𝐸𝑞.(27)
⏞⏞⏞
𝑝(𝐽 ′

𝑢)
2 ⋅

𝐸𝑞.(22)
⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑢∈
𝑆(𝐽 ′

𝑢)
2 −

∑

𝑛∈

𝑇𝑛
∑

𝑛∈ 𝑇𝑛
⋅

𝐸𝑞.(27)
⏞⏞⏞
𝑝(𝐽𝑢)2 ⋅

𝐸𝑞.(22)
⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑

𝑢∈
𝑆(𝐽𝑢)2

←
∑

𝑛∈
𝑇𝑛 ⋅ [

𝛼1
𝑁

⋅ |𝐽 ′
𝑢|

2 − 𝛼1 ⋅ |𝐽
′
𝑢|] −

∑

𝑛∈
𝑇𝑛 ⋅ [

𝛼1
𝑁

⋅ |𝐽𝑢|
2 − 𝛼1 ⋅ |𝐽𝑢|]

← [
|𝐽 ′

𝑢| + |𝐽𝑢|
𝑁

− 1] ⋅ 𝛼1 ⋅
∑

𝑛∈
𝑇𝑛 ⋅ (|𝐽 ′

𝑢| − |𝐽𝑢|)

← 𝛼2 ⋅ (|𝐽 ′
𝑢| − |𝐽𝑢|)

(31)

Thus, it holds that 𝛼2 = [ |𝐽
′
𝑢|+|𝐽𝑢|
𝑁 − 1] ⋅ 𝛼1 ⋅

∑

𝑛∈ 𝑇𝑛 < 0 if and only if |𝐽 ′
𝑢| + |𝐽𝑢| < 𝑁 , where in this case the sensing mismatch is

roven to be reverse proportional to the number of random visited cells 𝐽𝑢. ■

ppendix C. Results of experimental settings

Fig. 7(b) illustrates the required number of tested maps to achieve a stable mean global cost, measured by the residual of sum
quares (RSS).
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