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The employment of nonlocal PDE models to describe biological aggregation and other
phenomena has gained considerable traction in recent years. For cell populations, these
methods grant a means of accommodating essential elements such as cell adhesion,
critical to the development and structure of tissues. For animals, they can be used to
describe how the nearby presence of conspecifics and/or heterospecifics influence move-
ment behaviour. In this review, we will focus on classes of biological movement models
in which the advective (or directed) component to motion is governed by an integral
term that accounts for how the surrounding distribution(s) of the population(s) impact
on a member’s movement. We recount the fundamental motivation for these models: the

intrinsic capacity of cell populations to self-organise and spatially sort within tissues;
the wide-ranging tendency of animals towards spatial structuring, from the formations

of herds and swarms to territorial segregation. We examine the derivation of these mod-
els from an individual level, illustrating in the process methods that allow models to
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be connected to data. We explore a growing analytical literature, including methods of
stability and bifurcation analysis, and existence results. We conclude with a short section
that lays out some future challenges and connections to the modelling of sociological
phenomena including opinion dynamics.

Keywords: Nonlocal PDEs; interacting particles; aggregation, flocking and swarming;
sorting; territory formation.

AMS Subject Classification 2020: 92B05, 92C17, 92D40, 92C15

1. Introduction

A flamboyance of flamingos, a shiver of sharks, a confusion of wildebeest; hundreds

of collective nouns have been assigned to define the groups formed by different

species. The need for these collective nouns reflects the frequency with which animal

groups form across the natural world, from the gathering of a small number of

individuals to billions-strong swarms of locusts182 or a herring shoal that stretches

across kilometres.132 An ability to aggregate is a phenomenon that extends down

to the microscopic level, where various bacteria30, 31 and microorganisms26 have

been observed to organise into aggregates under certain conditions. In the context

of our own cells, their capacity to bind and organise is key for the development of

many tissues and organs, or their repair following injury.

An essential element in the formation of many groups is the triggering of a

movement-based response in an individual, according to signals and behaviours of

other members. Directly, a cell may touch another cell and pass information through

specialised molecules at the cell surface, or a bird may alter its flight path according

to the trajectory of a neighbour. Indirectly, cells may alter motility according to

a molecular signal deposited by another cell and animals may respond to territo-

rial scent markings of conspecifics. The cumulative effect of these individual-level

behaviours can result in self-organisation at the population scale, for example the

rounding up of an initially dispersed population into an aggregate or the adoption

of some swarm configuration.

Scientific interest in self-organising phenomena has a long history, and the field

forms a pillar of mathematical biology.150 Naturally, much of the modelling within

this field is indebted to the remarkable work204 of Alan Turing through his reaction–

diffusion model, proposed to explain how morphogenesis could occur. Turing’s

model involved only molecular components, and showed how an interplay between

reaction and diffusion could break the symmetry of a spatially uniform distribu-

tion by amplifying natural stochastic fluctuations into an ordered and patterned

state. This not only offered a plausible chemical blueprint for how a tissue could

become patterned, but also a mathematical blueprint for determining whether self-

organisation can occur in a system. Inspired by the aggregation mounds formed from

starving Dictyostelium discoideum cells — the initiating step during a multicellular

transformation that serves as a paradigm of self-organisation at the microscopic

scale26 — the celebrated chemotaxis model of Keller and Segel117 followed Turing’s
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Biological modelling with nonlocal advection–diffusion equations 59

template to illustrate how a system that includes an actively migrating population

could also undergo self-organisation. It shows that the positive feedback loop of

chemotaxis to a self-secreted attractant could lead to mound formation.

Continuous biological movement models are often formulated as an advection–

diffusion equation,150 i.e.

∂tu(x, t) = ∇ · [D∇u(x, t)− au(x, t)], (1.1)

where u(x, t) represents the density of some population at position x ∈ Ω ⊂ R
n and

time t ∈ [0,∞). D measures the diffusive (undirected) component to movement,

while a is an n-dimensional vector that measures the advective (directed) compo-

nent to movement. Generally, diffusion may be an n × n diffusion tensor matrix,

e.g. describing some anisotropic spread due to the environment,101 however here

we will generally take an isotropic diffusion represented by a scalar coefficient d,

so that D = dIn where In is the n × n identity matrix. The region Ω defines the

space in which the population moves: this could range from a line if movement is

effectively constrained to a one-dimensional geometry (n = 1, e.g. cell movement

along nano-engineered channels), a two-dimensional surface (n = 2, e.g. animal

movement across a landscape) to a three-dimensional volume (n = 3). If Ω is a

bounded domain, then the above model (1.1) will be equipped with appropriate

boundary conditions.

For the chemotaxis model of Keller and Segel117 interactions between individuals

are indirect: the individual senses (and moves in response to) another individual

through following the local gradient of an attractant secreted by the population.

As such, the advective velocity is taken to be proportional to the chemoattractant

gradient, i.e. a ∝ ∇v, where v is the attractant.

In other instances of group formation, however, interactions are direct: molecular

binding between receptors on adjacent cell surfaces can lead to cells pulling them-

selves together (adhesion or attraction) or moving away from each other (repulsion);

animals may also be drawn to each other or move away following a visual sighting

of conspecifics. In all such instances, the interaction range becomes a crucial point

for consideration: in the case of cells, this could be the range over which a cell can

contact a neighbouring cell through touch, or, for animals, the range over which

the perception of conspecifics influences its movement behaviour.

Given the existence of an interaction range, an individual has the potential to

sense multiple neighbours simultaneously. It is natural, therefore, to suppose that

the movement will be based on some integrated response, i.e. according to the

distribution of a population (or populations) across its interaction range. Such con-

siderations have led to the increasing adoption of nonlocal PDE formulations.51 The

focus of attention in the present review will be on models in which the nonlocality

appears within the advective term, which is calculated according to an integral that

measures the influence of the surrounding population on movement. Specifically,
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60 K. J. Painter, T. Hillen & J. R. Potts

we consider the following pair of nonlocal models,

∂tu = d∆u− µ∇ · [ukR ∗ f ], kR ∗ f(x, t) =
∫

Ω

kR(x,y)f(u(y, t))dy, (1.2a)

∂tu = d∆u− ν∇ · [u∇(wR ∗ g)], wR ∗ g(x, t) =
∫

Ω

wR(x,y)g(u(y, t))dy.

(1.2b)

Motivation for these two model forms can be found through a purely phenomeno-

logical argument or by applying a more physical-based reasoning.

Consider first the formulation (1.2a) and its phenomenological motivation (see

top row of Fig. 1). Here, the nonlocal advection term is founded on the principal

that the population at position y influences the movements of those at x. The

induced direction of movement and its magnitude depends on the product of a

(vector-valued) function kR(x,y) and a (scalar-valued) function f(u(y, t)). Specif-

ically, kR(x,y) specifies a dependence on the distance of y to x and it identifies

the direction of interaction. The function f(u(y, t)) defines the dependence on the

Fig. 1. Illustration of the models (1.2) as formulated to describe grouping or herding, i.e. a ten-
dency to move towards and aggregate at areas of higher population density. (Top row) For (1.2a)
each individual within the interaction region (dotted circles) generates a local ‘force’ of attrac-
tion (top left); the number and direction will be different according to each individual’s position

(points a, b, c). Integrating over the interaction region leads to a net movement, the strength
and direction varying with position (top middle). Overall, this generates an advective field that

directs population-level movement (top right). (Bottom row) For (1.2b) an individual measures the
(nonlocal) population density, e.g. by assessing the number of neighbours within the interaction
region; at distinct positions (a, b, c), different numbers of neighbours will be detected (bottom
left). Across space, this creates a population distribution map (bottom middle). The advective
field for the population is according to the gradient of this distribution map (bottom right), e.g.
in the direction of increasing gradient to describe a herding phenomenon. The advection fields
generated through these two formulations have a similar form.
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Biological modelling with nonlocal advection–diffusion equations 61

population size at y. The integral kernel kR is parametrised according to a sampling

radius R, representing the interaction range. Net movement results from integrat-

ing over all possible positions, and this directly informs the advective velocity at

x. The parameters d ∈ R
+ and µ ∈ R describe diffusion and advection coefficients,

respectively.

The phenomenological motivation for (1.2b) follows a similar reasoning (see

bottom row of Fig. 1), although the function wR(x,y) is now scalar-valued, as is

the integrated quantity wR ∗ g. This formulation can be interpreted analogously

to the taxis-like model, with the population moving according to the gradient of a

nonlocal measure of the population; for example, this could be a nonlocally averaged

density distribution. Again, the parameters d ∈ R
+ and ν ∈ R represent diffusion

and advection coefficients, respectively.

A physical reasoning for (1.2a) and (1.2b) follows the consideration of forces

and energies; this interpretation takes on particular resonance in the context of

cell migration, where translocation of a cell’s body stems from forces exerted as

it attaches to other cells and the substrate. Model (1.2a) can be derived through

a balance between adhesive and repulsive forces that act at the cell surface (e.g.

see Ref. 38): interactions between cells centred at x and y generate local forces,

with the net force according to the integral kR ∗ f . This quantity hence describes

a force density, with units of N/m, and the coefficient µ has units of (sN)−1. The

corresponding term for (1.2b) is ∇(wR ∗ g), and wR ∗ g will carry the units of an

energy density (J/m). Viewed in this light, the advection according to ∇(wR ∗
u) defines a movement according to an energy gradient. The summary review of

Ref. 42 describes the derivations of models (1.2b) according to an energy principle.

If the underlying principal is a process of energy minimisation (i.e. down the energy

gradient) then parameter ν < 0 and, conventionally, the form (1.2b) is written with

the sign of the advection term reversed, i.e.

∂tu = d∆u+ γ∇ · [u∇(wR ∗ g)], wR ∗ g(x, t) =
∫

Ω

wR(x,y)g(u(y, t))dy,

(1.3)

where γ > 0 indicates energy minimisation. Note that we will adopt this convention

particular in Secs. 5.2 and 5.3, where energy-based analytical methods are utilised.

Since energy differences lead to forces, a natural connection between these model

forms is laid bare. A note of caution, though, must be applied when applying

physical reasoning to biological particles such as animals or cells: attraction between

conspecifics or avoidance of predators are measurable behaviours, but they cannot

be directly related to a physical force or energy; similarly, a cell is a highly complex

structure and its behaviour is not necessarily determined by the need to minimise

energy.

Models of form (1.2) have been used since the 1970s to describe ecological sys-

tems (see Refs. 94, 116, 125, 140, 143, 152, 183 and 198), since the 1990s to describe

cellular systems (see Refs. 8, 49, 81, 149 and 183), and more recently to describe
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62 K. J. Painter, T. Hillen & J. R. Potts

opinion dynamics (see Refs. 78 and 89). A particular point of mathematical interest

lies in their capacity for self-organisation, in which modelling a process of self-to-self

attraction between members can allow a dispersed population to organise itself into

one or more aggregated groups. For this reason, they are commonly referred to as

aggregation equations. However, it is important to note that the formulations (1.2)

are less restrictive and can be used to model other forms of interaction, such as

repulsive interactions that could lead to an enhanced dispersal.

Moreover, the form of these models can be extended to describe heteroge-

neous populations where the interactions between different populations can be

distinct (e.g. see Refs. 8, 149, 158 and 175) or incorporated within more com-

plicated models and applied to explain specific phenomena, such as cancer inva-

sion for cellular systems (e.g. see Refs. 64, 81 and 157) or dynamics of locust

swarms in ecological systems (see Refs. 79 and 199). A multi-species generalisa-

tion of each of the models (1.2a)–(1.2b) can easily be formed by extending to

u(x, t) = (u1(x, t), . . . , up(x, t)), where ui denotes the density distribution of the

ith out of p populations, and considering the systems

∂tui = di∆ui −
p
∑

j=1

µij∇ · [uikij ∗ fij ]

kij ∗ fij =
∫

Ω

kij(x,y)fij(u(y, t))dy i = 1, . . . , p, (1.4a)

∂tui = di∆ui −
p
∑

j=1

νij∇ · [ui∇(wij ∗ gij)]

wij ∗ gij =
∫

Ω

wij(x,y)gij(u(y, t))dy i = 1, . . . , p. (1.4b)

In model (1.4a) directed movement is now the combined result of N movement-

inducing interactions, where kij∗fij is the nonlocal advection coefficient that defines

the movement induced on members of population i due to interactions with popu-

lation j: kij(x,y) and fij(u(y, t)) are analogous to the functions described above,

and parameters Rij , di and µij define the interaction range, diffusion coefficient and

advection coefficients, respectively. Note that the µij ’s may be positive or negative,

to model inter-species175 or inter-cellular158 attraction or repulsion, respectively.

Analogous reasoning can be applied to the form (1.4b).

In this paper we review the increased employment of nonlocal systems of the

above form within biological modelling.a In Secs. 2 and 3 we outline our moti-

vating biological systems, namely cellular adhesion and other cell-based interac-

tions (Sec. 2) and ecological interactions between animals (Sec. 3). We describe the

aGiven the scope of this paper, we cannot cover all topics in detail and many relevant studies are
omitted.
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key biology and previous modelling that has motivated models of the form (1.2a)

and (1.2b) or their multiple species extensions. In Sec. 4 we explore the deriva-

tions of these models from a microscopic perspective, in particular focussing on

cellular adhesion. In Sec. 5 we consider some of the analyses used to understand

these models, including linear stability analysis, bifurcation analysis and global

existence. We conclude with some key challenges and future perspectives for the

field.

2. Nonlocal Models for Cellular Systems

2.1. Adhesion and other cell interactions

Cell adhesion is the fundamental mechanism by which a cell attaches to and inter-

acts with its surroundings.3 Adhesions form through specialised cell surface recep-

tors; their binding across adjacent membranes not only attaches cells together,

but also triggers a range of processes from proliferation to migration. Of the var-

ious families of adhesion molecules, cadherins play a particularly prominent role

within cell–cell adhesion processes (e.g. see Ref. 193): E-cadherins, for example, form

tight adhesive junctions between epithelial cell types; N-cadherins are more com-

monly associated with transient adhesive interactions between motile mesenchymal

cells.

Adhesion is critical for the organisation and maintenance of tissue structure.

Naturally, cell–cell adhesion can lead to an accretion process, whereby contact

between cells leads to attachment and the formation of a clustered population

(Fig. 2(a)). Moreover, classic experiments indicate a role for adhesion in regulating

the spatial organisation of different populations within a tissue.200 In the differ-

ential adhesion hypothesis (DAH)186, 202 cell sorting is suggested to result from

distinct cell surface tensions, deriving in turn from the strength of adhesive inter-

actions. The precise relationship leads to different configurations (see Fig. 2(b)),

and experiments77 for cell lines that express different levels of cadherins are con-

sistent with this theory. More recently, measurements of the forces within adhesive

aggregates5, 202 have resulted in revision of the DAH to the differential interfa-

cial tension hypothesis (DITH29): cell cortical contraction machinery and cell–cell

adhesion combine to regulate interfacial tension, and sorting results from rear-

rangements that lead to a tissue-level minimisation of interfacial tension. Never-

theless, adhesion remains the driving force within the sorting and arrangement of

tissues.

Cell-to-cell contacts, though, can also trigger repulsion. For example, contact

inhibition of locomotion (CIL)1 forms a contact-mediated response which not

only leads to cessation of cell motion, but also repolarisation and reversal of the

direction of motion.41 Cell-to-cell contacts can also lead to asymmetric responses,

where the two cells display contrasting responses. One such example arises in

the pigmentation of zebrafish, where interacting xanthophores and melanophores

engage in a chase and run108, 219 interaction, contact between them resulting in
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64 K. J. Painter, T. Hillen & J. R. Potts

Fig. 2. (Color online) (a) Cell–cell adhesion naturally leads to accretion, with cells attaching on

contact and forming a cluster or aggregation. (b) Sorting dynamics in adhesive populations, as
predicted by the DAH. In a mixture of two distinct cell populations, three principal parameters

can be identified: two self-adhesion strengths (Su, Sv) and one cross-adhesion strength (C). The
DAH predicts that different arrangements will arise according to the relationship between these
parameters: for example, in a mixture of cells in which Su > C > Sv , the u population (red)
becomes encapsulated by the v (blue) population. (c) CPM simulation (implemented via Compu-
Cell3D) showing encapsulation for a parameter setting in which adhesive interactions satisfy the
aforementioned relationship.

the melanophore moving away from the pursuing xanthophore. Other instances

of contact-mediated responses that can range from attraction to repulsion include

those triggered through Eph/Ephrin interactions36 or the chase and run dynamics

observed in cultures of neural crest and placode cells.196 A complex set of migration

responses that follow direct contacts have been observed among cells of the immune

system, impacting on a range of processes that include inflammation and tumor

progression.142

Biological cells are typically small with average diameters the order of around

ten microns and contact-based interactions occur at a similarly local level. However,

contacts can also be formed at considerably greater distances than the mean cell

diameter. First, the cell bodies can be highly deformable, where frequent protru-

sions of the membrane — pseudopodia52 — locally extend parts of the membrane

far beyond the average diameter. Second, a diversity of more specialised membrane

protrusions have been identified122, 181, 220 — variously termed cytonemes, tun-

nelling nanotubes, microtubes — that in some cases extend the order of 100s of

microns. Thus, a contact can be achieved between cells separated by multiple cell

diameters, and a nonlocal description is warranted.
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Biological modelling with nonlocal advection–diffusion equations 65

2.2. Models for adhesion and tissue dynamics

2.2.1. Individual-level models for adhesion and sorting

Agent-based modelling (ABM) forms a natural approach for adhesive cell popu-

lations.185, 189 The first broadly successful in silico replications of cell sorting can

be attributed to Graner and Glazier,87, 92 where a Potts modelb was extended

to model adhesion. Subsequently dubbed the Cellular Potts Model (CPM), each

biological cell occupies multiple grid cells spread across a lattice, therefore giving

each cell a shape, volume, and boundary. Evolution of the shape is probabilistically

determined via a hypothesised energy functional; the aim is to minimise an energy

determined by adhesive contacts along shared surfaces. Selecting relationships in

line with the DAH leads to the predicted cell sorting pattern87, 92; see Fig. 2(c) for

a CPM simulation in which adhesion relationships conspire to sort two populations

into an encapsulated configuration.

Other ABMs have also shown to be capable of describing adhesion and sorting

dynamics,206 sitting at various levels of detail: cells modelled as deformable ellip-

soids161, 162 with centres and semi-axes evolving according to the forces generated

by adhesive interactions with other cells and the substrate; on-lattice methods (e.g.

cellular automata type, see Ref. 61); off-lattice centre-based models, where equa-

tions of motion describe the position and velocity of a cell’s centre and the cell forms

a hard or soft sphere that interacts with nearby cells (e.g. Refs. 45, 104 and 131);

vertex-based models74 which feature cell boundaries described by a polyhedron with

dynamic vertices. Many of these ABMs form the basis of computational platforms

for simulating cellular and tissue dynamics — CellSys,c,104 CompuCell3D,d,192

Chaste,e,141 Physicellf ,83 — and their capacity to predict adhesion and sort-

ing phenomena is regarded as a point of calibration between these diverse

methodologies.153

2.3. Continuous models for adhesion and sorting

2.3.1. Local formulations

The representation of a cell population via a continuous density distribution elimi-

nates the issue of scale inherent to agent-based models, where simulating very large

cell numbers remains a computational challenge. Moreover, a well posed differential

equation system gives access to a wealth of analytical methods (stability and bifur-

cation analysis, asymptotic approaches, travelling wave analyses) that can yield

deeper understanding into the dynamics.

bA model of statistical mechanics, originally used to understand spin configurations in ferromag-
nets.
chttps://www.hoehme.com/software/tisim.
dhttps://compucell3d.org/.
ehttps://www.cs.ox.ac.uk/chaste/.
fhttp://physicell.org/.
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66 K. J. Painter, T. Hillen & J. R. Potts

One simple approach to include adhesion has been based on a classic advection–

diffusion equation of the form (1.1), where the diffusion and/or advection coef-

ficients depend on the local population density, i.e. the pointwise density. Such

models have been proposed on phenomenological grounds (e.g. see Ref. 105), or

following a derivation from an underlying random walk description of movement

(e.g. see Refs. 6 and 111) — see Sec. 4.1. These models capture certain features of

adhesive populations — for example, restricted motility in regions of high adhesive-

ness — and are both analytically straightforward and simple to incorporate into

models. Nevertheless, they have not been shown to allow more complicated sort-

ing behaviour. Moreover, as discussed in greater detail below, the derived diffusion

coefficients can sometimes become negative and result in a loss of regularity (for

example Refs. 6 and 111). The effects of cell–cell adhesion have also been incor-

porated in a phenomenological manner into various models for tumor growth (for

example Refs. 39, 40, 57, 58 and 217), via the incorporation of a surface tension

force at the tumor-tissue surface.

2.3.2. Nonlocal formulations

Successful ABM approaches for cell sorting are inherently nonlocal: a cell spread

across multiple lattice sites in a CPM, or centre-based approaches where the attrac-

tive and repulsive interactions form over an interaction range. This nonlocality can

be incorporated into a continuum description using a nonlocal (or integral) PDE

formulation. In the context of cell adhesion, the firstg models to adopt this approach

were formulated to describe the aggregation of a single homogeneous population in

Ref. 183 and for multiple cell populations in Ref. 8 to explore sorting via differential

adhesion; closely related nonlocal models, though, have a biomodelling history that

dates back at least as far as the 1970s (for example see Refs. 94, 116, 140 and 151).

The simplest motivation for these models is founded on phenomenological rea-

soning. Suppose u(x, t) denotes the cellular density at position x in space and t

in time. Ignoring (for simplicity) cellular growth or death and employing standard

mass conservation arguments (e.g. see Ref. 150) lead to the balance equation

∂tu(x, t) = −∇ · J(x, t),

where J(x, t) denotes the population flux arising from movement. The flux can be

decomposed into different terms — for example, a diffusive element to describe

undirected movement and an advective component for directed movement — and

we arrive at (1.1). Regarding the advective component, suppose that a cell at x

interacts with another cell at y, and that this interaction generates movement; this

could be the result of forming adhesive bonds that draw the two cells together. The

net movement response follows from summing over all possible interactions and we

gAs far as we are aware.
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Biological modelling with nonlocal advection–diffusion equations 67

then postulate an interactive flux proportional to this sum, i.e.

Jinteraction ∝ u(x, t)

∫

kR(x,y)f(u(y, t))dy,

where kR and f(u(y, t)) are as described following (1.2). Adding to the above a

standard (Fickian) diffusive flux, Jdiffusion = −d∇u, leads to (1.2a).

A basic model to describe a homogeneous adhesive population sets r = y − x,

kR(x,x+ r) = χ|r|<R~er and f(u(x+ r, t)) ∝ u(x+ r), (2.1)

where ~er denotes the unit vector in direction of r, and χ(r) is the indicator func-

tion. This stipulates (i) that only those cells within an interaction range R impact

on movement, i.e. those within contact range for adhesive binding; and (ii) that

the strength of interaction increases linearly with the density of cells at x + r,

since a higher cell density implies a greater likelihood of forming adhesive bonds.

Consequently, we obtain

∂tu = d∆u− µ(R)∇ ·
(

u

∫

Bn
R

u(x+ r, t)~erdr

)

, (2.2)

where Bn
R is the n-dimensional ball of radius R. The coefficient µ > 0 is a measure

of the adhesive strength; switching to µ < 0 turns the interaction into a repelling

one, e.g. see Ref. 158 in the context of CIL. We note that often the function kR is

normalised, e.g. according to the volume of the interaction space and we therefore

place a dependency on R in the parameter µ for generality. Other natural choices

would be to assume that the strength of interaction decreases with increasing sepa-

ration, due to reduced likelihood of forming a contact: for example, the magnitude

of k decreasing exponentially with the distance |r|. Nonlinear choices for f are

also logical, e.g. forms to reflect an upper bound in the adhesive pull that can be

generated, see below.

2.3.3. Capacity for self-organisation and sorting

A key strength in the model (2.2) lies in its capacity for self-organisation (see

Sec. 5.1 for more details): for µ < µcrit, a dispersed population remains dispersed

(see Fig. 3(a)), while for µ > µcrit it becomes concentrated into a tight aggregate

(see Fig. 3(b)). Under the basic model (2.2), the aggregates evolve into a highly

concentrated aggregate,h even for µ & µcrit. This can be attributed to the lack of

any mechanism that reins in the amount of adhesive pull that can be generated.

Adding further detail to the model assumptions can help prevent over-

accumulation within the aggregates. For example, setting f(u) to be a saturating

function (which can be motivated naturally through adhesive receptor occupancy,

hFor a discussion of global existence, see Sec. 5.2.
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68 K. J. Painter, T. Hillen & J. R. Potts

Fig. 3. Self-organisation in a nonlocal model for adhesion, homogeneous population. The initial
distribution sets a ‘loose aggregate’, the spatial extent of which is indicated by the dashed line
in each frame. (a) Dispersal scenario for (2.2), with d = R = 1 and µ = 3.5/π. (b) Aggregation
for (2.2), with d = R = 1 and µ = 4/π. (c) Aggregation for (2.3), for d = R = K = 1 and

µ = 13.5/π. (d) Aggregation for (2.4), for d = R = K = 1 and µ = 13.5/π. The overall domain Ω
is of size 10× 10. We refer to Refs. 80 and 82 for details of the numerical implementation.

see Sec. 4), then

∂tu = d∆u− µ(R)∇ ·
(

u

∫

Bn
R

u(x+ r, t)

κ+ u(x+ r, t)
~erdr

)

. (2.3)

This leads to aggregations that are capped at lower densities (see Fig. 3(c)). Other

possible modifications include the addition of ‘volume-filling’ (e.g. see Refs. 49

and 158), or adapting diffusion to a density-dependent and degenerate form (e.g.

see Refs. 33, 34, 49, 145 and 149). The addition of the latter to (2.3) leads to

∂tu = d∇ ·
[

u∇u− µ(R)

(

u

∫

Bn
R

u(x+ r, t)

κ+ u(x+ r, t)
~er dr

)]

. (2.4)

This adaptation limits a diffusive spread at the cluster boundary, the aggregate

taking on a compact form with a sharp interface (Fig. 3(d)).

As noted earlier, nonlocal formulations can be easily extended to include mul-

tiple populations, see (1.4). A natural question, therefore, is whether cell sorting

can be replicated under a nonlocal formulation. Consider two populations u and v

and assume equivalently simple forms to (2.1), then a basic model to describe cell

sorting can be stated by the equations

∂tu = du∆u−∇ ·
(

u

∫

Bn
R

(Suu(x+ r, t) + Cv(x+ r, t))~er dr

)

, (2.5a)

∂tv = dv∆v −∇ ·
(

v

∫

Bn
R

(Svv(x+ r, t) + Cu(x+ r, t))~er dr

)

. (2.5b)

In this model Su, Sv and C represent the u–u self-adhesion strength, the v–v self-

adhesion strength, and the u–v cross-adhesion strength, respectively. Note that
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Biological modelling with nonlocal advection–diffusion equations 69

Fig. 4. Cell sorting in a nonlocal heterogeneous two population model for adhesion. Initially, the

two populations are mixed within a loose aggregate, left column. First row shows a simulation of
the basic model (2.5) under Su = 4, Sv = 1, C = 2. Second to fifth rows show simulations of the

advanced model (2.6) under the following scenarios: ‘mixing’ (Su = Sv = C = 8, second row);
‘encapsulation’ (Su = 10, Sv = 4, C = 6, third row); ‘partial sorting’ (Su = 10, Sv = 8, C = 3,
fourth row); ‘complete sorting’ (Su = Sv = 10, C = 0, fifth row). All other parameters set at
du = dv = R = κu = κv = 1. The domain Ω is of size 10× 10.

the interaction ranges are the same (and equal to R) and cross interactions are

symmetrical, although such assumptions can be relaxed and repelling interactions

can also be introduced (for example see Refs. 48 and 158). Unfortunately, this basic

formulation (2.5) proves overly simple to capture the nuances of cell sorting. As

for the basic homogeneous model (2.2), the linear choices for the nonlocal terms

lead to excessive attraction and the populations become highly concentrated (see

Fig. 4, top row). The model, as such, is unsatisfactory when it comes to resolving

the subtly distinct cell sorting patterns shown in Fig. 2(b).

Consequently, ‘successful’ nonlocal models8, 49, 82, 149, 158 that are more broadly

capable of replicating the spectrum of arrangements predicted by the DAH include

modifications to the various terms in model (2.5). For example, this has included

adding biologically-meaningful features such as a limitation or saturation to the

adhesive pull (see Refs. 8 and 82), introducing volume-filling effects that prevent

cell aggregation beyond a critical (packed) level (see Refs. 49 and 158), or modifying

diffusion terms to include total population pressure effects (see Refs. 34, 49 and 149).
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To provide one concrete example, by adapting the saturating functional forms above

and including population-pressure effects to create sharply segregated boundaries

(see Refs. 49 and 149), we have

∂tu = ∇ ·
[

duu∇(u+ v)− u

∫

Bn
R

Suu(x+ r, t) + Cv(x+ r, t)

κu + u(x+ r, t) + v(x+ r, t)
~er dr

]

, (2.6a)

∂tv = ∇ ·
[

dvv∇(u+ v)− v

∫

Bn
R

Svv(x+ r, t) + Cu(x+ r, t)

κv + u(x+ r, t) + v(x+ r, t)
~er dr

]

. (2.6b)

This more ‘advanced’ sorting model is capable of replicating the nuances of cel-

lular sorting under different adhesive relationships, e.g. for two populations it can

generate the full spectrum of arrangements from mixed to complete sorting (see

Fig. 4).

Summarising, nonlocal models are capable of reaching two touchstones of adhe-

sive behaviour: (i) capturing the adhesive or sticky-like properties of cells in close

contact, and (ii) replicating cell-sorting phenomena for heterogeneous adhesive pop-

ulations as predicted by the DAH.

At this point we return to our earlier implication that local formulations are

incapable of adequately describing adhesion and sorting dynamics, stressing that

this applies to ‘näive’ local formulations. In fact, various local models can be shown

to exhibit sorting. One method (though not directly describing adhesion) is through

extension of a chemotaxis framework: effectively, a ‘differential chemotaxis’ system

in which two populations have distinct chemotactic responses to multiple chemical

factors (e.g. Refs. 121 and 156), so the interactions are indirectly mediated. Directly

relevant to adhesion, an intriguing (fourth order) local model has been recently

formulated in Ref. 71 and demonstrates an impressive capacity to simulate the

range of cell sorting patterns described here: we return to this in the discussion.

2.4. Further applications to cellular systems

Classic cell sorting experiments200 were first performed using embryonic cell pop-

ulations, naturally leading to a conjecture that adhesion and sorting are funda-

mental during embryonic development (for a historial retrospective, see Ref. 187).

Consequently, a principal application for nonlocal models for cell adhesion lies

in developmental processes. In fact, the first nonlocal model for adhesion183

was proposed in the context of self-organisation of scale cells during lepidoptera

(moth and butterfly) wing morphogenesis. Nonlocal adhesion models have subse-

quently been developed, as described above, to show fundamental cell sorting (see

Refs. 8, 49, 82 and 149), somitogenesis,i,9 skeletal morphogenesis,j,23, 88 aspects of

iA fundamental early embryonic stage of segmented animals, whereby mesoderm tissue is sequen-
tially discretised into blocks of cells along the head to tail axis.
jThe embryonic process during which the skeleton is formed.
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neural development133, 201 and vasculogenesis.k,210 Notably, some of these appli-

cations have been directly formulated alongside experimental data, linking predic-

tions formed from models to targeted experiments. For example, a nonlocal model

of adhesion was formulated23, 88 to describe mesenchymal cell movements which

indicated a crucial aggregating role for adhesion during early skeletal morphogen-

esis. Experimental–theoretical studies that feature nonlocal adhesion models have

also been used to understand brain development, in particular the crucial role

of N-cadherin mediated adhesion in the positioning of neuronal populations dur-

ing mammalian cortex development133 and the visual centre of the fly Drosophila

melanogaster.201

Abnormal regulation of adhesive processes may be a factor for various patholo-

gies, in particular cancers.109 For example, a point of significant focus has been on

the epithelial–mesenchymal transition (EMT), where upregulation of N-cadherin

accompanied by downregulation of E-cadherin allows cells to adopt a more migra-

tory form, linked to increased invasiveness and metastasis.128 Many mathematical

models have been developed to address the roles played by cell–cell (and cell–

matrix) adhesion during invasion and a growing number (e.g. Refs. 24, 25, 64, 81,

103, 119, 157 and 191) have applied nonlocal formulations: to understand how adhe-

sion alters the shape of cancer invasion (e.g. Refs. 81 and 157); the role of cell–cell

adhesion during glioma growth (e.g. Refs. 119 and 191); shaping different forms of

tumor infiltration patterns in ductal carcinomas (see Ref. 64); and, two population

models, featuring cancer populations at different states of mutation (see Refs. 24

and 25). Other points of application for nonlocal models of adhesion and cell inter-

actions include wound healing (e.g. Refs. 65, 66, 213 and 214) and modelling the

interactions between liver cells.93

3. Nonlocal Models for Ecological Systems

3.1. Swarms, flocks and herds

Swarming, herding and flocking phenomena are perhaps the most obvious examples

of collective behaviour in ecological systems.190 The central idea is that animals,

like cells, often exhibit social interactions that cause them to aggregate. At their

most basic level, social interactions may simply cause animals to be found in a

particular area of space at some point in time, rather than using all the available

area.198 At a more advanced level, these interactions can cause a very wide range of

complex patterns to emerge, famously exemplified by starling murmurations, but

present throughout the animal kingdom.12, 190

An enormous number of models have been formulated to understand collective

animal movements,18, 209 a substantial proportion of which are based on systems

kFormation of the primitive vasculature network.
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72 K. J. Painter, T. Hillen & J. R. Potts

of ‘interacting particles’l: the position of each agent is governed by a dynamic

(usually, stochastic) equation featuring terms that account for how the trajectories

of neighbours influence movement (well-known models include those in Refs. 7,

54, 55, 60, 96, 146, 179 and 208). Typically, the interactions lying at the heart of

these models are formulated according to the ‘first principles of swarming’.46 At

the shortest range, interactions are often repulsive, as animals will want to avoid

physical contact. At a slightly longer range, animals will align their movements with

one another. Then if animals become too far apart, they have a tendency to move

towards one another to maintain the group cohesion (attraction). These three zones

of nonlocal interactionsm combine to give both stationary and moving aggregations,

as well as a vast swathe of spatio-temporal patterns, mimicking many of those that

have been observed in nature (see Refs. 18, 190 and 209).

A smaller — but still substantial — literature has approached the same cen-

tral problem of swarming and animal movement via a continuous framework, using

ideas that surround nonlocal advection (see Refs. 69, 143, 175, 198 and 211). In

fact, the earliest nonlocal biological aggregation models were developed to describe

swarming-like behaviour (see Refs. 116, 125, 140, 143 and 151) and were based on

the nonlocal PDE (1.2a). For example, in Ref. 143 even or odd forms of interaction

kernels were explored for their capacity to generate drift-type (coherent movement

of the swarm) or aggregation-type (cohesion of the swarm) behaviour. A further

branch of nonlocal PDE methods is founded on hyperbolic kinetic transport equa-

tions (see Refs. 20, 68 and 69). In these models, the nonlocal terms do not enter

the advection terms, but the turning behaviour of the population; consequently,

they benefit from a closer description of individual behaviour and can, for instance,

explicitly incorporate the above principles of swarming commonly used in particle

models. However, these models represent significant and nontrivial extensions of

Eqs. (1.2)–(1.4) — although it is possible to connect them32 — and are more chal-

lenging to explore from an analytical and numerical perspective. As such, we do

not go into details, instead we refer the reader to a recent book68 that summarises

developments in this area.

lIn probability theory, the term ‘interacting particle system’ has a specific definition in the context
of continuous time Markov jump processes. When we refer to interacting particles within this
paper, we will often slip into a slightly broader sense: complex systems composed of agents that

interact with each other according to their relative positions and/or velocities.
mOne of the earliest and most influential models explicitly built along these principles —
the ‘Boids’ model of Reynolds179 — was developed with the main aim of generating realistic
flocking-like behaviour for the computer graphics industry, rather than the more elemen-
tary aim of understanding movement dynamics; numerous interactive online simulators of this
model exist, e.g. https://boids.cubedhuang.com/. A particularly notable branch that evolved
from that work was the application of swarming models to optimisation, i.e. particle swarm
optimisation.118
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Biological modelling with nonlocal advection–diffusion equations 73

3.2. Home ranges and territories via stigmergy and memory

As well as the visually impressive examples of collective movement, aggregation

phenomena can also occur over longer spatial and temporal scales, becoming appar-

ent as one observes animal locations over a period of time. For example, by plotting

locations over an increasing time window, it often transpires that animals do not

use as much of the available area as their locomotive capabilities allow. Instead they

confine themselves to a smaller area called a home range, which they may maintain

for a season or even a whole lifetime.27, 35 This causes the spatial distribution of the

animal to tend to a stationary, non-constant distribution, such as can be modelled

by Eq. (1.2b) or variants thereof.28

Home ranges can emerge due to a range of biological processes. For example,

animals may tend to re-visit locations remembered to be good for foraging.180

Once they have memory of sufficiently many locations to meet their foraging needs,

they may decide to stay in the vicinity of those locations (see Refs. 138 and 207).

Additionally, they may need to construct a central place near to where they forage,

such as a den or nest site, for reproductive purposes. The requirement to return to

this central place then provides yet another mechanism of locational aggregation.144

Finally, animals may leave traces of their past locations in the landscape (e.g.

through scent marks) and use these as markers to keep them in their home range:

a process called stigmergy.195 In any of these cases, the decisions of the animal to

move will tend to be spatially nonlocal, due to the animals’ ability to sense their

surroundings as they move, through sight, smell, or memory of target locations (see

Refs. 14, 70 and 169).

To model these biological processes, it is common to couple a nonlocal

advection–diffusion equation for the location distribution to an ordinary differential

equation (ODE) modelling the process of memory or stigmergy. The recent review

of Ref. 211 gives a thorough exposition of these processes, but perhaps the simplest

example is

∂tu = d∆u− ν∇ · (u∇wR ∗m), (3.1)

∂tm = αu− δm, (3.2)

where u(x, t) is the probability distribution of the animal and m(x, t) denotes the

cognitive map,211 which models either the density of marks left on the terrain or

the amount of memory the animal has about location x at time t. Other notation

is as in Eq. (1.2b).

Territoriality provides another reason why animals may confine themselves in

space over long periods of time. Here, the presence of neighbouring conspecifics

forces animals into a confined space (see Refs. 2 and 172). There are various mech-

anisms by which this can happen, but from a modelling perspective they fall into

two categories. The first is via stigmergy: indirect interactions mediated by some

form of marks on the terrain, such as urine, faeces, or a trail.144, 174 In this case,

animals avoid the marks left by others in the recent past, and usually these marks
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74 K. J. Painter, T. Hillen & J. R. Potts

decay over time. The second is via memory of direct interactions, such as displays

or fights.120 Animals remember the locations of these displays or fights and may

tend to avoid them in the near future.173 In either case, as with home range forma-

tion, the movement of animals in response to these interactions is usually spatially

nonlocal.

These territorial mechanisms can be modelled using exactly the multi-

population system in Eq. (1.4b) with νij < 0 for i 6= j to model mutual avoidance,

and νii ≥ 0. However, as with home range models, it is often valuable to model

the process of memory or stigmergy explicitly via ODEs. A simple example can be

given by combining the ideas behind Eqs. (3.1) and (3.2) with those of Eq. (1.4b),

as follows:

∂tui = di∆ui −∇ ·



ui∇
p
∑

j=1

νijwR ∗mj



, (3.3)

∂tmi = αui − δmi, (3.4)

where mi(x, t) denotes the cognitive map of species i, and models the marks

left by individuals from territorial unit i, whilst α and δ are constants. How-

ever more complicated versions can be considered that include extra biological

realism.173, 174, 211

3.3. A general framework for nonlocal interactions in ecology

As well as territory formation, the multi-species case from Eq. (1.4) enables a vari-

ety of other ecological phenomena to be modelled over timescales where births

and deaths are negligible (e.g. for mammals and birds, this may be over a season

or year).84, 175 For example, the movements of co-existing predators and prey can

be modelled by assuming prey advect away from predators and predators towards

prey.62 Likewise, competing species may advect away from one another and mutu-

alistic animals may have a tendency to move towards one another. In forager and

scrounger interactions, the latter follow the former to exploit their foraging efforts

(e.g. see Ref. 194). In ecosystems consisting of many species, there will be a com-

plex network of such interactions that can cause a wide range of emergent patterns

(Figs. 5(c)–5(e)).

As a consequence, Eq. (1.4b) has been proposed as a key study system for under-

standing spatial distributions of interacting groups of animals that may emerge

over such timescales.175 These groups of animals may be territorial groups, pop-

ulations, or whole species. The overall aim is to be able to provide links between

the network of interactions between moving species (Fig. 5(b)) and their pattern

formation properties.

For example, Fig. 5(a) shows the predictions of linear stability analysis for

four different systems of three populations (model (1.4b) for i = 1, 2, 3) shown

schematically in Fig. 5(b). This gives a simple categorisation into ‘no patterns’
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Biological modelling with nonlocal advection–diffusion equations 75

Fig. 5. Patterns for example three-species model ecosystems of the form in Eq. (1.4b). Panel (a)
gives the linear pattern formation regimes for systems described by Panel (b). In each system, an

arrow from ui to uj means that ui is attracted to uj . An arrow away from ui in the opposite
direction from uj means ui avoids uj . So, for example, the top-left graph in Panel (b) might model
two mutualist predator species living alongside a single prey species. Panels (c)–(e) give numerical
examples of the patterns that can form in a three-species system. In Panel (c), the system tends
to a steady state where u1 and u3 aggregate together but are segregated from u2. Panels (d)
and (e) give example spatio-temporal patterns for u1 with a three-species system. In all panels,
d1 = d2 = d3 = ν21 = ν31 = ν32 = 1 and ν13 = −1. In Panels (c)–(e), ν23 = −4. Panels (c)–(e)

have ν12 = −4, ν12 = 3.3 and ν12 = 4, respectively.

(all eigenvalues having negative real parts) ‘stationary patterns’ (the dominant

eigenvalue is real and positive) or ‘fluctuating patterns’ (the dominant eigenvalue

is non-real with positive real part). However, further away from linear stability

regime, patterns in three-population systems can be quite complex and varied,

including stationary patterns of aggregation and segregation (Fig. 5(c)), travelling-

wave-like solutions (Fig. 5(d)), perpetual irregular oscillations (Fig. 5(e)) and

more.85, 175
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4. Derivations from the Individual Level and Connecting to Data

4.1. Random walks

When Karl Pearson coined the term ‘random walk’ in 1905,164 the central ques-

tion involved biological movement: if, within a particular time step, each mosquito

moves some distance in a randomly chosen angle, can we estimate the distribution

of a mosquito infestation? Fundamental work by Patlak163 extended the question

to include biases from the environment and persistence. Across the last few decades

a vast number of studies have aimed to connect the random walk movements per-

formed by individuals to population-level measures and distributions, for both cell

and animal movement (e.g. see Refs. 19, 53, 155 and 203). Specifying a position

jump random walk (PJRW, see Refs. 53, 152, 155, 159 and 188) forms a particularly

well-trodden path. In the context of the present review, this approach can be used

to motivate both local and nonlocal models for aggregation.38 To illustrate this, we

first lay down a general formalism.

Let us consider the probability that a random walker has its centre at position

x at time t. If we have a population of independent walkers, this probability can be

equated with the population density u(x, t), and we maintain this notion. Note that

the definition in terms of the centre implicitly assumes that the walker can have

some finite extent, i.e. it is not necessarily a point object. For now we shall avoid any

discussion of boundary conditions and assume an individual can move anywhere in

space: movement is within Ω = R
n. The time continuous Master equation for the

PJRW has the following form107, 155, 205:

∂tu(x, t) = λ

∫

Ω

[T (x,y)u(y, t)− T (y,x)u(x, t)] dy, (4.1)

where T (x,y) is a probability density function for a jump from y ∈ R
n to x ∈ R

n.

Note that T can depend on t, but we omit this dependency from the notation.

λ > 0 is a rate parameter. We remark that individuals can remain at their current

location through setting T (x,x) > 0, which we refer to as a zero-length jump. We

follow the approach of Ref. 38 and rewrite the integral kernel T (x,y) according to

the jump heading z = x− y. Specifically,

Ty(z) := T (y + z,y) = T (x,y), z = x− y,

where we assume that

Ty ≥ 0, Ty ∈ L1(Rn), ‖Ty‖1 = 1.

Ty can be split into even and odd components,

Ey(z) =
1

2
(Ty(z) + Ty(−z)), Oy(z) =

z

2|z| (Ty(z)− Ty(−z)). (4.2)

Then

Ty(z) =







Ey(z) +Oy(z) ·
z

|z| if z 6= 0,

Ey(z) if z = 0

(4.3)
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Biological modelling with nonlocal advection–diffusion equations 77

with an even part Ey ∈ L1 and an odd part Oy ∈ L1, which satisfy

Ey(z) = Ey(−z) and Oy(z) = Oy(−z). (4.4)

We employ this decomposition in the general master equation (4.1) and make two

further assumptions. First, that transition rates do not depend on the increment

z, just the starting location y: this describes a myopic random walk. Second, non-

zero-length jumps are small and of fixed length h ≪ 1, and Taylor expansions can

therefore be applied. Details of the expansions can be found in Ref. 38 where, in

the limit as h→ 0 and λ→ ∞, we arrive at the advection–diffusion equation

∂tu(x, t) +∇ · (a(x, t)u(x, t)) = ∆(D(x, t)u(x, t)). (4.5)

We denote by S
n−1 the n−1-dimensional unit sphere in R

n. The advection velocity

is given by

a(x, t) = lim
h→0,λ→∞

λhn

n
|Sn−1|Ox,

and the diffusion term by

D(x, t) = lim
h→0,λ→∞

λhn+1

2n
|Sn−1|Ex.

Particular care must be paid to the limit scalings, as they suggest different powers

of h: for the limits to simultaneously exist the odd part must be small (i.e. Ox ∼ h)

with respect to the even part. If the odd part is of order one or larger, the diffusion

term vanishes and a pure drift equation (a drift-dominated case) is derived. When

the odd part is of order h2 or smaller, the drift term vanishes and a diffusion-

dominated case arises. The value of separating T with respect to its odd and even

parts becomes clear: the even component Ex enters the diffusion term, while the

odd component Ox determines the advection term. Generally the odd and even

parts can involve nonlocal terms that represent sensing up to a certain radius. We

will return to this in the next section but one.

4.1.1. Local models

We illustrate the above scaling through an interesting local case, which leads to

taxis-type models. To introduce dependency according to some controlling fac-

tor, we take the standard assumption188 of supposing that the jump probability

distribution explicitly depends on a control species, which we denote by c(x, t).

For simplicity, we will restrict in this section to a symmetrical case where we set

Ty(z) = f(c(y, t)) for all non-zero length jumps (i.e. T depends only locally on

y through f(c(y, t))). When movement occurs, all headings are chosen with equal

probability, but this probability varies with the local level of the control species c.

There is no odd component to T and the limiting equation (4.5) in this case is of

the form

∂tu = d∆(f(c)u) = d∇ · [f(c)∇u+ uf ′(c)∇c]. (4.6)
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Therefore — despite an absence of directionality to the jump — a taxis-like process

emerges at the macroscopic level: advection according to the gradient of c. The

control species can be distinctly interpreted according to the movement process.

For example, it may simply define a fixed environmental variability, e.g. regions

where movement is easier or more difficult. It could also change according to the

distribution of the population — for example, a scent deposited by an animal or a

chemical released by a cell — and therefore defined by an evolution equation such

as (3.2). We refer to Refs. 17 and 100 for detailed reviews on chemotaxis models.

Using cell adhesion as a case study, a simple but näıve approach would be to

directly equate the control species with the population density. Specifically, we

consider c ≡ u and hence obtain the density-dependent diffusion equation

∂tu = ∇[D(u)∇u] with D(u) = d(f(u) + uf ′(u)). (4.7)

Considering the ‘stickiness’ property of adhesion, a logical choice for f(u) would be

a decreasing function that reflects reduced capacity to move as a cell forms adhesive

attachments with its neighbours. For example, a choice f(u) = 1
κ+u results in

D(u) = dκ
(κ+u)2 : this reduces diffusivity in regions of higher population density, and

corresponds with certain choices105 in macroscopic (phenomenological) approaches

to adhesion.

Derivations of local models for adhesion that rely on the PJRW framework have

been considered previously (e.g. see Refs. 6, 111 and 114). While more sophisticated

than the above — for example, more complicated jump probabilities or accounting

for correlations in movement — they essentially lead to the same result of a density-

dependent diffusion equation. Clear advantages lie in that they can lead to models

that can be fitted against experimental data (e.g. obtained from cell assays112, 113),

and that the derived PDE form is relatively tractable, both analytically and

numerically.

However, while density-dependent diffusion captures one expected consequence

of adhesion, it is more questionable in the context of self-organisation or cell sorting

phenomena. The possibility of biological aggregation within both the underlying

discrete master equation and its corresponding continuous model has been consid-

ered in various studies (for example see Refs. 6, 106, 127 and 160), and for (4.7) it is

straightforward to use linear stability analysis (see Sec. 5.1) to show that for (4.7)

this will depend on the shape of f(u): instability of the uniform steady state, and

hence self-organising capacity, requires f(u) + uf ′(u) < 0. This is not possible for

f(u) = 1
κ+u , but can be satisfied when f(u) = 1

(κ+u)q for q > 1. However, at this

point the PDE (4.7) will become illposed and unpractical for application.

4.1.2. Nonlocal models

Intuitively, it is the pointwise nature of the dynamics that proves problematic in

the above. The random walker responded only to the strictly local information
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acquired at its centre: it is a point particle, and the population can potentially

become trapped at singular locations of ‘infinite stickiness’.

A cell or organism, though, has a spatial extent and, even if interacting only

through direct contact, will interact across some volume of space. This naturally

leads to the question of how one can extend derivations from PJRWs in a manner

that retains this nonlocality. We will again use cell adhesion as a case study and

follow the approach in Ref. 38. As noted earlier, the formation of adhesion bonds

between membranes leads to the generation of (local) forces that draw cells together;

cellular membranes are highly dynamic, extending and retracting protrusions that

span shorter (e.g. lamellipodia) and longer (e.g. filopodia) ranges. Adhesive attach-

ments, therefore, can create forces at a position x+ r that act to displace a cell

centred at x where the distance r is potentially several mean cell diameters away.

The method in Ref. 38 is to consider a biased random walk where the bias results

from summing over all possible local forces that can impact on the cell centred at

x, which enter the odd component of T in (4.3). Following the scaling, one obtains

a nonlocal advection velocity of the form

a(x) = µ
︸︷︷︸

Adhesive strength

∫

Nb(u(x+ r, t))
︸ ︷︷ ︸

Number of bonds

S(u(x+ r, t))
︸ ︷︷ ︸

Free space

ω(|r|)
︸ ︷︷ ︸

Cell extension

~er
︸︷︷︸

Direction

dr.

(4.8)

In the above, µ denotes an adhesive strength per adhesion bond, r denotes the

direction and length of the cell extension,Nb(u(x+r, t)) denotes the bound adhesion

receptors that are generated with cells at location x+r, S(u(x+r, t)) indicates the

amount of free space available for cells to extend into this area, ω(|r|) denotes the
ability of a cell to express adhesion receptors a distance |r| away from its centre,

and ~er accounts for that bonds generated at x+ r will lead to a bias corresponding

to that direction.

The formulation in (4.8) is rather general, therefore admitting varying degrees

of biological detail. For example, assuming compact support for the cell extension,

no space limitation (S = 1), and using mass action kinetics to set the number of

bonds to be proportional to the cell density (Nb(u) ∝ u), one essentially arrives at

a model of the form (2.2). If, rather, one takes the adhesion binding to be governed

by a Michaelis–Menten type binding mechanism, Nb(u(x)) ∝ u(x)
κ+u(x) , then we arrive

at a model similar to that specified in (2.3).

Consequently, through an explicit derivation from a PJRW it is possible to moti-

vate and clarify the implicit assumptions that underlie various nonlocal models for

adhesion, in particular those originally developed with phenomenological reasoning

and applied to various phenomena (Sec. 2.4). More generally, given that the inte-

gral (4.8) will typically be a nonlinear function of the cell density u(x+ r) and the

ability to form attachments varies with the distance from the cell centre, one can

straightforwardly obtain the general formulation in (1.2a).
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4.1.3. Step selection functions : Connecting to data on organism movement

The formalism of a PJRW also allows for relatively straightforward parameterisa-

tion of advection–diffusion equations based on data, an approach that has been

used both for experimental data obtained for cell systems (say, using cellular assays,

e.g. Ref. 112) and locational data for animals (e.g. Refs. 170 and 177).

Taking the example of animal movement, these data typically arrive as a time

series of locations. If this time series is relatively low frequency, e.g. of the order

of one location every few minutes or hours, we might use the funtion T (x,y)

(Eq. (4.1)) to model movement between successive measured locations, from y to x

(see Ref. 75). Alternatively, if the time series is very high frequency, e.g. many loca-

tions per second, which is increasingly common,215 T (x,y) can be used to model

movements between successive places where the animal makes a turn.148 In this

latter case, we are more accurately modelling behavioural decisions of animals, as

they will likely turn for a reason.216

Either way, a huge amount of ecological insight has been gained in recent years

by fitting functions that describe a position-jump process to time series of animal

location data (e.g. see Refs. 73, 76 and 197). Moreover, further understanding can

be gained by scaling these processes up to distributions of broad-scale space use pat-

terns via advection–diffusion equations, using similar techniques to those described

in Sec. 4.1.170 The specific position-jump model that has gained particular interest

from the ecological community goes under the name ‘step selection function’ (SSF)

and has the following formn

T (x,y) =
ψ(x,y)w(x,y)

∫

Ω
ψ(x,y)w(x,y)dx

, (4.9)

where ψ(x,y) represents something about the organism’s movement capability,

often a distribution of ‘step lengths’ |x− y|,o and w(x,y) is a ‘weighting function’

which encapsulates anything that covaries with movement. Typically, w(x,y) is

written in the following exponential form

w(x,y) = exp[β · Z(x,y)], (4.10)

where Z(x,y) is a vector of functions, each of which represents a movement covari-

ate, and β is a vector denoting the relative contribution of the effect of each

covariate on movement. In many practical examples of step selection, Z(x,y) are

simply static environmental features measured at the end point of the step (so

Z(x,y) can be written as Z(x)) (see Refs. 73 and 197). However, they can also

represent features along a step, such as barriers,22 or dynamic quantities such as

nThe nomenclature in the literature is not always consistent here. Sometimes SSF refers to

Eq. (4.9), sometimes to the numerator of this equation, and sometimes just to the function w(x,y).
oMore generally, ψ could be a distribution of step lengths and turning angles, so that ψ is depen-
dent upon x, y, and also the bearing θ on which the animal travelled to y. But to keep the
exposition simple, we will assume here that ψ only depends upon x and y.
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memory137 or the presence of other organisms.171 Memory processes lead to self-

interaction, which may give rise to a single species aggregation-type equation (1.2).

If co-moving animals or interacting populations are being modelled, it is necessary

to write a different step selection function for each entity (individual or popula-

tion).176 These coupled step selection functions then lead to multi-species equations,

like Eq. (1.4).177

A reason for the popularity of the functional form in Eqs. (4.9) and (4.10)

is that parametrisation can be done simply and quickly using conditional logistic

regression. Details of this technique are given elsewhere (see Refs. 10 and 75), but

in short it involves first approximating the integral in the denominator of Eq. (4.9)

by sampling from ψ, and then recognising the resulting function as the likelihood

of a case-control study where the samples are the controls.

Although there are many empirical studies using step selection functions to

infer information about animal movement (e.g. see Refs. 73 and 197), there are far

fewer that take the next step of deriving the associated advection–diffusion equation

to understand broad-scale space use patterns.170 Perhaps, the reason for this is

that such studies combine empirically driven questions with relatively-advanced

mathematical analysis, thus require strong interdiscplinary collaborations between

applied mathematicians, empirical ecologists, and statisticians. The flip-side is that

there is huge, fertile ground for mathematicians to collaborate with those ecologists

involved in step selection studies, enhancing their data analysis and answering new

scientific questions.171

4.2. Derivations from interacting particle system models

As mentioned earlier, many of the ABM-based approaches to cellular and animal

aggregation phenomena fall into the broad class of systems of ‘interacting particles’.

Deriving continuous models from these models forms a very large field, and a grow-

ing literature has emerged in which nonlocal models related to (1.2) are obtained.

It is significantly beyond the scope of this paper to provide a comprehensive exam-

ination of this literature. Rather, we provide a few apposite examples and refer to

others (e.g. Refs. 46 and 147) for a more general review.

To provide some context, we consider the following concrete examplep in one

dimension; we refer to Refs. 78 and 147 for more details. Let the position xi(t)

of agent i in a population of size N at time t be determined by the stochastic

differential equation

dxi = − 1

N

N∑

j=1

aij(xi − xj)dt+ σdWi(t). (4.11)

pWe note that this particular example comes from a model formulated for opinion dynamics,
rather than biological aggregation. However, the underlying principles are the same: a tendency
to converge, whether in position or opinion, when agents are sufficiently close.

M
at

h
. 
M

o
d
el

s 
M

et
h
o
d
s 

A
p
p
l.

 S
ci

. 
2
0
2
4
.3

4
:5

7
-1

0
7
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 2

a0
2
:c

7
c:

c2
d
d
:4

5
0
0
:e

1
f9

:1
7
8
e:

5
7
4
4
:9

b
0
0
 o

n
 0

1
/1

9
/2

4
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



82 K. J. Painter, T. Hillen & J. R. Potts

In (4.11), theWi’s denote independent Brownian motions and model an uncertainty

to the particle position (with strength σ). Interactions are incorporated through

the summed term, where aij gives the strength of interaction between agents i and

j; the 1/N factor averages across all possible interactions. This general form can be

tailored to describe an attraction process between sufficiently close individuals —

e.g. as relevant for cell adhesion — by setting the interaction to be a function of

the distance of separation, |xi−xj |, with compact support: i.e. no attraction above

a critical interaction range.

To obtain a continuous model, one can consider the following empirical proba-

bility measure for the positions of all agents at time t:

uN (t) =
1

N

N∑

i=1

δxi(t)(dx),

where δx(dx) is the Dirac measure with point mass at position x. Through appli-

cation of mean field asymptotic theory, it can be shown78 that as N → ∞ the

probability measure uN (weakly) converges to a deterministic density u, which

under certain conditions is governed by a nonlocal PDE of the form (1.2a).

A number of other derivations from IPS models have also led to equations

related to (1.2). In one paper139 the starting point was an off-lattice centre-based

model (see Sec. 2.2.1), in which the motion of each particle is governed by Newton’s

second law of motion under viscous forces, forces from self-propulsion and forces

from interactions. The latter allowed adhesion-type interactions to be included,

which followed the standard assumption of varying with the degree of separation. A

hierarchical system of N nonlocal PDEs was obtained to describe the distribution of

a population of N interacting cells and, again following a mean field approximation,

a nonlocal aggregation model of the form (1.2a) is obtained.

Nonlocal aggregation models of the form (1.2b) can also be motivated from an

IPS (e.g. see Refs. 33 and 145). The motivation in Ref. 145 lay in the aggregating

tendency of ants (Polyergus rufescens), with each ant’s position evolving according

to a stochastic differential equation driven by Brownian motion and an interaction

drift; drift dominated over random wandering when other individuals enter an ant’s

interaction range. Both aggregating and repelling effects were included, with the

former operating when another individual enters an attracting range and a repulsion

term for when they become too close. Assuming a large population N , then in the

limit N → ∞ the following equation was derived for the population density:

∂tu = d∆u+∇ · [u∇u− u∇(w ∗ u)],

where d follows from the Brownian motion and the density-dependent (degenerate

diffusion) and nonlocal drift terms follow from the repulsion–attraction interaction;

w derives from the aggregation interaction kernel. The above essentially combines

the formulation (1.2b) with an additional degenerate diffusion term, as previously

described in Sec. 2.3.3.
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5. Analytical Properties

5.1. Linear stability analyses

A linear stability analysis can be used to demonstrate basic criteria for aggregation

from a dispersed initial state, i.e. self-organisation properties. We first consider the

formulation (1.2a) and, for maximum clarity, utilise the simple assumptions that

lead to (2.2) and constrain to a one-dimensional infinite domain; the latter restric-

tion circumvents the complications that arise from specific boundary conditions.

Consequently, (2.2) becomes

∂tu = d∂xxu− µ(R)∂x

[

u

(
∫ R

0

u(x+ y, t)dy −
∫ R

0

u(x− y, t)dy

)]

, (5.1)

while under equivalent assumptions the formulation (1.2b) becomes

∂tu = d∂xxu− ν(R)∂x

[

u∂x

(
∫ R

−R

u(x+ y, t)dy

)]

. (5.2)

Assuming that the population is initially distributed about a uniform steady state

ū, we perform a Turing-type stability analysis (e.g. Ref. 150) by linearising about

the uniform steady state and looking for solutions to the linearised equation with

mode k and eigenvalue σ as eikx+σt. This yields the characteristic equations for the

eigenvalue–wavenumber relationship

σ = −dk2 + 2ūµ(R)(1− cos(kR)) and σ = −dk2 + 2ūν(R)k sin(kR) (5.3)

for (5.1) and (5.2), respectively. Inhomogeneous perturbations of the steady

state grow if there are unstable wavenumbers k 6= 0, i.e. those for which

ℜ(σ(k)) > 0. Close inspection of the above reveals that this will hinge on the

competition between stabilising (diffusion) and destabilising (aggregation) pro-

cesses. In particular, the parameter regions in which self-organisation occurq are

given by

ūµ(R)R2 > d and 2ūν(R)R > d (5.4)

for the formulations (5.1) and (5.2), respectively. While phenomenologically similar,

these two conditions are subtly distinct according to the relationships between the

strength and range parameters.

Commonly, the nonlocal terms in models of type (1.2) are normalised, e.g.

according to a measure of the size of the interaction space: in the context of (5.1)

and (5.2), it is standard to choose µ(R) = µ0/2R and ν(R) = ν0/2R. Under

this choice, the instability conditions for the interaction strength (µ0 or ν0) and

interaction range (R) have some clear distinctions for the two models (5.1) and (5.2)

qNote that this is under the infinite domain assumption, thereby allowing patterns to grow with
unbounded wavelengths.
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Fig. 6. (Color online) (a) Parameter spaces for self-organisation as predicted by linear stability
analysis, for (5.1) and (5.2) under µ(R) = µ0/2R and ν(R) = ν0/2R, respectively. (b)–(e) Rep-
resentative curves for the characteristic equations, corresponding to the points highlighted in (a):

(b) and (c) formulation (5.1) and its second and fourth order approximations; (d) and (e) (5.2)
and its second and fourth order approximations. (f) and (g) Simulations of (5.1) in 1D, for: (f)
(α,R) = (1, 3); (g) (α,R) = (0.1, 21); density maps show the population density (white = low
density, purple = density ≥ 4ū), with inset figures showing the profile at the two times indicated
by the dashed lines. For all plots, other parameters are set at d = ū = 1.

and become

ūµ0R > 2d and ūν0 > d, respectively.

The condition for (5.2) is independent of R, while for (5.1) the capacity for self-

organisation is lost as the interaction range decreases. We illustrate the parameter

spaces in Fig. 6(a).

Characteristic equation curves for particular parameter values illustrate these

behaviours: large R and sufficient µ0 or ν0 allow patterning for both models; corre-

spondingly, a finite range of unstable wavenumbers is observed (Figs. 6(b) and 6(c),

black curves). Decreasing R, the range of unstable wavenumbers either expands

for (5.2) (Fig. 6(e)) or shrinks and disappears for (5.2) (Fig. 6(d)).

Further insights are obtained through expanding u(x± y) inside (5.1) and (5.2)

and truncating at different orders. The simplest nontrivial case (using µ = µ0/2R,

ν = ν0/2R) leads to the second-order local approximations

∂tu = ∂x

[(

d− µ0R

2
u

)

∂xu

]

and ∂tu = ∂x[(d− ν0u)∂xu] (5.5)
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for (5.1) and (5.2), respectively. These immediately recall the density-dependent

diffusion forms derived in Sec. 4.1.1. Instability regions for these equations are iden-

tical to those defined by (5.4), however this coincides with the region in which the

models become illposed (negative diffusion); this manifests through corresponding

characteristic equations whereby all wavenumbers are unstable, see red curves in

Figs. 6(b)–6(e).

The expansions can also be truncated at higher order terms, and in particular

the fourth order approximations become

∂tu = ∂x

[(

d− µ0R

2
u

)

∂xu− µ0R
3

48
u∂xxxu

]

(5.6)

and

∂tu = ∂x

[

(d− ν0u)∂xu− ν0R
2

6
u∂xxx

]

(5.7)

for (5.1) and (5.2), respectively. Instability regions are again as those defined

by (5.4). However, we now note that the destabilising second-order term is countered

by a stabilising fourth-order term. The characteristic equations in this case gener-

ate finite ranges for unstable wavenumbers (blue curves, Figs. 6(b)–6(e)), curves

closely following those of the nonlocal model (black curves). The distinct limiting

behaviours as R → 0 become clear from (5.6) and (5.7): the fourth order approx-

imation to (5.1) implies convergence to a simple diffusion equation, with constant

(and nonnegative) diffusion coefficient d; the fourth order approximation to (5.2),

however, converges to a density-dependent form (second equation in (5.5)) with

potential illposedness. We note that the fourth order approximations to nonlocal

models have been studied in detail, e.g. in Ref. 183 for one variable models and in

Ref. 71 for two variable models (see also Discussion and Challenges).

Stability analyses can, of course, be extended to explore pattern formation in

multi-species models, for example those formulated to simulate adhesion-driven cell

sorting. Scenarios under which pattern formation can occur will inevitably become

more complicated within such models, as there are more potential routes to pattern

formation (e.g. through the self interactions or through the cross interactions).

We refer to Refs. 158 and 175 for examples of stability analyses for multi-species

situations.

5.2. Global existence and boundedness

Our above observation of illposed local models that can follow from approximations

of (1.2) leads to questions regarding the local and global existence of solutions:

numerical solutions suggest that aggregates can become highly concentrated (e.g.

Fig. 3(b)), but still appear to approach a bounded form. Does the presence of the

nonlocal term lead to existence of solutions? This has formed a key point of inquiry

for a number of publications (e.g. see Refs. 21, 50, 65, 72, 102, 124 and 184) related

to (1.2).
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For (1.2a), perhaps the most general theory102 considers the following form of

system:

∂tu = d∆u− µ∇ ·
(

u

∫

BR(x)

f(u(x+ r, t))
r

|r|ω(|r|)dr
)

, (5.8)

where BR(x) denotes the ball of radius R > 0 around x.

Theorem 5.1. (Corollary 2.4 in Ref. 102) Assume

(A1) f ∈ C2(Rn) and there exists a value b > 0 such that f(u) = 0 for all u ≥ b;

(A2) ω ∈ L1(Rn), ω ≥ 0;

(A3) for p ≥ 1 let u0 ∈ Xp := C0(Rn) ∩ L∞(Rn) ∩ Lp(Rn) be nonnegative.

Then there exists a unique, global solution

u ∈ C0([0,∞);Xp) ∩ C2,1(Rn × (0,∞))

of (5.8) in the classical sense, with u(x, 0) = u0(x), x ∈ R
n.

We remark that while the above immediately implies global existence of solu-

tions in n-dimensions for a large class of formulations, it does not yet cover some

standard choices. The oft-used formulation (2.2) is particularly delicate as, formally,

(A1) states that f can only be linear up to a bounded density, but then becomes

zero beyond some higher density. From the point of practical application this is

sufficient, as we would naturally expect a bound to arise from physical or biological

constraints, e.g. space limitations or saturation of receptors. Nevertheless, covering

the case f(u) = u without that explicit assumption remains an open problem.

The same Theorem 5.1 can also be used in the context of other aggregation

models, and in particular we refer to the formulation based on energy minimisa-

tion, (1.3). To see this, we first note the connection of (5.8) to the energy-based

formulation by supposing there exists some W (|r|) such that ∇W (|r|) = r

|r|ω(|r|).
Recalling that r = y−x, straightforward calculations (shown in Appendix A) reveal

that (5.8) can be rewritten as

∂tu = d∆u+ µ∇ · (u∇(W ∗ f(u))). (5.9)

Therefore, we can apply Theorem 5.1 directly.

Corollary 5.1. Consider the model (5.9) where µ > 0 and W (|r|) is a potential,

a function of the distance of the interaction |r| = |y − x|. Suppose f satisfies the

same conditions as (A.1), the initial condition satisfies (A.3) and W satisfies

(W1) W (|r|) ∈ L∞, and W (|r|) has compact support inside a ball BR(0).

(W2) There exists a scalar function ω(|r|) such that ∇W (|r|) = r

|r|ω(|r|) where

ω(|r|) ∈ L1 and ω(|r|) ≥ 0.

Then Eq. (5.9) has a unique global classical solution

u ∈ C0([0,∞);Xp) ∩ C2,1(Rn × (0,∞)).
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Biological modelling with nonlocal advection–diffusion equations 87

Fig. 7. Examples of interaction potentials (left) and the corresponding forces (right), using R = 5.
Here we consider the top hat potential WTH, the exponential potential WE , and the attraction–

repulsion potential WAR.

Proof. The proof follows immediately from Theorem 5.1 by replacing ∇W with
r

|r|ω(|r|).

Corollary 5.1 is the first existence result for aggregation models (1.2b) with

general nonlinear response functions f(u). However, the condition (W3) is quite

restrictive. Since we require ω(|r|) ≥ 0, condition (W2) imposes that the drift

is always towards the origin, where the origin corresponds to the location of the

probing individual. Hence the forces are always attractive. Examples of attractive

potentials are shown in Fig. 7(a), and include the linear potential WTH and the

exponential potential (also called a Moore potential or Laplace kernel) WE ,

WTH(|r|) = min

{
1

R
|r| − 1, 0

}

, WE(|r|) = − exp

(

−4|r|
R

)

,

where R represents an interaction range parameter. The exponential kernel has

unbounded support, but converges to zero quickly for larger |r|; the factor of four

ensures that this is close to zero for |r| = R. Other purely attractive potentials

include the Gaussian kernel and the Hegselman–Krause potential used in opinion

dynamics (e.g. see Refs. 84, 95, 126 and 130).

In the cases described above the potential is strictly increasing for small values

of |r|, hence indicating an attractive force towards the origin. Indeed, the corre-

sponding kernels ω(|r|) are nonnegative (see Fig. 7(b)). As a point of note, under

the linear potential WTH we obtain a so-called top-hat kernel, e.g. as previously

used in (2.2).

In the swarming literature it is quite common to consider potentials that describe

both, attractive and repulsive effects. In such cases W is no longer monotonic, and

hence ω changes sign: when W is increasing, ω > 0, and we are in an attracting

region; if W is decreasing, ω < 0, and we are in a repelling region. One simple

example of an attraction–repulsion potential, also shown in Fig. 7, is given by

WAR(|r|) = cos

(
π|r|
R

)

.
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88 K. J. Painter, T. Hillen & J. R. Potts

This stipulates a repelling region for interaction distances up to R, and an attracting

region from R to 2R. Note that the attraction–repulsion potential has a minimum

at |r| = R, at the point at which there is a switch from repulsion to attraction, and

in this context R can be regarded as the preferred distance between individuals.

Other examples of attractive and repulsive potentials are discussed in Ref. 43 and

include the generalised Kuramoto model, the Onsager model for liquid crystals, and

the Barré–Degond–Zatorska model.

5.3. Bifurcation analysis

There are two principal techniques that have been used to analyse bifurcations in

models of the type in Eqs. (1.2) and (1.4): weakly nonlinear analysis (WNLA) and

Crandall–Rabinowitz bifurcation theory (CRBT). Both techniques are useful for

separating bifurcations into sub- and super-critical regimes. However, CRBT relies

on steady-state formulations, whereas WNLA can reveal the criticality of bifurca-

tions whereby the dominant eigenvalue is non-real and so solutions just beyond the

bifurcation point oscillate in time. On the other hand CRBT can be used to under-

stand the global nature of branches,98 whereas WNLA is intrinsically local in its

formulation.134 We give examples here of both techniques, first CRBT then WNLA,

applied to our models of interest, exemplifying valuable outcomes and important

considerations when applying them.

5.3.1. Crandall–Rabinowitz type bifurcation analysis

Bifurcation analyses that use the Crandall and Rabinowitz framework56, 178 (along-

side methods from equivariant bifurcation theory90), have been carried out in a

recent monograph.98 To illustrate, we consider a particularly simple setting in

one dimension, for the interval domain [0, L] with a possibly nonlinear adhesion

function f(u):

∂tu = ∂xxu− µ∂x

[

u

∫ 1

−1

f(u(x+ r, t))
r

|r|ω(|r|)dr
]

, (5.10)

where ω(|r|) ≥ 0, ω ∈ L1(0, 1)∩L∞(0, 1), and ‖ω‖L1(0,1) =
1
2 . In (5.10) we implicitly

assume that the integral kernel has compact support in the interval [−1, 1] and

that d = 1, i.e. an assumed a priori rescaling of space and time that normalises the

interaction range and diffusion coefficient to 1. Note that we set L > 2, such that

the boundaries cannot be simultaneously touched. We equip [0, L] with periodic

boundary conditions

u(0, t) = u(L, t), ∂xu(0, t) = ∂xu(L, t),

with the integral wrapped around in a natural way. The interaction strength param-

eter µ is taken as the bifurcation parameter.
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Biological modelling with nonlocal advection–diffusion equations 89

We define the Fourier-sine coefficients of the sensing function ω as

Mn(ω) =

∫ 1

0

sin

(
2πnr

L

)

ω(|r|)dr.

As the monograph98 shows in detail, a number of properties can be identified for

the following turning operator

K[u](x) =

∫ 1

−1

f(u(x+ r, t))
r

|r|ω(|r|)dr.

Specifically, K is found to be skew adjoint, K[1] = 0 and, for the specific case

f(u) = u, maps sine and cosine functions as follows:

K

[

sin

(
2πnx

L

)]

= 2Mn(ω) cos

(
2πnx

L

)

,

K

[

cos

(
2πnx

L

)]

= −2Mn(ω) sin

(
2πnx

L

)

.

Moreover, if u(x) is a steady state of (5.10), then u′(x) = 0 if and only if K[u] = 0,

u′′(x) ≤ 0 implies K ′[u] ≤ 0, and K ′[u] ≥ 0 implies u′′(x) ≥ 0. In this context we

can view K[u] as a nonlocal derivative and K ′[u] as a nonlocal curvature of the

solution.

The symmetries of K[u] are also shown98 to possess crucial properties. K has

O(2) symmetry and, as a consequence, bifurcation branches arise at discrete points

through the following theorem.

Theorem 5.2. (See Ref. 98) Consider a constant steady state ū of (5.10) with

f ′(ū) 6= 0. For each n = 1, 2, 3, . . . with Mn(ω) > 0 there exists a bifurcation value

and eigenfunction as

µn =
nπ

Lūf ′(ū)Mn(ω)
, en(x) = cos

(
2πnx

L

)

.

For a linear interaction function f(u) = u it is also possible to identify the

type of bifurcation via higher order expansions around the bifurcation value µn.

Specifically, we arrive at the following theorem.

Theorem 5.3. (See Ref. 98) If f(u) = u, then the type of bifurcation at µn is given

by the sign of

βn =
M2n(ω)−Mn(ω)

M2n(ω)− 2Mn(ω)
.

If βn > 0 then the bifurcation at µn is supercritical and for βn < 0 it is subcritical.

Notably, the type of bifurcation turns out to be entirely determined by the

Fourier sine modes of the sensing function ω(r).

Example. As an example, consider f(u) = u and a top-hat kernel

ω(r) =
1

2
χ[−1,1](r).
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90 K. J. Painter, T. Hillen & J. R. Potts

Then the Fourier sine coefficients of ω are

Mn(ω) =
L

2πn
sin2

(nπ

L

)

,

and the bifurcation values are

µn =
2π2n2

L2ū sin2(nπL )
.

If L is a multiple of π, certain bifurcation values do not exist. Otherwise, all µn are

well defined. The type of bifurcation is given by the sign of

βn = 2
(

1− cot2
(nπ

L

))

,

which, indeed, can be positive or negative.

As in the previous subsection, a close relationship can be observed between

model (5.10) and those formulated from an energy based approach. Given the sens-

ing function ω(r), we define a potential

W (r) := V (r)χ[−1,1](r) with V ′(r) = ω(r). (5.11)

Then for smooth solutions model (5.10) is equivalent with

∂tu = ∂xxu+ µ∂x[u∂x(W ∗ f(u))]. (5.12)

As such, the bifurcation result of Theorem 5.2 can be extended to this case.

Corollary 5.2. Consider (5.12) where the potential is given by (5.11). Then, for

each n = 1, 2, 3, . . . with Mn(ω) > 0, there exists a bifurcation value and eigenfunc-

tion given by

µn =
nπ

Lūf ′(ū)Mn(ω)
, en(x) = cos

(
2πnx

L

)

.

As a point of remark, in Ref. 43 the bifurcations of (5.12) were considered only

for the linear case f(u) = u. For that case, the bifurcation value at equilibrium

ū = 1
L was expressed as

µ∗
n = − (2L)1/2

W̃ (n)
,

where

W̃ (n) =

√

2

L

∫ L

0

W (x) cos

(
2πkx

L

)

dx

denotes the Fourier cosine coefficient of the potential W . We can directly compute

that

W̃ (n) = −
√
2L

πn
Mn(ω),
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Biological modelling with nonlocal advection–diffusion equations 91

which implies µn = µ∗
n: a satisfying confirmation of our results. Note that in Ref. 43

bifurcation analysis was also extended to arbitrary space dimensions, exceeding

what has currently been performed for formulations of type (1.2a).

5.3.2. Weakly nonlinear analysis and conservation laws

We observed above that bifurcations emerge at well-defined strictly positive

wavenumbers, which is a rather typical behaviour for many reaction–diffusion

systems.150 In most cases, weakly nonlinear analysis (WNLA) can be used to

reveal a Stuart–Landau equation governing the amplitude of the patterns close to

the bifurcation point. However, when the PDE possesses a conservation law, i.e.
d
dt

∫

Ω
udx = 0, the situation is rather more complicated. In particular, the wavenum-

ber that is destabilised first can be arbitrarily close to the origin, often meaning

that the Stuart–Landau formalism is insufficient for capturing the dynamics of

the amplitude of patterns.59, 134 Such a situation is pertinent here, as Eqs. (1.2)

and (1.4) can all possess conservation laws under certain boundary conditions (e.g.

periodic).

To explain this in more detail, it is valuable to look at a specific example. To

this end, we consider a recently studied symmetric 2-species version of Eq. (1.4)

given by86

∂tu1 = ∂xxu1 + γ∂x(u1∂x(K ∗ u2)),

∂tu2 = ∂xxu2 + γ∂x(u2∂x(K ∗ u1)),
(5.13)

defined on x ∈ [−L
2 ,

L
2 ] for L > 2, with Supp(K) = [−1, 1] and periodic boundary

conditions. Let ū = (ū1, ū2) be the constant steady state. In the case γ > 0, we

can think of this as modelling two mutually avoiding populations with identical

advective and diffusive properties, for example territorial groups of animals. For

γ < 0, this models mutually-attractive populations, for example symbiotic animal

species, or cell-types that have mutual adhesive tendencies.

As is standard in WNLA, the authors of Ref. 86 first decompose space and time

into short and long scales. Specifically, they define X = ǫx and T = ǫ2t. Then they

look for solutions of the form134

u(x, t) = ū+A(X,T )eiqcx +A∗(X,T )e−iqcx +B(X,T ), (5.14)

where qc is the first wavenumber to be destabilised as γ passes through the bifurca-

tion threshold. In situations where there is no conservation law, and the zero mode

is stable close to the bifurcation point, there is no need to include the term B(X,T ).

However, the conservation law means that the zero mode always has an eigenvalue

of zero so can be unstable to spatial perturbations on the slow-time, long-space

scale (i.e. in (X,T ) coordinates). It should be noted that the amplitudes A and B

depend on the macroscopic time and space scales, while the mode eiqcx depends on

the microscale. In particular, the authors showed86 that if ū1 6= ū2, A is governed
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92 K. J. Painter, T. Hillen & J. R. Potts

by the Stuart–Landau equation

AT = q2cA− Λ|A|2A, (5.15)

and B = 0, whenever γ is in the linearly unstable regime. However, if ū1 = ū2 then

there is a different system of amplitude equations

AT = q2cA− Λ|A|2A+
q2c
ū1
AB, (5.16)

BT = ηBXX − 1

ū1
(|A|2)XX , (5.17)

where η is a function of γc, ū1 and K̂(0), where K̂(q) is the Fourier-cosine coefficient

of K(x)

K̂(q) =

∫ 1

−1

K(x) cos(qx)dx. (5.18)

In Eqs. (5.15) and (5.16), Λ controls the criticality of the bifurcation in A, and is

a function of K̂(qc), K̂(2qc), ū1, ū2 and γc (see Ref. 86 for precise functional forms

of Λ and η). In the ū1 = ū2 case, due to the contribution of the function B(X,T ),

branches that bifurcate supercritically in A(X,T ) can be unstable. Indeed, the

following proposition holds.

Proposition 5.1. Suppose ū1 = ū2. If γ is in the linearly unstable regime and

Λ > 0 then small amplitude patterns to System (5.13) exist. These solutions are

unstable if

Λ <
ū21
q2cη

. (5.19)

This means that, in the case 0 < Λ <
ū2

1

q2cη
, we have a supercritical bifurcation,

but unlike the Stuart–Landau situation, stable patterns do not grow continuously

as the bifurcation point is crossed. Rather, numerical solutions show a discontinuous

jump to a higher amplitude than the supercritical branch predicts.86 This case study

shows the importance of accounting for the zero mode in bifurcation analysis of

nonlocal advection–diffusion equations. Whilst we have only shown this in a single

example, it is reasonable to expect that unstable supercritical branches may be a

phenomenon observed more generally.

6. Discussion and Challenges

To conclude, we outline a number of outstanding issues regarding modelling with

nonlocal advection, and provide a few potential ways forward that could be fruitful

in the coming years.

Existence results. A large existence theory has been developed, which covers a

relatively broad spectrum of models that lie in the forms (1.2)–(1.4). However, the
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Biological modelling with nonlocal advection–diffusion equations 93

generalised structure of these equations can lead to a vast spectrum of models and

an all-encompassing theory is not yet available. For example, functions k (or w)

can vary from positive to negative and systems with multiple species can admit a

wide spectrum of cross interactions.

Steady states, stability and bifurcation structure. Dynamically, mod-

els (1.2)–(1.4) are capable of an extremely rich variety of patterning, including sta-

tionary aggregate patterns, oscillating structures, travelling wave dynamics. Clas-

sical Turing-type stability analyses of nonlocal models have generally focused on

one spatial dimension; intriguingly, however, recent extensions110 to higher dimen-

sions indicate a dimensionally-dependent self-organising capacity, with patterning

possible in higher dimensions for a formulation incapable of self-organisation in

one-dimension. Studies into long time behaviours have primarily relied on simula-

tions, however this alone is far from satisfactory: transients can persist over long

timescales and become confused with stationary solutions. As an example, refer-

ring to Figs. 6(f) and 6(g), a coarsening sequence is observed in which aggregates

collapse over time: is the long time outcome a single aggregate? Expanding ana-

lytical methods, such as energy functional approaches,47, 85 would have high value

in generating a more nuanced understanding into steady states and bifurcation

structures.

Boundary effects. In a nonlocal model, individuals inside some domain Ω may

conceivably sense information from outside Ω. The act of writing the nonlocal term

at or close to a boundary therefore requires thought, as its support may extend

beyond the domain of definition of the model. One can sidestep this through wrap-

ping the nonlocal term around the domain, via the imposition of periodic boundary

conditions.84 Another approach is to alter the definition of the nonlocal term, in

a mathematically consistent way, as it approaches the boundary.97 More broadly,

the potential range of boundary conditions is immense and requires consideration

on an application-to-application basis. For example, for adhesive populations one

could allow the external space to exert varying levels of ‘stickiness’, or be actively

repelling, according to tissue structure; in the case of multiple populations, differ-

ent populations may respond distinctly near the interface. Non-standard boundary

conditions can strongly influence patterning within classical models (e.g. for reac-

tion diffusion systems see Refs. 63 and 168), and it is natural to expect a similarly

powerful impact of boundary conditions on the aggregation models considered here.

Local formulations. Widescale adoption of nonlocal models is hindered by the

analytical and numerical challenges. While efficient numerical methods have been

developed — Fast Fourier Transforms for the integral calculation,80 positivity pre-

serving finite volume methods,44 pseudospectral methods89 — formulating local

models with similar properties could assist both numerics and analysis. As noted,

second-order local models can be derived from random walk models6, 111 and for-

mal analyses67 have investigated convergence between local and nonlocal forms.

However, the potential of illposed local forms remains an issue. Fourth order local
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equations provide a promising avenue, and in Ref. 71 the following two species local

model for sorting was derived from an underlying nonlocal system:

∂tu = −∇ · [u∇(µ∆u+ β∆v + γu+ δv)],

∂tv = −∇ · [v∇(β∆u+∆v + δu+ v)].

The parameters in the above relate to those in the nonlocal interaction terms and

the above model was shown to be capable of reproducing a similar range of sorting

dynamics to those of nonlocal models. Overall, derivation and exploration of well

behaved local models is of importance.

Structured populations. Population heterogeneity in nonlocal models is typ-

ically restricted to two state systems, i.e. two populations with distinct proper-

ties. Discretisation into distinct subpopulations is often an approximation within

biological systems: for example, studies123 of invasive breast cancer cells indicate

invading cells lie on a continuum of intermediate states from epithelial to mesenchy-

mal; individual-to-individual variation of ‘animal personality’115, 166, 212 plays an

important role in collective animal movements. Instead of extending the number

of subpopulations in (1.4), subtle variation could be treated through a structured

population framework: extending to a density u(x, p, t) where p represents the phe-

notype state, and choosing interaction terms to describe how different phenotypes

influence the dynamics.165

Applications to sociological systems. This review has concentrated on nonlocal

PDEs motivated by biological systems, in particular the spatiotemporal structuring

of animals and cells. Naturally, the models and methods have applications beyond

those areas, in particular to sociological systems. Perhaps the most germane exam-

ple here would be crowds and traffic. This is an area that has witnessed much

modelling with techniques ranging from agent-based to continuous (e.g. see Refs. 16

and 91) and frameworks developed to scale between such models (e.g. see Ref. 15)

have the potential to be adapted to the systems considered here. Concepts of stig-

mergy also cross to social systems, for example gang territoriality where agent-based

modelling13 has shown that territories can emerge indirectly through graffiti rather

than direct conflict. Nonlocal models directly related to Eq. (1.2a) have been derived

from agent-based models in the context of opinion dynamics (e.g. see Refs. 11, 78, 89

and 167), where movement through physical space becomes a movement across

opinion space and aggregation corresponds to consensus. Undoubtedly, numerous

sociological problems may benefit from the frameworks considered here.

Testing predictions. Mathematical modelling of biological pattern formation is

often inspired by the attempt to understand patterns already observed in biological

systems: as examples, here we have described nonlocal models formulated to repro-

duce the observed patterns from cell sorting or territory formation. However, one

can also use models to predict patterns that could be observed. For example, the

multi-species equations (1.4) display rich pattern formation properties that ought
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to be observable in natural systems, if the models contain a sufficiently accurate

representation of the underlying interactions. Patterns emerging from the model

that have not yet been identified in the real world can be viewed as predictions:

do these patterns actually emerge in distributions if movement data is collected

and/or analysed appropriately? If so, this would lead to new knowledge on the

variety of patterns that can form spontaneously in populations of moving organ-

isms. If not, this would inform us of missing features in our models, and deepen our

understanding of the drivers of organism space use.

Connecting to data. Testing predictions demands techniques for connecting mod-

els and data. Beyond those reported here, as a further example, machine learning

algorithms (e.g. see Ref. 129) allow trajectory data to be translated into interaction

kernels for ABMs, which can then be scaled to PDEs. However, deciding the most

appropriate for the data and question at hand is far from straightforward. To give

an example from animal ecology, there are broadly two classes of techniques for

fitting PDE models to data that are currently applied. The first starts by building

a PDE model based on qualitative aspects of behaviour that have been observed.

Then the emergent patterns from numerical solutions of the PDE model are fit-

ted to location data, to uncover the underlying behavioural processes in a more

quantitative way. This is exemplified in studies of mechanistic home range analy-

sis.144 The second approach follows that described in Sec. 4.1.3, where a movement

kernel (a.k.a. position jump process) like in Eq. (4.9) is fitted to a time series of

location data. Then the PDE model is derived from this movement kernel.170 The

comparison between emergent pattern in the model and in the data then serves as

a kind of ‘goodness-of-fit’ test for the model, which can serve to uncover missing

covariates of animal movement decisions.171 Whilst this contrast in techniques has

been known in the literature for some time,172 these two approaches could do with

some unification to achieve the maximum scientific benefit from analysing a given

dataset.

Collective cell movement. The analysis of collective cell movement forms a

highly active area of research, from embryonic development to cancer invasion pro-

cesses (e.g. see Refs. 135 and 218), and a large number of modelling approaches have

been developed (e.g. Refs. 4 and 37). Often, migrating cells extend long thin protru-

sions into their environment, possibly conferring an element of nonlocal sensing: for

example, the formation of numerous lengthy filopodia appears to play an important

role during effective migration of neural crest cells,136 while long thin ‘tumor micro-

tubes’ play an apparently crucial role by facilitating invasion and growth of certain

brain tumors (e.g. Refs. 99 and 154). Mathematical analysis of models capable of

incorporating potential nonlocal impacts, as discussed here, promise new biological

insight.

The growth of mathematical biology in recent decades has been spectacular,

crossing scales and disciplines. However, the trade off is fragmentation: mathe-

matical ecology, mathematical oncology etc. form their own fields, collaborative
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networks have become specialised, and keeping pace with developments in other

fields becomes a challenge. Despite this, the common language of mathematics

remains. A key aim of this review has been to demonstrate this, showing the connec-

tion between nonlocal models used in ecological and cellular systems and suggesting

the two fields can mutually benefit from their ongoing developments.

Appendix A. Correspondence Between Models

We demonstrate the calculations that show the translation between (5.8) and (5.9).

Specifically, we assume there exists a potential W (|r|) such that

∇rW (|r|) = r

|r|ω(|r|). (A.1)

Substituting (A.1) into (5.8) and noting

y = x+ r, r = y − x, dy = dr, ∇y = ∇r,

ut = d∆u− µ∇
(

u

∫

BR(x)

f(u(x+ r))∇rW (|r|)dr
)

= d∆u− µ∇
(

u

∫

BR(0)

f(u(y))∇yW (|y − x|)dy
)

= d∆u+ µ∇
(

u

∫

BR(0)

f(u(y))∇xW (|y − x|)dy
)

= d∆u+ µ∇(u(∇xW ) ∗ f(u))

= d∆u+ µ∇(u∇(W ∗ f(u))).
The above shows that energy minimisation corresponds to attractive interactions

between individuals. Note that where subscripts are not included ∇ ≡ ∇x and

∆ ≡ ∆x.
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