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Abstract

Using multi-criteria decision making (MCDM) techniques to rank alternatives is a well-known area of study

in which aggregation operators, such as ordered weighted averaging (OWA), play an important role in

merging information and producing an overall ranking. The distance measures from ideal argument values

in aggregation operators have gained attention in recent literature. Distance measures are traditionally

used as argument variables, which leads to the depiction that the attributes cannot be aggregated directly.

In this paper, a generalized form of distance-induced OWA (DIOWA) operators is proposed with distance

measures used as order-inducing variables. A distinctive benefit of DIOWA operators is that they permit

us to consider ideal argument values while simultaneously also taking the attribute values as argument

variables. Three variants of DIOWA operators are proposed and investigated, namely a) the Hamming-

distance-induced OWA operator, b) the normalized Hamming-distance-induced OWA operator, and c) the

weighted Hamming-distance-induced OWA operator. We highlight their important properties and provide

proofs to necessary theorems, and also suggest the determination methods for calculating their associated

weights. We discuss further extensions of the proposed DIOWA operators with the help of generalized and

quasi-arithmetic means. We discuss the use of our proposed family of operators for two different decision

making situations, and demonstrate their validity by an illustrative numerical example. Finally, we apply

the proposed operators to a real-life problem of ranking Chinese provinces for their science and technology

(S&T) development levels. The proposed operators are shown to be a useful addition to the aggregation

toolbox for decision analysts.

Keywords: distance measures, ideal argument values, MCDM, DIOWA operators, science and technology

development level.
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1. Introduction

Multi-criteria decision making (MCDM) techniques provide various ways to evaluate multiple altern-

atives concerning multiple criteria to help a decision maker (DM) to gain insights into the problem at

hand (Boukezzoula and Coquin, 2020; Ishizaka and Siraj, 2018; Yager and Alajlan, 2019; Rao et al., 2022;

Aggarwal, 2019). However, how all these individual evaluations can be aggregated to produce a final re-

commendation is a much-debated issue within the MCDM community. A number of methods have been

proposed in the literature to address this issue (Xu and Wang, 2020; Kumar and Chen, 2022; Petry and

Yager, 2022; Zeng et al., 2018; Gadomer and Sosnowski, 2019). Among these methods, the use of the ordered

weighted averaging (OWA) operator (Yager, 1988) has been widely discussed and applied in this domain.

The OWA operator provides a parameterized family of aggregation operators, including the average, max-

imum, minimum, and many other special cases. As the name implies, the weights in the OWA operator are

associated with the ordered positions of aggregated values and not the aggregated values themselves. An

influential generalized variant of the OWA operator is termed the induced OWA (IOWA) operator (Yager

and Filev, 1999). In this variant, the ordered positions of the attribute values to be aggregated are assigned

by using some other order-inducing variables. Considering the different combinations of these parameters

and contextual situations, several variants for the OWA operator have been proposed in this field. Some

of those that have been widely discussed in the literature are the generalized OWA (GOWA), induced

GOWA (IGOWA), probabilistic OWA (POWA), induced POWA (IPOWA), heavy OWA (HOWA), induced

HOWA (IHOWA), uncertain OWA (UOWA), and uncertain IOWA (UIOWA) operators (Wei and Tang,

2012; Merigo and Gil-Lafuente, 2009; Merigo, 2012; Yager, 2002; Xu and Da, 2002; Merigo, 2015; Xu, 2006;

Merigo and Casanovas, 2011d). In particular, how the order-inducing variables are derived is an important

problem when we use the IOWA operator and some of its extensions to aggregate argument variables. Lots

of corresponding research articles have discussed this issue and further extended the IOWA operator, which

is beneficial to researchers and DMs (Chiclana et al., 2004, 2007; Beliakov and James, 2011).

When making decisions, DMs assess the similarities and differences in the attributes of decision altern-

atives and, for that, some sorts of distance metric are required to quantify these similarities and differences.

Some of the most frequently used distance measures include Hamming distance, Euclidean distance, Cheby-

shev distance, and Minkowski distance (Hamming, 1950; Xu and Xia, 2011; Singh, 2017; Balopoulos et al.,
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2007; Liao and Xu, 2015; Hussian and Yang, 2019). Combining these distance measures with the OWA

operators has attracted much attention in recent years. Merigo and Gil-Lafuente (2010) proposed the OWA

distance (OWAD) operator, in which the distance measures are regarded as aggregated variables in the OWA

operator. By contrast, the IOWA variant is called the induced OWAD (IOWAD) operator (Merigo and Cas-

anovas, 2011b). Both these operators provide a parameterized family of distance aggregation operators that

range from the minimum to the maximum distance.

The rest of this paper is organized as follows. The related literature is analyzed in Section 2. The

basics and related work are reviewed in Section 3. In Section 4, we first introduce a generalized form of the

DIOWA operators with the Hamming distance and then propose three basic types of the DIOWA operators

with different Hamming distances. For those DIOWA operators, we also analyze their main properties,

three determination methods of associated weights, and their families. The DIOWA operators are also

generalized by using generalized and quasi-arithmetic means. In Section 5, we study MCDM frameworks

with the proposed DIOWA operators by considering two situations, and an illustrative example is given to

illustrate the application of the DIOWA operators and compare them with other operators. In Section 6,

the WHDIOWA operator is applied to evaluate the science and technology (S&T) development levels of 31

provinces in China. Section 7 concludes this work along with some suggestions for possible future work.

2. Literature review

2.1. Distance aggregation operators

Inspired by the OWAD and IOWAD operators, several distance operators have been proposed in the

literature. A summary of 35 of these operators is provided in Table 1, ordered according to their publication

date, which shows that combining distance measures in aggregation operators have been studied since 2010.

We divide these 35 operators into two categories of a) distance aggregation operators and b) induced

distance aggregation operators. This is shown in Fig. 1. The main feature of all distance aggregation

operators (shown in Fig. 1a) is that the reordering of the argument variables is determined by the argument

variables themselves. By contrast, the main feature of induced distance aggregation operators (shown in

Fig. 1b) is that the reordering of argument variables is determined by other variables.

The feature of the operators, such as the OWAD, IPOWAD, and UOWAD operators, in Fig. 1a, is that

the weight of each criterion is determined by its corresponding distance measure value. Therefore, if the

weights corresponding to these operators are fixed, the aggregation results by using these operators are also

fixed. However, the feature of the operators, such as the IOWAD, HIOWAD, and WIEOWAD operators, in
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Table 1: Basic information of 35 distance aggregation operators

No. Operator Author and Publication Time Journal

1 OWA distance (OWAD) operator Merigo and Gil-Lafuente (2010) Inform Sciences
2 linguistic OWAD (LOWAD) operator Merigo and Casanovas (2010a) Int J Fuzzy Syst
3 induced heavy OWAD (IHOWAD) operator Merigo and Casanovas (2010b) J Syst Eng Electron
4 induced OWAD (IOWAD) operator Merigo and Casanovas (2011b) Comput Ind Eng
5 intuitionistic fuzzy ordered weighted distance

(IFOWD) operator
Zeng and Su (2011) Knowl-Based Syst

6 induced Euclidean OWAD (IEOWAD) operator Merigo and Casanovas (2011a) Expert Syst Appl
7 induced Minkowski OWAD (IMOWAD) operator Merigo and Casanovas (2011c) Int J Comput Int Sys
8 probabilistic OWAD (POWAD) operator Merigo (2013) Knowl-Based Syst
9 uncertain OWAD (UOWAD) operator Zeng (2013) Appl Math Model
10 uncertain induced Minkowski OWAD

(UIMOWAD) operator
Zeng et al. (2013) Kybernetes

11 induced uncertain Euclidean OWAD
(IUEOWAD) operator

Su et al. (2013) Technol Econ Dev Eco

12 continuous ordered weighted distance (COWD)
operator

Zhou et al. (2013) Group Decis Negot

13 probabilistic weighted averaging distance
(PWAD) operator

Merigo et al. (2013) Kybernetes

14 heavy OWAD (HOWAD) operator Merigo et al. (2014) Appl Math Model
15 Atanassov’s intuitionistic LOWAD (AILOWAD)

operator
Su et al. (2014) Int J Fuzzy Syst

16 Fuzzy linguistic IEOWAD (FLIEOWAD) oper-
ator

Xian and Sun (2014) Int J Intell Syst

17 2-tuple linguistic induced generalized OWAD
(2LIGOWAD) operator

Li et al. (2014) J Comput Syst Sci

18 fuzzy IHOWAD (FIHOWAD) operator Zeng et al. (2014) Int J Fuzzy Syst
19 Hungarian algorithm with the OWAD

(HAOWAD) operator
Vizuete-Luciano et al. (2015) Technol Econ Dev Eco

20 Hungarian algorithm with the IOWAD
(HAIOWAD) operator

Vizuete-Luciano et al. (2015) Technol Econ Dev Eco

21 Minkowski POWAD (MPOWAD) operator Casanovas et al. (2016) Cybernet Syst
22 induced POWAD (IPOWAD) operator Casanovas et al. (2016) Cybernet Syst
23 uncertain OWAD (UOWAD) operator Zeng (2016) Cybernet Syst
24 fuzzy linguistic IOWA Minkowski distance

(FLIOWAMD) operator
Xian et al. (2016) Pattern Anal Appl

25 OWA weighted averaging distance (OWAWAD)
operator

Merigo et al. (2017) Appl Soft Comput

26 intuitionistic fuzzy IOWAD (IFIOWAD) oper-
ator

Zeng et al. (2017) Int J Fuzzy Syst

27 intuitionistic fuzzy induced OWAWAD
(IFIOWAWAD) operator

Zeng et al. (2017) Int J Fuzzy Syst

28 interval-valued intuitionistic fuzzy ordered
weighted geometric distance (IVIFOWGD)
operator

Liu and Peng (2017) Informatica

29 single-valued neutrosophic LOWAD (SVN-
LOWAD) operator

Chen et al. (2018) Int J Env Res Pub He

30 prioritized induced POWAD (PIPOWAD) oper-
ator

Aviles-Ochoa et al. (2018) Int J Fuzzy Syst

31 ordered weighted logarithmic averaging distance
(OWLAD) operator

Alfaro-Garcia et al. (2018) Int J Intell Syst

32 weighted IEOWAD (WIEOWAD) operator Wang et al. (2019) Transform Bus Econ
33 intuitionistic fuzzy WIEOWAD (IFWIEOWAD)

operator
Wang et al. (2019) Transform Bus Econ

34 trapezoidal Pythagorean fuzzy linguistic en-
tropic combined ordered weighted Minkowski
distance (TrPFLECOWMD) operator

Xian et al. (2019) Int J Intell Syst

35 probabilistic linguistic term ordered weighted
distance (PLTOWD) operator

Liu et al. (2022) J Control Decis
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(a) Distance Aggregation Operators (b) Induced Distance Aggregation Operators

Figure 1: Two classification methods of distance aggregation operators

Fig. 1b, is that the weight for each criterion is derived by the associated order-inducing variable. This means

that experts or DMs can determine different order-inducing variables by considering different preferences

or factors. Therefore, the aggregating results by using these operators will be changed based on the order-

inducing variables determined. In other words, if we hope that the decision making is objective enough, the

operators in Fig. 1a are more suitable. If we hope that more information, including objective information

and subjective information, is considered in the decision making, the operators in Fig. 1b are more suitable.

We also divide these aggregation operators based on the crispness of the information they use. The two

types are given in Table 2 and Table 3, where the operators are used to aggregate crisp information, and in

Table 3, where they are used to aggregate uncertain information.

Operators such as IMOWAD, HOWAD, and WIEOWAD were developed to aggregate crisp numbers

(see Table 2). The IMOWAD operator is the generalized version of the IEOWAD and IOWAD operators

because the Euclidean distance and the Hamming distance can be derived from the Minkowski distance.

These operators are developed by considering different distance measure methods, decision making informa-

tion, aggregation operators, and algorithms in the OWAD and IOWAD operators. The POWAD operator is

obtained by further considering probabilistic information in the OWAD operator. Therefore, these operators

are suitable for different decision situations. With further effort, operators such as LOWAD, IUEOWAD,

and IFIOWAD, in Table 3, further consider different fuzzy numbers, such as interval numbers, linguistic

fuzzy numbers, and intuitionistic fuzzy numbers, in the OWAD and IOWAD operators, to address uncer-

tain decision making problems. For example, the LOWAD operator is obtained by introducing linguistic

information in the OWAD operator, whereas the UPOWAD is obtained by considering interval numbers and
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Table 2: Basic information of 35 distance aggregation operators

Operator Basic Information
OWAD Hamming distance, distance measures, OWA
IHOWAD Hamming distance, distance measures, IHOWA
IOWAD Hamming distance, distance measures, IOWA
IEOWAD Euclidean distance, IOWA
IMOWAD Minkowski distance, IOWA
POWAD Hamming distance, probability, OWA
COWAD distance measures, interval distance, continuous, OWA
PWAD Hamming distance, probability, WA
HOWAD Hamming distance, HOWA
HAOWAD Hungarian algorithm, OWAD
HAIOWAD Hungarian algorithm, OWAD
MPOWAD Minkowski distance, probability, OWA
IMPOWAD Minkowski distance, probability, OWA
OWAWAD Hamming distance, WA operator, OWA
PIPOWAD Hamming distance, prioritized operator, probability, IOWA
OWLAD Hamming distance, logarithm, OWA
WIEOWAD weighted Euclidean distance, IOWA

Table 3: Distance aggregation operators for uncertain information

Operator Basic Information
LOWAD linguistic information, OWAD
IFOWD intuitionistic information, distance measures, OW
UPOWAD interval numbers, Hamming distance, probability, OWA
UIMOWAD interval numbers, Minkowski distance, IOWA
UIMOWAD interval numbers, Euclidean distance, IOWA
AILOWAD Atanassov’s intuitionistic linguistic information, Hamming distance, OWA
FLIEOWAD Atanassov’s intuitionistic linguistic information, Hamming distance, OWA
2LIGOWAD 2-tuple linguistic information, distance measures, generalized means, IOWA
FIHOWAD triangular fuzzy numbers, Hamming distance, IHOWAD
UOWAD interval numbers, OWAD
FLIOWAMD fuzzy linguistic information, Minkowski distance, IOWA
IFIOWAD intuitionistic fuzzy information, distance measures, IOWA
IFIOWAWAD intuitionistic fuzzy information, distance measures, weighted average, IOWA
IVIFOWGD interval-valued intuitionistic fuzzy information, distance measures, OWG
SVNLOWAD single-valued neutrosophic linguistic information, distance measures, OWA
IFWIEOWAD intuitionistic fuzzy information, weighted Euclidean distance, distance measures,

IOWA
TrPFLECOWMD trapezoidal Pythagorean fuzzy linguistic information, Minkowski distance, en-

tropic measure, combined ordered weighted
PLTOWD probabilistic linguistic term information, Hamming distance, OWA
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probabilistic information in the OWAD operator.

Most of the distance aggregation operators mentioned above are applied to solve MCDM problems.

Some of them are also applied in real applications. For example, the OWAD operator is used in the selection

of financial products and the UEOWAD operator is used for a group decision making problem about the

selection of new artillery weapons under uncertainty.

The superiority of these distance operators in an MCDM problem is that they allow us to consider ideal

argument values that might not exist in reality. They can also alleviate or enlarge the influence of unduly

large or small deviations, respectively. The presentation of these distance operators can make DMs consider

many scenarios according to their interests and preferences. And the distance measures are regarded as

aggregated argument variables, which is their common point.

2.2. Motivation and contributions

An issue with these distance operators is that they will fail to deal with situations where DMs want

original attribute values to be argument variables. Therefore, it will further expand their applicability if

some new operators are designed with distance measures that allow DMs to introduce ideal argument values

and, at the same time, regard original attribute values as argument variables.

To achieve this goal, we first find that, if the distance measures are also regarded as argument variables

in new operators, this issue cannot be solved. Therefore, we plan to consider other parameters that are

represented in the form of distance measures in the research process of new operators. These parameters are

not taken as argument variables, so other variables (such as attribute values) can be regarded as argument

variables. Accordingly, this issue can be solved. To introduce other parameters, i.e., distance measures,

which are not used as argument variables in an operator, we find that this idea can be achieved by extending

the IOWA operator. Namely, in the IOWA operator, we consider distance measures to be order-inducing

parameters. Therefore, the issue described in the previous paragraph can be solved.

Based on this argument, Gong et al. (2020) first selected the Hamming distance to determine distance

measures and put forward the distance-induced OWA (DIOWA) operators. Their most remarkable feature

is that the order-inducing variables are obtained by distance measures. However, that paper just proposed

a simple type of DIOWA operator to consider crisp or accurate attribute information in decision making.

It is necessary to research the DIOWA operator further to make better decisions in certain situations. The

contributions of our study are shown below.

In this paper, we first propose the general form of the DIOWA operator, and then the formulations of

the HDIOWA, NHDIOWA, and WHDIOWA operators are given. Their properties are also analyzed. We

7



further give three weighting methods with distance measures for the DIOWA operators and then illustrate

the families of those DIOWA operators and generalize the DIOWA operators with generalized and quasi-

arithmetic means. Then, looking at how the DIOWA operators are applied, the framework of MCDM

methods with the DIOWA operators is constructed, and finally we use the WHDIOWA operator for a

strategy selection problem for a vehicle enterprise. We find that DIOWA operators can alleviate or enlarge

the influence of unduly large or small deviations, respectively. The biggest advantage of DIOWA operators

is that DMs can consider ideal argument values and at the same time take other parameters as argument

variables. In addition, other ideal argument values can also be considered in the DIOWA operators if we use

another distance measure method to determine their weighting vectors. Moreover, the DIOWA operators

will afford more options for DMs to select according to their interests and preferences, so that they can

make better decisions.

3. Preliminaries

Here, we will briefly review some concepts about the Hamming distance, the IOWA operator, the IGOWA

operator, and the quasi-IOWA operator, which support our research.

3.1. The Hamming distance

Distance measures are very important in several fields, including MCDM, supply chain management,

and machine learning. Lots of distance measure methods have been studied in the literature; among these,

the Hamming distance (Hamming, 1950), which is a basic distance measure method, plays an important

role and is the most used. There are three types of Hamming distance: the generalized Hamming distance

(HD), the normalized Hamming distance (NHD), and the weighted Hamming distance (WHD).

For two sets X = (x1, x2, · · · , xn ) and Y = (y1, y2, · · · , yn), a generalized Hamming distance of dimension

n is a mapping HD: Rn ×Rn → R such that

HD (X,Y ) =

n∑

j=1

|xi − yi| (1)

in which xi and yi are the ith arguments in X and Y , respectively.

An NHD of dimension n between X and Y is a mapping NHD: [0, 1]
n
× [0, 1]

n
→ [0, 1] such that

NHD (X,Y ) =
1

n

n∑

i=1

|xi − yi| (2)
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in which xi and yi are the ith arguments in X and Y , respectively.

A WHD of dimension n between X and Y is a mapping WHD: [0, 1]
n
× [0, 1]

n
→ [0, 1] with an associated

weighting vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n, such that

WHD (X,Y ) =

n∑

i=1

ωi |xi − yi| (3)

in which xi and yi are the ith arguments in X and Y , respectively.

3.2. The IOWA operator

The IOWA operator was first proposed by Yager and Filev (1999) and it can be seen as a generalized form

of the OWA operator. It provides a parameterized family of aggregation operators including the maximum,

the minimum, the average, and the OWA operator. Its main feature is that the argument variables are

reordered by order-inducing variables.

An IOWA operator of dimension n is defined as a mapping IOWA: Rn × Rn → R having an associated

weighting vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n, according to the following

formula:

IOWA (⟨a1, x1⟩ , ⟨a2, x2⟩ , · · · , ⟨an, xn⟩) =
n∑

j=1

ωjbj (4)

in which bj is the xi value with the jth largest order-inducing variable ai in the IOWA pair ⟨ai, xi⟩, and xi

is the argument variable.

3.3. The IGOWA operator

The IOWA operator is further extended with generalized means to obtain the IGOWA operator, which

is a more general form of the IOWA operator.

An IGOWA operator (Merigo and Gil-Lafuente, 2009) of dimension n is a mapping IGOWA: Rn×Rn → R

with a related weighting vector W having the properties
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n,

such that

IGOWA (⟨a1, x1⟩ , ⟨a2, x2⟩ , · · · , ⟨an, xn⟩) =




n∑

j=1

ωj (bj)
λ




1
λ

(5)

in which bj is the xi value with the jth largest order-inducing variable ai in the IGOWA pair ⟨ai, xi⟩, xi is

the argument variable, and λ ∈ (−∞,+∞).
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Some special cases of the IGOWA operator can be obtained. When λ = 1, we obtain the IOWA operator.

When λ → 0, we obtain the IOWG operator. When λ = 2, we get the IOWQA operator, and when λ = −1

we get the IOWHA operator.

3.4. The quasi-IOWA operator

Researchers further generalize the IOWA operator by using quasi-arithmetic means and get the quasi-

IOWA operator. A quasi-IOWA operator (Merigo and Gil-Lafuente, 2009) of dimension n is defined as a

mapping QIOWA: Rn ×Rn → R with an associated weighting vector W having the properties
∑n

i=1 ωi = 1

and ωi ∈ [0, 1] for all i = 1, 2, · · · , n, such that

QIOWA (⟨a1, x1⟩ , ⟨a2, x2⟩ , · · · , ⟨an, xn⟩) = g−1




n∑

j=1

ωjg (bj)


 (6)

in which bj is the xi value with the jth largest order-inducing variable ai in the QIOWA pair ⟨ai, xi⟩, xi is

the argument variable, and g is a strictly continuous monotonic function.

If g (b) = bλ, we get the IGOWA operator. If g (b) = b, we get the IOWA operator. If g (b) = b2, we get

the IOWQA operator. If g (b) = b−1, we get the IOWHA operator.

It should be noted that all the operators mentioned in Section 3 can also be categorized into descending

type or ascending type. The Hamming distance and the IOWA, IGOWA, and quasi-IOWA operators are

a little more “theoretical.” If the information existing in practical problems is considered in them, the

application value will be further improved.

4. The distance-induced OWA operators

We will study the distance-induced OWA (DIOWA) operators in this section. The main feature of the

DIOWA operators is that some ideal argument values are introduced into an MCDM problem and, at the

same time, the distance measures between two sets are used as order-inducing variables.

4.1. The DIOWA operators

The DIOWA operators are extensions of the IOWA operator, which combines Hamming distances with

the IOWA operator. A generalized form of the DIOWA operators is constructed as follows. A generalized

form of the DIOWA operators of dimension n by using any type of Hamming distance measures is defined

10



as a mapping DIOWA: Rn ×Rn → R with a corresponding weighting vector W such that
∑n

i=1 ωi = 1 and

ωi ∈ [0, 1] for all i = 1, 2, · · · , n, according to the formula

DIOWA (⟨a1, x1⟩ , ⟨a2, x2⟩ , · · · , ⟨an, xn⟩) =

n∑

j=1

ωjcj (7)

in which X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the

set of ideal argument variables, ai represents the distance with any type of Hamming distance measures

between xi and yi, and cj is the xi value of the DIOWA pair ⟨ai, xi⟩ with the jth largest ai.

Based on different types of Hamming distance measure used, three basic types of DIOWA operators are

obtained.

A DIOWA operator of dimension n by using the HD is defined as a mapping HDIOWA: Rn × Rn → R

with an associated weighting vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n; we have

HDIOWA
(〈

a
′

1, x1

〉
,
〈
a

′

2, x2

〉
, . . . ,

〈
a

′

n, xn

〉)
=

n∑

j=1

ωjc
′

j (8)

in which X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the

set of ideal argument variables, a
′

i represents the HD between xi and yi, and c
′

j is the xi value with the jth

largest a
′

i in the HDIOWA pair
〈
a

′

i, xi

〉
.

An example is given below to illustrate the aggregation process of the HDIOWA operator.

Example 1. Assume the set to be aggregated is X = (3.45, 6.28, 8.44, 7.62), the set of ideal argument

variables is Y = (2.76, 6.51, 5.81, 3.29), and the weighting vector is W = (0.20, 0.30, 0.35, 0.15). The detail

aggregation process by using the HDIOWA operator is shown as follows.

First, calculate the generalized Hamming distances between xi and yi for all i = 1, 2, 3, 4; according to

Eq. (1), the results are

a
′

1 = HD (3.45, 2.76) = 0.68,

a
′

2 = HD (6.28, 6.51) = 0.23,

a
′

3 = HD (8.44, 5.81) = 2.63,

a
′

4 = HD (7.62, 3.29) = 4.33.

Then, on rearranging the four arguments aggregated according to the descending order of the Hamming
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distances obtained, we obtain

c
′

1 = 7.62, c
′

2 = 8.44, c
′

3 = 3.45, c
′

4 = 6.28.

Therefore, the aggregation result is

HDIOWA (3.45, 6.28, 8.44, 7.62) = 0.20× 7.62 + 0.30× 8.44 + 0.35× 3.45 + 0.15× 6.28 = 6.21.

We also obtain the NHD-induced OWA (NHDIOWA) operator by using the NHD in DIOWA operators.

An NHDIOWA operator of dimension n with the NHD is a mapping NHDIOWA: Rn ×Rn → R with a

related weighting vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n; we have

NHDIOWA (⟨a∗1, x1⟩ , ⟨a
∗

2, x2⟩ , · · · , ⟨a
∗

n, xn⟩) =
n∑

j=1

ωjc
∗

j (9)

in which X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the

set of ideal argument variables, a∗i represents the NHD between xi and yi, and c∗j is the xi value with the

jth largest a∗i in the NHDIOWA pair ⟨a∗i , xi⟩.

It should be noted that, with the same argument variables and ideal argument variables, the aggregation

results calculated by using the HDIOWA and NHDIOWA operators are the same. Although the values of

distance measures with the HDIOWA operator are different from those with the NHDIOWA operator, the

ranks of order-inducing variables remain the same. The change of distance measures does not change the

positions of the argument variables aggregated, and therefore we obtain the same aggregation result. The

process of proof is omitted.

We also consider the WHD in DIOWA operators to get the WHDIOWA operator.

A WHDIOWA operator of dimension n with the WHD is a mapping WHDIOWA: Rn × Rn → R with

an associated weighting vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n; we have

WHDIOWA
(〈

a#1 , x1

〉
,
〈
a#2 , x2

〉
, · · · ,

〈
a#n , xn

〉)
=

n∑

j=1

ωjc
#
j (10)

in which X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the

set of ideal argument variables, a#i represents the WHD between xi and yi, and c#j is the xi value of the

WHDIOWA pair
〈
a#i , xi

〉
with the jth largest a#i .

12



An example is also given below to explain how to use the WHDIOWA operator.

Example 2. For comparison, we use the same data in this example as in Example 1. The detailed

aggregation process with the WHDIOWA operator is shown below.

First, calculate the WHDs between xi and yi for all i = 1, 2, 3, 4; according to Eq. (3), the results are

a#1 = WHD (3.45, 2.76) = 0.14,

a#2 = WHD (6.28, 6.51) = 0.07,

a#3 = WHD (8.44, 5.81) = 0.92,

a#4 = WHD (7.62, 3.29) = 0.65.

Then, the order of these four arguments to be aggregated is

c#1 = 8.44, c#2 = 7.62, c#3 = 3.45, c#4 = 6.28.

So, the value of the WHDIOWA operator is

WHDIOWA (3.45, 6.28, 8.44, 7.62) = 0.20× 8.44 + 0.30× 7.62 + 0.35× 3.45 + 0.15× 6.28 = 6.12.

Comparing the aggregation results of the HDIOWA operator and the WHDIOWA operator, we see that

the results are not the same. The reason is that the rank of distance measures with the generalized Hamming

distance is different from the one with the WHD. The rank of distance measures with the HD or the NHD

is not always the same as the rank of distance measures with the WHD.

4.2. The weighted DIOWA operators

Another circumstance that needs to be considered is that the weights associated with the WHD are

independent. At this time, we define the WHDIOWA operator as follows. This is a more generalized form

of the WHDIOWA operator.

A WHDIOWA operator of dimension n with the WHD is defined as a mapping WHDIOWA: Rn×Rn → R

having two related weighting vectors W1 = (w1, w2, · · · , wn) and W2 = (ω1, ω2, · · · , ωn) such that
∑n

i=1 wi =

13



1, wi ∈ [0, 1] and
∑n

i=1 ωi = 1, ωi ∈ [0, 1] for all i = 1, 2, · · · , n, according to the formula

WHDIOWA (⟨a∧1 , x1⟩ , ⟨a
∧

2 , x2⟩ , · · · , ⟨a
∧

n , xn⟩) =
n∑

j=1

ωjc
∧

j (11)

in which X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the

set of ideal argument variables, a∧i represents the WHD between xi and yi with the weighting vector W1,

and a∧j is the xi value of the WHDIOWA pair ⟨a∧i , xi⟩ having the jth largest a∧i and a∧i such that

a∧i = wi |xi − yi| (12)

Another circumstance that needs to be considered is that the sum of wi does not equal 1 and the sum

of ωi does not equal 1. At this time, we use the following formula

WHDIOWA (⟨a∧1 , x1⟩ , ⟨a
∧

2 , x2⟩ , · · · , ⟨a
∧

n , xn⟩) =
1

W2

n∑

j=1

ωjc
∧

j (13)

and a∧i such that

a∧i =
wi

W1
|xi − yi| (14)

Gong et al. (2020) have also conducted research on the HDIOWA and WHDIOWA operators as two

different special types of the generalized form of the DIOWA operators.

4.3. The properties of DIOWA operators

All the DIOWA operators mentioned above in this section are commutative, monotonic, bounded, and

idempotent. Assume ⟨ei, xi⟩ represents the DIOWA pair with respect to f ; f represents any of the types of

DIOWA operator mentioned above.

THEOREM 1. (Commutativity) Let ⟨ẽ1, x̃1⟩ , ⟨ẽ2, x̃2⟩ , · · · , ⟨ẽn, x̃n⟩ be any permutation of the DIOWA

pairs ⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩, then

f (⟨ẽ1, x̃1⟩ , ⟨ẽ2, x̃2⟩ , · · · , ⟨ẽn, x̃n⟩) = f (⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩) .

THEOREM 2. (Commutativity) Let ⟨D (x1, y1) , x1⟩ , ⟨D (x2, y2) , x2⟩ , · · · , ⟨D (xn, yn) , xn⟩ be the DI-
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OWA pairs, then

f (⟨D (y1, x1) , x1⟩ , ⟨D (y2, x2) , x2⟩ , · · · , ⟨D (yn, xn) , xn⟩) = f (⟨D (x1, y1) , x1⟩ , ⟨D (x2, y2) , x2⟩ , · · · , ⟨D (xn, yn) , xn⟩) .

THEOREM 3. (Monotonicity) Let ⟨ê1, x̂1⟩ , ⟨ê2, x̂2⟩ , · · · , ⟨ên, x̂n⟩ be the DIOWA pairs, if the reordered

position of êi is the same as the reordered position of ei and xi ≥ x̂i for all i = 1, 2, · · · , n, then

f (⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩) ≥ f (⟨ê1, x̂1⟩ , ⟨ê2, x̂2⟩ , · · · , ⟨ên, x̂n⟩) .

THEOREM 4. (Idempotency) Let ⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩ be the DIOWA pairs, if xi = a for all

i = 1, 2, · · · , n, then

f (⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩) = a.

THEOREM 5. (Boundary) Let ⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩ be the DIOWA pairs, then

min
i

{xi} ≤ f (⟨e1, x1⟩ , ⟨e2, x2⟩ , · · · , ⟨en, xn⟩) ≤ max
i

{xi} .

All the properties are easy to prove, and the process of proof is omitted.

Note that any of the DIOWA operators mentioned above in this section can be divided into the descending

type or the ascending type, such as the descending WHDIOWA (DWHDIOWA) and ascending WHDIOWA

(AWHDIOWA) operators. The relation of the weights of these operators is ωj = ω∗
n−j+1, where ωj represents

the jth weight of one descending type of any DIOWA operator and ω∗
n−j+1 represents the jth weight of its

relevant ascending type.

When the ties of order-inducing variables happen, their average is used to replace the argument variables

with the same order-inducing variables (Merigo and Gil-Lafuente, 2009).

It should be noted that the IOWA operator belongs to a special case of the DIOWA operators and the

OWA operator belongs to the IOWA operator. So, we have OWA ⊆ IOWA ⊆ DIOWA.

4.4. Weights determination methods for DIOWA operators

An interesting issue is how we can determine the weights of the DIOWA operators. We can refer to a lot of

literature covering this research (Rao et al., 2022; Ahn, 006a,b; Wu et al., 2015). Based on the methodologies

of Xu and Xia (2011), Casanovas et al. (2016), Xu and Chen (2008), and Gong et al. (2019), we can also use

the following methods to obtain the weights of the DIOWA operators. Also, assume D (xj , yj) represents
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any type of Hamming distance.

(1) Let

ωj =
D (xj , yj)
n∑

j=1

D (xj , yj)
, j = 1, 2, · · · , n. (15)

we can see ωj such that ωj ≤ ωj−1, j = 2, 3, · · · , n and
∑n

j=1 ωj = 1.

(2) Let

ωj =
e−D(xj ,yj)

n∑
j=1

e−D(xj ,yj)

, j = 2, · · · , n (16)

we can see ωj such that ωj ≥ ωj−1, j = 2, 3, · · · , n and
∑n

j=1 ωj = 1.

(3) Let

d = max
j

D (xj , yj) (17)

Ḋ (X,Y ) =
1

n

n∑

j=1

D (xj , yj) (18)

and

D̈
(
D (xj , yj) , Ḋ (X,Y )

)
=

∣∣∣D (xj , yj)− Ḋ (X,Y )
∣∣∣ (19)

then

ωj =
d− D̈

(
D (xj , yj) , Ḋ (X,Y )

)

n∑
j=1

(
d− D̈

(
D (xj , yj) , Ḋ (X,Y )

)) (20)

we can see ωj such that ωj ≥ 0, j = 1, 2, · · · , n and
∑n

j=1 ωj = 1.

It is easy to find that the weights obtained from Eq. (15) are a monotonic decreasing sequence, the

weights obtained from Eq. (16) are a monotonic increasing sequence, and the weights obtained from Eq.

(20) combine the above two cases, i.e., the closer the value of D (xj , yj) to the mean 1
n

∑n

j=1 D (xj , yj) , the

larger the weight ωj is.

It should be noted that we can replace the ideal argument vector Y with another ideal argument vector

such as Y ∗ to determine weights so that we can consider two different groups of ideal argument values in a

DIOWA operator at the same time.

4.5. Families of the DIOWA operators

There is a wide range of aggregation operators as special cases included in the DIOWA operators.

REMARK 1. If Y = (0, 0, · · · , 0), the OWA operator is obtained from the HDIOWA operator and the
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NHDIOWA operator.

REMARK 2. If Y = X+A, and A = (a1, a2, · · · , an), ai ∈ (−∞,+∞), the IOWA operator is obtained

from the WHDIOWA operator.

REMARK 3. If Y = X + a, and a ∈ (−∞,+∞), the arithmetic mean is obtained from the HDIOWA

and NHDIOWA operators.

REMARK 4. If Y = X, the arithmetic mean is obtained from the WHDIOWA operator.

REMARK 5. If Y is an ordered vector, the WA operator is derived from the HDIOWA and NHDIOWA

operators.

Using different manifestations in Y and W , the maximum and the minimum can be derived from the

DIOWA operators.

REMARK 6. If the distance measure value of max
i

{xi} is the largest, and W = (1, 0, · · · , 0), then we

get the maximum from the HDIOWA operator and the NHDIOWA operator.

REMARK 7. If the distance measure value of min
i

{xi} is the largest, and W = (0, 0, · · · , 1), then we

get the minimum from the HDIOWA operator and the NHDIOWA operator.

REMARK 8. Assume xσ(i) = max
i

{xi}, if Y =
(
x1, x2, · · · , x

′

σ(i), · · · , xn−1, xn

)
, x′

σ(i) ̸= xσ(i) and

W = (1, 0, · · · , 0), then we get the maximum from the WHDIOWA operator.

REMARK 9. Assume xτ(i) = min
i

{xi}, if Y =
(
x1, x2, · · · , x

′

τ(i), · · · , xn−1, xn

)
, x′

τ(i) ̸= xτ(i) and

W = (0, 0, · · · , 1), then we get the minimum from the WHDIOWA operator.

REMARK 10. If W =
(
1
n
, 1
n
, · · · , 1

n

)
, we get the arithmetic mean from the DIOWA operators.

REMARK 11. If ωk = 1 and ωj = 0 for all j ̸= k, we get the step-DIOWA operators.

REMARK 12. If ω (n+1)
2

= 1 and ωj = 0 for j ̸= (n+1)
2 when n is odd, and if ωn

2
= ω(n

2 )+1 = 0.5 and

ωj = 0 for all others when n is even, we get the median-DIOWA operators.

REMARK 13. An interesting particular case is the Olympic-DIOWA operators which can be derived

from DIOWA operators when ω1 = ωn = 0 and ωj = 1
(n−2) for all others. Note that if n = 3 or n = 4, the

Olympic-DIOWA operators become the median-DIOWA operators.

REMARK 14. The more general forms of the Olympic-DIOWA operators are presented when ωj = 0

for j = 1, 2, · · · , k and j = n − k + 1, · · · , n − 1, n, and ωj = 1
(n−2k) for all others, where k < n

2 . The

Olympic-DIOWA operators are derived when k = 1. The median-DIOWA operators are derived when

k = (n−1)
2 .

REMARK 15. Contrary cases of general Olympic-DIOWA operators are presented when ωj = 1
2k for

j = 1, 2, · · · , k and j = n− k+1, · · · , n− 1, n, and ωj = 0 for all others, where k < n
2 . The median-DIOWA
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operators are obtained when k = 1.

REMARK 16. Centered-DIOWA operators are obtained if ωp ≤ ωq when p < q ≤ (n+1)
2 and if ωp ≥ ωq

when p > q ≥ (n+1)
2 , ωj such that ωj = ωj+n−1 and ωj > 0.

REMARK 17. Other interesting families of the DIOWA operators are generalized S-DIOWA operators

when ωp = (1/n)(1− (µ+ η)) + µ with xp = max
i

{xi} and ωp = (1/n)(1− (µ+ η)) + η with xq = min
i

{xi},

and ωj = (1/n)(1 − (µ + η)) for j ̸= p, q, where µ, η ∈ [0, 1] and µ + η ≤ 1. Especially, if µ = 0, we obtain

the “andlike” S-DIOWA operators, and if η = 0, we obtain the “orlike” S-DIOWA operators. If µ + η = 1,

we obtain the distance-induced Hurwicz criteria.

4.6. Generalized and quasi-DIOWA operators

The DIOWA operators can also be generalized by using generalized means, and the distance-induced

generalized OWA (DIGOWA) operators will be obtained. These can be defined as follows.

A DIGOWA operator of dimension n is a mapping DIGOWA: Rn × Rn → R with a related weighting

vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n; we have

DIGOWA
(〈
a∆1 , x1

〉
,
〈
a∆2 , x2

〉
, · · · ,

〈
a∆n , xn

〉)
=




n∑

j=1

ωj

(
c∆j

)λ



1
λ

(21)

where X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the set

of ideal argument variables, a∆i represents the distance between xi and yi by using any type of Hamming

distance measures, and c∆j is the xi value of the DIGOWA pair
〈
a∆i , xi

〉
having the jth largest a∆i , and

λ ∈ (−∞,+∞) is a parameter.

REMARK 18. If we combine the generalized Hamming distance and the DIGOWA operator, we get

the Hamming-distance-induced generalized OWA (HDIGOWA) operator. If we combine the NHD and the

DIGOWA operator, we get the NHD-induced generalized OWA (NHDIGOWA) operator. If we use the

WHD in the DIGOWA operator, we get the WHD-induced generalized OWA (WHDIGOWA) operator.

REMARK 19. When λ = 1, the DIOWA operators are obtained. When λ → 0, the DIOWG operators

are obtained. When λ = 2, the DIOWQA operators are obtained. When λ = −1, the DIOWHA operators

are obtained. Some other types of DIGOWA operator can also be obtained.

REMARK 20. All the operators mentioned above in Section 4 can be obtained from the DIGOWA

operators, by choosing different W , Y and λ.

Referring to the quasi-IOWA operator, we can obtain a more generalized form of the DIGOWA operators
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by using quasi-arithmetic means.

A quasi-DIOWA operator of dimension n is a mapping QDIOWA: Rn×Rn → R with a related weighting

vector W such that
∑n

i=1 ωi = 1 and ωi ∈ [0, 1] for all i = 1, 2, · · · , n; we have

QDIOWA
(〈
a∇1 , x1

〉
,
〈
a∇2 , x2

〉
, · · · ,

〈
a∇n , xn

〉)
= g−1




n∑

j=1

ωjg
(
c∇j

)

 (22)

where X = (x1, x2, · · · , xn) is the set of argument variables to be aggregated, Y = (y1, y2, · · · , yn) is the set

of ideal argument variables, a∇i represents the distance between xi and yi by using any type of Hamming

distance measures, c∇j is the xi value of the QDIOWA pair
〈
a∇i , xi

〉
having the jth largest a∇i , and g is a

strictly continuous monotonic function.

REMARK 21. If we use the generalized Hamming distance in a quasi-DIOWA operator, we get the

quasi-Hamming-distance-induced OWA (quasi-HDIOWA) operator. If we use the NHD in a quasi-DIOWA

operator, we get the quasi-NHD-induced OWA (quasi-NHDIOWA) operator. If we use the WHD in a

quasi-DIOWA operator, we get the quasi-WHD-induced OWA (quasi-WHDIOWA) operator.

REMARK 22. When g (b) = bλ, the quasi-DIOWA operators are reduced to the DIGOWA operators.

REMARK 23. When we use trigonometric functions such as g (b) = sin
((

π
2

)
b
)
, g (b) = cos

((
π
2

)
b
)

and

g (b) = tan
((

π
2

)
b
)
, some trigonometric -DIOWA operators are obtained from the quasi-DIOWA operators.

REMARK 24. All the operators mentioned above in Section 4 can be obtained from the quasi-DIOWA

operators by choosing different W , Y , and function g.

It should be noted that we can also use another strictly continuous monotonic function h to calculate

the values of a∇i for all i = 1, 2, · · · , n such that a∇i = h (D (xi, yi)), where D (xj , yj) represents any type of

Hamming distance measure.

5. Frameworks of MCDM methods with the DIOWA operators

The DIOWA operators are applicable in a wide range of situations such as statistics, pattern recognition,

engineering, and decision making. In this section, a framework of MCDM methods with the DIOWA operat-

ors is given to introduce how the DIOWA operators can be used to make a decision. Under this framework,

numerous MCDM problems, such as the evaluation of strategies, best candidates, and investments, could be

solved when a number of ideal argument values for these problems are considered. The frameworks afford

DMs a lot of options so that they can make better decisions according to their preferences, interests, and so

on.
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In the MCDM context, we can have two possible scenarios related to the attribute values, one where all

attribute values are fixed (situation 1) and the other where these attribute values are not fixed (situation

2). The steps involved in these two scenarios will differ slightly and therefore the details of the proposed

framework are provided below in two separate versions.

Framework for situation 1: Every attribute value of every alternative is fixed.

In this situation, every attribute value of every alternative is a unique value.

Step 1: Obtain the decision making matrix. Let O = {o1, o2, · · · , op} be a set of finite alternatives

and X = {x1, x2, · · · , xn} be a set of finite attributes. According to the available information construct a

decision making matrix which is shown as follows, where xij is the attribute value of alternative oi concerning

attribute xj and i = 1, 2, · · · , p, j = 1, 2, · · · , n, p, n ≥ 3. Assume that the better alternative is the one with

a higher value of xij .

x1 x2 · · · xn

E =

o1

o2
...

op




x11 x12 · · · x1n

x21 x22 · · · x2n

...
... · · ·

...

xp1 xp2 · · · xpn




(23)

Step 2: Construct the set of ideal argument values. Let o∗ = {x∗
1, x

∗
2, · · · , x

∗
n} be the set; x∗

j

represents the attribute value of the set o∗ concerning attribute xj .

Step 3: Choose appropriate DIOWA operators. One or more of the DIOWA operators can be

chosen by different DMs to solve the same decision making problem.

Step 4: Calculate the order-inducing variables. According to the DIOWA operators selected, use

relevant types of Hamming distance measures with the information of the ideal argument values to determine

all the values of order-inducing variables.

Step 5: Calculate the weights associated with the DIOWA operators selected. Weights

associated with the DIOWA operators selected can be determined through existing methods in literature or

Eq. (15), Eq. (16), or Eq. (20).

Step 6: Determine the individual evaluation result of every alternative based on the DI-

OWA operators selected in Step 3. Let y
(l)
i be the evaluation result of alternative oi based on the lth

DIOWA operator selected, and l ∈ N+.

Step 7: Determine the final evaluation result of every alternative. Aggregate all the individual

evaluation results of every alternative to a final evaluation result. Let yi be the final evaluation result of
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alternative oi, which can be obtained by yi =
∑

l dly
(l)
i , where dl(l ∈ N+) are parameters such that

∑
l dl = 1

and dl ≥ 0.

Step 8: Determine the best alternative(s). Sort all the final evaluation values of all alternatives

in ascending order. The best selection is the alternative with the smallest final evaluation value.

Framework for situation 2: Every attribute value of every alternative is not fixed.

In this situation, every attribute value of every alternative is given by every DM.

Step 1: Construct individual decision making matrices by all DMs. Let O = {o1, o2, · · · , op}

be a set of finite alternatives, X = {x1, x2, · · · , xn} be a set of finite attributes, and S = {s1, s2, · · · , sm} be

a set of finite DMs. According to the available information construct individual decision making matrices

shown as follows, where xk
ij represents the attribute value of alternative oi concerning attribute xj given by

DM sk, and i = 1, 2, · · · , p, j = 1, 2, · · · , n, k = 1, 2, · · · ,m, p, n,m ≥ 3. Assume that the better alternative

is the one with a higher value of xk
ij .

x1 x2 · · · xn

E =

o1

o2
...

op




x11 x12 · · · x1n

x21 x22 · · · x2n

...
... · · ·

...

xp1 xp2 · · · xpn




(24)

Step 2: Obtain the individual set of ideal argument values from all DMs. Let o∗k =
{
xk∗
1 , xk∗

2 , · · · , xk∗
n

}
be the set of the ideal argument values obtained from DM sk; xk∗

j is the value of

the set o∗k concerning attribute xj given by DM sk. All the DMs can also construct only one set of the ideal

argument values.

Step 3: Choose one or more DIOWA operator for each DM. One or more of the DIOWA

operators can be chosen by each DM in the same decision making process.

Step 4: Use Hamming distance measure methods to determine all order-inducing variables.

According to the DIOWA operators selected and the ideal argument values constructed, choose different

types of Hamming distance to determine all the values of order-inducing variables.

Step 5: Determine all the weights associated with the DIOWA operators selected by every

DM. Refer to the existing methods in literature or Eq. (15), Eq. (16), or Eq. (20) to obtain all the values

of corresponding weights.

Step 6: Determine the evaluation results of all alternatives of every DM. Let yki be the
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evaluation result of alternative oi obtained from DM sk. The determination process of yki refers to steps 6–7

in situation 1.

Step 7: Calculate the weights of DMs. The weights of DMs can be obtained through existing

methods in the literature or given directly.

Step 8: Determine the final evaluation results of all alternatives. Aggregate all the evaluation

results yki of every alternative from all DMs with weights of DMs to a final evaluation result yi. Lots of

existing operators such as the OWA operator can be considered in this aggregation process.

Step 9: Make sure the best alternative(s). Sort all the final evaluation values of all alternatives in

ascending order. The best selection is the alternative with the smallest final evaluation value.

6. Illustrative example

The DIOWA operators are applicable in a wide range of situations. In this section, we illustrate the

application of DIOWA operators from a numerical example.

Energy is a huge issue for almost all countries in the world. The selection of energy strategy is a crucial

decision that will affect a country’s competitiveness and social development. In recent years, to reduce energy

consumption and improve air pollution, new energy vehicles have attracted more and more attention, and

cars with multiple different driven power forms have appeared. However, which form or forms should be

selected as the development direction of a vehicle manufacturing company or a country is a selection problem

in energy strategy. Below, an example is illustrated to solve this selection problem.

Suppose a vehicle manufacturing company wants to determine its development strategy for the next 10

years after deep consideration. Now, there are four alternative strategies: conventional vehicles (o1), electric

vehicles (o2), fuel cell vehicles (o3), and hybrid-powered vehicles (o4) are regarded as the main objects to be

considered, and only one will be selected to be company’s future development strategy. To make the best

decision, four experts, s1, s2, s3, and s4, are invited to participate in this process, and their four strategies

will be evaluated by five attributes: technology reserves (x1), expected customer acceptance (x2), expected

investment (x3), expected earning capacity (x4), and expected risk (x5). The weights of the four experts

are 0.20, 0.30, 0.25, and 0.25, respectively. Every expert constructs matrices Ek based on the available

information and their judgments, which are shown as follows. An ideal strategy determined by the four

experts is also built and this is shown in Table 4. In this numerical example, we use the WHDIOWA

operator, in which W1 = (0.24, 0.13, 0.25, 0.12, 0.26), to calculate weighted Hamming distances to analyze

the detailed process of decision making in this numerical example.
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Table 4: Attribute values of the constructed ideal strategy

x1 x2 x3 x4 x5

o∗ 99 97 96 96 98

x1 x2 x3 x4 x5

E1 =

o1

o2

o3

o4




85 89 94 85 79

77 73 82 76 83

89 93 76 87 78

95 95 94 85 86




,

x1 x2 x3 x4 x5

E2 =

o1

o2

o3

o4




92 78 94 76 87

76 76 85 81 78

88 71 85 78 88

81 80 77 73 87




x1 x2 x3 x4 x5

E3 =

o1

o2

o3

o4




88 84 94 86 94

82 94 86 80 89

79 73 84 85 92

79 84 81 93 95




,

x1 x2 x3 x4 x5

E4 =

o1

o2

o3

o4




87 72 84 89 79

83 71 85 71 90

82 72 90 84 88

78 91 79 83 79




6.1. Decision making procedure using the framework for situation 2

Step 1: Determine the order-inducing variables of the WHDIOWA operator. Use the weighting vector

W1 = (0.24, 0.13, 0.25, 0.12, 0.26) to calculate weighted Hamming distances u∧
ij for j = 1, 2, 3, 4, 5, where

u
(k)∧
ij represents the order-inducing variable of attribute xj concerning candidate oi in matrix Ek. The

results are shown as follows.

E′

1 =
(
u
(1)
ij , x

(1)
ij

)
=




(3.36, 85) (1.04, 89) (0.50, 94) (1.32, 85) (4.94, 79)

(5.28, 77) (3.12, 73) (3.50, 82) (2.40, 76) (3.90, 83)

(2.40, 89) (0.52, 93) (5.00, 76) (1.08, 87) (5.20, 78)

(0.96, 95) (0.26, 95) (0.50, 94) (1.32, 85) (3.12, 86)




,

E′

2 =
(
u
(2)
ij , x

(2)
ij

)
=




(1.68, 92) (2.47, 78) (0.50, 94) (2.40, 76) (2.86, 87)

(5.52, 76) (2.73, 76) (2.75, 85) (1.80, 81) (5.20, 78)

(2.64, 88) (3.38, 71) (2.75, 85) (2.16, 78) (2.60, 88)

(4.32, 81) (2.21, 80) (4.75, 77) (2.76, 73) (2.86, 87)




,
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E′

3 =
(
u
(3)
ij , x

(3)
ij

)
=




(2.64, 88) (1.69, 84) (0.50, 94) (1.20, 86) (1.04, 94)

(4.08, 82) (0.39, 94) (2.50, 86) (1.92, 80) (2.34, 89)

(4.80, 79) (3.12, 73) (3.00, 84) (1.32, 85) (1.56, 92)

(4.80, 79) (1.69, 84) (3.75, 81) (0.36, 93) (0.78, 95)




,

E′

4 =
(
u
(4)
ij , x

(4)
ij

)
=




(2.88, 87) (3.25, 72) (3.00, 84) (0.84, 89) (4.94, 79)

(3.84, 83) (3.38, 71) (2.75, 85) (3.00, 71) (2.08, 90)

(4.08, 82) (3.25, 72) (1.50, 90) (1.44, 84) (2.60, 88)

(5.04, 78) (0.78, 91) (4.25, 79) (1.56, 83) (4.94, 79)




,

in which E′

k is the decision making matrix of expert sk consisting of WHDIOWA pairs.

Step 2: Calculate the weights of five attributes associated with every decision making matrix. Let

W
(k)
i =

(
ω
(k)
i1 , ω

(k)
i2 , · · · , ω

(k)
in

)
be the weighting vector of attributes of strategy oi associated with expert sk.

Let ω
(k)
ij be the weight of attribute xj of strategy oi calculated based on Eq. (16) according to the decision

making matrix of expert sk. The results are shown as follows.

W
(1)
1 =

(
ω
(1)
11 , · · · , ω

(1)
15

)
= (0.01, 0.03, 0.21, 0.28, 0.48) ,

W
(1)
2 =

(
ω
(1)
21 , · · · , ω

(1)
25

)
= (0.03, 0.11, 0.16, 0.23, 0.48) ,

W
(1)
3 =

(
ω
(1)
31 , · · · , ω

(1)
35

)
= (0.01, 0.01, 0.09, 0.33, 0.57) ,

W
(1)
4 =

(
ω
(1)
41 , · · · , ω

(1)
45

)
= (0.02, 0.13, 0.18, 0.29, 0.37) .

W
(2)
1 =

(
ω
(2)
11 , · · · , ω

(2)
15

)
= (0.06, 0.08, 0.09, 0.18, 0.59) ,

W
(2)
2 =

(
ω
(2)
21 , · · · , ω

(2)
25

)
= (0.01, 0.02, 0.21, 0.21, 0.54) ,

W
(2)
3 =

(
ω
(2)
31 , · · · , ω

(2)
35

)
= (0.09, 0.18, 0.20, 0.21, 0.32) ,

W
(2)
4 =

(
ω
(2)
41 , · · · , ω

(2)
45

)
= (0.03, 0.05, 0.23, 0.25, 0.43) .

W
(3)
1 =

(
ω
(3)
11 , · · · , ω

(3)
15

)
= (0.05, 0.12, 0.20, 0.23, 0.40) ,

W
(3)
2 =

(
ω
(3)
21 , · · · , ω

(3)
25

)
= (0.02, 0.08, 0.09, 0.14, 0.66) ,

24



W
(3)
3 =

(
ω
(3)
31 , · · · , ω

(3)
35

)
= (0.01, 0.08, 0.09, 0.36, 0.46) ,

W
(3)
4 =

(
ω
(3)
41 , · · · , ω

(3)
45

)
= (0.01, 0.02, 0.13, 0.33, 0.51) .

W
(4)
1 =

(
ω
(4)
11 , · · · , ω

(4)
15

)
= (0.01, 0.07, 0.09, 0.10, 0.74) ,

W
(4)
2 =

(
ω
(4)
21 , · · · , ω

(4)
25

)
= (0.07, 0.12, 0.17, 0.22, 0.42) ,

W
(4)
3 =

(
ω
(4)
31 , · · · , ω

(4)
35

)
= (0.03, 0.07, 0.13, 0.38, 0.40) ,

W
(4)
4 =

(
ω
(4)
41 , · · · , ω

(4)
45

)
= (0.01, 0.01, 0.02, 0.30, 0.66) .

Step 3: Calculate the evaluation results of all strategies with the WHDIOWA operator according to the

decision making matrix of each expert. The results are shown as follows.

y
(1)
1 = 79× 0.01 + 85× 0.03 + 85× 0.21 + 89× 0.28 + 94× 0.48 = 90.38,

y
(1)
2 = 77× 0.03 + 83× 0.11 + 82× 0.16 + 73× 0.23 + 76× 0.48 = 77.03,

y
(1)
3 = 78× 0.01 + 76× 0.01 + 89× 0.09 + 87× 0.33 + 93× 0.57 = 90.50,

y
(1)
4 = 86× 0.02 + 85× 0.13 + 95× 0.18 + 94× 0.29 + 95× 0.37 = 93.23.

y
(2)
1 = 87× 0.06 + 78× 0.08 + 76× 0.09 + 92× 0.18 + 94× 0.59 = 90.33,

y
(2)
2 = 76× 0.01 + 78× 0.02 + 85× 0.21 + 76× 0.21 + 81× 0.54 = 80.65,

y
(2)
3 = 71× 0.09 + 85× 0.18 + 88× 0.20 + 88× 0.21 + 78× 0.32 = 82.64,

y
(2)
4 = 77× 0.03 + 81× 0.05 + 87× 0.23 + 73× 0.25 + 80× 0.43 = 79.78.

y
(3)
1 = 88× 0.05 + 84× 0.12 + 86× 0.20 + 94× 0.23 + 94× 0.40 = 90.91,

y
(3)
2 = 82× 0.02 + 86× 0.08 + 89× 0.09 + 80× 0.14 + 94× 0.66 = 90.67,

y
(3)
3 = 79× 0.01 + 73× 0.08 + 84× 0.09 + 92× 0.36 + 85× 0.46 = 86.45,

y
(3)
4 = 79× 0.01 + 81× 0.02 + 84× 0.13 + 95× 0.33 + 93× 0.51 = 92.17.

y
(4)
1 = 79× 0.01 + 72× 0.07 + 84× 0.09 + 87× 0.10 + 89× 0.74 = 87.13,
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y
(4)
2 = 83× 0.07 + 71× 0.12 + 71× 0.17 + 85× 0.22 + 90× 0.42 = 82.99,

y
(4)
3 = 82× 0.03 + 72× 0.07 + 88× 0.13 + 90× 0.38 + 84× 0.40 = 85.93,

y
(4)
4 = 78× 0.01 + 79× 0.01 + 79× 0.02 + 83× 0.30 + 91× 0.66 = 88.10.

Step 4: Determine the final aggregation results of all strategies. In this step, the OWA operator is used

to aggregate individual evaluation results of every strategy obtained from all experts to a final evaluation

result. The details are shown as follows.

y1 = 0.3× 90.91 + 0.25× 90.38 + 0.25× 90.33 + 0.20× 87.13 = 89.87,

y2 = 0.3× 90.67 + 0.25× 82.99 + 0.25× 80.65 + 0.20× 77.03 = 84.24,

y3 = 0.3× 90.50 + 0.25× 86.45 + 0.25× 85.93 + 0.20× 82.64 = 84.61,

y4 = 0.3× 93.23 + 0.25× 92.17 + 0.25× 88.10 + 0.20× 79.78 = 85.58.

Step 5: Rank the strategies and make a decision. The rank of these four strategies is o2 ≻ o3 ≻ o4 ≻ o1,

so the best choice of strategy is electric vehicles (o2).

6.2. Comparative analysis

We also analyze the evaluation and rank results of these four strategies by changing the WHDIOWA oper-

ator to the NHDIOWA, Median-NHDIOWA, Median-WHDIOWA, Olympic-NHDIOWA, Olympic-WHDIOWA,

NHDIOWQA, WHDIOWQA, NHDIOWHA, and WHDIOWHA operators, which are shown in Table 5 and

Table 6.

Table 5: Evaluation results 1

NHDIOWA Median-
NHDIOWA

Median-
WHDIOWA

Olympic-
NHDIOWA

Olympic-
WHDIOWA

NHDIOWQA WHDIOWQA NHDIOWHA WHDIOWHA

o1 91.26 85.95 78.20 86.50 83.60 91.28 89.88 91.22 89.84
o2 86.06 81.65 83.40 80.67 80.47 86.14 84.35 85.90 84.03
o3 87.67 86.20 87.20 84.27 85.28 87.67 84.62 87.67 84.57
o4 86.93 81.50 84.65 81.58 82.23 87.01 85.75 86.78 85.23

As we can see, the best strategy for most cases is o2. However, we may find other best choices. Therefore,

it is of interest to rank all candidates for each particular case. We can also see that using different DIOWA

operators may lead to different ranks of candidates. Therefore, different decisions may be obtained by using

different DIOWA operators.
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Table 6: Ranks of strategies 1

Rank
NHDIOWA o2 ≻ o4 ≻ o3 ≻ o1
WHDIOWA o2 ≻ o3 ≻ o4 ≻ o1
Median-NHDIOWA o4 ≻ o2 ≻ o3 ≻ o1
Median-WHDIOWA o1 ≻ o2 ≻ o4 ≻ o3
Olympic-NHDIOWA o2 ≻ o4 ≻ o3 ≻ o1
Olympic-WHDIOWA o2 ≻ o4 ≻ o1 ≻ o3
NHDIOWQA o2 ≻ o4 ≻ o3 ≻ o1
WHDIOWQA o2 ≻ o3 ≻ o4 ≻ o1
NHDIOWHA o2 ≻ o4 ≻ o3 ≻ o1
WHDIOWHA o2 ≻ o3 ≻ o4 ≻ o1

Table 7: Evaluation results 2

Max Min OWA OWAD OWAWAD NHD WHD
o1 93.00 77.60 80.27 1.26 1.22 12.06 10.92
o2 88.95 76.20 77.71 2.32 2.16 16.40 15.91
o3 89.70 71.85 77.86 2.04 2.21 14.81 13.48
o4 90.40 74.40 77.06 2.19 1.91 16.04 16.30

For comparison, we also further use the Max, Min, OWA, OWAD, OWAWAD, NHD, and WHD operators

in this example. The evaluation results and corresponding ranks are listed in Table 7 and Table 8.

We can see that the ranks in Table 8 are different from the ranks in Table 6. This shows that DIOWA

operators provide DMs with more scenarios to consider for making better decisions. Another phenomenon

is that the ranks of the DIOWA operators in Table 6 are different from the ranks of the distance operators

in Table 8. This shows that it is necessary to research order-inducing variables represented by distance

measures in aggregation operators.

Furthermore, we also use the IOWA, IOWAD, IOWAWD, DIOWA, and NHDIOWA operators in this

example. The evaluation results and corresponding ranks are listed in Table 9 and Table 10.

In Table 8, we can see that the rank of the IOWA operator is different from the ranks of the other five

operators, which all consider the distance measures in the aggregation process. So, it is further shown that

Table 8: Ranks of strategies 2

Rank
Max o2 ≻ o3 ≻ o4 ≻ o1
Min o3 ≻ o4 ≻ o2 ≻ o1
OWA o4 ≻ o2 ≻ o3 ≻ o1
OWAD o1 ≻ o3 ≻ o4 ≻ o2
OWAWAD o1 ≻ o4 ≻ o2 ≻ o3
NHD o1 ≻ o3 ≻ o4 ≻ o2
WHD o1 ≻ o3 ≻ o2 ≻ o4
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Table 9: Evaluation results 3

IOWA IOWAD IOWAWD DIOWA NHDIOWA WHDIOWA
o1 90.94 1.57 1.37 92.99 91.50 89.87
o2 88.54 2.98 2.47 88.32 86.36 84.24
o3 85.99 2.26 1.92 90.96 89.13 84.61
o4 89.85 2.06 1.72 91.89 90.47 85.58

Table 10: Ranks of strategies 3

Rank
IOWA o1 ≻ o3 ≻ o4 ≻ o2
IOWAD o1 ≻ o4 ≻ o3 ≻ o2
IOWAWD o1 ≻ o4 ≻ o3 ≻ o2
DIOWA o2 ≻ o3 ≻ o4 ≻ o1
NHDIOWA o2 ≻ o3 ≻ o4 ≻ o1
WHDIOWA o2 ≻ o3 ≻ o4 ≻ o1

considering distance measures in aggregation operators will afford more choices for DMs to select. We can

also see that the ranks of operators in which the distance measures are regarded as aggregated argument

variables are different from the ranks of operators in which they are regarded as order-inducing variables.

Therefore, it is further verified that it is necessary to research the distance-induced aggregation operators,

as our research does.

7. Evaluation indicator system in China - a case study

S&T is the key factor in the strength and sustainable development of a country. With China’s increasing

development, S&T has also been continuously improved. As an effective tool for S&T management, S&T

evaluation plays an important role and is always used to evaluate the level of S&T from different aspects for

different regions. Researchers often use different evaluation methods for the activities of S&T evaluation, and

this is also the case in China. Therefore, based on the operators proposed in this paper and corresponding

decision making frameworks, we also hope that our proposed operators will contribute to S&T evaluation

problems. So, this paper takes the evaluation of the S&T development level as the evaluation target and

takes the 31 provinces in China as the evaluated objects. The S&T development levels of 31 provinces in

China are evaluated and analyzed in this section. The evaluation framework and processes are shown in

Fig. 2.

7.1. Construction of evaluation index system

Based on the combined consideration of the existing research results about the evaluation of S&T (Shi

et al., 2016; Chi et al., 2011; Gu et al., 2010; Chi et al., 2008; National Bureau of Statistics, 2021a), an
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Table 11: Evaluation index system of development level of provincial S&T

No. Criterion Indicator Unit
1 S&T input intensity X1 R&D investment intensity A1 %
2 R&D personnel input intensity A2 %
3 R&D full-time staff input intensity A3 %
4 New product development investment

intensity A4
%

5 R&D Personnel project approval in-
tensity A5

Items per person

6 R&D Project funding intensity A6 Ten thousand yuan per item
7 S&T output intensity X2 Domestic invention patent application

intensity B1
%

8 Domestic invention patent approval in-
tensity B2

%

9 Output intensity of technology market
B3

%

10 New product development intensity B4 Items of per enterprise
11 New product revenue intensity B5 %
12 Intensity of papers published in foreign

retrieval journals B6
Papers for per S&D staff

13 S&T service intensity X3 Qualified rate of product quality C1 %

14 Service intensity of unit maker space
C2

Enterprises

15 Maker space to absorb employment in-
tensity C3

Person for per maker space

16 Service intensity of teachers and stu-
dents in Colleges and Universities C4

%

17 Input intensity of science populariza-
tion personnel per thousand people C5

Persons

18 Unit business incubator incubation in-
tensity C6

Numbers

evaluation indicator system was developed in China by selecting indicators from three aspects: S&T input

intensity, S&T output intensity, and S&T service intensity. In this way, a set of 18 indicators was developed

and these are shown in Table 11.

All 18 indicators in Table 11 are benefit indicators.

We evaluated the S&T development level of 31 provinces in 2020, because the newest data we could

obtain were only updated to 2020. The data of all the indicators or their related indicators were collected

from the China Statistical Year Book (2021) (National Bureau of Statistics, 2021a), the China Statistical

Yearbook on Science and Technology (2021) (National Bureau of Statistics, 2021b), and the website of the

National Bureau of Statistics (http://www.stats.gov.cn).
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Figure 2: Evaluation framework of S&T development level in China
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Table 12: Indicator weights for every criterion

A1 A2 A3 A4 A5 A6
ST input intensity X1 0.116 0.099 0.345 0.141 0.147 0.152

B1 B2 B3 B4 B5 B6
ST output intensity X2 0.176 0.171 0.139 0.176 0.168 0.169

C1 C2 C3 C4 C5 C6
ST service intensity X3 0.180 0.163 0.160 0.171 0.174 0.152

7.2. Evaluation procedure of S&T development level

Below, we evaluate the S&T development level of 31 provinces in China according to the decision making

framework for situation 1 proposed in Section 5.

Step 1: Preprocess the original data of the 18 indicators to eliminate the influence of different dimensions

with the following formula for normalization

xk
ij =

xijk

max
i

{xijk}
(25)

where xijk represents the original value of the jth (j = 1, 2, · · · , 6) indicator about the ith (i = 1, 2, · · · , 31)

province corresponding to the kth (k = 1, 2, 3) criterion.

Step 2: Choose the highest value for every indicator (of 31 provinces in China) to be treated as the ideal

argument values, so all the ideal argument values are assigned the value of 1.

Step 3: After processing the ideal argument values, calculate the weights for the six indicators of every

criterion with the following formula

ω
(k)
j =

n∑
i=1

(
1−

∣∣∣x(k)
ij −max

{
x
(k)
ij

}∣∣∣
)

m∑
j=1

n∑
i=1

(
1−

∣∣∣x(k)
ij −max

{
x
(k)
ij

}∣∣∣
) (26)

where ω
(k)
j for j = 1, 2, · · · , 6 representing the weights of six indicators of the kth (k = 1, 2, 3) criterion. It

can be found that the sum of the six indicators of every criterion is 1. The weights of the indicators of every

criterion are shown in Table 12.

Step 4: Once the weights are calculated, use the WHDIOWA operator to calculate the evaluation results

of the three criteria for every province. The results are shown in Table 13.

Step 5: Also use the proposed WHDIOWA operator to determine the overall S&T development level of
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Table 13: Evaluation results of three criteria for 31 provinces in China

Province X1 X2 X3 Province X1 X2 X3

Beijing 0.736 0.853 0.947 Hubei 0.387 0.456 0.560
Tianjin 0.499 0.488 0.567 Hunan 0.407 0.375 0.552
Hebei 0.374 0.335 0.483 Guangdong 0.609 0.367 0.492
Shanxi 0.277 0.463 0.504 Guangxi 0.225 0.477 0.479
Inner Mongolia 0.261 0.314 0.542 Hainan 0.234 0.464 0.622
Liaoning 0.355 0.502 0.563 Chongqing 0.362 0.380 0.537
Jilin 0.285 0.573 0.475 Sichuan 0.326 0.399 0.542
Heilongjiang 0.227 0.616 0.525 Guizhou 0.221 0.305 0.506
Shanghai 0.575 0.577 0.633 Yunnan 0.254 0.287 0.550
Jiangsu 0.575 0.347 0.519 Xizang 0.208 0.432 0.527
Zhejiang 0.572 0.352 0.575 Shaanxi 0.367 0.569 0.555
Anhui 0.434 0.493 0.498 Gansu 0.292 0.338 0.515
Fujian 0.382 0.265 0.525 Qinghai 0.238 0.337 0.556
Jiangxi 0.403 0.236 0.586 Ningxia 0.271 0.344 0.534
Shandong 0.446 0.357 0.514 Xinjiang 0.249 0.313 0.531
Henan 0.357 0.327 0.545

these 31 provinces. The weights of the three criteria are determined according to the following formula

wk =

n∑
i=1

(
1−

∣∣∣xik −max
i

{xik}
∣∣∣
)

p∑
k=1

n∑
i=1

(
1−

∣∣∣xik −max
i

{xik}
∣∣∣
) (27)

where wk for k = 1, 2, 3 are the weights of three criteria, xik is the evaluation result of the kth criterion of

the ith province. The weights for the three criteria are 0.351, 0.314, and 0.335, respectively.

Step 6: Apply the WHDIOWA operator to aggregate the evaluation results of the three criteria to obtain

the final evaluation score of the S&T development level of each province. The evaluation results are listed

in Table 14.

7.3. Analysis of evaluation results

We illustrate the evaluation results of every criterion in Fig. 3 to Fig. 5 (data in Table 13).

From Fig. 3 we can see that Beijing, Guangdong, and Jiangsu are the top three provinces for the

development level of S&T input intensity and Guangxi, Guizhou, and Xizang are the worst three provinces.

Their development levels of S&T input intensity are only about one third of that of Beijing.

From Fig. 4, we can see that Beijing, Heilongjiang, and Shanghai are the top three provinces for

the development level of S&T output intensity. Less than half of the 31 provinces (13 provinces) have a

development level of S&T output intensity higher than the average. Yunnan, Fujian, and Jiangxi are the
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Table 14: Evaluation results of S&T development level of 31 provinces in China

Province Evaluation
result

Rank Province Evaluation
result

Rank Province Evaluation
result

Rank

Beijing 0.843 1 Hunan 0.446 12 Guangxi 0.389 23
Shanghai 0.595 2 Shandong 0.441 13 Xizang 0.385 24
Tianjin 0.519 3 Jilin 0.439 14 Ningxia 0.382 25
Zhejiang 0.504 4 Hainan 0.436 15 Gansu 0.381 26
Guangdong 0.494 5 Chongqing 0.426 16 Qinghai 0.376 27
Shaanxi 0.493 6 Sichuan 0.421 17 Inner Mongolia 0.372 28
Jiangsu 0.484 7 Jiangxi 0.412 18 Xinjiang 0.364 29
Anhui 0.474 8 Shanxi 0.411 19 Yunnan 0.364 30
Liaoning 0.471 9 Henan 0.411 20 Guizhou 0.343 31
Hubei 0.466 10 Hebei 0.398 21
Heilongjiang 0.449 11 Fujian 0.393 22
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Figure 3: Evaluation results of S&T input intensity of 31 provinces in China

33



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
ei

ji
n
g

H
ei

lo
n

g
ji

an
g

S
h

an
g

h
ai

Ji
li

n

S
h

an
'x

i

L
ia

o
n

in
g

A
n

h
u

i

T
ia

n
ji

n

G
u

an
g

x
i

H
ai

n
an

S
h

an
x

i

H
u

b
ei

X
iz

an
g

S
ic

h
u

an
g

C
h

o
n
g

q
in

g

H
u

n
an

G
u

an
g
d

o
n

g

S
h

an
d

o
n

g

Z
h
ej

ia
n
g

Ji
an

g
su

N
in

g
x

ia

G
an

su

Q
in

g
h

ai

H
eb

ei

H
en

an

In
n
er

 M
o

n
g

o
li

a

X
in

ji
an

g

G
u

iz
h
o

u

Y
u

n
n
an

F
u

ji
an

Ji
an

g
x

i

S&T output intensity average

Figure 4: Evaluation results of S&T output intensity of 31 provinces in China

worst three provinces: their development levels of S&T output intensity are even less than a third of that

of Beijing.

From Fig. 5 we can see that Beijing, Shanghai, and Hainan are the top three provinces for the develop-

ment level of S&T service intensity. Less than half of the 31 provinces (11 provinces) have a development

level of S&T service intensity higher than the average. Hebei, Guangxi, and Jilin are the worst three

provinces: their development levels of S&T service intensity are about half that of Beijing.

We convert Table 14 to Fig. 6 to show the evaluation results of the S&T development level of 31 provinces

in China.

In Fig. 6, the line in green is the average S&T development level of the corresponding area, i.e., the east,

the midlands, the northeast, and the west of China. The line in red is the average S&T development level

of all 31 provinces.

From Fig. 6 we find that the top three provinces with the best S&T development level are Beijing,

Shanghai, and Tianjin. Less than half of the 31 provinces (12 provinces) have an S&T development level

higher than the average level across all 31 provinces. The three provinces with the worst S&T development

levels are Xinjiang, Yunnan, and Guizhou. Their S&T development levels are less than half that of Beijing.

From the viewpoint of the regional development level of S&T, the ranking of the S&T development
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level for the four regions is, from best to worst, east, northeast, midlands, and west. The average S&T

development level of the east and the northeast of China is higher than the average level across all 31

provinces. The average S&T development level of the midlands and the west of China is lower than the

average level across all 31 provinces. Specifically, the provinces in the east of China with the best and

worst S&T development levels are, respectively, Beijing and Fujian. Only 3 in 7 provinces with an S&T

development level less than the average level of the total 31 provinces. However, only 3 in 6 provinces with

an S&T development level higher than the average level of the east of China. The provinces with the best

and the worst S&T development levels in the midlands of China are, respectively, Anhui and Henan. Here,

half of the six provinces have an S&T development higher than the average level across all 31 provinces and

also higher than the average level of the midlands. In northeast China, the provinces with the best and

worst S&T development levels are, respectively, Heilongjiang and Jilin. Only Jilin has an S&T development

level lower than both the average across all 31 provinces and the average of the northeast of China.

7.4. Management implications

Looking at the evaluation results, some useful suggestions for improving the development of S&T in

China are given as follows:

(1) More attention should be given to the provinces besides Beijing to narrow the gap between other

provinces and Beijing. In particular, more attention should be given to the provinces in the west of China.

(2) In the east of China, more attention should be given to Hannan, Hebei, and Fujian to improve their

S&T development levels. Specifically, more action should be taken to improve the S&T input intensity of

Hannan, and more action should be taken to improve the S&T input intensity and the S&T output intensity

of Hebei and Fujian.

(3) In the midlands of China, more attention should be given to Jiangxi, Shanxi, and Henan to improve

their S&T development levels. Specifically, more action should be taken to improve the S&T output intensity

of Jiangxi and the S&T input intensity of Shanxi.

(4) In the northeast of China, more attention should be given to Jilin to improve its S&T development

level. More action should be taken to improve its S&T input intensity.

(5) More attention should be given to almost all the provinces of the west of China. More action should

be taken to improve their S&T input intensity and S&T output intensity.

Looking at the evaluation process, some useful suggestions to further improve the usefulness of evaluating

the development level of S&T in China are given as follows:
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(1) Extending the proposed DIOWA operators to group decision making to combine different types of

proposed DIOWA operator and invite more DMs will be beneficial to scientifically evaluate the development

level of S&T in China.

(2) Different evaluation backgrounds and evaluation demands should be considered, which require DMs

to combine the proposed DIOWA operators with other information aggregation methods or decision making

methods, to better illustrate the development level of S&T of China.

(3) Explore the construction of an evaluation indicator system that considers the difference between

different provinces of China will be beneficial to assess the development level of S&T in China.

8. Conclusions

8.1. Summary of the study

Most existing operators considering distance such as the OWAD and IOWAD operators usually regard

distance measures as aggregated argument variables. The most distinctive benefit of these distance operators

is that the ideal argument values could be introduced to a decision making problem. Yet these distance

operators will fail to deal with situations where we consider attribute values rather than distance measures

as aggregated argument variables.

In this paper, we have determined order-inducing variables by distance measures and have proposed a

generalized form of the DIOWA operators with the Hamming distance. This provides a parameterized family

of aggregation operators that ranges from the minimum to the maximum. Three basic types of DIOWA

operators – the HDIOWA, NHDIOWA, and WHDIOWA operators – with different types of Hamming

distance measure have also been proposed. We have studied some main properties of the DIOWA operators

and suggested three methods to determine their associated weights. We have also analyzed families of

DIOWA operators with different manifestations of associated weighting vectors and their ideal argument

values. We have further generalized DIOWA operators by using generalized means and quasi-arithmetic

means. These distance-induced operators can also consider some ideal argument values for a decision making

problem. And, because we regard distance measures as order-inducing variables, attribute values can also be

taken as aggregated argument variables at the same time. Moreover, we have also suggested two frameworks

of MCDM methods with the DIOWA operators that considered two situations. We have also applied this

framework to a decision making problem about the selection of the best strategy for a vehicle manufacturing

company to verify that the operators proposed can lead to different rankings aiming at the same decision

making problem and accordingly afford more scenarios for DMs to select. At the end of this study, we
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presented a case study on the problem of evaluating the S&T development levels of 31 Chinese provinces by

using our proposed WHDIOWA operator and decision making framework for situation 2.

8.2. Future research

In this study, we only considered the Hamming distance to calculate the order-inducing variables. This

will fail in some decision situations where we need to consider other distance measure methods. With

increasing decision complexity, the proposed operators will not be suitable for uncertain decision problems.

Furthermore, although we give three weighting methods, how the weights for the proposed operators can be

determined, which will have great effects on the decision process, is also an issue that needs to be solved.

Therefore, for future research, we will continue to study distance-induced operators from three aspects

to make more contributions to decision making problems. First, we will obtain more generalized distance-

induced operators for the decision situation where the decision making information is represented by certain

information, i.e., crisp numbers, with different distance measure methods, such as the Euclidean distance,

the Minkowski distance, and the Hausdorff distance. Therefore, our research in this paper will be a special

case for this future research. We will also use these new distance-induced operators to solve decision making

problems in the fields, such as the selection of electric vehicle charging station sites (Seikh and Mandal,

2022), the evaluation of bio-medical waste management (Seikh and Mandal, 2023), and performance eval-

uation. Second, to solve the uncertain decision making problems, we will propose several distance-induced

operators to aggregate uncertain information which will be represented by various types of fuzzy numbers,

including hesitant fuzzy numbers, intuitionistic fuzzy numbers, linguistic fuzzy numbers, fuzzy numbers with

probability, and trapezoidal Pythagorean fuzzy numbers, based on their existing distance measure methods.

Additionally, we will develop some new fuzzy numbers to represent uncertain information based on the de-

mand of real applications and then propose corresponding distance and similarity measure methods. We will

further develop distance-induced operators for these newly built fuzzy numbers based on the research above

to present more selections for DMs or experts to make better decisions. We will also apply these operators

to deal with some real applications in the fields illustrated above. Third, weights are very important to

distance-induced operators, so we will also pay more attention to the determination methods of weights for

both the operators proposed in this paper and new operators that will be built in the future. We will focus

on how distance information can be combines with preference information to determine weights and on how

the weights of DMs or experts and the weights of criteria can be determined in group decision making when

using distance-induced operators.
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