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Spin-augmented observables for efficient photonic quantum error correction
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We demonstrate that the spin state of solid-state emitters inside micropillar cavities can serve as measure qubits

in syndrome measurements. The photons, acting as data qubits, interact with the spin state in the microcavity

and the total state of the system evolves conditionally due to the resulting circular birefringence. By performing

a quantum nondemolition measurement on the spin state the syndrome of the optical state can be obtained.

Furthermore, due to the symmetry of the interaction, we can alternatively choose to employ the optical states as

measure qubits. This protocol can be adapted to various resource requirements, including spectral discrepancies

between the data qubits, by considering entangled measure qubits. Finally, we discuss how spin-systems with

dissimilar characteristic energies can still be entangled with high levels of fidelity and tolerance to cavity losses

in the strong coupling regime.

DOI: 10.1103/PhysRevA.108.042613

I. INTRODUCTION

Linear optical quantum computing with single photons be-

comes resource-inefficient and requires a high overhead due

to weak photon-photon interactions, making multiqubit gates

difficult to implement [1]. However, this drawback can be

overcome at the measurement stage if one can resolve among

a broader class of observables, e.g., performing measurements

of two-photon qubits such as Bell states [2]. This would

thereby allow for the execution of nonlinear gates more ef-

ficiently. Although quantum dot (QD) spin systems tend to be

too short-lived for usable long-term memories, they interact

efficiently with light. The spin-photon interaction augments

photonic quantum information processing, with important ap-

plications in photonic-state measurements. This complements

linear optical quantum computing and can dramatically in-

crease its efficiency. Here we propose an application of this

interaction to the measurement of a larger class of qubit ob-

servables.

The spin-photon interface is a promising candidate for ap-

plications in quantum information technologies and quantum

communication [3,4]. The low decoherence rate of the photon

renders it suitable as a flying qubit, transporting information

over large distances and interacting readily with the solid-

state spin, which acts as a stationary qubit. Over the last few

years, various systems belonging to this family have been

extensively studied with applications in various quantum tech-

nologies in mind. This has yielded the development of, e.g.,
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photonic quantum gates [5,6] and optical nonlinearities [7,8],

as well as the entanglement of remote spin states [9–11], pho-

ton polarization [12], and spin-photon states [13]. The circular

birefringence arising from the optical selection rules for a

spin state confined in a cavity [14] has been used to develop

schemes for, e.g., quantum teleportation [15], quantum non-

demolition measurements [16] and entanglement beam split-

ters [17]. Furthermore, this system also has applications in

the design of complete and deterministic Bell-state analyzers

FIG. 1. Schematic of the stabilizer measurement setup, with (a) a

single QD and (b) multiple entangled QDs. The optical states |ψ〉
interact with the spin state(s) either (a) successively or (b) in parallel.

A spin measurement M in the X̂ basis is performed as a final step.

Hadamard gates HX pre and postinteraction are applied only in the

case of a star measurement Xs.
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[15,18], showing a marked improvement over what is possible

using only linear optics [19]. Here, the spin-photon system

measures the qubit parity while information about the sym-

metry is obtained using linear optics.

II. BACKGROUND

In this work, we will discuss the application of spin-photon

interfaces to carry out efficient photonic stabilizer measure-

ments in the surface code. A key objective in quantum physics

is the physical realization of fault-tolerant quantum comput-

ers, necessitating the development of quantum error detection

and correction [20]. Surface codes are a well-studied set of

stabilizer codes designed for the implementation of error-

corrected quantum computing [21]. The first proposal was

presented by Kitaev in the form of the toric code [22,23],

assuming periodic boundary conditions that allow it to be

mapped onto a torus. This was later generalized to planar

versions with different variations in the boundary condi-

tions [24–26]. The surface code considers a two-dimensional

(2D) square lattice arrangement of data and measure qubits,

with the latter being used to detect errors and perform stabi-

lizer measurements of the encoded data qubits.

A. Stabilizer measurements

Stabilizer measurement is one type of error detection

technique, indicating the presence of possible noisy errors

in the physical data qubits [27,28]. It consists of a series

of projective measurements performed on specific sets of

qubits, with the measurement outcomes, or syndromes, in-

dicating the location and type of error. Given that a direct

measurement of the physical data qubits interferes with the

coherence of the state and destroys the encoded information,

the measurements are performed on entangled measure qubits.

There exist several approaches when it comes to the physical

implementation of quantum error correction, with platforms

including photonic architectures [29–31], superconducting

circuits [32–34], trapped atomic ions [35,36], and nitrogen-

vacancy centers [37] having been experimentally explored.

Using solid-state QDs trapped inside micropillar cavities

and scattering interactions at the single-photon level, the total

state of the optical and spin subsystems evolves conditionally.

This allows us to perform a quantum nondemolition mea-

surement of one of the two subsystems, effectively retrieving

information about the state of the other. Letting the optical

and spin states serve as data and measure qubits, we show this

interaction and measurement process can be used to extract

the syndrome, as shown schematically in Fig. 1.

The detection of errors in the data qubits is performed by

means of syndrome measurements. The measurement opera-

tors, or stabilizers, for a surface code are comprised of star

Xs =
∏

j∈star(s) X̂ j and plaquette operators Zp =
∏

j∈plaq(p) Ẑ j ,

where X̂ and Ẑ are the Pauli-X and Pauli-Z operators. The

operators act on either the four data qubits that are adjacent to

a vertex, said to belong to a star s, or adjacent to a face, said

to belong to a plaquette p, as shown in Fig. 2. The eigenstates

of Ẑ are |0〉 and |1〉, and those of X̂ are |±〉 ∝ (|0〉 ± |1〉).

The graph of the surface code is stabilized by Xs and Zp. The

eigenvalues obtained from the measurement of these operators

Ẑ

ẐẐ

Ẑ

X̂

X̂X̂

X̂

≡ Zp

≡ Xs

FIG. 2. A schematic of the two-dimensional array of data (open

circles) and measure (black circles) qubits of a surface code. The

plaquette Zp and star Xs measurement operators are shown in green

(dotted outline) and pink (solid outline), respectively.

indicates the possible presence of errors, and depends on the

parity of the state, with an eigenvalue of +1 (−1) corre-

sponding to a state with even (odd) parity. The state of the

data qubits may be initialised such that they are simultaneous

eigenstates of all the stabilizer operators with eigenvalues of

±1, referred to as the quiescent state. The standard method of

extracting the qubit syndrome involves the implementation of

a CNOT gate on each of the data qubits belonging to a star or

plaquette, with the measure qubit serving as the control.

B. Physical setup

The physical setup, demonstrated in Fig. 3, consists of a

single-sided micropillar with two distributed Bragg reflectors

on both ends, where only one side is fully reflective and the

other end is partially transmissive. The cavity mode couples to

an electron spin in the form of a charged QD contained within

the micropillar cavity. Given the optical selection rules, the

interaction of a photon within the cavity becomes polarization

and spin dependent [38]. In the case of a negatively charged

QD, the |↑〉 (|↓〉) spin state can be optically excited to the

negative trion, X −, state |↑↓⇑〉 (|↑↓⇓〉) by absorption of

a left-handed (right-handed) circularly polarized photon, |L〉

FIG. 3. (a) A micropillar cavity, with resonance frequency ωc,

coupled to a QD with strength g. The field in the cavity couples to

the output mode and lossy modes with rates κ and κs, respectively.

(b) The polarization- and spin-dependent coupling rules for the QD

with central frequency ωX− and decay rate γ . The state |↑〉 is excited

to the trion state |↑↓⇑〉 by coupling to a left-handed circularly

polarized photon |L〉 and similarly for state |↓〉 and a right-handed

circularly polarized photon |R〉.
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(|R〉). Cross transitions between the lower- and higher-energy

states are not allowed by the conservation of angular momen-

tum.

The postinteraction reflection coefficient for a single-sided

cavity coupled to a QD is given by [39]

rh(ω) =
[

i(ωX − − ω) + γ

2

][

i(ωc − ω) + κs

2
− κ

2

]

+ g2

[

i(ωX − − ω) + γ

2

][

i(ωc − ω) + κs

2
+ κ

2

]

+ g2
, (1)

where ω, ωc, and ωX − represent the frequencies of the pho-

ton, the cavity mode and the trion transition, respectively; γ

represents the decay rate of the X − dipole; κ and κs are the

cavity decay rates into the output and the lossy side modes,

respectively; and g is the coupling strength between the QD

and the cavity field. When the photon does not couple to the

QD due to the selection rules, the only contribution to the

reflection coefficient is from the (empty) cavity interaction.

Setting g = 0, we can characterize the cold cavity interaction

by

r0(ω) =
i(ωc − ω) + κs

2
− κ

2

i(ωc − ω) + κs

2
+ κ

2

. (2)

We will consider only the resonant interaction case in this

work, where ωc = ωX − , and allow detuning of the photon fre-

quency ω, where δ = ωc − ω = ωX − − ω. For small-enough

cavity losses κs, one sees that |r0(ω)| ≃ 1 for all frequency

detuning, while |rh(ω)| ≃ 1 except in the region of δ = ±g,

when in the strong-coupling regime with g > (κ + κs)/4. We

apply a frequency detuning such that the difference in phase

shifts imparted during the coupled and the cold cavity interac-

tions is ±π/2. This means that the δ is set such that φ̃(ω) ≡
φh(ω) − φ0(ω) = ±π/2, where φi(ω) = arg[ri(ω)] for i =
h, 0. We will drop the notation for frequency dependence

for ease of readability. Theoretical modeling shows that this

nonlinear phase shift ranging up to π can be experimentally

achieved [40–42]. Experimentally, these phase shifts are now

being observed, with results improving over time from only a

few microdegrees 15 years ago up to ∼π in the last couple

of years [43–48]. This demonstrates the viability of using

quantum dots and their interaction with photons for quantum

information processing.

III. SYNDROME EXTRACTION

Figure 1 shows a diagrammatic setup for the syndrome

measurement, where we first consider situation (a) with four

photons interacting sequentially with a single spin. The pho-

tons serve as data qubits with |L〉 and |R〉 encoding the

logical |0〉 and logical |1〉 qubit states, respectively, while the

spin states act as the measure qubits. The Hadamard gates

are applied pre and postinteraction only when performing a

star measurement Xs, such that the X̂ -basis eigenstates trans-

form as |+〉 ↔ |g〉 and |−〉 ↔ |e〉. The electron spin state is

initialized to |+S〉 = (|↑〉 + |↓〉)/
√

2, however, we note that

the procedure also works for an initial spin state given by

|−S〉 = (|↑〉 − |↓〉)/
√

2. Letting the four photons belonging

to a plaquette or star set interact with the spin system sequen-

tially in time, and assuming |r0(ω)| = |rh(ω)| = 1, a photonic

eigenstate and the electron spin state evolve together, up to a

global phase, as

(

⊗

j∈star(s)
or plaq(p)

|i j〉

)

⊗ |+S〉 →

⎛

⎜

⎜

⎝

⊗

j∈star(s)
or plaq(p)

exp
(

iφ̃δi j L

)

√
2

|i j〉

⎞

⎟

⎟

⎠

⊗

⎡

⎢

⎢

⎣

|↑〉 +
∏

k∈star(s)
or plaq(p)

exp
[

−i
(

φk,↑ − φk,↓
)]

|↓〉

⎤

⎥

⎥

⎦

, (3)

where |i j〉 ∈ {|L〉 , |R〉}, j and k index the same four photonic

qubits in a plaquette or star set, φ j,∗ is the phase shift re-

sulting from the interaction between the photonic state |i〉 j

and spin state |∗〉 ∈ {|↑〉 , |↓〉}, and δi j L is the Kronecker delta

with δi j L = 0, 1 when |i j〉 = |L〉 or |i j〉 �= |L〉. The frequency

detuning between the photon and the emitter transition fre-

quency δ is set such that φ̃ = ±π/2, resulting in (φk,↑ −
φk,↓) = ±π/2 (∓π/2) for a left-handed (right-handed) circu-

larly polarized photon.

The relative phase shift between the two spin states accu-

mulates with every spin-photon interaction. The total phase

shift imparted from two orthogonally polarized photons is

zero, while that resulting from pairs of identically polarized

photons is ±π . Given the set of all eigenstates, the spin state

evolves to |+S〉 (|−S〉) for an even (odd) parity photonic state.

By measuring the spin in the X̂ basis, we can, therefore,

perform a quantum nondemolition measurement that reveals

the syndrome of the data qubits in a complete and efficient

manner. The phase shift acquired by the individual photonic

eigenstates postmeasurement is shown in Eq. (3) and has two

contributions. The key contribution to the imparted phase shift

is exp(iφ̃δi j L ), which introduces unwanted phase flips to the

encoded state. This is corrected by a polarization-dependent

phase shift acting only on the right-circularly polarized state

such that |R〉 → exp(iφ̃) |R〉, possible to achieve in a passive

manner using linear optics. This rotation corrects the state,

irrespective of the physical state, preserving the original pre-

measurement encoded state, including any detected errors.

IV. CONFIDENCE

Next, we consider the confidence in the spin readout [49]

as an appropriate figure of merit for the measurement perfor-

mance given possible variations in the frequency detuning δ

from the optimal. The ground state of the planar code is given

by [27]

|ψ0〉 ∝
∏

s

(1+ Xs) |0〉⊗n , (4)

where n is the number of physical data qubits and the product

is over the entire set of stars s. The state is assumed to be

prone to coherent errors that can be modeled by applying a

Pauli channel of the form

E (ρ) = (1 − p)ρ + xX̂ρX̂ + yŶ ρŶ + zẐρẐ (5)

to each individual physical qubit, where x, y, z are the prob-

abilities of the respective Pauli errors and p = x + y + z is

the physical qubit error rate. Since plaquette (star) operators

detect only X (Z )-type errors, we may address the performance

042613-3
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FIG. 4. Confidence in the |+S〉 (solid) and |−S〉 (dashed) spin

readouts as a function of the frequency detuning δ = ωc − ω =
ωX− − ω for varying coupling strengths g and physical qubit error

probabilities of either X or Z type p∗. The normalized linewidth γ /κ

is set to 0.1.

of each measurement type individually. For our confidence

measure, we may simply assume that both star and plaquette

measurements also factor in any possible Y -type errors since

Ŷ = ẐX̂ . We can then express the confidence in a spin readout

of |±〉 by

Tr[P± ⊗ |±S〉 〈±S|U E (ρ) ⊗ |+S〉 〈+S|U †]

Tr[1⊗ |±S〉 〈±S|U E (ρ) ⊗ |+S〉 〈+S|U †]
, (6)

where U is the spin- and polarization-dependent two-qubit

gate describing the interaction and P± is the projection op-

erator onto the ±1 eigenstates.

We show in Fig. 4 the confidence in the two types of pla-

quette and star measurement outcomes for different coupling

strengths g and for various physical qubit error probabilities

as a function of the frequency detuning δ. We consider here

only the strong-coupling regime, as it is in this case that we

satisfy the requirement that |rh| → 1. Current experimental

values show coupling strengths with g/κ reaching values of

up to around 2.4 [50,51]. We note here that the distance of the

code, i.e., the measure of the number of physical qubits used

to encode a logical qubit, does not have an effect on the con-

fidence value, and that the plaquette and star measurements

show the same type of behavior due to their equivalence up to

a Hadamard gate. We see that the proposed scheme is robust

and tolerant to deviations in the frequency detuning from the

optimal.

V. INCREASING REGISTER SIZE

Next, we consider a setup where the syndrome measure-
ment is performed in parallel on the incoming photons. This
may be done to optimize for the type of resources required as
well as to accommodate for possible differences in the spectral
characteristic of the data qubits. Due to the linear nature of
our transformation, the total phase shift is equivalent to the

sum of the individual interactions and therefore the syndrome
measurement can be done using two or four measure qubits
per stabilizer measurement. The spins need to be entangled
into a general Greenberger-Horne-Zeilinger (GHZ) state up to
any Pauli operations. Each photon is then allowed to interact
with exactly one of the spins (or, in the case of a two-qubit
register, two photons interacting with each spin), such that
the interaction satisfies the conditions specified for the single-
qubit register. Finally, all the spins are measured in the X̂ basis
to extract the syndrome.

A setup making use of two or four measure qubits
would require fewer photon switches and optical circula-
tors, and would cater for a larger spectral variation between
the photons. On the other hand, this calls for entanglement
generation, which may require additional resources in terms
of time and physical components. One way of entangling
the spin states of two QDs is to allow a linearly polar-
ized photon to interact with each state sequentially [10,39].
This results in a so-called optical Faraday rotation which
rotates the polarization and, given initial spin states (|↑〉 +
|↓〉)/

√
2 and φ̃ = ±π/2, evolves the spin-photon state to

−i |V 〉 (|↑↑〉 − |↓↓〉) ± i |H〉 (|↑↓〉 + |↓↑〉), up to normal-

ization, where |H〉 = (|L〉 + |R〉)/
√

2 and |V 〉 = −i(|L〉 −
|R〉)/

√
2 denote horizontally and vertically polarized photons,

respectively. Therefore, by measuring the polarization of the
photon, the spin state is projected onto a maximally entangled
state.

VI. ENTANGLEMENT GENERATION

In the case of photonic data qubits with different frequen-

cies, we would require spectrally different QD-spin systems

to satisfy the condition of φ̃ = ±π/2. In such cases, the

entanglement procedure outlined above may still be used to

generate states with high fidelity, albeit the heralded efficiency

of the procedure is reduced. By setting the frequency of the

linearly polarized photon, say |H〉, such that φ̃1 = −φ̃2, where

φ̃i is the difference in phase shifts for QD-spin system i, the

state of the total system postinteraction is

|H〉 (|↑↑〉 + |↓↓〉) + (ei φ̃ |L〉 + e−i φ̃ |R〉) |↑↓〉

+ (e−i φ̃ |L〉 + ei φ̃ |R〉) |↓↑〉 , (7)

up to some global phase and normalization constant. Upon

the detection of an orthogonally polarized photon (in this case

|V 〉), the spin states would be projected onto the maximally

entangled state (|↑↓〉 − |↓↑〉)/
√

2. Similarly, one can set the

photonic frequency such that φ̃1 = φ̃2, probabilistically gen-

erating the entangled state (|↑↑〉 − |↓↓〉)/
√

2. The efficiency

of the entanglement generation increases with the energy

detuning until it peaks at around 40–60% of the maximum

possible efficiency. This is because a phase shift that maxi-

mizes the probability of obtaining an orthogonally polarised

photon (i.e., |φ̃| ≈ π/2) while satisfying the requirement set

in Eq. (7) is easier to achieve in systems that are sufficiently

dissimilar.

In Fig. 5 we show the heralded efficiency, η, of the en-

tangling procedure described by Eq. (7) as a function of the

characteristic energy detuning, � = ωX1
− ωX2

, for varying

cavity decay rates κ and coupling strengths g. (We work here

both in the weak- and the strong-coupling regime to show

042613-4
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FIG. 5. Heralded efficiency η of the entanglement generation

protocol as a function of �/κ , where � = ωX−
1

− ωX−
2

is the central

energy detuning, for different linewidth ratios γ2/γ1, and coupling

strengths g/κ . γ1/κ is set to 0.1. The shaded regions indicate the

maximum possible efficiency of the protocol in the ideal case with

identical systems.

that the entangling procedure may be employed in either.) We

consider only the case of φ̃1 = −φ̃2 due to higher probabili-

ties of success, as phase shifts that satisfy this condition for

QD-spin systems exhibiting typical variations can approach

very closely ±π/2. Looking at Eq. (7), this maximizes the

probability of measuring an orthogonally polarized photon.

Also, variations in the QD linewidths may marginally enhance

the efficiency, however, the effect of this decreases as g is

increased.

We also show in Fig. 6 the effect of spectral variations as

well as side-cavity losses, characterized by κs, on the fidelity

of the entangled state

F =
|rh1

r02
− r01

rh2
|2

|rh1
rh2

− r01
r02

|2 + |rh1
r02

− r01
rh2

|2
, (8)

where rhi
and r0i

are the reflection coefficients for the QD-

coupled and empty cavity cases for system i, respectively.

VII. DISCUSSION AND CONCLUSION

One physical limitation that needs to be accounted for is

the spin decoherence time T2, whereby the coherence of the

superposition of spin states decays mostly due to interactions

with nuclear spins, with experimental values for T2 in the

range of several ns [52–54]. In the case of a single QD,

the fidelity of the spin state would reduce by a factor of

(1 + exp[−t/T2])/2, where t is the total time taken for all four

photons to interact with the spin, with current lifetime values

of exciton photons in micropillars reaching a few hundred

ps [55–57], depending on the detuning between the emitter

and the cavity. In the case of n QDs, the fidelity would decay

by a factor of (1 + exp[−nt/T2])/2. Since the interaction time

t is inversely proportional to the register size of the spins, the

reduction in fidelity due to spin decoherence when utilizing

multiple entangled spin states remains the same.

In conclusion, we showed how the spin-photon inter-

face may be applied to quantum error detection to perform

FIG. 6. Fidelity F of the entanglement generation process as a

function of �/κtotal, where � = ωX−
1

− ωX−
2

is the central energy

detuning and κtotal = κ + κs. The QDs have linewidth ratios γ2/γ1,

are set to 0.3 (blue), 1.0 (orange), and 1.5 (purple); cavity loss rates

κs/κ , of 0.0 (solid), 0.2 (dashed), and 0.5 (dash-dotted); γ1/κtotal is

set to 0.1.

syndrome measurements, specifically by utilizing solid-state

emitters inside micropillar cavities and optical circular bire-

fringence. Working in the strong-coupling regime, we also

showed that the scheme is robust over the frequency detuning

δ for coupling strengths g routinely reached in experiment,

making this proposed scheme a viable practical candidate.

Moreover, it might prove to be useful to use entangled spin

states in some implementations as increasing the register of

measure qubits in this way also allows for flexibility in the

connectivity of the code [58,59] and accommodates for spec-

tral variations between the data qubits. Such a setup may also

prove to be a more resource efficient way of physically real-

ising surface codes tailored to biased noise, where Hadamard

transformations are applied to certain Pauli matrices of the

star and plaquette operators [60–62]. We therefore show that

entanglement is still possible for QD systems with varying

characteristic energies and with high fidelity levels, albeit with

lower generation efficiencies.

Potential directions for future work include the extension

of the proposed scheme to other measurement families in

quantum error correction. Other avenues to explore would be

the generalization of a Bell-state analyzer to a scheme that

would allow for the observation and discrimination between

nonmaximally entangled states. It is evident that the spin-

photon interface has potential applications in various aspects

of optical quantum information processing, proving it to be

a versatile and integral component in the design of quantum

technology and vastly improving the performance of linear

optical quantum computing.
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APPENDIX: BOUNDARY CONDITIONS

In this work, we consider only the toric code exhibiting

periodic boundary conditions. Different surface codes may

also be comprised of various types of boundaries that result

in modifications of the stabilizer operators applied on the data

qubits located along these boundaries. Consider boundaries in

the qubit array as shown in Fig. 7. The spin-photon interface

can be used for these syndrome measurements as well, with-

out requiring a change in the frequency detuning δ, such that

⊗

j∈star(s)
or plaq(p)

|i j〉 ⊗ |+S〉 → e3iφ0

⊗

j

exp
(

iφ̃δi j L

)

|i j〉

⊗
[

|↑〉 +
∏

k

exp[−i(φk,↑ − φk,↓)] |↓〉
]/√

2. (A1)

As the accumulation of the relative phase in the electron spin

state is dependent on the parity of the photonic state, where the

+1 (−1) eigenstates are of even (odd) parity, the state evolves

to either |L〉S = (|↑〉 + i |↓〉)/
√

2 (|R〉S = (|↑〉 − i |↓〉)/
√

2).

The syndrome can therefore be obtained by measuring the

spin in the Ŷ basis. Any corrections to the phase shift of

the photonic state are addressed in the same manner as for

weight-four operators.
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