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A smartphone-based platform for portable, non-invasive, audio and

visual neurostimulation with a non-rhythmic sham stimulation mode

Le Xing1, Stephen Halpin2, and Alexander J. Casson1

Abstract— Non-invasive neurostimulation is an emerging ap-
proach for chronic pain management, working by applying a
flashing visual stimulation in the 10 Hz range, or via binaural
beats were tones, differing by approximately 10 Hz, are played
to each ear. Our previous work has presented smartphone based
delivery of audio and visual stimulation, with smartphones
being selected as a form factor which is portable, easy and
convenient for people to use in home-settings, and readily inte-
grated into body sensor network deployments. However, this did
not include a sham stimulation mode allowing control studies
to be performed. This paper presents a second generation
Android smartphone App for providing non-invasive audio and
visual stimulation. A sham mode is added via non-rhythmic
neurostimulation, jittering the instantaneous stimulation fre-
quency. Hardware characterization and computational cost
measurements demonstrate the high accuracy and efficiency
of stimulation generation.

I. INTRODUCTION

Body sensor networks have been widely used for sens-

ing applications, allowing large scale data collection using

wearables, smartphones, and other low power devices. There

is now substantial interest in moving beyond only sensing

applications to sensing and actuating applications, giving

devices which can provide feedback and stimulation to users

[1], [2]. One potential application where intervention can be

given via a smartphone is in chronic pain.

Chronic pain affects approximately 20%–40% of the

world’s population, and severely degrades peoples’ quality

of life. [3], [4]. Conventional management approaches, such

as opioids or non-steroidal anti-inflammatory drugs, are not

always adequately effective and may cause a variety of

side effects [4]. As a result, alternative pain management

approaches are being actively researched. In particular, non-

pharmacological approaches have been increasingly investi-

gated in recent years [4], [5].

Non-pharmacological approaches which have received

substantial attention are neurostimulation and neuromodu-

lation: an intentional modification of brain activity by ap-

plying an external, and usually rhythmic, stimulus [5]. As a

technology driven, potentially non-invasive, approach, neu-

rostimulation and neuromodulation offer an electro-ceutical

approach to complement and augment traditional pharmaceu-

tical approaches. For example, our previous work has found
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that increasing brain activity in the alpha (8–13 Hz) range

reduced pain as reported on a visual analogue scale [6]–[8].

In recent years we have focused on delivering this brain

stimulation via audio and visual means as these are non-

invasive, and readily implemented into smartphones and

body sensor networks, making them potentially suitable for

at-home use and integration into body sensor networks [2],

[9]. Acoustic stimulation can be achieved via Binaural Beats

(BB), in which tones with slightly different frequencies

are played to each ear via stereo headphones, resulting in

brain synchronization to the difference of frequencies played

[10]. Visual stimulation can be achieved via flashing the

smartphone screen to create Steady-State Visual Evoked

Potentials (SSVEPs) [11].

However, our previous stimulation platform, reported

in [2], lacked a sham mode that could deliver stimuli for

investigating the placebo effects, for example, placebo anal-

gesia, in chronic pain. As reported in [5], [12], neurostimula-

tion approaches may lead to powerful placebo effects to pain

relief due to psychological factors, such as user expectations

towards highly specialized technology and the enablement

of more interactions between patients and physicians offered

by remote digital care. Therefore, systematic studies towards

placebo effects in chronic pain via sound and visual stimu-

lation are required.

For non-smartphone based stimulation, Table I illustrates

example sham modes used to date. For BB sound stimula-

tion, studies in [6], [13]–[18] adopted white noise, music,

monotone, and silence as their sham stimulations. However

these can be easily differentiated from the real stimulation

modes by users. Similarly, [6], [7] used 1 Hz and 7 Hz as

the sham stimulation, which may result in delta (0.5-4 Hz)

and theta (4-8 Hz) activities to be enhanced, and can be

visually distinguished from the wanted 10 Hz stimulation.

Therefore, currently, there remains a technical challenge on

how to create effective sound/visual sham modes that are

not readily distinguished from the wanted stimulation, and to

implement the chosen approach on a low power smartphone

based platform.

This paper presents a new smartphone platform for de-

livering sound and visual stimulation at 10 Hz, and also

providing sham modes. Two sham modes are included: (1)

Near-monotones for sound stimulation, and (2) Randomized

and non-rhythmic flickering light for visual stimulation. This

offers a more complete on-phone experimental platform.

Hardware characterization to validate the accuracy of the

smartphone App and computational cost tests are included

to demonstrate its rapid processing and low power consump-



TABLE I

SUMMARY OF ACTIVE MODE SHAM METHOD APPROACHES IN SOUND AND VISUAL NEUROSTIMULATION

Ref Target application Active mode Sham mode

Sound stimulation

[6] Chronic pain 8/10/12 Hz BB White noise
[13] Chronic pain Meditation music with a simple BB overlaid Music
[14] Sleep and pain alpha/theta/delta BB Monotone below 1 Hz
[15] Sleep 6 Hz (theta) BB Music
[16] Sleep BB with pink noise background Monotone with pink noise
[17] Sleep 6 Hz (theta) BB Silence
[18] Cardiovascular stress response Music with BB Music

Visual stimulation
[6] Chronic pain 8/10/12 Hz flickering 1 Hz flickering
[7] Chronic pain 10 Hz flickering 7 Hz flickering

Fig. 1. A screenshot of the App. Homepage (left), Mode selection page
(middle), and an example of a double-blind experiment scheme (right).

tion.

II. METHODS

A. Development platform

Our App was developed in the Android Studio IDE, based

on our previous work in [2]. Sound and visual stimulation

were designed as an open-loop system in which the stimula-

tion parameters are pre-programmed in advance. A Samsung

Galaxy A40 smartphone (octa-core Exynos 7904 processor

with 4GB RAM, 60 Hz screen refresh rate) was used for the

App test and validation in this work. A screen shot of the

App is shown in Fig. 1.

B. Sound stimulation

The Binaural Beats (BB) sound stimulation was imple-

mented by using the AudioTrack class in Android. The

sampling frequency was set at 44,100 Hz, and then two

pure sine waves with different frequencies generated in real

time to be streamed to the different ears. The tones are

continuously produced and played inside an infinite loop

until stopped by the user.

1) Active mode: For generating the active BB stimulation

at 10 Hz, we created a tone at 400 Hz which is constantly

played via the left ear and set the tone at 410 Hz for the right

ear. 10 Hz was chosen as the target stimulation frequency as

it is the middle value of the EEG alpha range (8–13 Hz)

and has been commonly used in previous works [6]–[8].

The settings are not user programmable, but can be readily

changed in the underlying App programming if required.

2) Sham mode: Sham mode stimulation was created by

setting up 400 Hz and 400.01 Hz BB, so the target stimu-

lation frequency is at 0.01 Hz, out of the range of the EEG

frequencies, and thus it should not affect brain activities

in other frequency ranges. This sham mode sounds like a

monotone, which is much closer to BB compared to white

noise, music and silence acoustically, making it harder to be

distinguished by users.

C. Visual stimulation

Visual stimulation was achieved via flickering the smart-

phone screen at a fixed frequency using the OpenGL graphics

library. The screen flicker works by rendering the current

frame as white and black colors in turns according to the

desired frequency. The smartphone used currently could

generate 1–20 Hz screen flickers based on the algorithm

presented in [2] on a smartphone with a 60 Hz refresh

rate. Note current state-of-the-art smartphones normally have

90/120/144 Hz refresh rates which could be used for pro-

ducing visual stimulation schemes at higher frequencies,

although the use of dynamic refresh rates may complicate

this.

1) Active mode: The active stimulation mode was set to

flicker the screen constantly at 10 Hz until stopped by the

user.

2) Sham mode: For sham stimulation we required screen

flickering not at a fixed 10 Hz, but also not at a fixed

alternative frequency which might entrain the brain at that

frequency. We opted for a non-rhythmic approach, keeping

the average instantaneous stimulation frequency at 10 Hz

to keep the visual perception similar, while the actual in-

stantaneous stimulation frequency varies on a second-by-

second basis. This is achieved by using a Random Object

which randomly picks a number from an integer array range

from 5 to 15 every second, then the screen flashes at the

random frequency (5–15 Hz) and updates for every second.

This is similar to the jittered sham stimulation in [19], but

implemented on a smartphone platform for the first time.

D. Other functions

The App can be programmed to randomize the active

stimulation and sham mode in different orders as desired

by researchers to enable different double-blind crossover

experiments.



E. Stimulation characterization

1) Audio mode validation: To measure the tone fre-

quencies for the audio mode, the smartphone headphone

output was connected to a myDAQ Data Acquisition device

(National Instruments Inc., USA) via a 3.5 mm stereo audio

cable. The generated tones were then played and LabVIEW

software was used for measuring and displaying the power

spectrum of the analogue audio signal.

2) Visual mode validation: To test the accuracy of the

visual stimuli generated, a spectrometer (AS7341 Evaluation

Kit, ams OSRAM Inc., Austria) was placed on top of the

screen and used to measure the frequencies of the screen

flickering. Specifically, for validating the sham mode, the

instantaneous frequency of screen flickering was sampled

every 10 seconds and 500 samples in total were obtained

for checking the frequency distributions statistically.

F. Computational cost in smartphones

To evaluate the computational costs of the stimulation

App when running on a smartphone the processing time

required for generating the stimulation, power consumption,

and memory usage were measured. This was done for both

active and sham modes of both audio and visual stimulation.

1) Processing time for stimuli generation: The time re-

quired between the user clicking the start button and the

stimulation being started was measured by a Timer Object.

For each mode, the processing time was measured 100

times, and the average values were given as the result. This

measurement therefore gives the latency for setting up a new

stimulation.

2) Memory usage: The smartphone App memory usage

was inspected in real-time via the Android Studio Profiler

while the App was running. 10 data points were sampled

for each mode and the mean values were calculated. This

measurement will indicate whether the App is memory

intensive, which might affect the ability to run other Apps

simultaneously.

3) Power consumption: Power consumption during App

execution was measured by using Battery Historian, a ded-

icated tool for inspecting the battery usage on Android

smartphones [20]. For each stimulation mode, 3 measures

were performed when other background services were turned

off, each with a duration of 10 minutes, and the mean power

consumption is reported. Note that the visual mode was

measured under normal indoor light intensity, the absolute

value of power consumption will vary depending on the

screen brightness level chosen by the user. For the BB

stimulation, the volume was set to half of the maximum.

III. RESULTS

A. Stimulation characterization

Fig. 2 shows the power spectra of the audio signal mea-

sured via the data acquisition system. The active stimulation

mode (Fig. 2.A) constantly outputs a 400 Hz tone for the left

ear and a 410 Hz tone for the right ear, which can accurately

produce a 10 Hz BB. The sham mode (Fig. 2.B) outputs
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Fig. 2. Analogue signal test of the stereo audio channels in the frequency
domain for the acoustic stimulation. (A) 10 Hz stimulation; (B) Sham
stimulation.
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Fig. 3. Histogram of the screen flickering frequencies in the non-rhythmic
sham visual stimuli.

400 Hz and 400.01 Hz, generating a near monotone outside

the normal EEG frequency range.

For visual stimulation, the active mode constantly outputs

the visual stimuli at 10 Hz as expected. In the sham mode,

Fig. 3 shows the histogram of the instantaneous frequencies

of the screen flickering in the range 5 to 15 Hz. The probabil-

ity of each frequency value occurring is approximately uni-

formly distributed. The randomization of frequency change

produces the of non-rhythmic stimuli as desired.

B. Computational cost in smartphones

The computational costs for running our stimulation ap-

proach on a smartphone are shown in Table II. The time

required for generating the audio and visual stimulation is

very similar, at around 80 ms. Here, the computational time

consists of a new Android activity launching, setting up the

widgets required in this activity, and calling the methods to

generate the stimulation.

For an open-loop stimulation, which has fixed parameters

TABLE II

COMPUTATIONAL COSTS OF GENERATING BRAIN STIMULATION IN

SMARTPHONES

Audio Visual
Active Sham Active Sham

Computational time (ms) 82.5 89.1 81.4 78.9
Memory usage (MB) 93.6 94.9 136.2 148.3

Power consumption (mAh/h) 346.3 287.1 349.6 175.1



for generating the specific stimuli, as is our current aim,

80 ms processing time is very fast and largely imperceptible

when starting a new stimulation session. It also provides

a good starting point for creating closed-loop stimulation

protocols where the stimulation parameters are changed in

real-time based upon currently sensed data (whether from

the EEG or other devices in a Body Sensor Network). For

example, for the computer-based closed-loop brain stimula-

tion platform reported in [21], the total computational time

required for data acquisition, processing and stimulation is

around 70 ± 5 ms. Our smartphone-based platform takes

slightly longer due to less powerful chipsets, and so further

optimization will be required to enable closed-loop use.

Memory usage for visual stimulation occupies 136.2 MB

for stimulation and 148.3 MB for sham mode, which is

higher than the audio mode at 93.6 and 94.9 MB. This is

due to the usage of the screen in visual mode. Nevertheless

all modes consume low memory during the execution for a

GB level memory smartphones.

The power consumption required for our App is between

175.1 and 349.6 mAh per hour, where the visual sham mode

consumes the lowest power and other modes consume more,

at around 300 mAh per hour. Note that modern smartphones

normally have a battery capacity between 3000 and 5000

mAh, which indicates that the App can be used continuously

for more than 10 hours. There is a substantial difference

in power consumption between the active and sham modes,

which could provide a route for unblinding by motivated

users. In future versions it may be beneficial to add dummy

routines to equalize the resources used in both cases.

IV. CONCLUSIONS

This paper presented an Android App for portable

sound/visual neurostimulation, which also contains sham

stimulation modes allowing active and placebo studies to

be performed. Accurate active and sham stimulation was

demonstrated for sound and visual modes via hardware tests.

The low computational costs required for generating the

stimulation indicates its potential for long-term use, and

use in future closed-loop stimulation App developments.

This App could be beneficial for future at-home use of

neurostimulation, and the integration of actuation into body

sensor network deployments.
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