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Automated transition metal catalysts discovery
and optimisation with Al and Machine Learning

Samuel Mace,?l Yingjian Xu,*I’ Bao N. Nguyen,*l!

Dedicated to Prof. John M. Brown (FRS) on his 84 birthday

Significant progress has been made in recent years in the
use of AT and Machine Learning (ML) for catalyst discovery
and optimisation. The effectiveness of ML and data science
techniques was demonstrated in predicting and optimising
enantioselectivity and regioselectivity in catalytic reactions
through optimisation of the ligands, counterions and reac-
tion conditions. Direct discovery of new catalysts/reactions
is more difficult and requires efficient exploration of transi-
tion metal chemical space. A range of computational tech-
niques for descriptor generation, ranging from molecular
mechanics to DF'T methods, have been successfully demon-
strated, often in conjunction with ML to reduce computa-
tional cost associated with TS calculations. Complex as-
pects of catalytic reactions, such as solvent, temperature,
etc., have also been successfully incorporated into the ML
optimisation and discovery workflow.

Introduction

Automated chemical space exploration with the help of AI/
Machine Learning (ML) is a highly important methodology
in modern chemical discovery. Progresses in this area with
organic compounds have resulted in the first Al discovered
Active Pharmaceutical Ingredient (API) entering Phase II
trials. [? The same benefits can be extended to catalyst dis-
covery through chemical space exploration of organometal-
lic compounds. However, this is significantly more chal-
lenging due to the additional constraints, e.g. coordination
geometry, and complexity, e.g. spin state, catalyst stability
and selectivity, etc. Evaluating the desired function of cat-
alysts for in silico screening is also more computationally
demanding compared to API discovery, due to the need to
calculate and/or estimate properties of excited states and
transition states. In homogeneous catalysis, additional di-
mensions such as solvent, temperature and additives can
have a significant impact on reaction outcome and need to
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be included in the evaluation methodology. Synthetic cat-
alytic reactions often involves chemo- and stereoselectivity,
competing side reactions, and multiple possible mechanis-
tic pathways, [3-9] depending on the substrate and catalyst
(Figure 1).10°13]

These complex and demanding challenges led to the need
for of AI/ML models which can predict catalytic activity.
This approach can be particularly powerful for complex and
difficult substrates, which tend to occur in high value chemi-
cal synthesis. Unfortunately, experimental data on catalytic
activity in this area is scarce, with the majority of the lit-
erature containing reaction yields instead of reaction rates
(due to the cost of labour and resources for collecting kinetic
data). ¥ While successes have been reported with statisti-
cal analysis of small datasets, [15.16] the demand for training
data for advanced AI/ML models necessitates accurate and
low-cost molecular modelling tools for data generation.
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Figure 1. An example mechanism of the Ullmann-Goldberg coupling
reaction, with a reaction condition dependent deactivation path-
way and multiple possible mechanisms for the rate determining step
(RDS). 1171
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This is an unique area of research which requires advance-
ment in both cheminformatics and high throughput molec-
ular modelling. A typical workflow for screening catalytic
candidates will start with either experimental or compu-
tational data of a relatively small set of ligands/catalysts.
This dataset is then used to train a ML model to predict
the desired catalytic properties and performance (Figure 2).
The model can then be used to extrapolate the performance
of a much larger set of ligands/catalysts generated in silico.

Excellent and recent reviews from practitioners in the
field have discussed predicting organic reactivity with ML, (18]
general computational discovery of transition metal com-
plexes, 19] descriptors for ML in catalysis, [20], quantum meth-
ods for computational catalysis, [21]' mechanism-based mod-
els, 2 practical tutorial with code,?® and a road-map on
machine learning in electronic structure. (24 Tn this review,
we will focus on recent peer-reviewed publications since 2020
in AT/ML-enabled organometallic catalyst discovery and op-
timisation, tackling the following challenges: (i) automated
exploration of ligand space; (ii) computational methods for
data generation; and (iii) dealing with complex aspects of
catalysis such as selectivity, reaction conditions and com-
peting pathways. Other exciting approaches based on data
science, e.g. volcano plots, 227 or process optimisation
will not be included.

Theoretical and
experimental
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Al/Machine
Learning models

Predicted
best catalysts

Reaction
data
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High generated catalysts
throughput
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Data generation Exploring ligand space

Figure 2. A typical workflow for ML-guided catalyst discovery and
optimisation

Automated exploration of ligand
space

Chemical space exploration is a cornerstone of AI/ML-guided
chemical discovery. In the context of catalyst, it is essential
for exploring both the ligand space/prediction stage (Figure
2) and the data generation stage if the data is generated
computationally. For catalyst optimisation, limited explo-
ration of similar chemical space may be sufficient. How-
ever, catalyst discovery requires highly efficient sampling of
a wider chemical space or a closed-loop optimisation ap-
proach to chemical space sampling. Ultimately, this needs
to be balanced with the synthetic viability of the generated
catalysts and ligands to ensure their expeditious experimen-
tal validation. While the field is still far from achieving these
lofty goals, recent progresses have shown these are attain-
able if expertise in cheminformatics can be leveraged.

The term “ligand space” has previously been used by Fey
and co-workers to describe the relative positions of phos-
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phine and C/N/O ligands in Principal Component Analysis
maps based on their electronic and steric descriptors. [28-33]
In the context of AI/ML-guided exploration, a more struc-
turally oriented concept is normally adopted. This is the
result of cheminformatics tools, often employed in building
the structure of ligands and catalysts in silico. Neverthe-
less, the advanced techniques for exploring chemical space in
medicinal chemistry, e.g. variations of autoencoders,[34’37]
have yet to be adapted for catalysis. There are obvious dif-
ficulties associated with this, particularly maintaining and
varying coordination numbers, geometry of the complexes,
and the oxidation state and spin state of the metal centre.
Instead, a simpler high throughput combinatorial approach
has been adapted by most researchers in the field.

Kulik group developed an approach which uses a small
number of ligands (typically <1000) with reasonably high
symmetry to generate training data. The new ligands and
complexes (>1M) are then generated from combinations of
structural fragments of these training complexes. Proper-
ties were predicted using Artificial Neural Networks (ANNs)
models and achieving a Mean Absolute Error (MAE) = 4.5-
6 kcal-mol™! for AEgar and AE,cease, the barriers for
the two steps in the catalytic cycles (Figure 3). 1381 Macro-
cyclic ligands are particularly suitable for this approach as
they do not have multiple suitable conformers for coordina-
tion. This was further expanded into the concept of ligand
additivity by inferring heteroleptic properties from a stoi-
chiometric combination of homoleptic complexes, which led
to an interpolation scheme, which includes cis and trans
isomer effects. The interpolated adiabatic high-spin to low-
spin splitting (as a weighted average of the spin splitting
of the parent homoleptic complexes) and HOMO energy.
AFEy_r, was found to match with the DFT derived values
(B3LYP/LACVP*, LANL2DZ effective core potential for
transition metals and the 6-31G™ basis for all other atoms)
for Fe(II) complexes with pairs of any of the three ligands:
CH;CN, H»0, and CO, giving MAEs up to 2.6 kcal-mol !
and 0.11-0.25 €V, respectively. 3]

A different study by Gensch, Sigman and Aspuru-Guzik
employed the same combinatorial approach to generate and
predict properties of >300000 monophosphine ligands. [°]

DFT descriptors, calculated with PBEO(D3BJ)/def2-TZVP//

PBEO0(D3BJ)/6-31+G(d,p) method, were generated for 1558
ligands, which were subsequently used to train highly accu-
rate machine learning models to predict properties of new
monophosphine ligands (Figure 5). This led to kraken, a dis-
covery platform of 190 physicochemical descriptors for mon-
odentate phosphine ligands (https://kraken.cs.toronto.

edu). Importantly, all thermally accessible conformers of
the ligands were considered, due to their non—chelating na-
ture. kraken was then used to select a set of 32 commercially
available ligands that samples the entire covered chemical
space evenly. ! This was achieved through dimensionality
reduction of 190 condensed descriptors per ligand (78 de-
scriptors for each conformer including Boltzmann weight av-
erage of the highest and lowest value of each property across
all conformers). k-Means clustering algorithm, which clus-
ters ligands with similar features together, in 4D space was
used to select a diverse set of ligands for screening, leading
to identification of the optimal ligands in Suzuki-Miyaura
coupling reactions of aryl chlorides and aryl triflates, i.e.
highest yields. It is worth noting that depending on how
the descriptors are derived, relative position of ligands to
each other in their chemical space can be significantly dif-
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Figure 3. Combinatorial approach by Kulik group to explore
methane-to-methanol catalyst based on porphyrin ligands (reprinted
with permission from ACS)[38]

ferent. *? This highlights the need for a consistent approach
to featurisation of ligands, particularly within a single class,
e.g. monophosphine, diphosphine, or salen ligands.

The main limitation in these early successes is the lack of
quantification of transition metal chemical space. Building
predictive ML models trained on relatively small datasets
presents uncertainties upon extrapolation into wider chem-
ical spaces. Recent work in Kulik group investigated how
to quantify uncertainty in their ML models, (4344 and to
define distance in chemical space through a set of 25 mixed
continuous and discrete features around the metal centre
(i.e. MCDL-25). 44431 ANN models based on these descrip-
tors achieved a root-mean-square error (RMSE) of around 3
kcal-mol ! in predicting spin-state energies, AEy_ 1, against
DFT values (B3LYP). Feature sets such as nuclear charge,
electronegativity, or covalent radius on the molecular graph,
which are geometry-free, have been found to be even more
effective than MCDL-25 in accurately predicting redox and
ionisation potential, spin—state—dependent metal-ligand bond
length, and AEy_y, for transition metal complexes (Figure
4).1%31 However, the performance of ANN models (used to
explore a space of 5600 complexes, of which 2% was used as
training data), predictably deteriorates for complexes with
high feature—space distances to training data.

Coordination number and geometry are important as-
pects of transition metal space, particularly in catalysis.
Analysis by Kulik based on >240000 mononuclear com-
plexes in the Cambridge Structural Database (CSD) showed
that approximately one third of them are octahedral and
often contain monodentate ligands which can dissociate to
leave empty coordination sites for catalysis. [47] Thus, the
authors proceeded with a design of square-planar tetraden-
tate ligands, leaving two coordination sites for labile mon-
odentate ligands. This went against conventional mecha-

10.1002/cctc.202301475
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Figure 4. Mean absolute error (MAE) for (top) redox and ionisation
potential in eV, (middle) low-spin (LS) metalligand bond length in
pm, and (bottom) EHL in kcal-mol~!. Comparisons are for the
MCDL-25/ANN from ref[#4 along with KRR models trained with
RAC-155, a feature-selected (FS) RAC subset for each property from
ref[46] and the best—overall-performing “universal” URAC 26 feature
set in refl#®]. These results highlight how the systematic RAC-155
outperforms ad hoc MCDL-25. (Reprinted with permission from
ACS)[49]
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Figure 5. Regression performance of machine learning models. lllustrative performance of all seven types of ML models from this study
for the prediction of Vmin (Boltz). BoS = Bag of Substituents; FP = fingerprint representation: circular fingerprints, radius = 2, folded to
1024 dimensions; red FP = reduced fingerprints representation: 100 most important fingerprint dimensions based on the feature importance

of the GBR FP model. (Reprinted with permission from ACS)[40]

nistic understanding of metal catalysed coupling reactions.
However, the targeted reactions in this case were fundamen-

tally different, typically involving redox or electro/photochemical 0 05 1.0 15

processes.
A possible solution for inefficient coverage of transition
metal chemical space is through the use of active learn-
ing. Kulik group applied this approach to discover 3d°
Fe(I1I)/Co(III) chromophores. A consensus in predictions
among 23 DFT methods across “Jacob’s ladder”, an estab-
lished order of DFT methods with increasing accuracy and
computational cost, benchmarked for large datasets of or-
ganic compounds, was used (from BP86 to DSD-PBEP6-
D3BJ).[48’49] An algorithm which sampled new chemical
space for additional training data based on each iteration
of the prediction model led to efficient optimisation in 2D-
chemical space, based on A-SCF gap and multi-reference
character (Figure 6). Candidates with high likelihood (i.e.
>10%) of being a chromophores were used to validate and
retrain the ML models so the ML models were actively im-
proved, leading to a 1000-fold acceleration compared to ran-
dom sampling.!®® This led to the identification of Co(III)
complexes with large, strong-field ligands with more satu-
rated bonds as potential transition-metal chromophores.
Nguyen group adopted a different approach to leverage
the wide chemical space covered by the Cambridge Struc-
tural Database (CSD), using both organic and organometal-
lic structures, and to avoid the question of synthetic via-
bility of the ligands.®!! Two closed-shell TS of the rate-
determining-step (RDS) of the Ullmann-Goldberg coupling

std. dev. of A-SCF gap (eV)

8 T T
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Figure 6. DFT-computed ryp vs A-SCF gap for base complexes
in gen-0 to gen-3. For each complex, the average A-SCF gap over
all DFAs is shown as a circle sized by the corresponding standard
deviation (std. dev.) over all DFAs. The range of values sampled
in each generation is indicated by a convex hull. The target zone is
shown as a rectangle with dashed lines. Normalized stacked marginal
histograms for A-SCF gap and rxp are also shown. (Reprinted with

reactions were optimised with DFT (DLPNO-CCSD(T)/def2~ permission from ACS) Bl

TZVP). These TS structures were used as template to create
the catalophores with the desired geometry and empty space
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for the Cu(I) cation and the substrates. Searching the CSD
with these catalophores identified 32000 of possible ligands
(Figure 7). Their corresponding AG* values (TPSS/def2-
TZVP//GFN2-xT) were used to develop ML models that
can predict AG* values based on non-TS-related descrip-
tors. The best models, using ExtraTrees and Scaled Vec-
tor Machine algorithms, gave RSME = 3.5-6.0 kcal-mol™*
and 75-87% of the predicted AG*¥’s within + 4.0 kcal-mol™*
of the DFT values (the accuracy limit of the training data

10.1002/cctc.202301475

with 584, 94, 41 and 20 neurons, respectively) with very
significant reduction of computational time once the model
is trained.

The Transition State Force Field (TSFF) technique, de-
veloped by Wiest and Norrby using the quantum-guided
molecular mechanics (Q2MM) method, %85 is another ap-
proach which targets computational cost. It leverages very
fast and computationally inexpensive force field calculations
to model transition states, which traditional force fields

against those calculated using DLPNO-CCSD(T)/def2-TZVP).are not capable of doing. The TSFF needs to be devel-
Lastly, the efficient exploration of chemical space for organometadd /trained for each specific reaction, based on DFT gen-

lic catalysts requires the development of cheminformatics
tools which can build and modify complexes in 3D, com-
pared to 2D tools based on only connectivity for organic
compounds. MolSimplify has seen widespread use for this
purpose, despite its original design for geometrically rigid
ground state complexes. 152,53 Modifications has been made
to MolSimplify to enable it to build TS with asymmetrical
geometry and unusual coordination numbers. (511 Alterna-
tively, the CSD Python tool is also a highly flexible tool
and for our own purposes used it to build organometallic
complexes. ®4 The CSD python API loads the molecule as
a class object and can build and edit molecules, such as
adding, removing bonds and atoms, and normalising charges
and hydrogens. The API can be used to add a metal cen-
tre to ligands downloaded from CSD CrossMiner for rapid
building of organometallic compounds. [55]

Computational methods for data
generation

The accuracy of any ML predictive model is ultimately lim-
ited by the quality of the training data, and while experi-
mental data are highly valuable, currently, truly large vol-
ume of data is only accessible computationally. Thus, the
quality of experimental data and the “rung” on “Jacob’s lad-
der” of the DFT method for data generation are an integral
part of developing AI/ML-assisted catalytic workflow. The
larger the training dataset, the more limits are placed on
the DFT method. Usually, lower level molecular modelling
methods are employed to generate their training and vali-
dation data, after benchmarking against higher level DFT
methods to establish their accuracy. This is even more chal-
lenging when TS properties are used as training data, ®! as
optimisation of TS demands much more CPU time than op-
timisation of stable intermediates, ligands and starting ma-
terials. Furthermore, optimisation of TS is also more prone
to errors and failures, which can lead to large amount of
unproductive CPU time. On the other hand, predicting TS
properties based on those of intermediates can be difficult,
as famously demonstrated in the case of rhodium—catalysed
asymmetric hydrogenation. [56]

In this context, the study of Balcells and Aspuru-Guzik,
which used ML algorithms to predict AG* for oxidative ad-
dition of Ir-complexes to Hs directly is intriguing. BT In-
stead of descriptors derived from molecular modelling, full
autocorrelation features, which represented the connectiv-
ity and atomic properties (electronegativity, atomic num-
ber, coordination number and size) of the atoms at the cen-
tre of analogues of Vaska’s complex, were employed. The
results were benchmarked against values calculated with
PBE/def2-SVP for 1947 TS, obtaining the best MAE =
1.74 kcal-mol ™! using a Deep Neural Network (four layers

erated descriptors of a small number of reactions. The de-
scriptors required to train the models are geometry related:
bond lengths, bond angles and torsion angles. Wiest and
co—workers employed TSFF models to predict enantioselec-
tivity of different palladium catalysts in an asymmetric re-
dox relay Heck reaction, through the stereodetermining mi-
gratory insertion step, with R? = 0.89 and Mean Unsigned
Error (MUE) = 1.8 kJ-mol™' against 151 experimentally
determined stereoselectivities (Figure 8). 691 The preferred
absolute stereochemistry was correctly predicted in every
case, suggesting the use of TSFF for rapid prediction of ab-
solute stereochemistry for a class of reactions. Their TSFF
model was trained on 12 separate transition states (M06—
GD3/LANL2DZ(Pd) or 6-314+-G*(other atoms)). Impor-
tantly, conformational search was carried out and the pre-
dicted stereoselectivity was calculated from the Boltzmann
averaged conformations. Analysis of a small set of outliers
linked the poor predictions to the unsatisfactory represen-
tation of m—stacking in the underlying MM3* force field.

Virtual Chemist is a software platform developed by Nor-
rby and Moitessier, which employ Q2MM or Asymmetric
Catalyst Evaluation (ACE) to predict stereoselectivity in
asymmetric catalysis. [61-64] Dye to its speed, four different
usages were proposed: one-by-one design, library screen-
ing, hit optimisation and substrate scope evaluation. The
organic catalyst candidates can be screened in hours and
accuracies within 1.0 kcal-mol ™! for AG*, although the tool
has not been demonstrated with transition metal catalysts.

In spite of the low cost of TSFF, DFT methods are much
more frequently employed in generating data for AI/ML ap-
plications in catalysis. Semi-empirical methods have also
found extensive use in pre-optimisation of complexes and
transition states. Buttar successfully used GFN2-xTB for
conformational sampling of TS for 449 Sy Ar reactions, be-
fore optimisation with wb97xd/6-31+G(d) with SMD solva-
tion model with MAE = 2.93 kcal-mol ™! against experimen-
tal reaction rates. [°®! In this case, a hybrid mechanism-based
Gaussian Process Regression (GPR) model using reaction
rate data, using B3LYP/6-31+G(d) generated descriptors,
predicted AG* values with R? = 0.87 and MAE = 0.80
kcal-mol™!, performing better than wb97xd/6-31+G(d) in
predicting AG*.

The accuracy of DFT training data, commonly accepted
to be about 2-3 kcal‘molfﬂ[%] is an obvious limitation
of using computational data for AI/ML models. Ab ini-
tio methods, such as CCSD(T), give much higher accuracy,
but with prohibitive computational costs for high through-
put calculations. Tuckerman, Miiller and Burke reported
a way to overcome this, [66] using ML to calculate coupled-
cluster energies from DFT densities with errors below 1.0
kcal-mol ™! on the MD17 dataset (1500 geometries and en-
ergies of small molecules in gas phase). [67-69] Thig approach,
known as A-DFT, reduces the amount of training data re-
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quired. This allows for accurate DFT-based molecular dy-
namics simulations even in cases where standard DFT meth-
ods fail and may see wider application in catalysis in the
future.

The combination of B97-3c//GFN2-xTB techniques, i.e.
optimisation with GFN2-xTB followed by energy calcula-
tion with B97-3c, has been developed by Grimme for high
throughput optimisation of transition metal complexes. [70,71]
The method was extended to intermediates and TS in Cu(I)-
catalysed Ullmann-Goldberg coupling reactions by Nguyen
group.[51] Restriction on the atoms coordinating to Cu(I)
was required for pre-optimisation, before successful optimi-
sation of the TS with each ligand. The AG* values ob-
tained with B97-3c//GFN2-xTB were found to have a MAE
= 3.9 kcal-mol™! against those calculated with DLPNO-
CCSD(T)/def2-TZVPP (Figure 9). This level of noise in
the training data compared well with predictions made by
ML models using descriptors based on the catalytic inter-
mediates before the TS: RMSE = 3.5 — 6.1 kcal-mol™" and
73-88% of predictions within + 4 kcal-mol™' of the DFT
calculated AG*. Importantly, the ML models avoid DFT
optimisation and energy calculation of new TS, reducing
the CPU time by up to 90%. Thus, higher level DFT meth-
ods, e.g. TPSS/def2-TZVP//GFN2-xTB or PBE0/def2-
TZVP//GFN2-xTB, were used to generate descriptors for
the ML models, leading to significant improvement to their
accuracy while still reducing the CPU time by a factor of 4
when compared to direct calculation of AG* through opti-
mising the T'S. A similar approach was employed by Ess and
co-workers to automate the building and optimisation of TS
for Pt-catalysed C-H activation of methane.™ A Random
Forrest (RF) model, which predicted the AG* value, was
built based on DFT data of 900 TS (PBE0-D3/Def2-SVP),
but did not perform well with a validation set (R? = 0.29).

Lastly, optimisation of all the T'S with DFT is prone to
failure, particularly in high throughput mode. Moreover,

exploration of ligand space may lead to unsuitable cata-
lysts, for which TS optimisation may correctly fail. Thus,
a significant amount of CPU time may be wasted on these
jobs. Kulik group solved this problem by introducing a dy-
namic classifier which monitors geometry optimisation on
the fly and terminates those which it predicts to be un-
productive. [73.74] This classifier is based on a convolutional
neural network, and makes decisions based on the evolv-
ing geometric and electronic structure and features such as
energy gradient and Mulliken bond orders. This approach
led to >50% reduction in CPU time while having negligible
false-negative predictions (<2%) for 300 potential Mn/Fe
catalysts for oxidation of methane to methanol.

Complex aspects of catalysis

Practical protocols for catalytic reactions include tempera-
ture, solvent, catalyst loading, ratio of ligand(s) to metal, a
base (which is often inorganic and has varying partial sol-
ubility in different solvents at different temperatures), and
possible additives. Thus, the actual catalytic reactions can
be very complex mixtures, which are challenging to describe
with descriptors for AI/ML. The last challenge to overcome
is that the majority of available data for catalytic reactions
in the literature are reaction yields, which cannot be easily
linked to AG* due to interference from side reaction and
unreliable reported reaction times, i.e. reactions are often
left for a fixed time rather than monitored kinetically. These
make the practical application of AI/ML chemical space ex-
ploration and prediction models for transition metal catal-
ysed reactions uniquely challenging.

Nevertheless, a number of successful studies in the last
three years have shown that some of these problems can be
overcome with innovative approach and care while applying
ML algorithms. The prevalent approach focuses on reac-
tion optimisation, through predicting and optimising selec-
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tivity, particularly stereoselectivity. This has the advantage
of avoiding the unreliable reaction yield and reaction time
data. The AAG* value is linked to the two TS giving the
two stereoisomers and the observed stereoselectivity under
kinetic control. The AAG* value can be predicted with an
appropriate regression ML algorithm, based on the amount
of available data and the number of descriptors which can
be fed into the algorithm. The main challenge is the high
computational cost of calculating the TS with sufficient ac-
curacy to predict enantioselectivity (a AAG*F value of 2.1
kcal-mol ™! would translate to a selectivity of >99% e.e.).

Thus, methods to approximate DFT results of TS with
lower computational cost are essential. This was demon-
strated by Wiest and Norrby in predicting stereoselectivity
for the Pd-catalysed 1,4-conjugate addition of aryl boronic
acids to enones. ™ A TSFF model was developed for the re-
action, based on Q2MM calculations and MM3* force field
and training TS data generated with M06/LANL2DZ/6-
31+G*[™ The TSFF model was then incorporated into
CatVS tool to carry out a conformational search. ®”! Boltz-
mann averages for all of the conformers of the four differ-
ent TS for each catalyst were used to calculate the enan-
tiomeric ratio of the products against experimental values.
The predictions were validated experimentally using an au-
tomated screen of 9 ligands, 38 aryl boronic acids, and 22
enones, leading to a mean unassigned error (MUE) of 1.8
kcal-mol ™! and a R? value of 0.88 over 82 examples (Figure
10). This TSFF model was then used to carry out a virtual
screen with 27 ligands and 59 enones. Selected results for 6-
substituted pyrox ligands, which were not part of the train-
ing set, showed discrepancies against DF'T calculations. Un-
fortunately, experimental validation was hampered by the
synthesisability of the ligands. Relatively similar accuracy
was previously observed when CatVS was applied to OsOs-
catalysed cis-dihydroxylation and Rh-catalysed asymmetric
hydrogenation. [°°]

(0]

o o
y=0.8510x ArB(OH),
R?=0.8773 @\ 4()»
°
L ° ),
° %, “pd R

In (e.r) calculated

-6
In (e.r) experimental

Figure 10. TSFF prediction of enantioselectivity in Pd-catalysed
1,4-conjugate addition of aryl boronic acids (reprinted with permis-
sion from ACS)[75]

An alternative approach is making predictions on AAG*
based on the properties of the catalytic intermediates or
starting materials, rather than those of the TS. This has
the benefit of avoiding costly and error-prone DFT optimi-
sation and frequency calculation of TS, which can account
for >90% of the total CPU time of a campaign. [51] However,
care must be taken to ensure that the generated regres-
sion models are robust in extrapolation beyond the training
set. The standard practice of having a separate training
set, test set and validation set is strongly recommended, al-
though practical limitations often prevent it. Sigman and
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Toste has demonstrated the effectiveness of this approach,
using the MO, vibrational and steric descriptors (gener-
ated with M06-2X /def2-TZVP//M06-2X /6-31+G(d,p)) of
the chiral phosphoric acid counterion and the nucleophile
to predict enantioselectivity in a Pd-catalysed intramolec-
ular allylic substitution. " Multivariate Linear Regression
(MLR) models were built with up to 35 descriptors for 16
experimental data points. These interpretable models led
to mechanistic insights on the origin of enantioselectivity
through multiple noncovalent interactions in this dual cat-
alytic system. Another study was reported by Hong and
Ackermann, used ML to design and optimise chiral car-
boxylic acids for cobalt-catalysed C-H alkylations. ["® While
the R? and MAE values (using Linear Support Vector Re-
gression algorithm) are not as good as those reported by
Sigman and Toste, the catalyst, chiral carboxylic acids, re-
actants and reaction temperature (108 descriptors including
buried volume, Sterimol, Fukui function, charge, bond disso-
ciation energies, etc. for 59 reactions) were all included with
3D descriptors generated with rdkit (steric) and GFN2-xTB
(charge, bond order and MOs). The models were used to
predict carboxylic acids which give high enantioselectivity
and yield, which were successfully validated experimentally.
A very similar approach was used to predict enantioselec-
tivity in a pallada—electrocatalysed C—H activation reaction
based on 127 experimental datapoints. ™! A total of 119 de-
scriptors were used, including 13 for the experimental con-
ditions (e.g. properties of solvent, electrolyte, temperature
and current), and ET algorithms was found to be the most
effective, giving R? = 0.91 and MAE = 0.236 kcal-mol~".
An additional benefit of using descriptors based on the
catalyst and starting materials is that some, if not all, the
descriptors for different reactions can be reused. This is par-
ticularly true with ligand/metal combinations which have
rigid structures around the metal regardless of the other
ligands. One example is Cu-bisoxazoline (BOX) catalysts,
which have been used as catalysts for enantioselective cy-
clopropanation, Diels-Alder cycloadditions, and difunction-
alisation of alkenes. Sigman group showed that mechanism-
specific categorisation of curated data sets and parameteri-
sation of reaction components allow for simultaneous anal-
ysis of disparate organometallic intermediates such as car-
benes and Lewis acid adducts. [*"] Experimental data were

curated from the literature on carbene, Lewis acid and radical-

based transformations, i.e. 68 data points from 10 publi-
cations spanning a selectivity window of 0-99% ee. (0.0-3.1
kcal/mol). Comparison of ligand descriptors (M06-2X/def2-
TZVP//B3LYPD3BJ/6-31(d,p)/LANL2DZ(Cu)) and their
weighted contribution in each model reveals the relevant
structural requirements necessary for high selectivity. The
prediction errors ranged from 0.15 + 0.10 to 0.79 £ 0.42
kcal-mol™' (most predictions within 10% ee), depending
on the reaction (Figure 11). The scarcity of high qual-
ity experimental data is a key obstacle in applying AI/ML
to catalysis, and this work showcased a possible workflow
to combine experimental data for related ligand classes in
catalytic reactions with similar stereo-inducing mechanistic
steps. While the model for Cu catalysts cannot be directly
applied to Fe/Ni/Mg/Pd-BOX catalysts, a separate unified
MLR model was found to work on a new combined data
set of 24 data points for these metals and showed similar
accuracy.

Outside stereoselectivity, Sigman and Nozaki applied the
methods described above to optimise phosphine—sulfonate

10.1002/cctc.202301475

ligands in Pd-catalysed copolymerisation of ethylene and
methyl acrylate. [80] The data was filtered based on reaction
temperature (80 °C for homopolymerisation, 80-100 °C for
copolymerisation). A total of 62 descriptors were used with
112 experimental data points to predict the log(MW) of the
polymer products, which depends more on the stability of
the catalyst than on its activity. The models were built with
PLS and LASSO algorithms, and led to the identification of
ligand features which has high impacts on the MW of the
product, such as the size of substituents on the phospho-
rus atom, the electron density and d,2 occupancy of the Pd
atom, and the bite angle of the ligand. A MLR model for
reaction yield of a Pd-Catalysed cyanation of aryl boronic
acids based on mono— and diphosphine ligands was also re-
ported based on the kraken dataset.!®'] A wider substrate
scope was accommodated, with tolerance for boronic acids
bearing electron-withdrawing substituents.

On the other hand, Ess group reported an interesting
study in which DFT-calculated TS and ML were combined
to identify important features for selective olefin oligomeri-
sation with Cr-catalysts.!®?! A Random Forrest model was
built to predict chemoselectivity in oligomerisation of ethy-
lene into 1-octene vs 1-hexene (AAG*) with RMSE = 0.344
kcal-mol ™!, based on 105 TS with Cr(P,N) catalysts and 14
molecular descriptors, i.e. bond lengths, angles, dihedrals,
percent volume buried, and Cr metal center distance out
pocket. Feature importance analysis of the model identified
Cr—N distance, Cr—« distance (distance from Cr to an agos-
tic C-H), and distance out of pocket (distance to the line
between two ligating atoms of the ligand) as the most im-
portant features in enhancing selectivity for 1-octene, which
informed subsequent catalyst designs.

In addition, Aspuru-Guzik, Hein and Sigman developed
a closed-loop system to optimise a Suzuki-Miyaura coupling
reaction on a vinyl tosylate substrate with stereoretention
in batch (Figure 12a).!%3 The process parameters included
temperature, amount of boronic acid, palladium loading,
ligand /palladium ratio, and the ligand as a discrete param-
eter. The Phoenics and Gryffin algorithms were employed
to maximise the yield of the F-product and to minimise the
palladium loading and aryl boronic acid equivalents. 845!
Commercially available monodentate phosphines (365 lig-
ands) were used to define the chemical space through a set
of DFT descriptors which were subsequently condensed into
4 principal components. Subsequently, k-means clustering
was carried out on these to divide the ligand chemical space
into 24 regions, which were used to guide the ligand se-
lection process for screening. A total of 192 experiments
were required to optimise the outcome of the reaction, which
compared well with the traditional approach using Design of
Experiments (DoE), which will likely require 3® x 23 ligands
= 621 experiment to achieve the same objectives.

Mack and Sigman demonstrated another multi-objective
optimisation, i.e. for yield and selectivity, of two sequential
catalytic reactions: an asymmetric Pd-catalysed Hayashi-
Heck reaction and an asymmetric Rh-catalysed hydroformy-
lation through optimisation of the biphosphine ligands (Fig-
ure 12b). [16] These reactions are the first two steps of the
synthesis of a TRPA1 inhibitor and were optimised sepa-
rately in this study. (861 In addition to the previously em-
ployed steric and electronic descriptors, quadrant-specific
descriptors for ligands containing different symmetry ele-
ments were included, e.g. the percent buried volume (Vi)
Application of a classification algorithm to the high through-
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Figure 11. (a) Grouping of substrates based on proposed intermediates and subsequent classification using PEOE14 descriptor. (b)
Multivariate regression analysis of Cu-BOX-catalyzed reactions (68 reactions). Plot of cross-validation [LOO and k-fold (k = 4)] and external
validation (preqR?2) by pseudorandom 50:50 partitioning of data into training set: validation set. (c) Plot of carbene-based reactions (32
reactions) being removed and held as a validation set. (d) Plot of six individual publications being removed (48 total reactions) and held as
a validation set (LBRO = leave six reactions out). (Reprinted with permission from ACS) (15!
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Figure 12. (a) Suzuki-Miyaura coupling reaction on a vinyl to-
sylate substrate for closed-loop optimisation;[83] (b) consecutive
asymmetric Pd-catalysed Hayashi-Heck reaction and asymmetric Rh-
catalysed hydroformylation for ligand optimisation. [16]

put experimental data of the Hayashi-Heck reaction strongly
linked reactivity with the phosphorus lone pair occupancy
of the ligand, in agreement with established mechanistic un-
derstanding. 1891 Application of a logistic regression classifier
on the hydroformylation step identified the buried volume
and total ligand dipole as important descriptors. For regios-
electivity of the first step, an MLR algorithm found strong
correlation to two parameters, the computed anisotropic
phosphorus NMR shielding and the occupancy of the o*
orbitals of the P-C bonds. After removal of some outliers,
a two-term MLR model was found for hydroformylation re-
gioselectivity using an electronic parameter PC occupancy
and a steric parameter %Vyp,.NE. This V., descriptor was
also found to be linked to enantioselectivity. Taken together,
the workflow led to the identification of the less often used
ligands (S)-HexaMeO-BIPHEP and Walphos W003 for the
two steps, which were validated experimentally to give the
final product in excellent yield and purity.

Conclusions and outlook

Application of Al and ML to transition metal catalysis is
a rapidly evolving field of research with unique challenges.
Recent publications have shown that it is possible to pre-
dict AG* and AAG* with ML to reduce the resources re-
quired for direct TS calculations. They included a wide
range of catalytic reactions, including coupling reactions,
1,4-addition of boronic acids to enones, cyclopropanation
and oxidation of methane to methanol. Many of these suc-
cesses focused on optimisation of the catalyst or catalytic
process with relatively small experimental datasets. In this
context, the applicable ML algorithms are somewhat lim-
ited, and the most advanced neural networks are often ex-
cluded. Thus, the scarcity of high quality experimental
data, particularly kinetic data, is a key obstacle which needs
to be addressed in order to progress the field. %%
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Chemical space exploration for transition metal catalysts
has been effectively demonstrated using a combinatorial ap-
proach with monophosphines and porphyrin-type ligands.
Wider chemical space exploration may be supported using
the CSD, or drug-design cheminformatics techniques. Some
recent publications have also reported guided exploration,
instead of a randomised approach, of transition metal chem-
ical space to achieve more efficient coverage.

Lastly, the complexity of transitional metal catalysis led
to highly complex chemical systems which need to be ad-
dressed with reliable conformational searches, 3D structural
and electronic descriptors and DFT methods which balance
between computational cost and accuracy. These are unique
challenges and are where exciting innovations and discover-
ies will be made in this area of research. In this regard,
the work of Balcells group, including their recent publica-
tion on predicting organometallic properties with natural
quantum graphs, 91 and the autonomous reaction network
exploration in catalysis by Reiher indicate exciting develop-
ments in computational catalysis in the near future. [92]
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