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ABSTRACT

Context. The method of spatial seismology can be applied to the amplitude profile of transverse coronal loop oscillations to constrain
the distributions of physical parameters, such as the loop density, magnitude of the magnetic field, and so on.
Aims. We intend to develop and apply a practical spatial seismology technique to detect physical parameters of plasma and validate
its effectiveness by comparing it with other methods.
Methods. A spatial seismology inversion was conducted by numerically optimizing a parametric dynamic model of the loop’s density
stratification and magnetic field variation to best fit the measured amplitude profile of the loop.
Results. The spatial seismology inversion technique developed here was applied to a transverse coronal loop oscillation that occurred
on 2013 April 11, whose oscillation amplitude profile of both the fundamental mode and first overtone was reported in previous
work. The consistency between the time domain analysis and spatial seismology has been verified. Meanwhile, we accounted for the
asymmetric profile of the fundamental mode by forward modeling and we derived the magnetic field distribution by inverse modeling,
which is coincident with that of the extrapolated one. In addition, spatial seismology inversion was applied to the transverse oscillation
event on 2022 March 30 to obtain the distribution of the loop’s density and magnetic field, which are compared with the results derived
from the differential emission measure (DEM) diagnostics and the direct potential field extrapolation.
Conclusions. Spatial seismology inversion can be used as an effective method to independently measure various physical parameters,
for example the density and magnetic field of coronal loops, which are consistent with the results obtained by DEM diagnostics and
potential field extrapolation.
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1. Introduction

Physical parameters such as the magnetic field and density are
vital factors that allow for the eruptions and atmospheric fluc-
tuations on the Sun to be determined. Therefore, measuring the
local physical plasma parameters on the Sun is a focal topic in
solar physics research. Solar magneto-seismology (SMS) is a
method to determine these key physical parameters by, for exam-
ple, standing and/or propagating waves (Roberts et al. 1984).
The transverse coronal loop oscillations triggered by an occa-
sional solar eruption are usually used in SMS (Aschwanden et al.
1999; Schrijver et al. 1999), because of its remarkable character-
istics in observations and its strong dependence on plasma den-
sity and the magnetic field. For a review, readers can refer to
Ruderman & Erdélyi (2009).

Specifically, SMS tries to measure oscillation periods of
the fundamental mode of kink waves to calculate the average
Alfvén speed and then the average magnetic field (Roberts et al.
1984; Aschwanden & Schrijver 2011). The average magnetic
field can also be measured by radio observations of the bright-
ness temperature of the third-order gyroresonance emission
(Vourlidas et al. 2006). However, when it comes to measuring

the distribution of the magnetic field, conventional seismology
that is limited to temporal domain analysis is challenging.
Commonly used methods to estimate the magnetic field distri-
bution include magnetic field extrapolations (Verwichte et al.
2013; Guo et al. 2015; Erdélyi et al. 2022), spectropolarimetric
inversions (Schad et al. 2016), and some other complicated and
cumbersome procedures. As a typical extrapolation method,
the potential field model computes the vector magnetic field by
extrapolating the normal magnetic field from the photosphere
observed by, for example, the Helioseismic and Magnetic
Imager (HMI; Scherrer et al. 2012; Schou et al. 2012) using
the Green’s function method, for instance. Meanwhile, with
spectropolarimetry one inverts the vector magnetic field by
numerically optimizing a parametric radiation transfer model
to best fit observed Stokes spectra (Lagg et al. 2004; Lagg
2007; Schad et al. 2016), which is one of the most accurate
methods for a direct magnetic field measurement. As for other
physical parameters, differential emission measure (DEM)
diagnostics provides estimates of the density and temperature
along the loop (Weber et al. 2004; Hannah & Kontar 2012;
Aschwanden et al. 2013; Plowman et al. 2013; Cheung et al.
2015; Su et al. 2018). On the other hand, the SMS method could
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also employ the period ratio of the fundamental mode and the
first overtone of the transverse oscillation to determine the den-
sity scale height (Andries et al. 2005a,b, 2009a; Arregui et al.
2005; Goossens et al. 2006; Dymova & Ruderman 2006;
Van Doorsselaere et al. 2007; Verth et al. 2007; Ruderman et al.
2008). Furthermore, the electron density can be derived from
the intensity ratio of two Fe XIII lines at 1074.7 and 1079.8 nm.
Then, combined with the phase speed measured by a wave-
tracking technique, the magnetic field on the plane of sky can
be obtained (Yang et al. 2020a,b). In addition to the density
stratification along the loop axis, the density stratification across
the axis also affects the eigenvalues and may produce damping
(Arregui et al. 2005; Dymova & Ruderman 2006).

It can be seen that the temporal domain SMS has no theo-
retical advantages when compared with other methods in mea-
suring the density and magnetic field, and it has some obvious
limitations. First, it is difficult for the temporal domain SMS
to determine the magnetic field distribution, while only the
average magnetic field can be obtained with the fundamen-
tal mode. Second, it depends on the detection of the first
or higher order overtone to derive more information about
the physical parameters. In fact, the detection about overtone
depends on the spectral analysis of, for example, the wavelet
transform (Verwichte et al. 2004; Duckenfield et al. 2019) or
the oscillation profile fitting (Aschwanden & Schrijver 2011;
Verwichte et al. 2013; Guo et al. 2015). However, it is difficult to
detect a measurable signal of an overtone for most of the coronal
loop oscillations. In fact, most of them have no obvious visi-
ble overtone components. Third, the temporal domain SMS is
based on the assumption that a coronal loop is symmetric in both
geometry and magnetic field properties, while the coronal loops
in reality are most likely symmetric in geometry (close to a semi-
circular loop path) but asymmetric in magnetic field distribution.
The temporal domain SMS has a limited ability to diagnose the
asymmetric physical properties of the coronal loops.

However, if applying SMS in the spatial domain rather than
in the temporal domain, the above limitations can be removed
up to a large degree. The governing equation of transverse
loop oscillations is a Sturm-Liouville problem for the differen-
tial equation of second-order on a finite interval with Dirichlet
boundary conditions (Dymova & Ruderman 2005). The tempo-
ral domain SMS is only based on the eigenvalues of the gov-
erning equation, while the spatial domain SMS, called spatial
seismology, attempts to take advantage of its eigenfunctions,
which have a certain distribution and can provide more con-
straints on the physical parameters than the pure eigenvalues.
Erdélyi & Verth (2007) found three sets of analytic solutions
for the governing equation using the assumption of three dif-
ferent density profiles, respectively, and analyzed the numerical
solution of the fundamental tone. Verth et al. (2007) numerically
exhibited that the antinode of the first overtone shifts toward
the footpoints with the density scale height decreasing, which
implies that the density scale height depends on the distribution
of the overtone amplitudes. In addition, it has been reported that
the shift of the first overtone’s antinode can be used to estimate
the magnetic expansion factor Γ = ra/rf , where ra and rf are the
minus radii of the loop at the apex and footpoint, respectively
(Verth et al. 2008). Additionally, under an approximation of a
thin magnetic slab embedded in a nonmagnetic weakly asym-
metric environment, the magnetic field strength could be approx-
imately determined with the relative amplitude difference of the
sausage mode between the two sides of the slab (see Oxley et al.
2020). Zsámberger & Erdélyi (2022) subsequently generalized
this model to an asymmetric magnetic environment and pro-

posed the amplitude ratio technique and the minimum pertur-
bation shift technique for spatial seismology. All of the above
theories are the foundation for seismology in the spatial domain
and reveal the feasibility of spatial seismology. As for obser-
vations, the amplitude profile of a transverse oscillation, which
occurred on 2001 September 15 and was observed by the Transi-
tion Region And Coronal Explorer (TRACE), was first reported
by Verwichte et al. (2010).

For this work, we developed a spatial seismology technique,
which allows asymmetric distributions of the physical parame-
ters. Our intention was to detect the magnetic field and density
of coronal loops by means of spatial seismology and compare
the results with DEM diagnostics and potential field extrapola-
tion. The paper is organized as follows: the inversion, based on
spatial seismology, is introduced in Sect. 2. The effectiveness of
spatial seismology inversion has been validated by applying the
method to two specific events, as explained in Sect. 3, and the
conclusion and discussion are in Sect. 4

2. Theory and method

The governing equation of transverse coronal loop oscilla-
tions can be derived from linearizing the magnetohydrodynamic
(MHD) equations and one thus obtains (Dymova & Ruderman
2005, Eq. (21))






















∂2u

∂s2
+

ω2

c2
k(s)

u = 0

u = 0, at s = 0, L,
(1)

where c2
k = 2B2[µ0(ρi + ρe)]−1 is the kink mode speed, and ρi

and ρe are the internal and external density, respectively. This
equation was derived using the assumption of a straight flux
tube. Here, the variable u denotes the radial velocity along the
tube. Equation (1) was expressed with a mathematical proxy Q,
which was constructed mathematically and proportional to u in
Dymova & Ruderman (2005). The successful application of the
seismology in spatial domain depends on solving Eq. (1). How-
ever, it is not easy to solve Eq. (1) analytically, which requires
some assumptions and model simplifications. Erdélyi & Verth
(2007) solved the governing equation as examples to demon-
strate the power of the method, and under the assumption that the
density profiles are a step function, a linear function, or a hyper-
bolic cosine function. Chen et al. (2022) also found an analytic
solution of a coronal loop with a linear geometric profile. In spa-
tial seismology it is easier to proceed with numerical rather than
analytical solutions to the governing equation. Therefore, Eq. (1)
can be rewritten in a dimensionless form as (Chen et al. 2022)


















y′′(x) + 2π2 1 + ε
τ2

ϕ(x) · y(x) = 0

y(0) = y(1) = 0|boundary

, (2)

which is convenient to be solved numerically. Here, τ =
(2π/ω)/(L/vA,f) is the dimensionless period, and ε = ρe/ρi is the
ratio between the external and internal density, with an empir-
ical value of 0.1 (Nakariakov & Ofman 2001). The parameter
x = s/L is the normalized distance along the loop, y = u/vA,f
is the dimensionless velocity, and ϕ(x) = (n(x)/nc)(B(x)/Bc)−2

depends on the distribution function of the density and magnetic
field along the loop, where nc and Bc are the chosen charac-
teristic density and magnetic field, respectively. For instance,
for a loop with a semicircular axis, uniform magnitude for
the magnetic field, B(x) = B0, and an exponentially decay-
ing density stratification, ne = n0 · exp [−(L/πH) sin(πx)], we
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have ϕ(x) = exp [−(L/πH) · sin(πx)]; whereas, for a loop with
a uniform density, ρ = ρ0, and a dipole magnetic field B =
B0(1 + h/D)−3 (Aschwanden 2005; Erdélyi & Verth 2007), we
have ϕ(x) = [1+(L/πD) ·sin(πx)]6. We note that H and D denote
the density scale height and the embedding depth of the mag-
netic charge, respectively. The former φ(x) can be used to solve
for the eigenvalues of the governing equation dominated by den-
sity stratification, to determine the density scale height L/πH,
and to explain the observational result of P1/P2 < 2 (reported
in Duckenfield et al. 2018; Guo et al. 2015), as shown in Fig. 1a
(also refer to Andries et al. 2005a). It must be pointed out that we
neglected the stratification across the loop axis, that is, the effect
of a transitional layer, which can actually also cause damping
and changes of periods (Ruderman & Petrukhin 2022).

On the other hand, Fig. 1b reveals how the period ratio P1/P2
varies with the magnetic field. We note that the effect of mag-
netic field variation is opposite to that of density stratification
on the period ratio and can be used to explain the observational
result of P1/P2 > 2 (De Moortel & Brady 2007; Pascoe et al.
2016). One interpretation is that 1/P ∝ cK ∝ vA = B/

√
µ0ρ, and

thus the magnetic field variation plays an opposite effect when
compared with that of density stratification. Figures 1g,h exhibit
the Alfvén speed distribution along the loop in different L/πH
or L/πD, where VA0 = B0/

√
µ0ρ0 is a characteristic speed. The

local Alfvén speed appears to be a decisive quantity for the oscil-
lation property. For the kink mode oscillation, the phase speed is
associated with the Alfvén speed (Roberts et al. 1984). Thus the
distribution of VA determines the eigenvalues of the oscillation
and then the eigen modes.

Here, we adopted the dipole field to solve the governing
equation. The dipole field model approximates the measured
magnetic field of the coronal loop well (Schad et al. 2016), and
the dipole model only introduces one free parameter, the embed-
ding depth D of the magnetic charge, to describe the magnetic
field distribution. The impact of the magnetic field on P1/P2 can
also be explained by the tube expansion (Ruderman et al. 2008;
Verth et al. 2008). In the first order approximation, the period
ratio reads as

P1

P2
= 2

[

1 +
3(Γ2 − 1)

2π2

]

. (3)

Here, Γ = ra/rf is the expansion factor. It is reasonably expected
that the tube expansion and the magnetic field variation have
similar effects on the period ratio. In the case of flux conser-
vation, the flux tube expansion is caused by the attenuation of
the magnetic field with loop height. Therefore, employing flux
conservation Bar2

a = Bfr
2
f , we then obtain Γ = (1 + L/πD)1.5. It

must be pointed out that the eigenvalues depend on both density
stratification and flux tube expansion. Here, we only discuss the
impact of the tube expansion.

Figures 1c–f exhibit the eigenfunctions (amplitude profiles)
of the fundamental mode and the first overtone dominated by
density stratification and magnetic field variation, respectively.
Specifically, Figs. 1c and e show the effect of density stratifica-
tion on the fundamental mode and the first overtone, correspond-
ing to ϕ(x) = exp [−(L/πH) · sin(πx)] in Eq. (2). Figures 1d and f
denote the effect of magnetic field variation, corresponding to
ϕ(x) = [1 + (L/πD) · sin(πx)]6. For the fundamental mode, den-
sity stratification broadens the eigenfunction, while the magnetic
field variation narrows it. In the case of a larger L/πH, the apex
is relatively thinner while the footpoints of the loop are relatively
denser, which results in a greater amplitude due to more inertia
near the footpoints. However, a larger L/πD means a stronger
field at the footpoints, where the amplitude should be smaller

since the magnetic field offers a restoring force during the oscil-
lation. For the first overtone, its antinode shifts toward the foot-
points when density stratification is dominant, while it departs
from the footpoints when the magnetic field variation is domi-
nant (Verth 2007; Verth et al. 2008). One qualitative explanation
is that the density provides inertia but the magnetic field provides
a restoring force, and thus a strong magnetic field at the foot-
points can push the antinodes toward the center while the den-
sity has the opposite effect. It must be pointed out that the results
in Fig. 1e are the same as those in Verth et al. (2007, 2008). We
redrew it in order to emphasize the impact of different physi-
cal parameters on the eigenmode, leading to spatial seismology
accordingly. Verth et al. (2007) found a good linear approxima-
tion between the normalized antinode shift and the density scale
height,

|∆zAN|
L
= 0.028

L

H
. (4)

In addition, the antinode shift can also be used to estimate the
tube expansion by the relation (Verth et al. 2008; Andries et al.
2009b)

|∆zAN|
L
= 0.294(Γ − 1), (5)

where |∆zAN| is the shift displacement of the first overtone’s left
(right) antinode from the regular position of 0.25L (0.75L). Both
density stratification and flux tube expansion contribute to the
position of the antinode shift, as shown in Figs. 1e and f. Both the
density and magnetic stratifications may take effect concurrently,
and therefore it may be hard to separate one from the other. How-
ever, if we find that the antinodes shift toward both footpoints,
we may assume that density stratification is dominant, in which
case the density scale height can be estimated using Eq. (4). On
the contrary, if the antinodes become closer to the midpoint of
the loop, we may assume that the flux tube expansion is domi-
nant and the expansion factor Γ can be estimated by Eq. (5).

However, a first overtone is often hard to detect, let alone
performing measurements of its amplitude profile and the posi-
tion of the antinode. On the contrary, the fundamental mode can
be measured for many transversely oscillating coronal loops, and
thus it is easier to obtain the amplitude profile along the loop of
the fundamental tone than the first overtone. Therefore, in order
to consider the feasibility of spatial seismology, the fundamental
mode should be investigated.

We consider a simple case with just one parameter in which
the magnetic field is constant and the density exponentially
decays with a density scale height H. This assumption was
employed by Andries et al. (2005a) to solve the eigenvalues of
the governing equation. By numerically solving Eq. (2) with
ϕ(x) = exp [−(L/πH) · sin(πx)] using the shooting method, we
obtained the normalized amplitude distribution map of the fun-
damental mode against L/πH, as shown in Fig. 2.

When we measured the amplitude of the fundamental mode
at a certain position of the coronal loop; the result in Fig. 2 can
be used to determine the magnitudes with different L/πH. For
illustration purposes, we plotted the normalized amplitude of
the fundamental mode against L/πH at x = 0.1, 0.15 , and 0.20
(Fig. 2b), which is a monotonic function. As seismology in the
temporal domain determines L/πH by the monotonic function
of P1/P2 against L/πH (Fig. 1a), in applying spatial seismol-
ogy, one can do that using a normalized amplitude distribu-
tion (Fig. 2). Furthermore, applying the temporal seismology
using the period ratio provides only one constraint; whereas, in
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Fig. 1. Effect of density stratification and the magnetic field variation on the period ratio P1/P2 and on the eigen functions of both the fundamental
mode and the first overtone. Panel a: period ratio varying with L/πH. Panel b: similar to panel a, but with L/πD. Panel c: amplitude profiles of
the fundamental mode for different values of L/πH, denoted by different line styles. Panel d: similar to panel c, but for different values of L/πD.
Panel e: amplitude profiles of the first overtone for different values of L/πH. Panel f : similar to panel e, but for different values of L/πD. Panel g:
Alfvén speed distribution for different L/πH. Panel h: similar to panel g, but for different L/πD. In panels a,c,e, we fixed L/πD = 0 to ensure that
eigenmodes and eigenvalues are only affected by the density variation, and in panels b,d,f, we fixed L/πH = 0.
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Fig. 2. Normalized amplitude distribution map of the fundamental
mode. Panel a: 2D plot of the normalized amplitude of the fundamen-
tal mode with varying L/πH and x. When fixing a certain L/πH, one
can get an amplitude profile of the fundamental mode along the loop.
Panel b: normalized amplitude of the fundamental mode against the
L/πH at different positions on the loop.

using spatial seismology, the estimated amplitude at each loca-
tion along the waveguide can provide a constraint. Therefore, all
the measured data can be used to determine the density scale
height by numerically minimizing a parameter of χ2.

In addition, spatial seismology can implement multi-
parameter regression, because the amplitude measured at each
position provides a constraint. In detail, the density and mag-
netic field distributions can be taken into account by adding
more relative parameters to ϕ(x; k1, k2, . . .) in Eq. (2), where
k1, k2, . . . are the undetermined coefficients associated with the
physical parameters of plasma. For instance, we could con-
sider both of the density and magnetic field variations with
a double parameter ϕ(x) (see Sect. 3.2), and we could also
consider an asymmetric distribution of the magnetic field by
adding an extra parameter in ϕ(x) (see Sect. 3.1). Then, we
substituted ϕ(x; k1, k2, . . .) into Eq. (2) and numerically solved
the equation by the shooting method to obtain the funda-
mental mode ψ(x; k1, k2, . . .), which depends on k1, k2, . . . as
well.

Comparing it with the measured amplitude profile, the data
points {xi, ηi}, where i = 1, 2, . . ., and the fitting goodness χ2

could be computed,

χ2(k1, k2, . . . ; c) =
N

∑

i=1

(ψ(xi; k1, k2, . . .) − c · ηi)2

ψ(xi; k1, k2, . . .)
, (6)

where N is the number of the measurement of the amplitude,
and the coefficient c with a dimension of Mm−1 was used to con-
vert the measured amplitude ηi to the normalized one. With an
optimization algorithm such as simulated annealing, the relative
parameters, k1, k2, . . ., can be eventually determined. Since the
degree of freedom of χ2 is N − 1, and an undetermined parame-
ter c is introduced in Eq. (6), at least two more amplitude values
than the number of free parameters are required. In fact, because
of the errors in the amplitude measurement, in order to make a
strong constraint, we needed to measure as many amplitudes as
possible.

To summarize, spatial seismology uses a combination of
coronal loop oscillation observations, the governing equation
of coronal loop oscillations, and the optimization algorithm of
simulated annealing to determine the magnetic field and density
in coronal loops (Fig. 3). This method has a number of advan-
tages over temporal seismology. The seismology in the tempo-
ral domain relies on, for example, the measurement of the first
overtone, which is hard to obtain. However, spatial seismology
only requires the distribution of the fundamental mode, which
can be obtained relatively easily for all coronal loop oscillations.
In addition, it is the eigenvalue of the governing equation, or
the period, that is considered when making use of seismology
in the temporal domain, while the eigenfunction is taken into
account when implementing spatial seismology. The former can
provide only one constraint, while the latter can provide several.
Therefore, by applying spatial seismology, one can invert the
parameters form the given physical models. Last but not least,
the asymmetric distribution can be derived from spatial seismol-
ogy but cannot be done by temporal domain seismology because
too few constrains are provided in the latter.

3. Application to observations

In this section, we explain how we applied spatial seismology to
observations in order to analyze the density and magnetic field
and verify the consistency between the modeling results and the
measurements.

3.1. Oscillation on 2013 April 11

A coronal loop was disturbed by an M6.5 class flare on 2011
April 11 and a characteristic transverse oscillation was trig-
gered. Guo et al. (2015) detected both the fundamental mode
and first overtone for this event, with periods of 519.9 ± 55.3 s
and 334.7 ± 22.1 s, respectively. The measured period ratio is
P1/P2 = 1.55 ± 0.19, where the error 0.19 was derived from
the error transfer formula. The reason why the period ratio devi-
ates from two is a result of multiple factors, such as the finite
tube width and curvature (McEwan et al. 2006), density strat-
ification (Andries et al. 2005a,b; McEwan et al. 2006), and the
magnetic field variation along the loop (Verth et al. 2008). A
period ratio less than two may suggest that density stratification
plays a major role in the oscillation. In addition, the amplitude
profiles of the fundamental mode and first overtone were also
measured. The first overtone’s profile is too noisy to provide
accurate information. However, it is fortunate that the amplitude
of the fundamental mode could be measured at seven locations
in the southern part of the coronal loop. The fundamental mode
shows an asymmetric feature, where the amplitude peak shifts
to the southern footpoint, which is different from the theoretical
result in Fig. 1c. Since the observed oscillation has revealed both
temporal and spatial information, we suggest carrying out three
studies:
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Periods
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Fig. 3. Flow chart of SMS. The green boxed region exhibits the spatial SMS inversion and the yellow boxed region illustrates how the temporal
SMS determines the physical parameters.

1. To verify the consistency of the seismology results in the
temporal and spatial domains,

2. To obtain the eigenfunction (amplitude profile) of the funda-
mental mode by a forward modeling method and explain the
observed asymmetry of the amplitude profile, and

3. To invert the magnetic field distribution by spatial seismol-
ogy and compare the results with the extrapolated field based
on the potential field model.

First of all, according to P1/P2 = 1.55 ± 0.19 and the relation
shown in Fig. 1a, we find that L/πH = 2.28+0.98

−0.82 ∈ [1.43, 3.62].
The difference between the upper and lower errors is due to
the nonlinear relation of L/πH against P1/P2. According to the
seven sets of the amplitude profile (xi, ηi) of Fig. 6a in Guo et al.
(2015), an expression for χ2 with six degrees of freedom (DOF)
can be written as follows:

χ2
1

(

L

πH
, c

)

=

7
∑

i=1

(ψ(L/πH, xi) − c · ηi)2

ψ(L/πH, xi)
. (7)

For this study, the supplementary parameter c was used to con-
vert a physical amplitude η with the dimension of megame-
tre (Mm) to a scaled amplitude yi = c · ηi as shown in Fig. 2,
and ψ is the eigenfunction of the fundamental tone, derived by
solving Eq. (2) with ϕ(x) = exp[−(L/πH) · sin(πx)].

Through a simulated annealing algorithm, we obtained
L/πH = 1.88+1.06

−1.04 ∈ [1.04, 3.94] with χ2
1,min = 0.47 and c = 0.22.

The error was estimated by sampling the amplitude values within
the range of the error bar 100 times to invert the density scale
height and then take the maximum and minimum, respectively.
The inversion result of L/πH is consistent with the value of
2.28+0.98

−0.82 derived from the temporal domain analysis within the
range of errors.

Second, we intended to forwardly fit the amplitude pro-
file by substituting the measured density and magnetic field
into the governing equation to account for the asymmetry of
the fundamental mode. We adopted the extrapolated magnetic
field derived from the potential field model (see Guo et al. 2015,
Fig. 6a) and the density scale height L/πH = 2.28 derived from
the period ratio. By solving Eq. (2) using the shooting method,
the fundamental mode was obtained as shown in Fig. 4a. It can
be seen from Fig. 4a that the forward fitting result agrees with
the measured amplitude profile in Guo et al. (2015). It must be
pointed out that the measured amplitude was multiplied by a
coefficient, 0.11 Mm−1, converted to the scaled amplitude. Doing
so can minimize the standard deviation between the measured
amplitude and the result from the numerical solution. Since only
the magnetic field is asymmetric in our parametric model, the
asymmetry in the abnormal fundamental model should be caused
by the distribution of the magnetic field, which supports the
explanation in Guo et al. (2015).

Finally, using the known physical parameters to calculate
the fundamental mode can only illustrate the feasibility of the
numerical method to solve the governing equation. In fact, it is
of greater value to use the fundamental mode to invert the local
unknown physical parameters. Therefore, we took advantage of
such a good observational result to invert the magnetic field dis-
tribution and compared it with the extrapolated magnetic field
to verify its accuracy. Just as we have done when inverting the
density scale height, we minimized a new expression of χ2 as
defined below,

χ2
2

(

L

πD1
,

L

πD2
, c

)

=

7
∑

i=1

(ψ(L/πD1, L/πD2, xi) − c · ηi)2

ψ(L/πD1, L/πD2, xi)
. (8)
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Fig. 4. Results of forward fitting and spatial seismology inversion for
the oscillation event on 2013 April 11. Panel a: asymmetric fundamen-
tal mode derived from forwardly solving the governing equation. The
dashed line denotes the numerical solution of the fundamental mode and
the solid points with error bars refer to the amplitude profile measured
in Guo et al. (2015), multiplied by a coefficient of 0.11 Mm−1. Panel b:
comparison of the magnetic field derived from spatial seismology inver-
sion and potential field extrapolation. The red dashed line denotes the
inversion result by spatial seismology and the solid points with error
bars represent the extrapolated field.

Here, the parameters L/πD1 and L/πD2 determined the
asymmetric distribution of the magnetic field as follows,

B0(x) =































B0

[

1 +
L

πD1
sin(πx)

]−3

, 0 ≤ x ≤ 0.5

B0

[

1 +
L

πD2
sin(πx)

]−3

·
[

1 + L/πD1

1 + L/πD2

]−3

, 0.5 < x ≤ 1.

(9)

Such a constructed magnetic field conforms to an approxi-
mate relation for a dipole field, B = B0(1 + h/D)−3, on the left
and right halves, respectively. With the magnetic field given as
by Eq. (9), we could substitute

ϕ(x) = exp[−(L/πH) · sin(πx)] · (B(x)/B0)−2

into Eq. (2) to find the amplitude profile of the fundamen-
tal mode for different parameters L/πD1 and L/πD2, that is,
ψ(L/πD1, L/πD2). Here, we took L/πH = 2.28, derived from the
period ratio P1/P2, to reduce the free parameters to two quanti-
ties. Because only seven amplitudes were measured, it was com-
plicated to constrain three parameters with χ2 of six DOFs. Then,
we found L/πD1 = 0.58 and L/πD2 = 0.17, corresponding to
the minimum χ2

2, by using the simulated annealing algorithm as
well. The inversion result is shown by the red dashed line in

Fig. 4b, which is in good agreement with the extrapolated result
indicated as the gray points with error bars. It is revealed that
spatial seismology inversion can be used as an effective method
to obtain the distribution of the magnetic field.

In fact, when we adopted the model that derives the den-
sity scale height from the period ratio (Andries et al. 2005a), we
could not ignore that it assumes a uniform magnetic field distri-
bution, which contradicts the model used in spatial seismology
inversion. We actually attempted to consider L/πH as another
free parameter to carry out incersion. When adopting such three
free parameters, the inversion result always slides to the bound-
ary of the parameter space, which only provides a trivial result.
This is because there are only seven measured amplitudes of
the fundamental mode due to the complex extreme-ultraviolet
(EUV) background. Further, because of the large errors of the
measurements, the constraints are so weak that we have to make
a compromise during the parameter inversion. If we consider
L/πH as a free parameter, we have four undetermined param-
eters. Using only six DOFs to constrain four free parameters
is too limiting. Therefore, we made a simplification, using the
period ratio P1/P2 to fix L/πH, thereby reducing the complex-
ity of the inversion. In fact, when comparing the final inversion
results with the observations (Fig. 4), it indicates that our sim-
plification is acceptable.

3.2. Oscillation on 2022 March 30

On 2022 March 30, an X1.3 class flare occurred in AR 12977.
The flare started at 17:27 UT, ended at 17:46 UT, and peaked at
17:37 UT, which triggered oscillations of a cluster of coronal
loops at (W25.8◦, S17.9◦), located in the southern direction from
the flare epicenter.

Figure 5 shows the full-disk observation of the Sun
and the chosen coronal loop in the 171 Å waveband at
17:20 UT, recorded by the Atmospheric Imaging Assembly
(AIA; Lemen et al. 2012) on board the Solar Dynamics Obser-
vatory (SDO; Pesnell et al. 2012). The loops are oriented from
east to west, almost parallel to the equator. We checked the base
and running difference movies from 17:20 UT to 18:20 UT and
found an obvious transverse oscillation occurring at 17:40 UT.
We selected 20 slices along the north-south direction as shown
in Fig. 5. Thanks to the specific loop location and its apparent
north-south polarization, the oscillation profile can obviously be
revealed in the time-distance diagram from slice 6 to slice 20, as
plotted in Fig. 6.

Figure 6 shows the time-distance diagram of slices 6–20,
which excellently reveals the amplitude profile along the loop.
As the slice moves from east to west, the amplitude of the oscil-
lations becomes larger. Such a favorable observation in the spa-
tial domain can offer a good opportunity to obtain constraints for
spatial seismology analysis. For further study, we used a damp-
ing cosine function,

A(t) = A00 + A01(t − t0) + A1 cos
[

2π
P1

(t − t0) − φ01

]

e−
t−t0
τ1 , (10)

to fit the oscillation evolution. Here, A00, A01, A1, t0, τ1, φ01, and
P1 represent the displacement, linear drift velocity, oscillation
amplitude, reference time, damping timescale, initial phase, and
fundamental period, respectively. Since we need to use the scaled
amplitude ultimately, it is convenient to directly use pixels as the
units of amplitude in the fitting instead of megametre (Mm) or
arcsec. The fitting curves are denoted in Fig. 6 and the fitting
results are listed in Table 1.
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Fig. 5. SDO/AIA 171 Å image and the extrapolated magnetic field. Panel a: full-disk image in 171 Å at 17:20 UT. Panel b: subregion of the
SDO/AIA image overlaid with the line-of-sight magnetic field observed by SDO/HMI. The loop path is denoted by the green dashed line and
the selected slices are marked by the red dashed lines. Panel c: potential field model overlaid on the AIA 171 Å image. Panel d: side view of the
reconstructed loop. The red dashed lines show the slice position on the loop and the direction of the line of sight.

The oscillation has only a distinct fundamental component
and no first overtone can be detected. Therefore, it is sufficient
to fit the profile using Eq. (10). Here, we care about the oscil-
lation period and the amplitude distribution. The average period
is 〈P1〉 = 729.5 ± 47.6 s, where the error was computed as the
root mean square of the standard deviation and the error trans-
fer formula. In addition, the amplitudes measured have a ten-
dency to increase with the slice number. This means that we
just measured a segment of the loop and the selected slices
do not cover the other part since the other half of the loop is
not visible in the 171 Å waveband. There is a drawback that
measurements are not available for a complete coronal loop
because the results of applying seismology in both the tem-
poral domain and spatial domain depend on the measurements

of the loop path. The former needs estimates of the geomet-
rical loop length (Roberts et al. 1984; Aschwanden & Schrijver
2011), while the latter needs information about certain locations
at which the amplitudes are measured along the loop. The three-
dimensional (3D) loop geometry can usually be deduced by
applying the triangulation method to stereoscopic observations
(Aschwanden & Schrijver 2011), which are observed by, for
example, the Solar Terrestrial Relations Observatory (STEREO),
or by reconstructing the magnetic field with the potential field
model (Guo et al. 2015; Verwichte et al. 2013; Chen et al. 2022).
For this work, we also used the potential field extrapolation
to reconstruct the 3D structure of the loop for convenience.
Doing so has also made it feasible to compare the magnetic field
inverted from spatial seismology with the extrapolated one.
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Fig. 6. Time-distance diagram for slices 6–20. The image shows the amplitude profiles of the oscillation, triggered at 17:40 UT, along the loop for
each slice. The red dashed lines denote the fitting result of a damping cosine profile.

We first corrected the projection effect of the magnetic
field recorded by HMI using a rotation matrix R(P, B, B0, L, L0)
(Gary & Hagyard 1990; Guo et al. 2017). Then, the radial com-
ponent of the projection-corrected magnetic field was used as the
boundary condition for the potential field. Finally, we adopted
the Green’s function method to compute the magnetic field by
the Message Passing Interface Adaptive Mesh Refinement Ver-
satile Advection Code (MPI-AMRVAC; Keppens et al. 2003,
2023; Porth et al. 2014; Xia et al. 2018). The extrapolated field
is represented by the colored tube in Fig. 5c, which is over-
lapped on the AIA image in 171 Å. It can be seen that the
extrapolated field coincides well with the visible segment of
the coronal loop, which indicates that it is reasonable to recon-

struct the 3D geometry of the loop by the potential field model.
The loop length was measured to be 329.9 ± 5.6 Mm. Then, we
plotted the slice position on the back-projection image of the
magnetic field. Figure 5d shows the side view of the extrapo-
lated filed and the red dashed line denotes the slices’ position
and the direction of the line of sight (LOS). According to the
reconstructed 3D loop geometry, we plotted the amplitude dis-
tribution in Fig. 7d. The selected slices only cover a part of
the entire loop, which explains why the measured amplitude
increases gradually with the slice number instead of decreas-
ing. In addition, we could also obtain the distribution of the
magnetic field strength, as shown in Fig. 7c, which is also
asymmetrical.
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Table 1. Fitting parameters of amplitude profiles.

Parameters A00 (pixels) A01 (pixels s−1) A1 (pixels) τ1 (s) P1 (s) φ01 (◦)

slice 06 2.5 ± 0.1 −2.5 ± 0.1 2.3 ± 0.3 1429.9 ± 328.8 741.6 ± 14.4 116.3 ± 1.1
slice 07 1.1 ± 0.2 −1.8 ± 0.3 2.7 ± 0.5 1578.2 ± 418.2 717.9 ± 14.7 119.0 ± 1.4
slice 08 0.5 ± 0.2 −0.5 ± 0.2 2.4 ± 0.3 2219.0 ± 776.5 641.2 ± 11.5 99.1 ± 0.5
slice 09 −0.4 ± 0.1 −0.2 ± 0.2 3.1 ± 0.3 1815.4 ± 350.2 677.4 ± 7.8 110.9 ± 0.7
slice 10 0.1 ± 0.2 −1.3 ± 0.3 4.1 ± 0.5 1855.6 ± 354.5 760.8 ± 9.6 130.1 ± 0.8
slice 11 0.2 ± 0.3 −2.2 ± 0.5 3.9 ± 0.4 1917.2 ± 541.4 717.1 ± 13.4 127.7 ± 0.4
slice 12 −1.9 ± 0.4 0.4 ± 0.5 3.6 ± 1.1 1484.4 ± 317.5 735.4 ± 10.2 141.9 ± 1.6
slice 13 1.6 ± 0.1 −2.3 ± 0.3 5.0 ± 0.2 2011.3 ± 336.3 687.1 ± 6.1 100.7 ± 0.2
slice 14 1.5 ± 0.3 −2.1 ± 0.3 4.0 ± 0.7 5327.1 ± 2246.2 707.5 ± 6.3 119.5 ± 0.3
slice 15 −3.2 ± 0.6 0.5 ± 0.5 7.7 ± 1.2 1868.3 ± 3220.0 734.4 ± 9.0 140.2 ± 0.3
slice 16 −0.1 ± 0.6 −6.4 ± 0.6 4.5 ± 1.1 4919.5 ± 2851.1 735.2 ± 9.2 122.2 ± 0.4
slice 17 6.2 ± 2.3 4.9 ± 0.6 7.1 ± 0.3 ∞ 855.4 ± 7.0 164.1 ± 6.2
slice 18 1.2 ± 0.3 −5.2 ± 0.5 8.4 ± 0.4 1931.5 ± 262.1 745.0 ± 5.5 112.9 ± 0.2
slice 19 2.7 ± 0.2 −6.3 ± 0.3 10.5 ± 0.5 1490.8 ± 130.9 764.0 ± 5.5 130.3 ± 0.4
slice 20 1.0 ± 0.6 −5.1 ± 0.8 13.1 ± 2.1 1162.4 ± 188.8 722.1 ± 9.7 103.8 ± 2.7

In addition, we also performed a DEM analysis to invert the
plasma density. Here, we adopted the Oriented Coronal CUrved
Loop Tracing (OCCULT) code proposed by Aschwanden et al.
(2013) to identify the loop segment. Considering that the
OCCULT method cannot identify the loop as a whole, we also
relied on the reconstructed loop to determine where the density
was measured. We employed a Gaussian profile plus a linear
background to fit the intensity variation along the loop radius
in all SDO/AIA wavebands to obtain the peak flux, F

Loop
λ

, and
Gaussian loop width σw. The Gaussian width σw could be used
to estimate the loop width by w = 2

√
2 ln 2σw ≈ 2.35σw. The

background-subtracted EUV fluxes, F
Loop
λ

, could be used for the
single Gaussian forward DEM fitting, from which we derived
the peak emission measure, EMp, peak temperature, Tp, and the
Gaussian temperature width,σT . The density was then computed
as

ni =

√

EMp

w
, (11)

where the subscript i refers to the density inside the coronal
loop.

Figure 7a shows the density distribution computed by DEM
diagnostics, where the normalized distance x along the loop was
derived from finding the corresponding position of the sam-
pling points. It can be seen that the sampling points do not
cover the full interval of the normalized distance [0,1], which
indicates that the OCCULT algorithm has not identified the
coronal loop as a whole. We also checked the temperature dis-
tribution and found that the loop is approximately isothermal
with Tp = 6.17 MK. With the extrapolated magnetic field and
the density from the DEM diagnostics, we exhibit the Alfvén
speed distribution in Fig. 7b. The Alfvén speed was computed
by VA = B/

√

4πµmpne, where mp = 1.67 × 10−24 g is the pro-
ton mass and µ = 1.2 is the average molecular weight with the
consideration of the coronal abundance.

Then, we performed spatial seismology to invert the den-
sity and magnetic field distribution. We define the following
physical model: the geometry of the loop is a semicircle, the
density decays exponentially with the relation ni(x) = nf ·
exp[−(L/πH) sin(πx)], and the magnetic field is a bipolar field
as B(x) = B0[1 + h(x)/D]−3. Therefore, Eq. (2) could be solved

to yield

ϕ(x) = exp[−(L/πH) sin(πx)] · [1 + (L/πD) · sin(πx)]6.

The reason why we just used a symmetric bipolar field but
not an asymmetric field as expressed by Eq. (9) is that we only
measured the amplitudes on the east half of the loop, which can-
not offer a good constraint on the information of the asymmetric
quantity. We have also checked the inversion results using Eq. (9)
and found that the value of the χ2 function has no nontrivial
minimum in the given parameter space. Therefore, we adopted a
dipole field model for the inversion. Accordingly, we define the
following chi-square function as

χ2
3

(

L

πH
,

L

πD
, c

)

=

15
∑

i=1

(ψ(L/πD, L/πD, xi) − c · ηi)2

ψ(L/πH, L/πD, xi)
. (12)

Here, ψ(x) is the parametric fundamental mode eigenfunction of
Eq. (2) with ϕ(x) mentioned above, ηi is the amplitude measured
at xi, and c is the scaling coefficient to ηi. Then, we obtained
L/πH = 1.50, L/πD = 0.61, and c = 0.027 pixel−1, which corre-
spond to a minimum χ2

3. The density scale height was derived as
H = 70.0± 1.2 Mm, which is different with that in an isothermal
atmosphere H = kT/(µmpg⊙) = 155.2 Mm (g⊙ is the accelera-
tion of gravity on the surface of the Sun). This implies that the
existence of the Lorentz force intensifies the density stratifica-
tion of plasma.

Figure 7 exhibits the inversion results compared with the
density distribution obtained by the DEM analysis and the mag-
netic field distribution derived from the potential field model.
As expected, the inversion results from spatial seismology are
in good agreement with the measured distribution of the density
and magnetic field. It can be seen that the density inverted by
spatial seismology matches the density obtained from the DEM
analysis relatively well. The inverted magnetic field matches the
extrapolated field only on the east side of the loop but it has
a large deviation on the west side. Because we could only mea-
sure the amplitude of the east half of the coronal loop, there is no
information about the asymmetry. For an approximately semi-
circular loop, the density distribution should be nearly symmet-
ric; thus, the amplitude measurement for only half a loop is
roughly adequate for an inversion. However, in order to reflect
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Fig. 7. Inversion results of spatial seismology. Panel a: density distribution computed by DEM diagnostics (the blue diamonds), the inversion result
of spatial seismology (the red dashed line), and the fitting result to the observed data using an exponentially damping profile (the black dashed line).
Panel b: distribution of the measured Alfvén speed (the green star point) and the fitted Alfvén speed (the blue dotted line). Panel c: distribution of
the magnetic field strength extrapolated from the potential field model (the gray points with error bars), the inversion result of magnetic field (the
red dashed line), the fitting result to the extrapolated field using a bipolar model (the black dashed line). Panel d: measured amplitude multiplied by
a scaling coefficient of 0.027 pixel−1 (the blue diamonds with error bars), and the inverted fundamental mode with L/πH = 1.50 and L/πD = 0.61
(the green dotted line).

the asymmetric properties of the magnetic field, at least the posi-
tion of the antinode needs to be measured. And we could calcu-
late the inverted Alfvén speed according to the inverted density
and magnetic field, whose errors were derived from the error
transfer formula (shown in Fig. 7). The inverted Alfvén speed
also agrees well with the measured one. In addition, we note that
the inverted fundamental mode eigen function matches the mea-
sured amplitude distribution well, as can be seen in Fig. 7.

4. Conclusion and discussion

In this paper, we have developed a dynamic inversion method for
spatial seismology, which could be used to diagnose the coronal
loop oscillations in the spatial domain instead of the temporal
domain. We have discussed the influence of density stratifica-
tion and magnetic field variation on both the eigenvalues and
eigenfunctions. Density stratification makes P1/P2 less than two,
the fundamental mode amplitude profile becomes wider, and the
antinodes of the first overtone shift toward the footpoints. How-
ever, the magnetic field variation has the opposite effect. A sim-
ilar conclusion was also reported in Andries et al. (2005a). By
a numerical solution, we obtained the fundamental mode ampli-
tude profile with different values of density scale height L/πH
(Fig. 2). We propose that the value of L/πH can be constrained
by the measured amplitude at a certain position on the loop. Fur-
thermore, if the amplitudes at different locations are measured to
form an amplitude distribution, the physical parameters can be

inverted by numerically optimizing the parametric density and
magnetic field model to best fit the amplitude profile, which is
the inversion by spatial seismology.

Namely, we implemented the spatial seismology technique
in two cases, as explored in Sect. 3. The consistency between the
seismology in the spatial domain and temporal domain was ver-
ified. In both of the cases, we achieved inverting the distribution
of the magnetic field and density with the measurement of the
amplitude distribution. The effectiveness and feasibility of spa-
tial seismology inversion was validated by comparing the inver-
sion results with the extrapolated magnetic field and the density
derived from the DEM diagnostics.

To summarize, the temporal seismology focus on the eigen-
values of the governing equation but spatial seismology focuses
on the eigenfunctions (or eigenvectors). Compared with both of
them, spatial seismology has the following several advantages.
1. The amplitude measured at each location along the loop can

offer a constraint, and thus the amplitude profile along the
loop can be applied to invert multiple physical parameters.

2. Applying spatial seismology only requires the amplitude of
the fundamental mode at different locations along the loop
instead of the higher order overtone. For almost all coronal
loop oscillations, their fundamental mode can be easily mea-
sured, but only a few of the higher order overtones can be
detected.

3. The Rayleigh-Ritz theorem implies that when factors such
as the asymmetry is introduced, eigenvectors are more
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significantly affected (perturbed) than eigenvalues (see
Oxley et al. 2020, appendix). Consequently, spatial seismol-
ogy that focuses on the eigenvectors could have a higher sen-
sitivity on measuring some certain physical parameters.

However, there exist some limitations in spatial seismology.
First, although it is easy to measure the amplitudes at different
locations along a loop, spatial seismology requires the normal-
ized distance along the loop. Commonly, it is difficult to establish
the 3D structure of the whole loop accurately enough. For exam-
ple, the west half of the coronal loop, discussed in Sect. 3.2, is
invisible because of the complex EUV background. Even if we
can capture a whole coronal loop, it is still difficult to reconstruct
its 3D geometry by triangulation that relies on dual-perspective
observations separated by a suitably large angle. Second, spatial
seismology is a dynamic inversion method after all. It heavily
depends on the parametric model of the density and magnetic
field, and thus its accuracy is much lower than that of spectropo-
larimetric inversions. Third, the local fluctuation of the magnetic
field cannot be obtained due to the limitation of the mathemati-
cal model. In addition, if there is no clear evolution profile of the
loop oscillation or if the measurement error is too large, one may
be unable to reach a reasonable fitting result by minimizing χ2.

The above limitation also points to the future development of
the spatial seismology inversion technique. For example, it may
be possible to improve the accuracy of the inversion by applying
a more appropriate χ2, similar to those that involve the errors,
to evaluate the inversion results. In addition, we only employed
the simplest exponential density stratification and dipole mag-
netic field here. One may also use a model that considers more
comprehensive physical factors and contains more parameters
for inversion. In addition, in some special cases, spatial seis-
mology can perhaps be used as a complementary tool to other
magnetic field measurements. For instance, if coronal loops are
located at or near the limb of the Sun, the potential field extrap-
olation using the SDO/HMI magnetic field becomes inaccurate
due to the projection effects. In such a case, spatial seismology
relying on just the dynamic inversion is an alternative method
for magnetic field reconstruction.
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