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Abstract

We have formalised Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic

Progressions, two major results in extremal graph theory and additive combinatorics, using the

proof assistant Isabelle/HOL. For the latter formalisation, we used the former to first show the

Triangle Counting Lemma and the Triangle Removal Lemma: themselves important technical

results. Here, in addition to showcasing the main formalised statements and definitions, we

focus on sensitive points in the proofs, describing how we overcame the difficulties that we

encountered.

Keywords Interactive theorem proving · Proof assistant · Formalisation of mathematics ·

Isabelle/HOL · Additive combinatorics · Extremal graph theory · Arithmetic progressions ·

Number theory
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1 Introduction and Background

Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions are central

results within extremal graph theory, additive combinatorics and, in a broader sense, number

theory. They belong to a line of mathematical research which finds its origins in Ramsey theory

[21]: van der Waerden’s Theorem, proved in 1927 and referring to arithmetic progressions,

can be regarded as a direct precursor:

Theorem 1 (van der Waerden) For any given c, k ∈ N, there exists a number N such that if

the consecutive integers 1, 2, . . ., N are coloured, each with one of c different colours, then
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there are at least k integers in arithmetic progression whose elements are all of the same

colour.

Less than a decade later, in 1936, Erdős and Turán introduced a conjecture [11] which was

eventually proved in 1975 by Endre Szemerédi [33]—Gowers [20] discusses the background

to this result—and today is known as Szemerédi’s Theorem:

Theorem 2 (Szemerédi) Every set of integers A with positive upper asymptotic density con-

tains a k-term arithmetic progression for every k ∈ N.

The upper asymptotic density is a measure of the size of a set of integers.

Definition 1 The upper asymptotic density of a set A ⊆ Z is defined as

lim sup
N→∞

|A ∩ [1, N ]|

N
.

For example, the set of even numbers has density 1/2, while the set of primes has density

zero. It can be shown that the set of square-free integers has density 6/π2, which tells us that

“most” integers are square-free.

Szemerédi’s original proof was combinatorial, but many further proofs were given, most

notably by Furstenberg in 1977 using ergodic theory [13] and by Gowers in 2001 using both

Fourier analysis and combinatorics [17]. It is worth mentioning that Szemerédi’s Theorem

is a fundamental ingredient in the proof of the (2004) celebrated Green–Tao Theorem [22],

which attests that the primes contain arbitrarily long arithmetic progressions. Although it

does not directly follow from Szemerédi’s Theorem, as the primes have zero asymptotic

density in the integers, a Szemerédi-type statement plays a crucial rule in the proof, as noted

by Conlon et al. [3].

Already in 1953, Klaus Roth had shown a special case of Szemerédi’s Theorem, proving

the aforementioned 1936 conjecture by Erdős and Turán [11] for the case of arithmetic

progressions of length k = 3 [31]. His result, which is considered a milestone in additive

combinatorics, is known as Roth’s Theorem on Arithmetic Progressions:

Theorem 3 (Roth) Every subset of the integers with positive upper asymptotic density con-

tains a 3-term arithmetic progression.

Roth’s original proof [31] made use of Fourier analysis. However, a later proof follows

a combinatorial approach: it relies on Szemerédi’s Regularity Lemma, which Szemerédi

proved in 1975 as a step towards his aforementioned Theorem 2 [4, 33]. Szemerédi first

showed [33] a weaker version of the lemma for bipartite graphs, which was already sufficient

to prove Theorem 2; later on, he showed the full lemma, for general graphs [32]. Essentially,

Szemerédi’s Regularity Lemma attests that for any large dense graph, we can partition its

vertices into a bounded number of parts, so that edges between most different parts behave

in a “random” way. To give a sense of what is meant by this notion of “randomness” on a

quantitative level, we introduce the following definitions.

In the following, if G is a graph, V (G) and E(G) will denote the sets of its vertices and

edges, respectively. Sometimes the notation G = (V , E) will be used.

For sets of vertices X , Y ⊆ V (G), let e(X , Y ) be the number of edges between X and Y .

That is,

e(X , Y ) = |{(x, y) ∈ X × Y : xy ∈ E(G)}|.
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Definition 2 (Edge density) Given a graph G, for sets of vertices X , Y ⊆ V (G), we define

the edge density between X and Y to be

d(X , Y ) =
e(X , Y )

|X ||Y |
.

Definition 3 (ǫ-regular pair) Given a graph G and ǫ > 0, for sets of vertices X , Y ⊆ V (G),

we call (X , Y ) an ǫ-regular pair (in G) if for all A ⊆ X , B ⊆ Y with |A| ≥ ǫ|X |, |B| ≥ ǫ|Y |,

one has

|d(A, B) − d(X , Y )| ≤ ǫ.

Taking the contrapositive: if the pair is not ǫ-regular, then the irregularity is witnessed by

some A ⊆ X , B ⊆ Y such that |A| ≥ ǫ|X |, |B| ≥ ǫ|Y | and |d(A, B) − d(X , Y )| > ǫ. We

use not ǫ-regular and ǫ-irregular interchangeably.

We are interested in partitions of a graph in which the number of irregular pairs is limited

by the following formula:

Definition 4 (ǫ-regular partition) Given a graph G and ǫ > 0, a partition P = {V1, . . . , Vk}

of V (G) is an ǫ-regular partition if
∑

(i, j)∈[k]2

(Vi ,V j ) not ǫ−regular

|Vi ||V j | ≤ ǫ|V (G)|2.

We can now formally state Szemerédi’s Regularity Lemma:

Theorem 4 (Szemerédi) For every ǫ > 0, there exists a constant M such that every graph

has an ǫ-regular partition of its vertex set into at most M parts.

Szemerédi’s Regularity Lemma has a number of significant applications that go far beyond

the—already groundbreaking—proofs of Szemerédi’s Theorem and Roth’s Theorem: most

notably, algorithmic applications within various areas of computer science. It is considered

the cornerstone of extremal graph theory. Szemerédi gives an accessible overview and some

interesting historical details [29]. Gowers has obtained quantitative results on the lower bound

on the cardinality of the induced ǫ-regular partition [16]. Gowers [18, 19] and Rödl et al. [12,

25, 30] have proved various extensions of Szemerédi’s Regularity Lemma to hypergraphs. On

a different note, Terence Tao has studied Szemerédi’s Regularity Lemma from a probability

theory and information theory perspective [34].

This paper discusses our formalisations of Szemerédi’s Regularity Lemma [10] and Roth’s

Theorem on Arithmetic Progressions [9] using Isabelle/HOL1 [26]. Isabelle is a proof assis-

tant (interactive theorem prover) supporting higher-order logic, among other formalisms. It

is notable for its large library, the Archive of Formal Proofs (AFP), containing hundreds of

entries of formalised mathematics in addition to hundreds more on theoretical computer sci-

ence and formal verification. It offers powerful automation for both proving and disproving.

Proofs can be written in a legible structured language called Isar. As of the writing of this

article, the AFP contains 22 entries classified under graph theory and 30 under combinatorics

(some of these possibly overlapping). Within combinatorics, we can mention our work for-

malising design theory [7, 8] and ordinal partition theory [6]. Notably, the aforementioned

van der Waerden’s Theorem was recently formalised in Isabelle/HOL by Kreuzer and Eberl

[23].

1 https://isabelle.in.tum.de.
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2 Page 4 of 21 C. Edmonds et al.

For the formalisations described in this paper, we have built upon Noschinski’s formalisa-

tion of the girth and chromatic number theorem [27], as it defines the basics of graph theory

starting with elementary concepts such as ugraphs, uedges, uverts for undirected graphs

and the sets of edges and vertices thereof respectively. Vertices are seen as natural numbers

and edges as sets of natural numbers, so they are of type nat and nat set respectively. This

library was initially chosen as it additionally provided foundations in probabilistic reasoning

on graphs, which may have been required had we only followed Zhao’s proof [35]. While

this was ultimately unnecessary, this simple formalisation of undirected graphs proved easier

to work with in comparison to other more extensive graph libraries in Isabelle which focus

on directed graphs [28], which in turn tend to complicate formal reasoning on undirected

graphs.

Our contribution begins by formalising a proof of Szemerédi’s Regularity Lemma, fol-

lowing Yufei Zhao’s online notes for a course taught recently at MIT [35]—these are now

being reworked into a book [36]—as well as online notes written by Paul Russell from a

combinatorics course taught at Cambridge by Timothy Gowers in 2004 [15]. This work is

discussed in more detail in Sect. 2. Building on our formalisation of Szemerédi’s Regu-

larity Lemma [10] and following again the aforementioned set of notes supplemented by

Bell et al. [1], we formalised the proofs of the Triangle Counting Lemma and the Triangle

Removal Lemma (Sect. 3). Finally, we used these to prove Roth’s Theorem on Arithmetic

Progressions (Sect. 4). In Sect. 5, we include a general discussion on our comments and

observations, summarising what we learned through the formalisation process and focussing

on the difficulties we encountered. Independently, and around the same time with us, Yaël

Dillies and Bhavik Mehta (also at Cambridge but in the Mathematics Department) formalised

the aforementioned results in the Lean theorem prover [5]. Their formalisations2 are pending

full incorporation to mathlib, Lean’s library of formalised mathematical proofs. We learned

of their simultaneous work while we were halfway through our own formalisation. We briefly

compare the two approaches in Sect. 6. Finally, Sect. 7 is a short conclusion.

We have written our proofs with care, trying to reveal the key insights, as we believe that

formalised mathematics should not restrict to merely certifying claims, but should also clarify

the proof ideas. In this paper we present only highlights, hoping that any missing elements are

self-explanatory. Both of our formalisations can be found on the Archive of Formal Proofs

(AFP) [9, 10]. The formal material presented below has been edited to improve readability.

2 Formalising Szemerédi’s Regularity Lemma

2.1 Defining the Energy

We start by presenting our Isabelle formalisations of the notions defined in Sect. 1. As

mentioned, we build on the existing basic graph theory definitions defined by Noschinski

[27].

Edge density is defined straightforwardly, following Definition 2 above.

definition

"edge_density X Y G ≡ card(all_edges_between X Y G) / (card X * card Y)"

When speaking of ǫ-regular pairs, note that ǫ is actually a parameter and that one might

refer to, say, an ǫ/3-regular pair. Such a complicated syntax is achievable in Isabelle but at

2 https://github.com/leanprover-community/mathlib/tree/szemeredi/src/combinatorics/szemeredi.
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the cost of much syntactic hackery. The formal version therefore accepts ǫ as an ordinary

argument. This is our formalised version of Definition 3:

definition "regular_pair X Y G ε

≡ ∀A B. A ⊆ X ∧ B ⊆ Y ∧

(card A ≥ ε * card X) ∧ (card B ≥ ε * card Y) −→

|edge_density A B G - edge_density X Y G| ≤ ε"

The proofs will be concerned with partitions of the vertices of the given graph, G. In

particular, we will need to collect all ǫ-irregular pairs among the members of any given

partition, P:

definition "irregular_set ε G P
≡ {(R,S)|R S. R∈P ∧ S∈P ∧ ¬ regular_pair R S G ε}"

As mentioned above (Definition 4), a regular partition has “relatively few” irregular pairs,

parameterised by ε:

definition "regular_partition ε G P
≡ partition_on (uverts G) P ∧

(
∑

(R,S) ∈ irregular_set ε G P. card R * card S)

≤ ε * (card (uverts G))2"

We now formalise the key definitions referring to the energy with respect to subsets

and/or (a) partition(s) of a graph. The notion of energy with respect to subsets of the vertices

U , W ⊆ V (G) is defined as follows:

definition "energy_graph_subsets U W G
≡ card U * card W * (edge_density U W G)2 / (card (uverts G))2"

Now, considering partitions P, Q (instead of sets as above) we define the following notion

of energy. As we discuss at the end of Sect. 5, instead of representing the partitions using

indices for the parts, which was our first approach, in our final version of the formalisation

we preferred to simply denote a partition as a set of sets, so the energy in terms of partitions

was eventually defined as follows:

definition "energy_graph_partitions G P Q
≡

∑
R∈P.

∑
S∈Q. energy_graph_subsets R S G"

Referring to a single partition of a single vertex set (which can be the entire vertex set of

a graph) the energy of the partition (also referred to as mean square density [15]) is defined

as follows:

abbreviation

"mean_square_density G P ≡ energy_graph_partitions G P P"

2.2 Some Elementary Lemmas

Let us look at some of the consequences of the definitions introduced. As usual with interactive

theorem proving, it is helpful to prove a few trivial facts for every definition. Here are some

of the more interesting results.

The following inequality concerns a partition P with k many parts of a vertex set V of a

finite graph and is proved by induction on k. Although straightforward, the formal proof is

over 30 lines long.

lemma sum_partition_le:
assumes "finite_graph_partition V P k" "finite V"
shows "(

∑
R∈P.

∑
S∈P. real (card R * card S)) ≤ (real(card V))2"
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This immediately yields the basic result that the mean square density is bounded by 1:

lemma mean_square_density_bounded:
assumes "finite_graph_partition (uverts G) P k" "finite (uverts G)"
shows "mean_square_density G P ≤ 1"

The following identity—relating the edge density of a graph Gwith respect to its vertex sets

U, W to the edge densities with respect to a partition P of the vertex set U into n parts—ought

to be straightforward, but the formal proof is nearly 50 lines, by induction on n.

lemma edge_density_partition:
assumes "finite_graph_partition U P n"
shows "edge_density U W G = (

∑
X∈P. edge_density X W G * card X)/card U"

This identity is used to prove a key lemma: that refining a partition of a vertex set cannot

make the energy decrease. We follow Gowers’s combinatorial proof, which is based on a

direct calculation [15] and eschews probabilistic reasoning. (In contrast, Zhao’s approach

[35, 36] reasons about expected value.) The full version of the lemma considers partitions

of two sets, but we save work by considering a partition of only one of the sets, then using

symmetry to obtain the full result.

lemma energy_graph_partition_half:
assumes "finite_graph_partition U P n"
shows "card U * (edge_density U W G)2

≤ (
∑

R∈P. card R * (edge_density R W G)2)"

Here, we combine the two halves allowing both sides to be partitioned. The proof is

straightforward (20 lines), using the previous result twice along with the commutativity of

edge density. The following lemma states that partitioning subsets of the vertex set cannot

make the energy decrease.

proposition energy_graph_partition_increase:
assumes "finite_graph_partition U P k"

and "finite_graph_partition W Q l"
shows "energy_graph_partitions G P Q ≥ energy_graph_subsets U W G"

In a similar spirit, the following result attests that refining partitions further cannot make

the energy decrease (here partition Q refines partition P of the vertex set V while partition Q’

refines partition P’ of the vertex set V’) :

proposition energy_graph_partitions_increase:
assumes "refines V Q P" "refines V’ Q’ P’"

and "finite V" "finite V’"
shows "energy_graph_partitions G Q Q’ ≥ energy_graph_partitions G P P’"

The following result is a special case of the above for a single partition:

corollary mean_square_density_increase:
assumes "refines V Q P" "finite V"
shows "mean_square_density G Q ≥ mean_square_density G P"

2.3 The Energy Boost Lemma

Having explored how the energy behaves with respect to partitioning subsets and to the

further refining of partitions, we are ready to state the key Energy Boost Lemma [35, 36]: for

a graph G, given a pair of vertex sets (U , W ) that is not ǫ-regular and where the irregularity is
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witnessed by the pair (U ′, W ′) where U ′ ⊆ U and W ′ ⊆ W , we partition U as {U ′, U \ U ′}

and W as {W ′, W \ W ′} and the energy increases by at least

ǫ4 |U | |W |

|V (G)|2.

The possibility that U ′ = U or W ′ = W —not treated in any of our sources, as they all

assumed the strict subset relation—slightly complicates the statement of the lemma. We must

introduce the function P2 to deal with degenerate partitions, ensuring that the empty set is

never a member of a partition.

definition "P2 X Y ≡ if X ⊂ Y then {X,Y-X} else {Y}"

The proof is a messy 80 lines. Most of the effort goes into manipulating complicated

summations, which can be tricky to do formally. Once again, Zhao [35, 36] employs proba-

bilistic arguments in order to compare energies. We did not attempt that, preferring the simple

calculation given by Gowers [15].

Note that the offending ǫ-irregular pair (U ′, W ′) is mentioned explicitly in the assumptions

and conclusion.

proposition energy_boost:
fixes ε::real and U W G
defines "alpha ≡ edge_density U W G"
defines "u ≡ λX Y. edge_density X Y G - alpha"
assumes "finite U" "finite W"

and "U’ ⊆ U" "W’ ⊆ W" "ε > 0"
and U’: "card U’ ≥ ε * card U" and W’: "card W’ ≥ ε * card W"
and gt: "|u U’ W’| > ε"

shows "(
∑

A ∈ P2 U’ U.
∑

B ∈ P2 W’ W. energy_graph_subsets A B G)
≥ energy_graph_subsets U W G
+ εˆ4 * (card U * card W) / (card (uverts G))2"

2.4 Energy Boost Lemma for an Irregular Partition

Having established the above result which refers to pairs that are not ǫ-regular, we build on

it to prove a statement referring to a partition that is not ǫ-regular, that is, a partition that has

ǫ-irregular pairs whose total size is too big (Definition 4). This crucial statement attests that

for any ǫ-irregular partition P of the vertices of G, we can always find a refinement Q of P that

increases the energy by at least ǫ5, a small but positive quantity.

proposition exists_refinement:
assumes "finite_graph_partition (uverts G) P k" and "finite (uverts G)"

and "¬ regular_partition ε G P" and "ε > 0"
obtains Q where "refines (uverts G) Q P"

"mean_square_density G Q ≥ mean_square_density G P + εˆ5"
"
∧
R. R∈P �⇒ card {S∈Q. S ⊆ R} ≤ 2 ˆ Suc k"

"card Q ≤ k * 2 ˆ Suc k"

The formal proof is based on the Energy Boost Lemma and on lemmas on the energy

behaviour with respect to subsets, partitions and refinements thereof that were presented in

Sect. 2.2. It spans about 300 lines:

• About 50 lines for constructing the common refinement Q of P, using the previous Energy

Boost Lemma and taking care to exploit symmetries.

• A further 30 lines for deriving some of its properties prior to proving the four claims in

the theorem statement.
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2 Page 8 of 21 C. Edmonds et al.

• Then 40 lines to show the first claim (that Q refines partition P).

• The second claim, about mean square density, requires more calculations involving sum-

mations and totals 90 lines.

• The third claim, a cap on the cardinality of the refinement of each member R of partition

P, requires nearly 70 lines.

• The final claim, about the cardinality of Q, is easy: under 15 lines.

2.5 Proving Szemerédi’s Regularity Lemma Itself

The task is now straightforward. Whenever we have a partition that is not ǫ-regular, we

repeatedly apply the lemma above, each time obtaining a refinement of the previous partition

and increasing the energy by at least ǫ5. The energy of any partition cannot exceed 1 (recall

the lemma mean_square_density_bounded of Sect. 2.2), forcing termination after at most

⌈ǫ−5⌉ iterations.

The formalisation of this argument is 75 lines long. Specifying the iterative construction—

that at each step a new partition refines a previous one, that the energy increases and that the

cardinality is bounded—seems to be unreasonably difficult. The iteration is formalised as a

function on natural numbers and the properties above are proved by induction. It is tedious

to reason about the existential claims made by the main lemma and that they continue to hold

at the end. There should be a more concise and elegant formal proof.

Crucially, the upper bound on the number of iterations is independent of the graph G. It is

given by a tower of exponentials, as is shown by iterating the previous lemma’s bound on the

size of the refined partition. We need the lemma k 2k+1 ≤ 22k
, and as its proof is a concise

induction, we present it in full (Fig. 1).

The main statement (Theorem 4) is formalised in Isabelle as follows:

theorem Szemeredi_Regularity_Lemma:
assumes "ε > 0"
obtains M where

"
∧
G. card (uverts G) > 0 �⇒ ∃P. regular_partition ε G P ∧ card P ≤ M"

3 The Triangle Counting Lemma and the Triangle Removal Lemma

Triangles have long been valuable tools in graph theory, particularly in the context of extremal

and probabilistic combinatorics. While for our purposes, the Triangle Counting Lemma and

the Triangle Removal Lemma were required for the proof of Roth’s Theorem, they also

have numerous other applications. Hence, the formalisation of these lemmas is a valuable

contribution in their own right. For both the Triangle Counting Lemma and Triangle Removal

Lemma we use a mix of Zhao’s notes [35] which clearly outlines the main intuition behind

the proof, complemented by Bell and Grodzicki’s notes [1] which provide additional detail

on the exact calculations which take place.

3.1 Triangle Definitions

We begin with some definitions. Firstly, we formalise the idea of a triangle in a graph:

definition "triangle_in_graph x y z G
≡ ({x,y} ∈ uedges G) ∧ ({y,z} ∈ uedges G) ∧ ({x,z} ∈ uedges G)"

123
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Fig. 1 Statement and proof that k 2k+1 ≤ 22k

A triangle-free graph is simply defined as one where there exist no such x, y, and z

satisfying the above definition. We also define the set of all triangles formed by taking

vertices from three (not necessarily distinct) sets:

definition "triangle_triples X Y Z G
≡ {(x,y,z) ∈ X × Y × Z. triangle_in_graph x y z G}"

Note that the triangle definition assumes that the well-formed assumption holds between

uedges and uverts: that every edge of G joins two vertices of G. The triangle_in_graph

definition can also be formally reasoned on using the alternative neighbor_in_graph defi-

nition to capture that assumption.

definition "neighbor_in_graph x y G
≡ (x ∈ uverts G ∧ y ∈ uverts G ∧ {x,y} ∈ uedges G)"

It can clearly be seen that for the definitions above, the ordering of the vertices of the

vertex set will not affect the result of either definition. However, we do note that based on the

triangle_triples definition, if the sets X, Y and Z are not disjoint, a triangle may appear

more than once (using a different ordering). This is in line with the proof of the Triangle

Counting Lemma in Zhao’s notes [35], which requires ordered triples.

However, this causes issues in later proofs where we are interested in counting the purely

distinct triangles. In this case we define a function mk_triangle_set to convert a triple to

a set of size 3, and further define the triangle_set, which mirrors the triangle_triples

definition but for unordered triples.

3.2 Triangle Counting Lemma

Using these definitions, we are now ready to formalise the Triangle Counting Lemma, which

provides a minimum bound on the number of triangles in a graph.

123



2 Page 10 of 21 C. Edmonds et al.

Lemma 1 (Triangle Counting Lemma) Given a graph G, let X , Y , Z ⊆ V (G) so

that (X , Y ), (Y , Z), (Z , X) are all ǫ-regular pairs for some ǫ > 0. Assuming that

d(X , Y ), d(X , Z), d(Z , Y ) ≥ 2ǫ, the number of triples (x, y, z) ∈ X × Y × Z such that

x, y, z form a triangle in G is at least

(1 − 2ǫ)(d(X , Y ) − ǫ)(d(X , Z) − ǫ)(d(Y , Z) − ǫ)|X ||Y ||Z |.

The proof, as presented by Zhao [35], has four main components.

(1) Given a regular pair (X , Y ), we have an upper bound of ǫ|X | on the number of vertices

in X which have fewer than (d(X , Y ) − ǫ)|Y | neighbours, i.e. which have a negligible

neighbourhood size in Y .

(2) Using (1) on the regular pairs (X , Y ) and (X , Z) from the lemma assumptions, we

establish a lower bound on a subset of X where all elements which meet the minimum

bound on neighbourhood size in Y and Z .

(3) We establish a lower bound for the number of edges between the neighbourhoods of X

in Y and Z .

(4) We combine (2) and (3) to establish a lower bound on the total number of triangles in

the graph.

We first show (1) in the lemma regular_pair_neighbor_bound.

lemma regular_pair_neighbor_bound:
fixes ε::real
assumes "finite (uverts G)"
assumes "X ⊆ uverts G" and "Y ⊆ uverts G" and "card X > 0"

and "uwellformed G" and "ε>0"
and "regular_pair X Y G ε" and "edge_density X Y G ≥ 2*ε"

shows "card{x ∈ X. card (neighbors_ss x Y G)
< (edge_density X Y G - ε) * card Y} < ε * card X"

The proof required a case split to first reason on the trivial case (not considered by any of our

sources) where there are no vertices in Xmeeting the negligible neighbourhood size condition.

The main case proceeded by contradiction as described in our sources. Bell and Grodzicki’s

notes [1] proved valuable in this case, providing much more detail on the calculations taking

place, which formed the basis of the proof. It should be noted that it was this proof which

first raised the issue of the strict versus non-strict subset use in the regular pair definition,

which we discuss further in Sect. 5.

This lemma could now be used to perform (2) within the formal proof of the Triangle

Counting Lemma. For (3), we establish a technical auxiliary lemma:

lemma all_edges_btwn_neighbor_sets_lower_bound:
fixes ε::real
assumes "X ⊆ uverts G" "Y ⊆ uverts G" "Z ⊆ uverts G"

and "ε>0" "finite (uverts G)" "uwellformed G"
and "finite X" "finite Y" "finite Z"
and "regular_pair X Y G ε" "regular_pair Y Z G ε" "regular_pair X Z G ε"
and "edge_density X Y G ≥ 2*ε" "edge_density X Z G ≥ 2*ε"

"edge_density Y Z G ≥ 2*ε"
and "card (neighbors_ss x Y G) ≥ (edge_density X Y G - ε) * card Y"
and "card (neighbors_ss x Z G) ≥ (edge_density X Z G - ε) * card Z"
and "x ∈ X"

shows "card(all_edges_between (neighbors_ss x Y G) (neighbors_ss x Z G) G)
≥ (edge_density Y Z G - ε)
* card (neighbors_ss x Y G) * card (neighbors_ss x Z G)"
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This requires some set-up in the proof, but is relatively straightforward.

Finally, (4) is completed within the proof of the triangle_counting_lemma, for which

we give the Isabelle lemma statement below.

theorem triangle_counting_lemma:
fixes ε::real
assumes "X ⊆ uverts G" "Y ⊆ uverts G" "Z ⊆ uverts G"

and "ε>0" "finite (uverts G)" "uwellformed G"
and "regular_pair X Y G ε" "regular_pair Y Z G ε" "regular_pair X Z G ε"
and "edge_density X Y G ≥ 2*ε" "edge_density X Z G ≥ 2*ε"

"edge_density Y Z G ≥ 2*ε"
shows "card (triangle_triples X Y Z G)

≥ (1 - 2*ε) * ((edge_density X Y G) - ε) * ((edge_density X Z G) - ε)
* ((edge_density Y Z G) - ε) * card X * card Y * card Z"

While the proof required a number of additional steps to manage sum and inequality

manipulations, it was relatively straightforward to complete. Once again, these manipulations

closely followed Bell and Grodzicki [1]. While the level of detail in these notes was helpful,

the formalisation picked up on a number of minor errors in stages (3) and (4) in particular.

For example, there was an and instead of or in one of the set definitions, a plus instead of a

minus in one of the lower bound results, and in one summation the summation was presented

to be over pairs of sets, rather than the cardinality of the edges between these sets.

3.3 Triangle Removal Lemma

The Triangle Removal Lemma is the first direct application of our formalisation of Sze-

merédi’s Regularity Lemma, which was presented in Sect. 2. It gives a maximum bound

on the number of triangles which must be removed such that a graph can be considered

triangle-free:

Lemma 2 (Triangle removal lemma) For all ǫ > 0, there exists δ > 0 such that any graph on

N vertices with less than or equal to δN 3 triangles can be made triangle-free by removing

at most ǫN 2 edges.

This lemma is frequently expressed in the language of Landau symbols as follows: any

graph G on N vertices with o(N 3) triangles can be made triangle-free by removing o(N 2)

edges. We chose to prove it in the concrete form above, since it was not clear how to formalise

a proof of the Landau version.

Zhao [35] presents an intuitive recipe for applying Szemerédi’s Regularity Lemma to

prove the Triangle Removal Lemma, which we mirror in our formalisation:

(1) Partition We use Szemerédi’s Regularity Lemma to obtain an ǫ-regular partition of the

vertices.

(2) Clean We remove edges that “behave poorly” within the ǫ-regular structure imposed.

Specifically, this includes edges between irregular pairs, pairs with low edge density, and

pairs where one part is small.

(3) Count We use the Triangle Counting Lemma to establish a contradiction and show that

the “cleaned” graph is triangle-free.

We first define the concepts of a regular graph, a dense graph, and a decent graph. These

three collectively express that a given graph (with a partition of its vertex set) has been cleaned

as described in Step (2). These definitions are used within the proof to improve readability

and simplify reasoning.

A regular graph has been partitioned such that all pairs are regular.
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definition "regular_graph P G ε

≡ ∀R S. R∈P −→ S∈P −→ regular_pair R S G ε"

A dense graph satisfies a minimum density for its non-empty edge sets.

definition "edge_dense X Y G ε

≡ all_edges_between X Y G = {} ∨ edge_density X Y G ≥ ε"
definition "dense_graph P G ε ≡ ∀R S. R∈P −→ S∈P −→ edge_dense R S G ε"

A decent graph satisfies a minimum size for partition members that are connected by at

least one edge.

definition "decent X Y G η

≡ all_edges_between X Y G = {} ∨ (card X ≥ η ∧ card Y ≥ η)"
definition "decent_graph P G η ≡ ∀R S. R∈P −→ S∈P −→ decent R S G η"

Additionally, we introduce a lemma to convert between a cardinality bound on our two

triangle representations (ordered and unordered). This is essential after applying the Triangle

Counting Lemma in the proof of the Triangle Removal Lemma, mentioned in Zhao’s proof

as the way of managing any “overcounting” which may occur.

lemma card_convert_triangle_rep:
assumes "X ⊆ uverts G" and "Y ⊆ uverts G" and "Z ⊆ uverts G"
and "finite (uverts G)" "uwellformed G"
shows "card (triangle_set G) ≥

1/6 * card {(x,y,z) ∈ X×Y×Z. triangle_in_graph x y z G}"

We now present the Isabelle version of the Triangle Removal Lemma:

theorem triangle_removal_lemma:
fixes ε :: real
assumes "ε > 0"
shows "∃ δ::real > 0. ∀G. card(uverts G) > 0 −→ uwellformed G −→

card (triangle_set G) ≤ δ * card(uverts G) ˆ 3 −→

(∃G’. triangle_free_graph G’ ∧ uverts G’ = uverts G ∧

uedges G’ ⊆ uedges G ∧

card (uedges G - uedges G’) ≤ ε * (card (uverts G))2)"

The formal proof first discharges the trivial case where ε ≥ 1, when all edges can be

deleted. This case is not considered explicitly in any of our sources, although the main proof

requires ε < 1.

For the main case, we follow Zhao’s recipe. The application of Szemerédi’s Regularity

Lemma is straightforward, enabling us to obtain an upper bound M0 on a regular partition for

any arbitrary graphs G. We further define D0, as a strict upper bound on δ, which is important

in deriving a contradiction at the end of the proof. Following this application, we derive a

number of useful facts on the partition which are used later in the proof.

Step (2) is where the formal proof begins to get complicated. For each of the classes of

edges that “behave poorly”, we define a variable representing the set of those edges, and

establish an upper bound on the cardinality of each of these sets. This counting proved quite

fiddly in a formal environment, reinforcing observations made during our previous work

formalising counting proofs on combinatorial structures [7]. As such, the clean stage of our

formal proof was significantly longer than the more intuitive reasoning used by both Zhao

[35] and Bell–Grodzicki [1].

The formal proof can now obtain a new graph excluding these edges. The final stage of

our proof matches Step (3), showing that this cleaned graph must be triangle-free. Again, this

required some fiddly counting reasoning using the bounds established in Step (2). To help

structure this reasoning, we show that the new graph obtained is regular, dense, and decent
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(as per our earlier Isabelle definitions), with Bell and Grodzicki’s notes proving particularly

useful here. Having met these conditions, the Triangle Counting Lemma can now be applied

and through the use of the card_convert_triangle_rep lemma we come to a contradiction

and finish the proof as required.

4 Formalising Roth’s Theorem on Arithmetic Progressions

We tackled this development in three stages: the Diamond-Free Lemma, then a technical

lemma containing the main construction, and finally the result itself (Theorem 3). In this

section, we show a few highlights of the formal proof.

4.1 The Diamond-Free Lemma

The Triangle Removal Lemma implies a key corollary, which in the literature is often referred

to as a Ruzsa-Szemerédi bound or the Diamond-Free Lemma. First we formalise the property

of being a graph every edge of which belongs to precisely one triangle:

"unique_triangles G
≡ ∀e ∈ uedges G. ∃!T. ∃x y z.

T = {x,y,z} ∧ triangle_in_graph x y z G ∧ e ⊆ T"

Now we can state the corollary.

Corollary 1 For all ǫ > 0, there exists a N > 0, so that any graph G with more than N vertices

and such that every edge of G lies in a unique triangle, we have that |E(G)| ≤ ǫ|V (G)|2.

corollary Diamond_free:
fixes ε :: real
assumes "0 < ε"
shows "∃N>0. ∀G. card(uverts G) > N −→ uwellformed G −→

unique_triangles G −→ card (uedges G) ≤ ε * (card (uverts G))2"

The above claim can be rephrased in the language of Landau symbols as follows: given a

graph G on N vertices so that every edge of G lies in a unique triangle, G has o(N 2) edges.

Zhao offers a six-line proof of Corollary 1, but the formal version, which does not follow

Zhao’s notation with Landau symbols, is well over a hundred lines. It proceeds as follows.

Let ǫ > 0 be given. Use the Triangle Removal Lemma with ǫ/3 to obtain some suitable

δ > 0 and then pick some integer N ≥ 1
3δ

. Let G = (V , E) be given such that |V | > N .

Half of the formal development goes to showing that (by the assumption of unique triangles)

G has exactly three times as many edges as it has triangles. Thus, the number of triangles is

bounded above by |V |2/3 and therefore by δ|V |3. Removing at most (ǫ/3) |V |2 edges from

G yields a triangle-free version G ′. A triangle of G clearly cannot involve any edges of G ′,

so the number of triangles in G is bounded by the number of edges that were removed from

G, from which |E | ≤ ǫ|V |2 follows.

The Isabelle proof is largely straightforward except regarding the unique triangles property

and converting between the triangle {x, y, z} and the corresponding triplet of edges for the

counting argument. This is a typical example of a trivial fact (“three times as many edges as

triangles”) that is cumbersome to formalise.

Corollary 1 will be employed in the proof of Theorem 3. Its statement and Isabelle for-

malisation are presented below.
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4.2 Roth’s Theorem: TheMain Argument

We begin by defining 3-term arithmetic progressions. The definition is polymorphic, and the

formal development uses both natural number and integer versions.

definition progression3 :: "’a::comm_monoid_add ⇒ ’a ⇒ ’a set"
where "progression3 k d ≡ {k, k+d, k+d+d}"

Roth’s theorem is equivalent to the statement that any set free of 3-term arithmetic pro-

gressions must be “small” in a certain sense:

Theorem 5 (Roth) For every ǫ > 0, there exists a M ∈ N so that for all N ≥ M, for any

subset of the naturals A with A ⊆ {0, . . . , N − 1}, if A does not contain a 3-term arithmetic

progression, then |A| < ǫN.

Thus for any set A as above, the cardinality of A is o(N ), that is, A is “small”. However,

as before, we work in terms of a given ǫ > 0 rather than using Landau notation.

The Isabelle/HOL formalisation comprises nearly 500 lines. The formalised statement

follows.

lemma RothArithmeticProgressions_aux:
fixes ε::real
assumes "ε > 0"
obtains M where "∀N ≥ M. ∀A ⊆ {..<N}.

(∄k d. d>0 ∧ progression3 k d ⊆ A) −→ card A < ε * real N"

As mentioned earlier, Corollary 1 (the Diamond-Free Lemma) will be employed in the

proof. We start by taking A ⊆ {0, . . . , N −1} assuming that A contains no 3-term arithmetic

progression. We embed A into a cyclic group: A ⊆ Z/MZ, where M = 2N + 1. We then

construct a tripartite graph G so that each of its three parts is a copy of Z/MZ. We then show

that each edge of G lies in exactly one triangle, and therefore by Corollary 1 we get a bound

on the number of edges of G, and thus, by construction, on the cardinality of A too.

The formalisation of the tripartite graph G is interesting. We need to make three disjoint

copies of the natural numbers below M . Since the vertices of a graph are already natural

numbers, we use a bijection between N × N and N. The library function prod_encode maps

a pair of natural numbers to a natural number, and prod_decode is its inverse.

The first function creates a part (vertex set) of G from a given label (0, 1 or 2) and

the numbers below M . The other two return the label (or the original number below M ,

respectively) given a vertex of G.

define part_of where "part_of ≡ λξ. (λi. prod_encode (ξ,i)) ‘ {..<M}"
define label_of_part where "label_of_part ≡ λp. fst (prod_decode p)"
define from_part where "from_part ≡ λp. snd (prod_decode p)"

We prove some obvious identities relating these functions, and then define the three parts

X , Y , Z of G:

let ?X = "part_of 0"
let ?Y = "part_of (Suc 0)"
let ?Z = "part_of (Suc (Suc 0))"

Defining the edges of G isn’t easy. Zhao says (referring to the set A above)

Connect a vertex x ∈ X to a vertex y ∈ Y if y − x ∈ A. Similarly, connect z ∈ Z with

y ∈ Y if z − y ∈ A. Finally, connect x ∈ X with z ∈ Z if (z − x)/2 ∈ A. Because we

picked M to be odd, 2 is invertible modulo M and this last step makes sense.
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To formalise these difference relations, it seems easier to work in the type of integers. The

function int is the obvious embedding from the natural numbers. Note that division by 2 has

been expressed in terms of multiplication by N + 1.

define "diff ≡ λa b. (int a - int b) mod (int M)"
define "diff2 ≡ λa b. ((int a - int b) * int(Suc N)) mod (int M)"

We need a dozen lines simply to prove this trivial fact (and more facts are needed):

have "diff y x = int a ←→ y = (x + a) mod M" if "y < M" "a∈A"

An auxiliary function captures the requirement that an edge set needs to connect specific

parts of the tripartite graph satisfying a given difference relation:

define Edges where "Edges ≡ λX Y df.
{{x,y}| x y. x∈X ∧ y∈Y ∧ df(from_part y)(from_part x) ∈ int‘A}"

Finally, Zhao’s definition of G is straightforward:

define XY where "XY ≡ Edges ?X ?Y diff"
define YZ where "YZ ≡ Edges ?Y ?Z diff"
define XZ where "XZ ≡ Edges ?X ?Z diff2"
define G where "G ≡ (?X ∪ ?Y ∪ ?Z, XY ∪ YZ ∪ XZ)"

Unfortunately, that this construction satisfies the obvious properties is tricky even to

formalise, let alone to prove. Consider the following claim:

have uniq: "∃i<M. ∃d∈A. ∃x ∈ {p,q,r}. ∃y ∈ {p,q,r}. ∃z ∈ {p,q,r}.
x = prod_encode(0, i)

∧ y = prod_encode(1, (i+d) mod M)
∧ z = prod_encode(2, (i+d+d) mod M)"

if T: "triangle_in_graph p q r G" for p q r

It is a characterisation of an arbitrary triangle {p, q, r} in G. The claim is that p, q , r can be

permuted as x ∈ X , y ∈ Y , z ∈ Z so that there is one vertex in each of the three parts of

the graph (in order!), and that x , y, z encode the arithmetic progression i , i + d , i + 2d for

i < M and d ∈ A. Zhao devotes two sentences to this claim. The formal proof takes more

than 50 lines. It takes us to a key milestone:

have "unique_triangles G"

The proof that each edge of G lies in a unique triangle is four sentences in Zhao’s presentation

and more than 180 lines in Isabelle/HOL, requiring a case analysis with three quite similar

proofs depending on the edge: e ∈ XY, e ∈ YZ or e ∈ XZ.

Zhao’s proof [35] concludes as follows (Corollary 3.18 is our Corollary 1):

Then Corollary 3.18 implies that G has o(M2) edges. But by construction G has

precisely 3M |A| edges. Since M = 2N + 1, it follows that |A| is o(N ) as claimed.

We have 100 + lines of Isabelle to go. First, a simple proof that |E | ≤ ǫ/12 |V |2:

have *: "card (uedges G) ≤ ε/12 * (card (uverts G))2"
using X 〈X < card (uverts G)〉 〈unique_triangles G 〉 〈uwellformed G 〉

by blast

Next, a result that will let us show that the edge sets XY, YZ, XZ all have cardinality M |A|.

The defining relation is abstracted as df. The proof takes some effort!

have card_Edges: "card (Edges (part_of ξ) (part_of ζ) df) = M * card A"
if "ξ �= ζ" and df_cancel: "∀a∈A. ∀i<M. ∃j<M. df j i = int a"

and df_inj: "∀a. inj_on (λx. df x a) {..<M}" for ξ ζ df
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Having got this far, the rest is plain sailing. The edge sets are trivially shown to be disjoint,

from which we obtain |E | = 3M |A| and therefore |A| ≤ ǫN .

have "card (uedges G) = 3 * M * card A"
by (simp add: G_def card_Un_disjnt)

then have "card A ≤ ε * (real M / 4)"
using * 〈0 < M 〉 by (simp add: cardG card_edges power2_eq_square)

also have ". . . < ε * N"
using 〈N>0〉 by (simp add: M_def assms)

finally show "card A < ε * N" .

4.3 Roth’s Theorem: The Final Version

The version of Roth’s Theorem presented as Theorem 3 in Sect. 1, that is, formulated using

the notion of upper asymptotic density, essentially constitutes the contrapositive of the lemma

proved above: if A is in a certain sense “big enough” then it must contain a 3-term arithmetic

progression.

theorem RothArithmeticProgressions:
assumes "upper_asymptotic_density A > 0"
shows "∃k d. d>0 ∧ progression3 k d ⊆ A"

The notion of upper asymptotic density is in the development Ergodic Theory from the

Archive of Formal Proofs [14]. Assuming the negation of the conclusion, it is easy to con-

tradict the assumption.

5 Some Difficulties

Much of the effort in this project had not to do with the formalisation itself but with ascertain-

ing precisely what to formalise. Although this material is considered mathematics of central

importance, sources are conflicting about the basic definitions.

The first problematic definition is edge density, Def. 2:

d(X , Y ) =
e(X , Y )

|X ||Y |
.

In one draft of his notes, Zhao mentions that the given definition of e(X , Y ) does not even

equal the actual number of edges between X and Y unless those sets are disjoint. So the

question is whether to require X and Y to be disjoint. Many authors do, although Zhao and

Gowers do not. To see whether this omission was intentional, we examined the literature

and easily found numerous sources of all kinds (lecture notes, preprints, slides and journal

articles) requiring the sets to be disjoint. One specific example is Malliaris and Shelah [24]. As

already mentioned in Sect. 1, Szemerédi originally proved his Regularity Lemma for bipartite

graphs and then generalised it for arbitrary graphs: this may be the source of discrepancy

with respect to disjointness. The question matters because it affects subsequent definitions,

theorem statements and proofs. Ultimately we decided to omit the constraint provisionally

and were never forced to reimpose it. In the video3 of his MIT lecture, Zhao clarifies that

we are in principle allowed to include pairs (Vi , V j ) with i = j in the regular partition

definition, Definition 4 (see around 12:45 in the video). This is what prompted us to omit

the disjointness constraint both in the edge density within the regular pairs definition and in

3 https://www.youtube.com/watch?v=vcsxCFSLyP8&t=939s.

123

https://www.youtube.com/watch?v=vcsxCFSLyP8&t=939s


Formalising Szemerédi’s Regularity Lemma… Page 17 of 21 2

the regular partition definition, considering the more general case where i = j is allowed

everywhere.

The next problematic definition was that of an ǫ-regular pair, Definition 3. We call (X , Y )

an ǫ-regular pair if a certain condition holds for all A ⊆ X and B ⊆ Y . However, both Gowers

and Zhao specified strict subsets, A ⊂ X and B ⊂ Y . In this case, it seemed that there could

be no doubt, because the Energy Boost Lemma requires strict subsets: it creates partitions

{A, X \ A} and {B, Y \ B}, and a component of a partition cannot be empty. This definition

worked for the formalisation of Szemerédi’s Regularity Lemma. Unfortunately, when we

moved to the proof of Roth’s Theorem, the version of the definition with strict subsets did

not make sense. Proving the Triangle Counting Lemma, at the very start we “obtain a pair of

subsets witnessing the irregularity of (X , Y )” and one of these so-called subsets is Y itself.

With a little effort, we were able to show that the two definitions of regular pair, strict and non-

strict, coincide provided both X and Y contained at least two elements. This extremely weak

but necessary proviso unfortunately introduced a degenerate case in the Triangle Counting

Lemma that we could not prove. Instead we changed the definition of ǫ-regular pair to involve

non-strict subsets and redid the proof of the Regularity Lemma. The necessary correction

to the Energy Boost Lemma introduced annoying but minor complications throughout the

proof (in particular, the introduction of the function P2 to deal with degenerate partitions,

as mentioned in Sect. 2.3). Eventually we learned that in combinatorics, ⊂ and ⊆ might be

used interchangeably even within the same context, with � reserved for the strict form.

Another issue in the formalisation was how to represent partitions. All informal expositions

write a partition as a family of sets indexed by natural numbers: {V1, . . . , Vk}. The notation

with indices looks natural and familiar. The indexing plays a prominent role in the proofs:

sometimes we refer to (Vi , V j ) where i < j , so the order is also significant. But as we refine

such a partition, further partitioning each of the Vi , the task of assigning correct indices

to each set is irksome. So we—having completed the formalisation—redid it to formalise

a partition as nothing but a set of sets. The reworking did not take long and resulted in a

slightly shorter and definitely clearer proof. On the rare occasions when explicit indices were

necessary, choosing an arbitrary ordering of the partition was sufficient.

On a related note, another difficulty was formalising the partition refinement step, the

lemma Zhao calls Energy Boost for an irregular partition (Sect. 2.4). Here, a partition

{V1, . . . , Vk} of the vertex set is given and for all ǫ-irregular pairs (Vi , V j ), a further partition

of both members is induced by the Energy Boost Lemma. The new partition must be a com-

mon, simultaneous refinement of all of those partitions. What must be done is fairly obvious

but only to someone reasonably familiar with the material. (The latest drafts of Zhao’s book

cover these subtleties superbly.) The actual formalisation of the common refinement of a

set of partitions (a set of set of sets) is the collection of all possible nonempty intersections

involving a member of each of the partitions. The idea is obvious enough but the formalisation

contains a few tricky elements.

Finally, our sources differed on the maximum possible size of the partition of each Vi

mentioned above. In the notes for Gowers’s course [15] 22k is given, while according to the

early version of the notes by Zhao [35] it is 2k . We eventually discovered the updated version

of Zhao’s notes [36] with the correct (depending on details of definitions) figure of 2k+1 and

a hint that one must exploit symmetry to avoid double counting (Vi , V j ) and (V j , Vi ) in

order to fit within that bound. We have followed Zhao, who states that pairs where i = j

are also included; we say more about the treatment of the diagonal in Sect. 6 below. The

inequality given is k 2k+1 ≤ 22k
, which in the final induction delivers the required stack of

exponentials. Because in the notes for Gowers’s course [15] a higher upper bound is given,
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this inequality is stated as k 22k ≤ 22k
, which however, is not true for k = 2 (and Isabelle

reports this counterexample unprompted). All three different aforementioned bounds for this

lemma lead, however, to the same tower of exponentials, which Gowers [16] proved to be

tight.

In all these difficulties we have no one to blame but ourselves, since there were willing

experts whom we could have consulted. Gowers works in a nearby department, and when

we finally made contact with Zhao (having completed both formalisations) he was enthu-

siastic to help us clarify the ambiguity in the regular pair definition. And there is a further

lesson: mathematicians expect the right methods to be used but are quite willing to overlook

trivial details, while computer scientists expect everything to fit together perfectly. There is

a difference in outlook that must somehow be bridged if the formalisation of mathematics

is to become mainstream. At the same time, we see that formalising mathematics with a

proof assistant like Isabelle can be helpful in clarifying minor details and edge cases. This

is not only because the user is forced to examine every technical point while articulating a

proof to a computer, but also because working with a formal proof can reveal delicate issues:

for example, counterexample-finding tools implemented within Isabelle’s automation may

remind the user about missing assumptions and edge cases, or the users themselves may

experiment to see where the proof breaks after minor modifications in the code.

6 Independent Formalisation in Lean

As noted in Sect. 1, similar material was formalised in Lean by Yaël Dillies and Bhavik

Mehta around the same time [5] and their formalisations4 are pending full incorporation to

mathlib, Lean’s library of formalised mathematical proofs.

A notable difference between the two formalisations is that Dillies and Mehta treated the

equitable version of Szemerédi’s Regularity Lemma, which yields an equitable partition of

the vertex set. A partition of a set of size n into k parts is equitable if every part has size

⌊n/k⌋ or ⌈n/k⌉. In particular, the equitable version of Szemerédi’s Regularity Lemma states

that

Theorem 6 For every ǫ > 0 and m0, there exists a constant M such that every graph G has

an ǫ-regular equitable partition of its vertex set into k parts with m0 ≤ k ≤ M.

The proof is similar to the proof of the non-equitable version, but at every stage when the

partition is refined (by the Energy Boost Lemma), a further refinement step is done to keep

the new partition equitable.

We earlier noted that our sources suggested three different upper bounds on the size of the

partition obtained via the Energy Boost Lemma for an irregular partition. One of the three is

numerically wrong, but the other two are both correct, depending on details of the definitions.

To clarify, recall Definition 4: As we explained in the previous section, we removed the

disjointness constraint both in the edge density within the regular pairs definition and in the

regular partition definition, meaning that we considered the more general case where i = j

is allowed everywhere. Dillies and Mehta also allow for pairs (X , X) in the edge density

definition, however in the regular partition definition, unlike us, they explicitly exclude the

possibility i = j (omitting the diagonal, explicitly ignoring all (Vi , Vi ) pairs), that is, in their

4 https://github.com/leanprover-community/mathlib/tree/szemeredi/src/combinatorics/szemeredi.
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version of Definition 4 they instead consider the condition

∑

i �= j

(i, j)∈[k]2

(Vi ,V j ) not ǫ−regular

|Vi ||V j | ≤ ǫ|V (G)|2.

By omitting the diagonal pairs where i = j , the upper bound attained in the Lean development

is 2k rather than 2k+1 as in our case.

The diagonal pairs can safely be ignored in the development by Dillies and Mehta, since

they formalise the equitable version of Szemerédi’s Regularity Lemma, Theorem 6: if there

are enough parts in the partition, then the proportion of pairs that are diagonal can be made

small.

We are grateful to Timothy Gowers, who in a private email clarified this discrepancy

between the two approaches. He moreover stated that he finds the non-equitable version that

we formalised more mathematically natural: e.g. if the graph is quasirandom, partitioning

it arbitrarily into enough parts to allow ignoring the diagonal contributions looks artificial

when you can just take a single part. Gowers added that he is not aware of any practical

applications where equitability would be required.

Dillies and Mehta followed a different route than we did from Szemerédi’s Regularity

Lemma to Roth’s Theorem: via the Corners Theorem. A corner in Z2 is a three-element set

of the form

{(x, y), (x + d, y), (x, y + d)}

with d > 0. The Corners Theorem states that every corner-free subset of [N ]2 has size o(N 2).

It has a short proof using the Triangle Removal Lemma and leads fairly directly to Roth’s

Theorem. As already sketched above, we followed a route via the Diamond-Free Lemma,

Corollary 1 (also referred to in the literature as a Ruzsa–Szemerédi bound).

Finally, it is worth mentioning that although the Isabelle/HOL type system is much simpler

than Lean’s (the latter uses dependent types), we never had to exercise any ingenuity in regard

to types.

7 Conclusions

Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions are regarded

as major results and our announcement of their formalisation was greeted enthusiastically [2].

And yet, the formalisation was almost straightforward, the main difficulties stemming from

ambiguities in our sources compounded by our unwise refusal to consult available experts.

The formalisations are relatively short: about 1000 lines for Szemerédi’s Regularity Lemma

and 1500 for Roth’s Theorem. Zhao’s exposition of the two theorems takes up about six

pages for each. A rough calculation yields a de Bruijn factor (the ratio of the sizes of the

formalised material over the original material) of about four for both developments. This sort

of mathematics is clearly suitable for formalisation, and in view of the minor inaccuracies

we discovered in standard presentations, there is some value in doing so.
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