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Abstract

The CHiME-7 unsupervised domain adaptation speech en-

hancement (UDASE) challenge targets domain adaptation to

unlabelled speech data. This paper describes the University

of Sheffield team’s system submitted to the challenge. A

generative adversarial network (GAN) methodology based on

a conformer-based metric GAN (CMGAN) is employed as

opposed to the unsupervised RemixIT strategy used in the

CHiME-7 baseline system. The discriminator of the GAN is

trained to predict the output score of a Deep Noise Suppres-

sion Mean Opinion Score (DNSMOS) metric. Additional data

augmentation strategies are employed which provide the dis-

criminator with historical training data outputs as well as more

diverse training examples from an additional pseudo-generator.

The proposed approach, denoted as CMGAN+/+, achieves sig-

nificant improvement in DNSMOS evaluation metrics with the

best proposed system achieving 3.51 OVR-MOS, a 24% im-

provement over the baseline.

Index Terms: speech enhancement, model generalisation, gen-

erative adversarial networks, conformer, metric prediction

1. Introduction

As work and lifestyle patterns shift towards more remote, on-

line working, it is essential that voice and video communication

software is able to reduce environmental distortion in transmit-

ted audio. As such, speech enhancement techniques, especially

those utilising neural networks are a high priority area of ac-

tive research. The CHiME-7 unsupervised domain adaptation

speech enhancement (UDASE) challenge [1] was proposed to

improve speech enhancement research [2–5] using real-world

training data in an unsupervised way. In supervised neural net-

work based speech enhancement systems, there is often a mis-

match between the synthetic data used to train the system and

real-world recordings. This can lead to poor performance of

such systems in the wild even if evaluation metrics on synthetic

data are high [6]. To further compound this problem, metrics

which are designed to measure the quality often do not corre-

late strongly with actual human assessment of speech audio in

specific scenarios [7], and often require access to clean refer-

ence/label audio which may not be readily available for real-life

recordings.

Recently, several new metrics [8–11] have been proposed which

attempt to directly predict human quality assessment in a non-

intrusive way, i.e. without need for a reference signal. These

take the form of neural networks trained using datasets of dis-

torted audio to predict a quality label assigned to the audio
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by the human assessors. Self-supervised speech representa-

tions (SSSRs) have been found to be useful feature represen-

tations for the prediction of audio quality [12, 13].

The baseline system for the CHiME-7 UDASE challenge ad-

dresses the speech enhancment task using a RemixIT [14]

framework wherein a teacher network is trained using labelled

data, and a student network trained on real data uses inference

of the teacher network as pseudo-labels in its loss function.

The speech enhancement problem is modelled as source sepa-

ration task, using the ‘Sudo rm -rf’ [15] model structure. While

both, student and teacher networks show good performance on

synthetic labelled testsets in terms of Scale Invariant Signal-

Distortion Ratio (SI-SDR), degradation in quality in terms of

the DNSMOS non-intrusive quality metric is observed on the

challenge evaluation sets, compared to the unprocessed input

audio in real-world in-domain recordings [1].

This paper comprises a description and in-depth evaluation

of the University of Sheffield UDASE challenge submission.

Rather than using an unsupervised methodology, the proposed

approach for this submission uses a supervised GAN-based

methodology. Motivated by Mean Opinion Scores (MOSs) be-

ing the main ranking metrics of the challenge, the GAN discrim-

inator is trained to predict a MOS-related metric, i.e. DNSMOS.

Historical training data from a conventional generator and an

additional pseudo-generator is used to augment the training data

diversity.

The remainder of this paper is structured as follows. The input

feature generation by the Hidden Unit BERT (HuBERT) [16]

SSSR model as well as the DNSMOS [8] metric prediction net-

work are described in Section 2 and Section 3, respectively. The

proposed CMGAN+/+ model is described in Section 4. Exper-

imental setup and results are discussed in Section 5 and Sec-

tion 6, respectively. Finally, Section 7 draws some conclusions

from the findings of the paper.

2. HuBERT Encoder Feature
Representations

Recent work in metric prediction [12, 13] shows that SSSRs

are useful as feature extractors for capturing quality-related in-

formation about speech audio. As such, the proposed system

makes use of the HuBERT [16] SSSR as a feature extractor for

the metric prediction component of the proposed framework.

HuBERT, like most SSSRs which take time domain signals as

input, consists of two distinct network stages, as shown in Fig-

ure 1. The first stage HFE(·) comprises several 1D convolu-

tional layers which map the input time domain audio s[n] into a

2D representation. The second stage HOL(·) consists of a num-

ber of transformer [17] layers, which takes the output of the first

stage as input. For a input time domain signal s[n], two repre-

sentations SFE (after the feature encoder (FE) stage) and SOL

(at the final output (OL) layer) can thus be obtained from the
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Figure 1: Representations extracted from HuBERT model

stages.

HuBERT model:

SFE = HFE(s[n]) (1)

SOL = HOL(HFE(s[n])) (2)

Recent work in speech enhancement [13,18,19] have found that

the outputs of HuBERT’s HFE(·) stage are particularly use-

ful for capturing quality-related information. The outputs of

HFE(·) are 2D representations with dimensions 512×T where

T depends on the length of the input audio in seconds. The

HuBERT model used in this work is trained on 960 hours of

audio-book recordings from the LibriSpeech [20] dataset, and

is sourced from the FairSeq GitHub repository1. The HuBERT

encoder representation SFE in (1) is used as a feature extrac-

tor, and its parameters are not updated during in the proposed

framework.

3. DNSMOS

The Deep Noise Suppression Mean Opinion Score

(DNSMOS) [8] is a non-intrusive speech quality metric.

It consists of a neural network which was trained to predict

real human MOS ratings of input audio signals. As it is

non-intrusive, it is particularly useful for assessing the quality

of real recordings such as in the CHiME-7 UDASE challenge

testset, and was one of the evaluation metrics used in assessing

the entries to the challenge. For an input time domain speech

signal s[n] DNSMOS returns three values

QSIG, QBAK, QOVR = DNSMOS(s[n]), (3)

where QSIG, QBAK and QOVR are each values between 1 and 5
which represent the estimated speech quality, background noise

quality and overall quality, respectively (higher values indicat-

ing better quality). In the following Q is used to represent one

of these values and Q′ is the respective value normalized be-

tween 0 and 1.

While DNSMOS is a neural network meaning it is theoretically

possible to backpropagate through it and use it directly in a loss

function, it is not publicly available in this form. In order to

incorporate DNSMOS as a loss function for speech enhance-

ment in this work, a non-intrusive metric prediction discrimina-

tor [21] is trained to create a differentiable copy of the original

implementation of DNSMOS provided in the CHIME-7 base-

line system. This has the added benefit of allowing for an ad-

versarial training of the metric prediction network in a GAN

setting [22].

4. Speech Enhancement System Description

The overall architecture of the proposed system is largely based

on the CMGAN framework proposed in [23], but with two ex-

tensions proposed in [24] and [25]. The first extension is to train

1https://github.com/facebookresearch/fairseq

the discriminator D on a historical set of past generator outputs

every epoch. The second extension is to train D to predict the

metric score of noisy, clean and enhanced audio, as well as the

output of a secondary pseudo-generator network N which is

designed to increase the range of metric values observed by D.

This work introduces a new structure for D, as well as a new

input feature which is derived from a pre-trained SSSR.

4.1. Conformer-based Generator

4.1.1. Conformer-based Generator Network Structure

The Conformer model generator G is based on the best perform-

ing CMGAN configuration in [23]. The network itself com-

bines mapping and masking approaches for spectral speech en-

hancement, utilizing a conformer [26] based bottleneck. The

model’s input are short-time Fourier transform (STFT) compo-

nents of the noisy audio XRe and XIm with a reasonably high

temporal resolution (hop size of 6 ms) with a 50% overlap, and

a fast Fourier transform (FFT) length of 400 samples at a sam-

pling rate of fs = 16000 Hz. The output of the model are the

enhanced real and imaginary STFT components ŜRe and ŜIm

from which the enhanced time domain audio ŝ[n] is obtained by

inverse short-time Fourier transform (ISTFT).

4.1.2. Generator Loss Function

The model is trained with a multi-term loss function

LG = γ1LGGAN
+ γ2LGTime

+ γ3LGTF
, (4)

where γ1, γ2, γ3 are hyperparameter weights. LGGAN
is defined

as

LGGAN
= E{(D(ŜFE)− 1)2}, (5)

which represents an assessment of the enhanced signal by the

metric Discriminator D. The 1 in (5) represents the highest

possible DNSMOS value of 5 after being normalized between

0 and 1.

LGTime
is a mean absolute error between the enhanced and

clean time domain mixtures

LGTime
= E{||s− ŝ||1}. (6)

Finally, LGTF
itself consists of two weighted components

LGTF
= αLGMag

+ (1− α)LGRI
, (7)

where α is a hyperparameter weight between the terms. LGMag

represents the distance between magnitude spectrogram repre-

sentations of the enhanced and clean mixtures

LGMag
= E{||SMag − ŜMag||

2}, (8)

with ŜMag defined as

ŜMag =

√

Ŝ2
Re + Ŝ2

Im, (9)

and SMag defined accordingly. LGRI
represents a similar com-

parison between the enhanced and clean real and imaginary

STFT components.

LGRI
= E{||SRe − ŜRe||

2}+ E{||SIm − ŜIm||2} (10)

With the exception of (5), all terms of LG require access to clean

label/reference audio s[n]. The feature transformations and loss

terms of LG are visualised in Figure 2.
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Figure 2: Visualisation training of generator G and generator loss LG in (4), (inference path shown in red, backpropagation in blue).

4.1.3. Block Processing for Continuous Processing

Due to the quadratic time-complexity of the transformer layers

in the Conformer models, processing long sequences can be un-

feasible due to high memory requirements. Transformers are

also typically unsuitable for continuous processing as the en-

tire sequence is required to compute self-attention. To address

these issues input signals are processed in overlapping blocks

of 4 s for evaluation and inference as this has been shown to be

in an optimal signal length range for attention-based enhance-

ment models [27]. A 50% overlap with a Hann window is used

to cross-fade each block with one another. Models are trained

with 4 s signal length limits [27] similar to the baseline.

4.2. Metric Estimation Discriminator

The discriminator D part of the GAN structure is trained to pre-

dict a normalised DNSMOS [8] score for a given input signal.

Inference of D is used in (5) as one of the loss terms of G and

as the sole loss function of N in (12), enforcing an optimisation

towards the target metric.

Experiments with training D to predict one of the outputs of

DNSMOS (i.e QSIG, QBAK or QOVR) are also conducted.

4.2.1. Discriminator Network Stucture

The discriminator network structure consists of 2 Bi-Directional

Long Short-Term Memory (BLSTM) layers followed by a sin-

gle attention feed-forward layer with a sigmoid activation, simi-

lar to the network proposed in [12]. The input to D is the output

of the HuBERT feature encoder HFE(·).

4.2.2. Discriminator Loss Function

Within each epoch, first the Discriminator D is trained on the

current training elements:

LD,MG+ = E{(D(SFE)−Q
′(s))2

+ (D(ŜFE)−Q
′(ŝ))2

+ (D(XFE)−Q
′(x))2

+D(YFE)−Q
′(y))2} (11)

where SFE, XFE, ŜFE and YFE are HuBERT encoder repre-

sentations, u.e. outputs of HFE(·), of the clean audio mixture

s, the noisy mixture x, the mixture as enhanced by G, ŝ, and

the mixture as enhanced by N , y. This is followed by a his-

torical training stage, where D is trained to predict the metric

scores from past outputs of the generative networks G and N .

Q′(·) is the true DNSMOS score of the input audio, normalized

between 0 and 1.

4.2.3. Historical Training

The training procedure of D uses historical training data as it

was first proposed in the MetricGAN+ framework [24]. In this

stage, a sample of enhanced audio output from past epochs of

G and N are used to train D. The aim of this is to prevent D
from ‘forgetting how to assess audio which is dissimilar to the

current outputs of the enhancement network. In each epoch, D
is trained using a randomly selected 10% of the outputs of the

generator models from past epochs.

4.3. Metric Data Augmentation Pseudo-Generator

As first proposed in [25], an additional speech enhancement net-

work N is trained, and its outputs y used to train the metric

prediction discriminator D (last term in (11)) . This model is

trained solely using the GAN loss in (5), similar to the original

MetricGAN framework,

LNGAN
= E{(D(YFE)− w)2}, (12)

where w is a hyperparameter value which corresponds to the

target normalised DNSMOS score for which the output audio

of N is being trained to reach.

Its network structure is based on the original MetricGAN en-

hancement model, consisting of a BLSTM which operates on a

magnitude spectrogram representation of the input, followed by

3 linear layers. Its output is a magnitude mask which is mul-

tiplied by the input noisy spectrogram to produce an enhanced

spectrogram YSPEC. A time domain signal y[n] is constructed

by the overlap-add method using the original noisy phase.

5. Experiment Setup

The framework is trained on the simulated LibriMix dataset

[28], using the same data loading configuration as the teacher

network in the baseline system [1]. The labelled LibriMix train-

ing set consists of 33900 clean/noisy audio pairs, with the clean

speech sourced from the LibriSpeech [20] dataset and the added

noise from WHAM! [29] dataset. The framework is trained for

200 epochs, on a random sample of 100 training elements from

the train set in each epoch. The Adam optimizer is used for all

three networks, with learning rates of 0.005, 0.005 and 0.001
for G,N and D respectively. Frameworks are trained where D
is trained to predict target metric QSIG, QBAK and QOVR.

Following the configuration in the original CMGAN system,

γ1, γ2, γ3 in (4) are set to 1, 0.2 and 0.05 respectively, while

α in (7) is set to 0.9. An additional simulation completely dis-

abling the GAN component of the framework, i.e. setting γ3 to

0, as well as training solely using the GAN loss by setting γ1
and γ2 to 0 and γ3 to 1 are performed. Additionally, we ex-

periment with setting w, the hyperparameter which controls the
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Table 1: SI-SDR results on the reverberant LibriCHiME eval

set.

Model w Q SI-SDR (dB)

unprocessed – – 6.59

Sudo rm -rf [15] – – 7.8

RemixIT [14] – – 9.44

RemixIT [14] w/ VAD – – 10.05

CMGAN+/+ 1.00 SIG 4.71

fine-tuned 3.55

CMGAN+/+ 0.80 SIG 4.53

fine-tuned 3.55

CMGAN+/+ 0.45 SIG 5.98

fine-tuned 4.30

CMGAN+/+ 1.00 BAK 6.95

fine-tuned 6.89

CMGAN+/+ 0.80 BAK 6.31

fine-tuned 7.39

CMGAN+/+ 0.45 BAK 6.42

fine-tuned 5.84

CMGAN+/+ 1.00 OVR 7.41

fine-tuned 4.29

CMGAN+/+ 0.80 OVR 1.19

fine-tuned 5.15

CMGAN+/+ 0.45 OVR 4.75

fine-tuned 6.78

no GAN term – – 6.61

GAN only 1.00 SIG -30.97

GAN only 1.00 BAK -67.28

GAN only 1.00 OVR -41.60

objective of N in (12), to 1.0, 0.8 and 0.45.

At evaluation time, the best-performing epoch in terms of the

target metric on the LibriMix validation set is loaded. Note that

only the labelled portion of the challenge training data is used

in taining, unlike the baseline system. Additionally,results are

reported for the best-performing epoch after further fine-tuning

for 20 epochs on the labelled LibriCHiME dev set which con-

sists is similar to LibriMix but with the noise sourced from the

real CHiME recordings.

6. Results

Table 1 shows the results of the baseline systems and the

proposed systems (for different w in (12) and different target

metrics Q from (3)) on the simulated Reverberant LibriCHiME

evaluation set in terms of Scale Invariant Signal-Distortion

Ratio (SI-SDR) score. Here, the proposed system shows

generally lower performance than the baselines, with the

exception of the models which are trained with QBAK as their

target metric. The model trained with a w value of 0.8 with

QBAK as the objective when fine-tuned in the LibriCHiME dev

set was able to achieve an average SI-SDR score of 7.41 dB.

Similarly, the model trained with a w value of 1 and QOVR

achieves an average SI-SDR score of 7.41 dB. The relatively

poor overall performance by the proposed systems in terms

of SI-SDR as evaluation metric can perhaps be explained by

the fact that the baseline systems all explicitly use SI-SDR as

a loss function during training; our system which incorporates

SI-SDR loss directly outperforms the baseline in this measure

as shown in the following.

Table 2 show results of the baseline systems and the pro-

posed systems on the real CHiME evaluation set in terms

of DNSMOS scores. Here, the proposed systems all show

Table 2: DNSMOS results on CHiME5 eval set.

Model w Q OVR BAK SIG

unprocessed - 2.84 2.92 3.48

Sudo rm -rf [15] - 2.88 3.59 3.33

RemixIT [14] - 2.82 3.64 3.26

RemixIT [14] w/ VAD - 2.84 3.62 3.28

CMGAN+/+ 1.00 SIG 3.29 3.85 3.76

fine-tuned 3.45 3.90 3.98

CMGAN+/+ 0.80 SIG 3.20 3.70 3.68

fine-tuned 3.37 3.46 3.86

CMGAN+/+ 0.45 SIG 3.33 3.81 3.80

fine-tuned 3.49 3.90 3.98

CMGAN+/+ 1.00 BAK 3.12 3.90 3.39

fine-tuned 3.28 4.08 3.29

CMGAN+/+ 0.80 BAK 3.06 3.82 3.32

fine-tuned 3.15 3.95 3.07

CMGAN+/+ 0.45 BAK 2.87 3.74 3.18

fine-tuned 3.08 3.87 3.23

CMGAN+/+ 1.00 OVR 3.51 3.99 3.78

fine-tuned 2.60 3.25 3.14

CMGAN+/+ 0.80 OVR 3.37 3.87 3.56

fine-tuned 2.75 3.27 3.27

CMGAN+/+ 0.45 OVR 3.23 3.94 3.33

fine-tuned 2.84 3.24 3.26

no GAN term – – 2.87 3.54 3.34

GAN only 1.00 SIG 2.66 1.58 3.72

GAN only 1.00 BAK 2.67 3.78 2.41

GAN only 1.00 OVR 2.70 3.68 3.00

a marked improvement over the baseline systems, with an

improvement in terms of the target metric after fine-tuning

in most cases. Furthermore, the inclusion of the GAN term

in (4) also has a significant effect on this measure, as shown

by the performance of the proposed system without the GAN

term. Unlike QSIG and QBAK fine-tuning on the LibriCHiME

dev set degrades performance on the models trained towards

QOVR. Generally, the models trained with a w value of 1
perform better than the other values; this may be caused by the

difficulty of the task of N to enhance or ’de-enhance’ the input

audio representation.

The results for the model trained solely using the GAN term

towards QSIG are shown in the last row of Table 2. While

this model shows good performance on its target metric, it

scores rather poorly on the other two DNSMOS components.

Furthermore, when played back, audio enhanced by this system

is significantly distorted, with barely any of the original signal

retained. The models trained only using the GAN term towards

QBAK and QSIG are similarly distorted. Figure 3 shows

exemplarily shows spectrograms for noisy (upper panel in

Figure 3) and enhanced audio by the system with QSIG as

target metric and a w of 1 (second panel), the system with no

GAN term (3rd panel) and the system using the GAN term

only (also with QSIG, w of 1, lower panel in Figure 3). In

the lower panel of Figure 3, the significant distortion of the

signal by the GAN-only model is visible, despite it achieving

a similar DNSMOS SIG improvement relative to the noisy

input as the other enhancement models. This suggests that the

model has learned to ‘enhance’ the input audio in a way to

trick the DNSMOS SIG metric into awarding it high scores.

The reason as to why DNSMOS awards such high scores to

significantly distorted audio remains unknown; it is possible

that as DNSMOS is a data-driven system itself, the problem

arises from its neural network not ever observing audio which

has been distorted in such a way during its own training,

resulting in it assigning an effectively meaningless score.
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Figure 3: Noisy and enhanced spectrograms of audio file

S01 P01 0.wav from the CHiME-5 evaluation set.

6.1. Challenge Results

Table 3 compares the challenge entries in terms of DNSMOS

and SI-SDR on the sim challenge evaluation sets.

Table 3: Comparison with other challenge entries ranked by

DNSMOS OVR score.

CHiME-5 Reverb Libri-
(DNSMOS) CHiME-5

Rank System OVRL BAK SIG SI-SDR (dB)

1 CMGAN+/+ fine 3.55 3.93 3.92 4.7
2 CMGAN+/+ 3.40 3.97 3.76 7.8
3 NWPU/ByteAudio 3.07 3.93 3.39 13.0
4 Sogang ISDS1 2.90 3.60 3.39 12.4
5 Sogang ISDS2 2.88 3.70 3.32 12.4
6 OOD teacher 2.88 3.59 3.33 7.8
7 RemixIT-VAD 2.84 3.62 3.28 10.1
8 Unprocessed 2.84 2.92 3.48 6.6
9 RemixIT 2.82 3.64 3.26 9.4

The submitted system uses DNSMOS SIG as its target met-

ric with a w value of 1. Note that the results shown here for

our submitted systems differ slightly from those in the previ-

ous section, as they come from different runs of the model on a

different random seed. Both our base and fine-tuned models sig-

nificantly outperform all other entries in terms of DNSMOS on

the real CHiME-5 evaluation set, but show lower performance

for SI-SDR as target metric. After evaluation by the challenge

organisers in terms of DNSMOS and SI-SDR as shown in Ta-

ble 3, the two best-performing systems for each of the two tar-

get metrics (including the proposed system) were evaluated in

listening tests.Table 4 shows the results listening-tests of audio

enhanced by the top-performing systems, as well as the unpro-

cessed audio. Interestingly, the proposed system shows lower

performance in the listening tests than expected from the high

scores in terms of DNSMOS in Table 4.

Table 4: Comparison of top-performing challenge entries on

listening tests with human participants, ranked by OVRL MOS.

CHiME-5 (Listening Tests)

Rank System OVRL BAK SIG

1 NWPU/ByteAudio 3.11 4.30 3.41
2 Sogang ISDS1 2.75 3.08 3.43
3 Unprocessed 2.68 2.20 3.97

4 RemixIT-VAD 2.45 2.97 3.02

5 CMGAN+/+ fine 2.14 2.75 2.63

7. Conclusions

In this paper, the University of Sheffield’s CMGAN+/+ speech

enhancement system for the CHiME-7 UDASE challenge is

described. The system uses a GAN-based model with dis-

criminator input data augmentation strategies to improve metric

prediction performance. Results on the unlabelled CHiME-5

evaluation set demonstrate improvements in DNSMOS evalua-

tion metrics, significantly outperforming the baseline system in

OVR, BAK and SIG measures. However, this does not directly

translate to high ratings in listening tests with humans. By train-

ing solely using a metric optimisation loss, possible flaws in the

metric being optimised towards have to be considered.
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