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Abstract

Formal methods is an important branch of software engineering that is difficult

to teach well. Effective teaching must therefore be informated by the latest peda-

gogical research. In this article, we perform a systematic survey of formalmethods

teaching literature over the past 10 years. We consider the curriculum, teaching

techniques, software tools, and past course experience. We draw a number of

lessons to be learned, that will inform our pedagogical approach for teaching for-

mal methods in the second and third year computer science programme.
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1 Introduction

Formal methods is a branch of software engineering (SE) that focusses on mathemat-

ical analysis techniques that ensure software of high quality. Though it has a proven

track record in improving computerised systems, it is notoriously difficult to teachwell.

Students can often be puzzled by the complex mathematical notation involved, and

wonder what the applications are, to name but two issues.

The author is a lecturer in the department of computer science. He has previ-

ously taught a third-year optional formalmethods course called “Assurance and Proof”

(PROF). Though the course received excellent feedback and exam results were good, it

was taught to a small cohort of around 15. Next year numbers will be at least 30, and

therefore the course needs to scale. We are also delivering an industrial CPD based

on this module in June, which will require adaptation for a different kind of audience.

More significantly, Simon will also be teaching half of our mandatory second-year the-

ory module, on logic and proof (THE3). This is a very different prospect, with a cohort

of potentially 200 students. If these modules are to be successful, then it is vital that

our teaching is informed by the latest pedagogical research.

The aim of this study is systematically review the pedagogical literature over the

past ten years in formal methods research. There is a growing recognition that the

challenge of teaching formal methods (FMs) should be recongised as a significant and

unique area of pedagogical research. Over the past ten years, there has been a grow-

ing and increasingly vibrant community, demonstrated through events like the Formal

Methods Teaching Workshop (FMTea), which happens biannually. The pedagogical

literature is primarily about sharing experiences in teaching FMs, and to help other

members of the community improve.

*Email: simon.foster@york.ac.uk
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2 Research method

We performed a systematic review using Google Scholar and Scopus. We applied the

search term “Formal Methods” AND (“Teaching” OR “Pedagogical”), and limited the

time scale to the past 10 years (due to technological advances). Wediscovered that this

missed out several importantworks from the “InnovationAnd Technology In Computer

Science Education”, and so we added “formal methods” literature from this venue.

During the review, we discovered papers that do not self-identify as formal methods,

which we added. We also corresponded with Colleagues from Korea and USA, which

turned up some further papers in this category.

Our search yielded a total of 53 papers, which we then proceeded to read. Our

chosen research question is “What are the necessary preconditions to allow the use

of formal methods in constructively supporting the computer science undergraduate

curriculum?”. An assumption of this is that FMs can be integrated and serve computer

science, which is confirmed by our review.

The quality and nature of the papers is very variable. Many are discursive and anec-

dotal, based on teaching experience. Their origin is global, including authors from Eu-

rope, USA, Iceland, Australia and Russia. A few have quantitative data, but often the

sample size is small and comparison is difficult. As a result, we instead approached

answering our research question through deep engangement with the authors argu-

ments, emphasising themes where there is clear consensus of opinion. Where con-

vincing quantitative data is available, we emphasise this in the text, and generally pri-

oritise the arguments of these papers.

The literature indicates that there are substantial lessons to be learned. In order to

guide our discussion, we have divided our the literature review into 4 key subsections:

(1) Curriculum and Module Design; (2) Teaching Techniques; (3) Software Tools; and

(4) Course Experience. We then collate a set of lessons learned, and explain how these

feed into our pedagogical practice.

3 Literature review

3.1 Curriculum and module design

In this section, we consider what an FMmodule should look like, how it should fit into

the rest of the curriculum, and how it should be motivated.

Drachova et al. (2015) argue that high quality software requires teaching FMs.

Cowling (2015) argues that SE is only “engineering” if discipline and rigour are ap-

plied, including FMs. Moller and O’Reilly (2019) argues that SE is unusual from other

engineering disciplines, in that discrete mathematics are not taught well, which con-

tributes to the “software crisis”. FMs are often detached from the curriculum, and can

scare students. They advocate for improved pedagogical techniques that instil rigour

and formality in the early stages of the curriculum.

Favre (2018) along with Khazeev et al. (2019) argue that FMs are applicable across

SE, and are not just safety-critical systems. Chaudhari and Damani (2015) andÖlveczky

(2021) argue that FMs should be seamlessly integrated into the curriculum. Askar-

pour and Bersani (2019) argue that teaching computational thinking at school-level is

needed to improve undergraduate FM teaching. Curzon, Bell, et al. (2019) argue that

formal reasoning about algorithms is core to “computational thinking”. Gallardo and

Panizo (2019) argues there is a vicious circle in FMs not being taught well, if at all, and
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so not being used. Yatapanage (2021) concurs, and supports this with their experience

in teaching a second-year concurrency course.

Cerone and Lermer (2019) investigate approaches to engaging different target au-

diences in FM teaching. Ölveczky (2021) argues that courses must show the relevance

andpower of FMs in industrial practice. N. Jeppu, Y. Jeppu, andDevi (2017) stresses the

importance of industrial involvement, and Gallardo and Panizo (2019) recommends

use of significant case studies. Nair, Y. Jeppu, and Tahiliani (2020) advocate industrially

applied techniques for rigorous engineering. They all argue for motivation with acci-

dents where FMswould have helped (ExoMars 2016, Therac 25, Ariane 5 etc.), and FM

success stories (Amazon Web services, 5G standard, VISA).

Drachova et al. (2015) present a comprehensive set of learning outcomes to guide

the coherent integration of FMs into the curriculum. The topics have been taught at

sophomore-level software foundations courses, and have been adopted by 11 Univer-

sities. Zamansky and Farchi (2015) conduct a small empirical study of their course,

“Logic and Formal Specification”, with a survey on perceptions on the usefulness of

FMs and course content. The results indicate that teaching FMs improves students

ability to undertake “computational thinking”.

In summary, the literature indicates that FMs should be integrated coherently into

the curriculum and motivated with real-world techniques and examples. However,

there remain barriers to how this can be achieved, and so more pedagogical research

is needed, which we consider in the next section.

3.2 Teaching techniques

In this section, we consider successful pedagogical techniques for FMs.

Cerone, Roggenbach, et al. (2011) emphasise the use of software tools and mod-

elling examples in lab classes. There should be more emphasis in themethod for con-

structingmodels, rather thanmathematics. Teaching should focus on crucial paradigms,

to allow depth of learning in specific situations (cf. Cowling (2015)). Knobelsdorf et al.

(2017) argue that learning barriers stem from difficulties in mastering mathematical

language, and guidance is needed, again, in the method of creating proofs.

Yatapanage (2021) emphasise teaching basic concepts, such as program state, in

detail and with examples. Technical details should be minimised, until students have

gained practical experience (Aceto and Ingólfdóttir 2021). Sekerinski (2019) and Gal-

lardo and Panizo (2019) similarly argue for thorough explanation of notation. Natural

language and graphics can lower the bar of entry. Cerone and Lermer (2019) argues

that graphics can be used to illustrate concepts, but should be linkedwithmathematics

to support reasoning. FM should be “fun”, with engaging examples such as puzzles.

Ölveczky (2021) argues that key topics (modelling, requirements, reasoning, etc.)

should be repeatedly taught (spiral model). He concurs with Cerone, Roggenbach,

et al. (2011) that a small number of FMs should be taught, and argues for a single, ex-

pressive, and executable formalism that can be applied to a range of realistic examples.

Tools should provide a high-level of automation, and be accessible to those without a

mathematical background. Bella (2019) argues for the use of well-known examples,

such as physical laws, to show that students have already used FMs “without know-

ing it”. This helps to overcome psychological barriers, and allows students to have a

deeper understanding.

Moller and O’Reilly (2019) present an innovative approach to teaching discrete

mathematics in the first year. They emphasise (1) use of careful English in teaching
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logic, and introduction of formality as a “shorthand” (method rather than mathemat-

ics); (2) focus on modelling of computer systems to engage students; (3) use puzzles

and games to instil the rigours of “computational thinking”; (4) use of PBL. This dra-

matically increased the students getting a first, and reduced the failure rate.

Similarly, Curzon and McOwan (2013) demonstrate how magic shows have been

used to teach FMs to school children and professionals. They situate this within the

“computer science unplugged” agenda, which promotes constructivist learning through

physical engagement in an activity. They present a selection of card tricks that produce

a guaranteed outcome (the “magic”), and use proof to justify the answer. This work

was later extended by Ferreira and Mendes 2014 to teach first year undergraduates

concepts like specification and Hoare logic. Their approach includes execution of a

card trick in the classroom, followed by PBL to develop the specification and algorithm.

This allowed the students to take ownership, and derive their own unique solutions.

In addition to puzzles, several authors, including Ölveczky (2021) argues, advocate

use of programming itself as a teaching aid. Chaudhari and Damani (2015) argue that

teaching program verification should be taught alongside programming. Yatapanage

(2021) support teaching with “simple” example programs, which nevertheless exhibit

unexpected behaviour, which motivates formal analysis.

VanDrunnen (2011) and Jaume and Laurent (2014), argue for the teaching of func-

tional programming, which is higher level and closer to discrete mathematics. Jaume

and Laurent (2014) take this one step further by providing a tool to support teaching

logic and discretemathematics, which provides immediate feedback for user exercises.

Farrugia-Roberts, Jeffries, and Søndergaard (2022) agrees that programming can itself

be a vehicle for learning. Mathematical concepts can be embedded in the functional

programming language Haskell, and exercises framed as programming problems.

Fleischmann et al. (2019) report on teaching a heterogeneous audience. The teach

all the material twice (spiral model), first at a high-level with introductory examples,

and second in detail with formal proofs. They use PBL, where students discuss exer-

cises, supervised by a doctoral student. They have frequent testing with four evenly-

spread one-hour exams, with two attempts for each. These features have led to a

successive increase in the pass rate over 3 course iterations, with a growing cohort.

3.3 Software tools

In this section, we survey software tools that are used in teaching. We determine the

capabilities and weaknesses of the tools, and set the context for the section on course

experience. We divide the tools into four broad categories: proof assistants, program

verifiers, model exploration, and model-based engineering.

3.3.1 Proof assistants

A proof assistant is a tool to support users in creation of mathematical proofs. Key

examples are Isabelle and Coq, which have both been applied in an industrial setting.

Nipkow (2012) reports on teaching using Isabelle. He highlights its value over

pen-and-paper proofs, due to instant feedback. Proof assistants are like video games,

where winning corresponds to completion of a proof. This avoids students producing

non-sensical proofs and promotes deep learning. Also, Isabelle/Isar provides a no-

tation similar to pen-and-paper proofs, which helps overcome the learning gap with

textbooks. Isabelle allows users to execute programs, and is therefore is suited for
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SE. However, Nipkow advocates proof assistants as an aid to teaching, rather than as

something to focus teaching on.

Villadsen and Jacobsen (2021) reports on teachingwith Isabelle on two logic courses

using “Mathematical Logic for Computer Science” by Ben-Ari as the course textbook.

Their course is different to that of Nipkow (2012), since its emphasis is on proof sys-

tems. They report usability problems with Isabelle for the students, particularly with

feedback. They have therefore developed their own front-end interfaces for Isabelle,

called Sequent Calculus Verifier (SeCaV) and Natural Deduction Assistant (NaDeA) for

teaching.

Knobelsdorf et al. (2017) perform an experiment using Coq as a learning tool. Their

method was to deliver the course, use surveys, and to observe how students were ap-

proaching the exercises. No serious usability problems were observed and students

were able to transfer their programming knowledge. Students displayed more sat-

isfaction in developing proof with Coq, due to the immediate feedback. Whilst pen-

and-paper proofs were very difficult, as knowledge of Coq increased so creating proofs

became easier. They conclude that, with carefully crafted exercises and a usable inter-

face, Coq can be an effective learning tool.

Loos and Platzer (2014) (cf. Platzer (2013)) report on teaching cyber-physical sys-

tems with the KeYmaera proof assistant. Its use allows more realistic models to be

created, and allows students to gain a deeper understanding. Moreover, KeYmaera

provides substantial guidance on proof, which avoids the “empty page” syndrome.

Leach-Krouse (2018) describes Carnap, an educational proof assistant with a web-

based interface. It has been used for several years to support formal logic teaching

at Kansas State University, and around 30 other institutions. Compared to general

purpose tools like Isabelle and Coq, Carnap lowers the bar of entry for students, whilst

retaining instant feedback.

3.3.2 Program verifiers

Program verifiers are targeted at verifying properties of imperative code. Although

similar to proof assistants, they aremore tailored to the task, andmay provide a higher

degree of automation. Usually, such tools are based onHoare logic, which is a standard

logic for program verification.

Blazy (2019) describes the use of theWhy3 verification platform in a third year un-

dergraduate course at the University of Rennes to a cohort of 100 students. TheWhy3

tool supports verification of imperative programs and is highly automated. Students

write specifications, test themwith execution, and finally verify them using invariants.

The authors are positive about the use of Why3, because it provides very good low-

level feedback on code issues.

Noble et al. (2022) reports their pedagogical approach for teaching program ver-

ification supported by the Dafny tool. They argue for a top-down (spiral) approach,

where high-level program verification is taught first, and then foundational concepts

are introduced later. They use Dafny, because it integrates with C] and Java, languages
with which students are familiar. They highlight the value of Dafny’s automated feed-

back, which is useful in formative assessment, and a Web interface.

Bubel and Hähnle (2016) argue that tools need to support reasoning in the same

form used by standard computer science textbooks (e.g. Huth and Ryan (2004)), which

tools like Why3 and Dafny often do not. Moreover, such tools provide high level of au-

tomation, whichmay allow students to complete assignments by trial-and-error, rather

than by deep learning. Bubel and Hähnle (2016) therefore tailor Hoare logic for ease
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of teaching, and implement this logic in a tool called KeY-Hoare. Sznuk and Schubert

(2014) similarly argue that teaching should be accompanied by attractive, practical

tools, and develop Hoare Advanced Homework Assistant (HAHA). HAHA was likewise

developed to support teaching using traditional learning materials, and is shown to

improve assignment scores compared with traditional pen-and-paper methods.

Divasoón and Romero (2019) evaluate program verification tools to support teach-

ing. They reject proof assistants like Coq and Isabelle due to the steep learning curve.

They reject Dafny and HAHA, as they prefer to focus on the Java language, due to stu-

dent experience. They consider three tools in-depth: Krakatoa (based on Why3), KeY

and OpenJML. They choose Krakatoa, since it can handle all their exercises. The au-

thors quantitatively demonstrate an improvement in pass rates in their course since

Krakatoa was introduced in 2013. Moreover, they argue that the use of the tool pro-

motes deep learning for the students.

From a more critical standpoint, Farrell and Wu (2019) reports on issues encoun-

tered with tools like Coq and Spec# (similar to Dafny). The tools were not reliable, did

not scale to realistic examples, and do not give detailed feedback. They do not appear

practical as they are not widely applied in industry. Students could not make the link

between pen-and-paper proofs and those in Coq. They propose two hypothetical so-

lutions to these problems: (1) creation of an online repository of realistic examples;

(2) use of a unified teaching platform like “Tarski’s world”.

3.3.3 Other tools

Several authors have appliedmodel exploration tools in teaching. Aceto and Ingólfdót-

tir (2021) applies the model checker Upaal, and Dubois, Prevosto, and Burel (2019)

have applied SPIN. Ölveczky (2021) uses the rewriting system, Maude, in his second

year undergraduate module. Korečko and Sorád (2015) show how train-based simula-

tion games can be an effective aid to learning. Space will not allow further detail.

In a different axis, several authors have proposed the use of model-based engi-

neering (MBE) tools, following arguments given by Cowling (2015) and others. Favre

(2018) proposes a modelling language called Nereus, as an interface to other verifi-

cation tools. Lipaczewski and Ortmeier (2013) similarly provides an intermediate lan-

guage, called “Safety Analysis Modelling Language” (SAML), which supports formal

analysis of higher level MDE languages. Fisher and Johnson (2016) argues that it is in-

sufficient simply to demonstrate the potential benefits of FMs, but to show that they

can be applied broadly, and advocate automated test generation.

We conclude this section with some observations. Learning can certainly be aided

by software tools, but usability and feedback quality are essential. There is also a bal-

ance to be struck between automation and pedagogy. As with arithmetic and elec-

tronic calculators, students needs to understand both the theory and its application.

3.4 Course experience

In this final section of the literature review, we consider FM course experience.

Farrugia-Roberts, Jeffries, and Søndergaard (2022) useHaskell in the “GrokAcademy”

platform to teach a large cohort of 500 undergraduates. Exercises require students to

solve a specified problem, such as “construct a deterministic finite automaton”, and

the interface checks the answers. They scaffold with partially complete functions,

hands-on open development, and rapid contextualised feedback to students in a uni-
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fied tool. With a focus on programming, it is more attractive to CS students. A barrier

is potential unfamiliarity with Haskell, which is less common than other languages,

though they argue that benefits outweigh the cost of learning it.

Aceto and Ingólfdóttir (2021) describes an intense threeweekundergraduate course

in applied FMs at Reykjavik University, which applies Upaal. The course is project-

based and student driven, with broad exercises. In the first week, they learn the tool

by modelling puzzles and examples1. In the second week they model a robot vacuum

cleaner, and each student delivers a report. In the final week, the students explore

different ways to solve the puzzle game “Rush Hour”. Each solution is presented as a

group, and the lecturers ask questions. The course has had consistently high feedback,

with student satisfaction averaging at 4.79/5 over 8 years.

Greenberg and Osborn (2019) report on using the Coq-based “Software Founda-

tions”2 materials to teach discrete mathematics to first- and second-year undergrad-

uates. Their teaching technique interleaves formal mathematics in Coq with informal

presentations on the white board. They report that the Software Foundations materi-

als required substantial adaptation, and the students found it difficult to use Coq.

Cataño (2017) reports on their course using the Event-B method, which they argue

is more suited to software engineers. Based on this experience, they recommend the

use of a large collection of modelling examples; using proof assistants (like Coq and

Isabelle) to support teaching with user feedback; and using Event-B to support mod-

elling. Cataño (2019) takes this further and reports on a later version of the course

involving formation of software development teams.

Dubois, Prevosto, and Burel (2019) reports on an SE programme with a FM track,

spread over several modules, which has run for 15 years. FM tools used include the

SPIN, Event-B, and Coq. The latter are not used for exercises, due to the limited time

students are exposed to them, and exercises are mainly pen-and-paper in nature.

Gallardo and Panizo (2019) report on teaching a compulsory FM course over five

years to a cohort of around 50. They employ the spiral model, with different tools

applied to different aspects of the same models; teaching thus emphasises strengths

and weaknesses of them. The song “I’m my own grandpa” is used as an example of

natural language than can be formally modelled.

Khazeev et al. (2019) reports on using the Eiffel language at Innopolis University in

Russia. Their exercises are partial programswith blanks to be filled in. Though students

were positive, there was a perception that the techniques would only benefit the very

small number of Eiffel users. They stress the need to show how techniques generalise

to everyday systems.

Rozier (2019) report on an applied FM course that is part of an industrial Aerospace

Engineering programmeat Iowa State. The first part is a broad survey of FM techniques

(e.g. SPIN, Coq, and Isabelle), with group exercises (and prizes). The second part is a

group project where the students apply one of the tools to a modelling task, with self-

defined success criteria. Students therefore gain knowledge of a wide range of tech-

niques used by industry, though some this knowledge may be shallow and students

struggle with some of tools, particularly the proofs assistants.

Simpson (2019) reports on a one-week intensive masters-level course at Oxford.

It teaches FMs and discrete mathematics using the Z notation. The course is accom-

panied by the textbook Using Z by Woodcock and Davies. Parallels are drawn with

the course and concepts described by Jaume and Laurent (2014). The authors de-

1Upaal Examples: https://homes.cs.aau.dk/~kgl/ESV04/exercises/index.html
2Software Foundations: https://softwarefoundations.cis.upenn.edu/
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scribes a recent shift in approach, from individual exercises to group-based PBL. Like

Cowling (2015), they focus on the method of developing and verifying models. Having

learned the theoretical topics early in the week, a whole day is spent on group mod-

elling exercises. Here, the students are given an English language description, and a

part completed Z specification with blanks to be filled in. This change resulted in an

improvement in course satisfaction.

4 Discussion

We conclude with outputs that feed into our teaching plan for THE3 and PROF. FMs

should be carefully integrated into the curriculum, andnot treated as a separate “magic

craft” only for the suitably initiated. Indeed, students should be encouraged to see

they have used FMs without knowing it, to improve their understanding and confi-

dence. We will therefore motivate with real-world examples, ideally with simpler ver-

sions being projected into the curriculum to demonstrate how techniques transfer. We

will also endeavour to have one of our industrial research partners give a guest lecture.

Examples and exercises should be accessible and engaging, with logic puzzles being

particularly relevant. These can be used to support a spiralmodel, where the “big idea”

is shown first, and then the theoretical details explained in additional steps. Construc-

tion of models, proofs, and other artefacts should focus on the method rather than

mathematics. When teaching logic, structured natural language should be used first,

and then mathematical notation to abbreviate and support reasoning. Moreover, a

concrete output of this review is a curated set of illustrative examples (e.g. Quiz Show,

Knights and Knaves, Wolf-Goat-Cabbage) that have previously been successful used in

the aformentioned courses, and will be used in both THE3 and PROF. Exercises should

be scaffolded by providing a partially completed answer.

Software tools are indeed valuable, but care is needed in ensuring they provide ad-

equate feedback. We should minimise the number of tools being taught, but ensure

the ones used have demonstrable applications. For THE3, we intend to use two tools:

Carnap and Isabelle. Carnap is simple, user-friendly, web-based, and stable, and so is

ideal for teaching second years. However, it is purely a teaching tool, and so we will

use it as an “on-ramp” for Isabelle, which is more powerful, general, and has industrial

applications. Isabelle can be applied to both modelling and programming (including

execution and simulation), and can scale to realistic verification problems. It has many

of the same advantages as functional languages like Haskell, and can be used to il-

lustrate mathematical concepts. Nevertheless, we recognise quality of feedback in

Isabelle remains a problem, and we are investigating better error reporting.

In spite of technological advances, textbooks are still popular and valued. A good

textbook should match the criteria enumerated above in its presentation. We need to

ensure our tools can support learning with them, by using the same format of math-

ematics and proof. Our chosen course text, “Logic in Computer Science” (Huth and

Ryan 2004), uses a “Fitch-style” proof, which is supported in Carnap, which should

help overcome student learning barriers. We agree that program verification tools

need to balance faithfulness to the underlying theory with sufficient automation to

ensure scalability. Isabelle is a unified tool that can be tailored to support learning ac-

tivities at different levels of abstraction, and it can act a “gateway” to a variety of other

FM tools. For example, we can both express low-level Hoare logic in the form used by

textbooks (cf. KeY-Hoare, HAHA), and also high-level automation (cf. Why3, Dafny), as

we’ve previously demonstrated in PROF.
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