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A B S T R A C T

A overview is given of different approaches to simulate and predict crack propagation in quasi-brittle materials,
pointing out their merits, disadvantages and complementarity. Discrete crack approaches, smeared crack
approaches and Molecular Dynamics are considered from a historical perspective, and it is discussed in which
circumstances they are best used. For the various versions of the discrete and smeared approaches it is shown
how the methods within each class have evolved, or why new methods have developed due to shortcomings
of earlier versions.

1. Introduction

Fracture lies at the heart of many failures in natural and man-
made materials. Fracture mechanics, as a scientific discipline in its own
right, originated in the early 20th Century with the pioneering work
of Inglis [1] and Griffiths [2]. Driven by some spectacular disasters in
the shipbuilding and aerospace industries, and building on the seminal
work of Irwin [3], Dugdale [4] and Barenblatt [5] fracture mechanics
has become an important tool in the analysis of structural integrity.

Herein, we will focus on methodologies that have been developed
for the numerical simulation of fracture initiation and fracture propa-
gation in quasi-brittle materials, such as concrete, rocks, ceramics, and
most biomaterials. These materials are heterogeneous from a certain
scale upwards, which is usually visible with the naked eye. This is
different from, for instance, metals or polymers, where heterogeneity
becomes only visible under a microscope or an electron microscope,
and where fracture is ductile, i.e. accompanied by significant plastic
deformations. It is also different from fracture in brittle materials like
glass, an amorphous material, where plastic deformations around the
crack tip are practically absent.

1.1. Discrete vs smeared approaches: a long-standing controversy

The numerical simulation of fracture in quasi-brittle materials was
initiated in the late 1960s. Two markedly different approaches were
pioneered, namely the discrete crack models [6] and the smeared crack
models [7]. The discrete crack approach is intuitively appealing: a crack
is introduced as a discontinuity in the geometry. Hence, the topology
of the body is changing continuously when cracks propagate or when
more cracks nucleate. Indeed, the discrete crack model basically aims
at simulating the initiation and propagation of a limited number of
(clearly) visible cracks.

E-mail address: r.deborst@sheffield.ac.uk.

On the other hand, the smeared crack model is based on the
idea that in quasi-brittle materials, due to the heterogeneity which
can be observed at a mesoscopic level, and the possible presence of
reinforcement such as glass or polymer fibres, or steel bars, many
small cracks nucleate which link up only in a later stage to form one
or more dominant cracks. Since not each individual crack is resolved
the smeared crack model captures the deterioration process through a
constitutive relation.

Over the years strong opinions have been expressed regarding both
approaches. But some convergence seems to occur. For example, while
some form of remeshing is necessary to make discrete crack mod-
els work, it turns out that the most recent development within the
smeared crack approach, namely the phase-field method for brittle
fracture [8–10], requires such dense meshes that some form of remesh-
ing is also necessary in order to keep computing times within ac-
ceptable limits, thereby partly removing the original advantage of
smeared crack models over discrete approaches [11]. However, differ-
ences remain. Three-dimensional implementations are straightforward
in smeared approaches and require no special provisions compared to
two-dimensional analyses. Also, crack branching is a natural outcome
of analyses that use the phase-field approach [12,13]. Indeed, discrete
approaches to crack propagation in three dimensions require special
crack front capturing techniques and sophisticated data structures,
while additional assumptions are needed when attempting to simulate
crack branching. The major advantage of discrete approaches still lies
in the fact that the crack width is directly available, and the knowledge
of this quantity is required in the cohesive-zone approach to fracture,
but also in analyses of fracture propagation in fluid-saturated porous
media, where the crack width determines the amount of fluid that is
transported in the fracture [14].
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2. Molecular Dynamics modelling of fracture

All the above considerations pertain to continuum mechanics mod-
els. However, modelling at a lower scale, e.g. the simulation of the
breakage of bonds at molecular level, have also become en vogue [15–
17] and is most useful for building an understanding of fracture pro-
cesses at microscopic scales. In particular for metals and polymers
simulations based on Molecular Dynamics (MD) are essential in up-
scaling methods, for instance when attempting to construct constitutive
models at mesoscopic scales from the physics at lower scales. Therefore,
before embarking on a more in-depth discussion of fracture and damage
models that are rooted in a continuum description of matter, we will
briefly discuss fracture using molecular modelling. We will show a typ-
ical example, which demonstrates that crack branching under dynamic
loadings is also for this method a natural outcome of the analysis.

2.1. Governing equations for molecular Dynamics

Molecular Dynamics is rooted in the classical Newtonian equations
of motion. For an atom 𝑖 with a mass 𝑚𝑖 and position 𝐫𝑖 we have:

𝑚𝑖�̈�𝑖 = 𝐟𝑖 (1)

The force 𝐟𝑖 is the sum of all 𝑁 inter-atomic contributions 𝐟𝑖𝑗 , i.e., the
force on atom 𝑖 exerted by atom 𝑗

𝐟𝑖 =

𝑁∑
𝑗=1,𝑗≠𝑖

𝐟𝑖𝑗 (2)

and can be derived from a potential energy function  :

𝐟𝑖 = −
𝜕 (𝐫1,… , 𝐫𝑁 )

𝜕𝐫𝑖
(3)

It is emphasised that the inter-atomic forces are long-range forces and
that all atoms in the body interact. However, at a certain distance
the interaction becomes negligible and a cut-off distance 𝑟𝑐 is usually
applied beyond which no interaction is taken into account, resulting in
just 𝑛𝑖 interactions being considered for atom 𝑖.

To extract continuum mechanical quantities from atomistic forces
we depart from the atomistic stress tensor for atom 𝑖, which is a
measurement of the inter-atomic interactions of the atom with its
neighbours. A widely used stress quantity defined on the atomistic
domain is the virial stress, which takes into account the interactions and
a kinetic energy contribution [18–20]. Unfortunately, the definitions
for the virial stress, while correct in a statistical and thermodynamics
sense, do not correspond to the Cauchy stress. However, the part of the
virial stress which represents the inter-atomic interactions does reduce
to the Cauchy stress, and therefore has a physical meaning. Hence we
adopt the following definition for the stress tensor:

𝝈𝑖 =
1

2𝑖
∑
𝑟𝑖𝑗<𝑟𝑐

𝐟𝑗𝑖 ⊗ 𝐫𝑖𝑗 (4)

where 𝑖 is the volume of the atom 𝑖, 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 , and 𝑟𝑖𝑗 = |𝐫𝑖𝑗 |.
Subsequently, the average of this atomistic stress tensor is computed
over the volume around 𝑖 within the cut-off radius 𝑟𝑐 . The average or
continuum stress at atom 𝑖 thus reads:

𝝈𝑖
𝑎𝑣𝑔 =

1

𝑛𝑖

𝑛𝑖∑
𝑗=1

𝝈𝑗 (5)

2.2. Relations to other discrete models

The concept of Molecular Dynamics is essentially not different from
that in Discrete Element Methods (DEM) [21,22], which are frequently
used for failure simulations in granular materials, concrete and rocks. In
both approaches classical Newtonian mechanics applies between point
masses, the main difference being that the long-range forces which
are derived from a potential energy function are replaced by springs

Fig. 1. The dark, ‘pear-shaped’ area is the domain where an MD calculation is carried
out (𝛺𝑚). There is a coupling region 𝛺𝑐 which consists of elements in grey that are
surrounded by a bold line.

between the nearest neighbours, thus returning to the concept of local
constitutive relations.

The springs can also be considered as bars with a Young’s modulus,
which leads to the so-called lattice models [23]. To remedy certain
issues the bars in lattice models have later been replaced by beam
elements [24], which can then be conceived as a discretised version
of the Cosserat continuum [25]. Similar to smeared crack models, a
problem with discrete elements and lattice models is the combination
with diffusion-like phenomena. In fact, issues already arise when mod-
elling the diffusion phenomenon itself. A possible solution is to use pipe
elements to model the flow in a porous medium [26], but it is unclear
how such discrete elements can properly model complex flow patterns.

2.3. Coupling of finite element methods and molecular Dynamics

Molecular Dynamics simulations are extremely CPU-intensive, ren-
dering simulations of even just a few square millimetres computation-
ally unfeasible. For this reason the MD simulations are often carried
out on a very small domain of interest, which is then coupled to the
surrounding body modelled using continuum mechanics and discre-
tised using finite elements or another suitable discretisation method,
e.g. [27].

It is possible to couple both domains via a sharp interface, i.e. a
line in two dimensions or a plane in three dimensions. However,
the long-range forces in the molecular domain can make this less
accurate, especially under dynamic loading conditions, when spurious
wave reflections may be incurred. For this reason, it is preferable to
define a coupling zone between both domains as well as coupling
functions which are used to preserve the global energy [28]. A patch of
atoms, 𝛺𝑚, is then included in the continuum 𝛺𝑀 at a given position,
for instance the pear-shaped, dark patch in Fig. 1, herein named the
Molecular Dynamics Box (MD-Box). Subsequently, a coupling zone 𝛺𝑐

is defined, where the MD-domain and the continuum domain overlap,
indicated by the grey zone in the figure. The finite elements in this zone
are ‘coupling elements’. Inside the MD-Box, where only the atomistic
model applies, elements are removed.

For energy conservation the energy is partitioned between both
models using the functions 0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝛽 ≤ 1, which form a
partition of unity, such that:
{

𝛼(𝐱) = 1 𝛽(𝐱) = 0 for 𝐱 ∈ 𝛺𝑀∖𝛺𝑐

𝛼(𝐱) = 0 𝛽(𝐱) = 1 for 𝐱 ∈ 𝛺𝑚∖𝛺𝑐
(6)

Lagrange multipliers can then be used to ensure a velocity coupling in
the domain 𝛺𝑐 [28]. For applications like the example shown below
this model can be enhanced such that the MD-Box is tied to the crack
tip, i.e. moves with the tip when the crack propagates [29].
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Fig. 2. Cracked specimens at the end of the simulations.

2.4. Example simulation of dynamic fracture

As an example we consider a copper single crystal in the (111)

plane, so that the two-dimensional lattice is hexagonal. A Lennard-
Jones potential is used with the parameter set [30]: 𝑎 = 0.415 eV

and 𝑏 = 0.2277 nm. The Young’s modulus 𝐸 and Poisson’s ratio 𝜈

for the continuum then become: 𝐸 = 79.334 GPa and 𝜈 = 0.25.
The copper atomic mass is taken as 𝑚 = 0.1055 × 10−24 kg, which
corresponds to a mass density 𝜌 = 1865.25 × 103 kgm−3. In the present
study, the temperature has not been taken into account. To include
the temperature a ‘thermal equilibrium’ has to be achieved in addition
to the mechanical equilibrium, for instance using the Nose–Hoover
thermostat method [31].

The domain of interest is 100 nm long and 77.5 nm wide with
an initial crack. A large MD-Box is considered in order to properly
trace the crack propagation. The finite element mesh consists of 1221
quadrilateral elements and 4868 nodes, and the initial notch has been
applied using the extended finite element technique, see Section 4. The
element size is about 10 times the inter-atomic distance. 8875 atoms
are put in the initial MD-Box. The width of the coupling domain is
approximately 3 nm and 33% of the atoms in this region hold Lagrange
multipliers. For computational reasons, the results have been obtained
by only including the first neighbours in the atomistic interactions,
since the equilibrium-finding and updating are expensive operations
when including many neighbours. However, simulations on a smaller
scale suggest that, at least qualitatively, the results are similar. In order
to simulate defects in the lattice, 0.5% of the atoms are removed in a
random manner.

Example calculations have been carried out for four loading rates,
applied to the top and bottom edges of the specimen: 𝑉𝑝 = 3.16 ms−1,

𝑉𝑝 = 31.6 ms−1, 𝑉𝑝 = 47.4 ms−1, 𝑉𝑝 = 63.2 ms−1 and 𝑉𝑝 = 126.5 ms−1.
From Fig. 2 we observe that for the lowest loading rate there is a single
main crack, which propagates in a rather straight manner. For the two
next higher loading rates secondary branches develop, while for the
highest loading rate crack branching occurs and the main crack shows
a tortuous pattern.

3. Fracture mechanics

The seminal papers of [1,2] mark the start of the development of
Linear Elastic Fracture Mechanics (LEFM) as a branch of engineering
mechanics which has contributed much to the understanding of the
propagation of initial flaws in structures. The solution of displacements
and stresses around elliptical holes in elastic bodies [1] was the basis
for the observation [2] that, for the limiting case that the elliptical
hole reduces to a crack, the stresses at the crack tip become singular.
Indeed, in LEFM the stresses at a sharp crack tip are singular, and the
traditional strength criterion, where the maximum stress is compared
with the tensile strength of the material, say 𝑓𝑡, no longer suffices to
assess whether crack propagation will occur or not. Instead, the critical
energy release rate 𝑐 , also named the fracture energy in non-linear
theories for fracture such as cohesive-zone models, plays a central role.
This is the energy needed to create a unit area of crack.

The idea of Linear Elastic Fracture Mechanics is simple, and departs
from considering an existing crack in an infinite plate which is com-
posed of a linear elastic material and is subject to a far-field all-around
stress 𝜎∞. The difference between the stored elastic energy in the plate
and the surface energy at the crack surface subsequently plays a central
role in the further development of the theory. A crucial outcome of
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Fig. 3. Schematic representation of a cohesive zone.

the theory is that there is an internal length scale, commonly defined
as [32–34]:

𝓁 =
𝐸𝑐
𝑓 2
𝑡

(7)

with 𝐸 Young’s modulus and 𝑓𝑡 the tensile strength. It is emphasised
that the presence of an internal length scale implies that there is a size
effect in fracture mechanics, which is absent in a pure strength-based
theory.

3.1. Cohesive fracture

An important issue when considering damage and fracture is the
observation that most geomaterials are not perfectly brittle in the
Griffith sense, but display a softening branch after reaching the strength
limit. This softening behaviour is caused by their heterogeneous char-
acter, which promotes phenomena like micro-cracking, local crack
branching, crack arrest by hard particles and void initiation in a fracture
process zone ahead of the visibly observable crack tip. In concrete, this
is exacerbated by the presence of reinforcement, by the exothermal
processes that occur during maturing and hardening, and due to the
shrinkage that occurs as a consequence of moisture diffusion and the
subsequent water loss. These phenomena cannot be captured using
classical fracture mechanics approaches. A further issue is that in
LEFM crack propagation is assumed to be initiated from a pre-existing
crack-like flaw.

Only if the fracture process zone is sufficiently small compared
to the structural dimensions, i.e. if 𝓁 ≪ , with  a characteristic
structural dimension, and if there exists an initial crack-like flaw,
Linear-Elastic Fracture Mechanics concepts apply. However, if this is
not the case, like in most geomaterials, but also in many biomaterials,
the cohesive tractions in the fracture process zone must be taken
into account. A most powerful and natural approach is the use of
cohesive-zone models, which were introduced by Dugdale and [4] and
Barenblatt [5] for elastic–plastic fracture in ductile metals, and for
quasi-brittle materials by Hillerborg et al. [35] in their so-called Fic-
titious Crack Model. Different from Linear Elastic Fracture Mechanics,
the cohesive surface methodology also permits the analysis of fracture
processes in which there is no dominant flaw [35,36], even though in
the original contributions [4,5] a dominant flaw was assumed to be
present.

In cohesive-zone models, the degrading mechanisms in front of the
actual crack tip are lumped into a discrete line (or a plane in three
dimensions), see Fig. 3, and a relation between the tractions at the
discontinuity 𝐭𝑑 and the relative displacements [[𝐮]] across this line
or plane represents the degrading mechanisms in the fracture process
zone:

𝐭𝑑 = 𝐭𝑑 ([[𝐮]] , 𝜅) (8)

with 𝜅 an internal variable, which memorises the largest value of
a (material-dependent) function of the relative displacements. Fig. 4
shows some commonly used decohesion relations, a simple linear rela-
tion (left), a relation often used for ductile fracture (centre) [37], and
one typical of quasi-brittle fracture (right) [38]. For ductile fracture,
the most important parameters of the cohesive-zone model appear to
be the tensile strength 𝑓𝑡 and the fracture energy or work of separation𝑐 [39], formally defined as:
𝑐 = ∫

∞

𝑣𝑛=0
𝑡𝑛d𝑣𝑛 (9)

with 𝑡𝑛 and 𝑣𝑛 =
[[
𝑢𝑛
]]
the normal traction and the normal relative dis-

placement across the fracture process zone. For more brittle decohesion
relations as shown for instance in the right part of Fig. 4, i.e., when the
decohesion law stems from micro-cracking as in concrete or ceramics,
the shape of the stress–separation relation also plays a role and can be
more important than the value of the tensile strength 𝑓𝑡 [40].

From dimensional considerations, i.e. the presence of the frac-
ture energy 𝑐 and the Young’s modulus 𝐸, one can conclude that a
characteristic length 𝓁 is introduced in the model, similar to Linear
Elastic Fracture Mechanics. Different from LEFM, however, no stress
singularity exists.

Evidently, constitutive relations are specified independently for the
bulk material and for one or more cohesive surfaces. The cohesive
constitutive relation embodies the failure characteristics of the material
and characterises the separation process. The bulk and cohesive consti-
tutive relations together with appropriate balance laws and boundary
(and initial) conditions completely specify the problem. Fracture is thus
a natural outcome of the constitutive relations in the bulk and the
interface, together with the balances of mass and momentum.

3.2. Distributing cohesive fracture

The cohesive-zone model is essentially a discrete concept, but it can
be cast into a continuum format by distributing the fracture energy 𝑓
over a finite thickness 𝑤 [41,42]. We obtain:

𝑓 = ∫
𝑤

𝑛=0 ∫
∞

𝜖𝑛𝑛=0
𝜎𝑛𝑛d𝜖𝑛𝑛(𝑛)d𝑛, (10)

with 𝑛 the coordinate normal to the localisation plane, and 𝜎𝑛𝑛 and
𝜖𝑛𝑛 the normal stress and normal strain in the 𝑛-direction. For linear
elements the strains are constant over the width of an element 𝑤, so
that 𝑓 = 𝑤𝑔𝑓 , with 𝑔𝑓 the energy dissipated per unit volume of fully
damaged material:

𝑔𝑓 = ∫
∞

𝜖𝑛𝑛=0
𝜎𝑛𝑛d𝜖𝑛𝑛. (11)

The length scale 𝑤 introduced into the model is proportional to the
element size and therefore has a numerical nature.

The load–displacement curves that are computed in this manner
can become fairly insensitive to the discretisation for a sufficient level
of refinement. However, this holds much less so for the direction of
the lines of the discretisation. Indeed, cracks tend to propagate along
the lines of the discretisation, thus deviating from the physical crack
path. Moreover, when quadratic or higher-order finite elements are
used, the numerically obtained crack band width no longer coincides
with the element size. Various formulas have been proposed to estimate
the numerical length scale, depending on the interpolation order of
the polynomials, the spatial integration scheme and the expected angle
between the crack and the grid lines [43–45].

4. Discrete crack models

Initially, the discrete crack model was implemented by letting the
crack grow when the nodal force at the node ahead of the crack tip
exceeds a tensile strength criterion. Subsequently, the node is split into
two nodes and the tip of the crack is assumed to propagate to the next
node. When the tensile strength criterion is violated at this node, it is
split and the procedure is repeated, as sketched in Fig. 5 [6].
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Fig. 4. Traction–displacement curves. Left: a linear relation. Centre: relation for a ductile solid. Right: relation for a quasi-brittle solid.

Fig. 5. Earliest form of discrete crack modelling.

Fig. 6. Deformed configuration of a Single-Edge Notched beam that results from an
analysis where interface elements equipped with a quasi-brittle cohesive-zone model
have been placed a priori at the crack path known from experiments [46].

4.1. Remeshing

In the original format described above, the discrete crack approach
has several disadvantages, the major issue being that cracks are forced
to propagate along existing element boundaries, which predefines the
crack path. Accordingly, a mesh bias is introduced. Automatic remesh-
ing allows the mesh bias to be reduced, if not eliminated, and so-
phisticated computer codes with remeshing were developed by In-
graffea and co-workers [47]. While the initial remeshing algorithms
exploited Linear Elastic Fracture Mechanics, algorithms that incorpo-
rate cohesive-zone models embedded in interface elements have also
been developed [48–50].

4.2. The classic: Interface elements

If the crack path is known, either from experimental evidence,
or because of the structure of the material (such as in laminated
composites), the mesh can be adapted a priori to the expected lines
or planes of crack propagation and interface elements can be inserted
in the mesh at these locations. Under such circumstances interface
elements equipped with cohesive-zone models have been used with
considerable success as shown in Fig. 6 for mixed-mode fracture in a
Single-Edge Notched concrete beam. In this example, the mesh has been
designed such that the interface elements, which are equipped with a

quasi-brittle cohesive-zone model, are exactly located at the position
of the experimentally observed crack path [46]. Another important ap-
plication of the use of interface elements is delamination in composite
materials. Since delamination initiation and propagation is restricted
to the interfaces between plies, placing interface elements between the
plies guarantees that the failure more will be captured exactly [52–55].
To allow for a more arbitrary direction of crack propagation it is also
possible, as an alternative to remeshing, to insert interface elements
between all continuum elements a priori [56]. Such an analysis can
provide considerable insight in potential failure modes, but evidently
suffers from a limited mesh bias. This has been demonstrated in [51],
where the same Single-Edge Notched beam as in Fig. 6 was analysed,
see Fig. 7.

The formulation of interface elements is relatively simple. The kine-
matic quantities in continuous interface elements are a set of mutually
orthogonal, relative displacements:

[[
𝑢𝑛
]]
for the opening mode, and[[

𝑢𝑠
]]
,
[[
𝑢𝑡
]]
for the two sliding modes. When collecting the relative

displacements in a vector:

[[𝐮]] = (
[[
𝑢𝑛
]]
,
[[
𝑢𝑠
]]
,
[[
𝑢𝑡
]]
)
T

(12)

which is defined in a local 𝑠, 𝑛, 𝑡-coordinate system, they can be related
to the displacements 𝐮+ at the upper side of the interface, 𝛤+

𝑑
, and the

displacements 𝐮− at the lower side of the interface, 𝛤−
𝑑
, via

𝐮+ − 𝐮− = 𝐑 [[𝐮]] (13)

where 𝐮+,𝐮− are expressed in the global 𝑥, 𝑦, 𝑧-coordinate system, and
𝐑 = (𝐧𝛤𝑑 , 𝐬𝛤𝑑 , 𝐭𝛤𝑑 ) is the standard rotation matrix between the local and
the global coordinate system, with 𝐬𝛤𝑑 , 𝐭𝛤𝑑 mutually orthogonal unit
vectors aligned with the discontinuity, and 𝐧𝛤𝑑 the unit vector normal
to the discontinuity. The displacements are interpolated in a standard
manner as:

𝐮 = 𝐇𝐚, (14)

where

𝐇 =

⎡⎢⎢⎣

𝐡 𝟎 𝟎

𝟎 𝐡 𝟎

𝟎 𝟎 𝐡

⎤⎥⎥⎦
(15)

and 𝐚 is the nodal displacement array that contains the degrees of
freedom related to the 𝑁 nodes in case of a standard continuum
element. For an interface element the nodes are doubled, one set of 𝑁
nodes for the 𝛤+

𝑑
side of the interface, and another set of 𝑁 nodes for

the 𝛤− side. The 1×𝑁 matrices contain the shape functions ℎ1,… , ℎ𝑁 :

𝐡 =
(
ℎ1......ℎ𝑁

)
(16)

The relation between the nodal displacements and the relative displace-
ments for interface elements then reads:

[[𝐮]] = 𝐑
(
𝐮+ − 𝐮−

)
= 𝐑

(
𝐇𝐚+ −𝐇𝐚−

)
= 𝐑𝐁�̃� (17)

with

𝐁 =

⎡
⎢⎢⎣

−𝐡 +𝐡 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 −𝐡 +𝐡 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 −𝐡 +𝐡

⎤
⎥⎥⎦

(18)
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Fig. 7. Crack patterns for different discretisations using interface elements between all solid elements. Only the part of the Single Edge Notched beam near the notch is shown [51].

Fig. 8. Cube with an initial penny-shape crack: propagation of the crack towards the free surfaces of the specimen [57].

the relative displacement-nodal displacement matrix for the interface
element, and �̃� containing the discrete nodal displacements at both
sides of the interface expressed in the global 𝑥, 𝑦, 𝑧-coordinate system.

In the local coordinate system, the cohesive tractions 𝐭loc
𝑑
are related

to the relative displacements [[𝐮]] via a nonlinear relation, cf Eq. (8):

𝐭loc𝑑 = 𝐭loc𝑑 ([[𝐮]] , 𝜅), (19)

Similar to the relative displacements, the traction vector 𝐭loc
𝑑

can be
related to the tractions in the global coordinate system using the
rotation matrix 𝐑:

𝐭loc𝑑 = 𝐑𝐭𝑑 (20)

For use in a Newton–Raphson iterative procedure the constitutive
relation can be linearised as:

d𝐭loc𝑑 = 𝐃𝑑 d [[𝐮]] (21)

with ’d’ denoting a small increment, and

𝐃𝑑 =
𝜕𝐭loc
𝑑

𝜕 [[𝐮]]
(22)

The limiting case that 𝐭loc
𝑑

= 𝟎 obviously represents a traction-free crack.

Fig. 9. Typical domain of influence in a numerical method with a nodal connectivity
(left) and a meshless method (right). The domains of influence of the solid nodes are
shaded.

4.3. Meshfree methods

In principle, the continuous change in topology inherent in the

discrete crack approach can be handled easily by meshfree meth-

ods [58,59]. Indeed, successful analyses have been carried out using

these methods, see for instance Fig. 8, which shows crack propagation

in a cube with an initial penny-shaped crack [57].
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We now take the Element-Free Galerkin (EFG) method as an ex-
ample. Meshfree (or meshless) methods do not require an explicitly
defined connectivity between nodes for the definition of the shape
functions. Instead, each node has a domain of influence which does
not depend on the arrangement of the nodes. The domain of influence
of a node is the part of the domain over which the shape function of
that specific node is non-zero. In finite element methods the domain
of influence is set by node connections, whereas in a meshfree method
the domain of influence can have a fairly arbitrary shape. Fig. 9 shows
the domains of influence of nodes for a (finite element) method that
requires a nodal connectivity (left) and for a meshless method (right).

In the Element-Free Galerkin method shape functions are formu-
lated by applying a moving least squares approximation [60]. This
approximation interpolates the nodal data, for example 𝑢𝑘, at a point 𝐱
by

𝑢(𝐱) = 𝐩T(𝐱)𝐚(𝐱) (23)

where 𝐩(𝐱) is a vector of basis functions (typically monomials) and
𝐚(𝐱) is a vector of coordinate-dependent coefficients. In a moving least
squares interpolation each node 𝑘 in the domain of influence of the
point 𝐱 is assigned a weight function 𝑤𝑘, which renders the coefficients
non-uniform. These weight functions appear in the 𝐿2-norm as:

𝐽mls =

𝑛∑
𝑘=1

𝑤𝑘(𝐱)
(
𝐩T(𝐱𝑘)𝐚(𝐱) − 𝑢𝑘

)2
(24)

A typical choice for the weight function is a Gaussian distribution,
so that the weight function on the domain of influence – where it is
positive – is bell-shaped. Elaboration of the stationarity requirement of
𝐽mls with respect to the coefficients 𝐚(𝐱) gives:

𝐚(𝐱) = 𝐀−1
1
(𝐱)𝐀2(𝐱)𝐮 (25)

where 𝐮 = [𝑢1, 𝑢2,… , 𝑢𝑛]
𝑇 and

𝐀1(𝐱) =

𝑛∑
𝑘=1

𝑤𝑘(𝐱)𝐩(𝐱𝑘)𝐩
T(𝐱𝑘) (26a)

𝐀2(𝐱) =
[
𝑤1(𝐱)𝐩(𝐱1), 𝑤2(𝐱)𝐩(𝐱2),… , 𝑤𝑛(𝐱)𝐩(𝐱𝑛)

]
(26b)

Substitution of Eq. (25) into Eq. (23) then leads to

𝑢(𝐱) = 𝐩T(𝐱)𝐀−1
1
(𝐱)𝐀2(𝐱)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐍(𝐱)

𝐮 (27)

and the matrix 𝐍(𝐱) that contains the shape functions can be identified
as:

𝐍(𝐱) = 𝐩T(𝐱)𝐀−1
1
(𝐱)𝐀2(𝐱) (28)

Shape functions which are generated in this manner are usually
not of a polynomial form, even though 𝐩(𝐱) contains only polynomial
terms. When moving least squares shape functions are used, the weight
functions that are attached to each node determine the degree of
continuity of the interpolants and the extent of the support of the
node. A high degree of continuity can thus be achieved. The support
of one node normally includes several other nodes and is therefore less
compact than with finite element methods, and leads to a larger band
width of the system of equations. In contrast to finite element methods,
the shape functions that arise in the Element-Free Galerkin approach
are not interpolating, and the nodal parameters 𝑢𝑘 contained in the
array 𝐮 in Eq. (25) are not the nodal values of the approximant function
𝑢(𝐱). The absence of interpolatibility can complicate the imposition of
essential boundary conditions and constraint equations.

Discontinuous shape functions can be obtained in a straightforward
manner by truncating the appropriate weight functions. Special atten-
tion needs to be paid to the weight function in the vicinity of a crack
tip in order to adequately represent the continuity of the displacement
field. Fig. 10 illustrates three different procedures how to truncate
the domain of influence in the case of intersection by a crack [61].

Besides this straightforward manner of introducing discontinuous shape
functions, the Element-Free Galerkin method facilitates the enrichment
of the solution space, for instance when capturing stress singularities
at crack tips which occur in Linear Elastic Fracture Mechanics. This
is achieved by locally enriching the base vector 𝐩(𝐱) with singular tip
functions [61].

Although meshfree methods were initially thought to provide an
elegant framework for the mesh-independent simulation of fracture
propagation, they appear to be less robust than finite element methods.
They are computationally more demanding and the implementation in
three dimensions appears to be less straightforward. Also, the manner
in which the support of a node is changed in the presence of a
crack is somewhat ad-hoc [62] and there is the need to employ a
background ‘mesh’ of integration cells in most meshfree methods. These
complications have limited the use of these methods.

4.4. The EXtended Finite Element Method

The eXtended Finite Element Method (XFEM) [63,64], can be
viewed as a generalisation of interface elements which can be put
arbitrarily within elements. This is enabled by the partition-of-unity
property of finite element shape functions [65]. Also, the name gener-
alised finite element method (GFEM) has been coined [66]. A collection
of functions ℎ𝑘, associated with node 𝑘, form a partition of unity if

𝑛∑
𝑘=1

ℎ𝑘(𝐱) = 1 (29)

with 𝑛 the number of discrete nodal points. For a set of shape func-
tions ℎ𝑘 that satisfy the partition-of-unity property, a field 𝑢 can be
interpolated as follows:

𝑢(𝐱) =
𝑛∑
𝑘=1

ℎ𝑘(𝐱)

(
�̄�𝑘 +

𝑚∑
𝑙=1

𝜓𝑙(𝐱)�̂�𝑘𝑙

)
(30)

with �̄�𝑘 the ‘regular’ nodal degrees of freedom, 𝜓𝑙(𝐱) the enhanced
basis terms, and �̂�𝑘𝑙 the additional degrees of freedom at node 𝑘, which
represent the amplitudes of the 𝑙th enhanced basis term 𝜓𝑙(𝐱). A basic
requirement of the enhanced basis terms 𝜓𝑙 is that they are linearly
independent, mutually, but also with respect to the original set of
functions ℎ𝑘. In standard finite element notation we can write the
interpolation of a displacement field 𝐮 as:

𝐮 = 𝐇(�̄� + 𝜳 �̂�) (31)

where 𝐇 contains the standard shape functions and 𝜳 the enhanced
basis terms. The arrays �̄� and �̂� collect the standard and the additional
nodal degrees of freedom, respectively.

The enhanced basis terms can be exploited to model a discontinuity.
Indeed, a displacement field that contains a single discontinuity can be
represented by choosing [63,64,67,68]:

𝜳 = 𝛤𝑑
𝐈 (32)

with 𝛤𝑑
the Heaviside function, which separates the 𝛺−-domain from

the 𝛺+-domain, Fig. 11. Substitution into Eq. (31) gives:

𝐮 = 𝐇�̄�
⏟⏟⏟

�̄�

+𝛤𝑑
𝐇�̂�

⏟⏟⏟
�̂�

(33)

Identifying the continuous fields �̄� = 𝐇�̄� and �̂� = 𝐇�̂� we observe
that Eq. (33) exactly describes a displacement field that is crossed by
a single discontinuity, but is otherwise continuous. Accordingly, the
partition-of-unity property of finite element shape functions can be
used in a straightforward manner to incorporate discontinuities in a
continuum such that their discontinuous character is fully preserved.

To derive the discrete format of the extended finite element method,
we take the balance of momentum as point of departure. First, we
restrict the derivation to quasi-static loading conditions and neglect
body forces for simplicity. This gives:

∇ ⋅ 𝝈 = 𝟎 (34)
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Fig. 10. Domains of influence intersected by a crack or the crack tip: truncation of the weight function according to the visibility criterion (left), the diffraction criterion (centre)
and the see-through criterion (right) – the shaded areas denote the neglected part of the domain of influence.

Fig. 11. Two-dimensional finite element mesh with a discontinuity denoted by the
bold line. The grey elements contain additional terms in the internal force vector and
in the stiffness matrix.

We multiply this identity by test functions 𝜼, and in a Bubnov–Galerkin
sense, take them from the same space as the trial functions for 𝐮. For
elements that are crossed by a discontinuity, the test functions are taken
as:

𝜼 = �̄� +𝛤𝑑
�̂� (35)

and a similar expression holds for the trial functions. Applying the
divergence theorem and requiring that this identity holds for arbitrary
�̄� and �̂� yields the following set of coupled equations:

∫𝛺 ∇�̄� ∶ 𝝈d𝛺 = ∫𝛤 �̄� ⋅ 𝐭𝑝d𝛤 (36a)

∫𝛺+
∇�̂� ∶ 𝝈d𝛺 + ∫𝛤𝑑 �̂� ⋅ 𝐭𝑑d𝛤 = ∫𝛤 𝛤𝑑

�̂� ⋅ 𝐭𝑝d𝛤 (36b)

where in the volume integrals the Heaviside function has been elimi-
nated by a change of the integration domain from 𝛺 to 𝛺+. Interpolat-
ing the trial and the test functions in the same space,

⎧
⎪⎨⎪⎩

�̄� = 𝐇�̄� , �̂� = 𝐇�̂�

�̄� = 𝐇�̄� , �̂� = 𝐇�̂�

(37)

and requiring that the resulting equations must hold for any admissible
�̄� and �̂�, we obtain the discrete format:

𝐟 ext�̄� = 𝐟 int�̄�

𝐟 ext
�̂�

= 𝐟 int
�̂�

(38)

with the external force vectors,

𝐟 ext�̄� = ∫𝛤 𝐇T𝐭𝑝d𝛤

𝐟 ext
�̂�

= ∫𝛤 𝛤𝑑
𝐇T𝐭𝑝d𝛤 (39)

and the internal force vectors defined as:

𝐟 int�̄� = ∫𝛺 𝐁T
𝑢𝝈d𝛺

𝐟 int
�̂�

= ∫𝛺+
𝐁T
𝑢𝝈d𝛺 + ∫𝛤𝑑 𝐇

T𝐭𝑑d𝛤 (40)

and standard strain-nodal displacement matrix 𝐁𝑢. Linearisation then
yields the following matrix–vector equation:
[

𝐊𝛺
�̄��̄� 𝐊𝛺

�̄��̂�

𝐊𝛺
�̂��̄�

𝐊𝛺
�̂��̂�
+𝐊

𝛤𝑑
�̂��̂�

](
d�̄�

d�̂�

)
=

(
𝐟 ext�̄�

𝐟 ext
�̂�

)
−

(
𝐟 int�̄�

𝐟 int
�̂�

)
(41)

with the submatrices given by:

𝐊𝛺
�̄��̄� = ∫𝛺 𝐁T

𝑢𝐃𝐁𝑢d𝛺

𝐊𝛺
�̄��̂� = 𝐊𝛺

�̂��̄� = 𝐊𝛺
�̂��̂� = ∫𝛺+

𝐁T
𝑢𝐃𝐁𝑢d𝛺 (42)

𝐊
𝛤𝑑
�̂��̂�

= ∫𝛤𝑑 𝐇
T𝐃𝑑𝐇d𝛤

If the material tangential stiffness matrices of the bulk and of the inter-
face, 𝐃 and 𝐃𝑑 , respectively, remain symmetric, symmetry is preserved
for the full tangential stiffness matrix. It is noted that the additional
degrees of freedom are not condensed at element level, but are included
in the force vector and stiffness matrix in order to properly represent
the discontinuity across inter-element boundaries.

The introduction of enhanced basis terms normally deteriorates the
condition of the stiffness matrix. In particular when the discontinuity
crosses an element in the vicinity of a node the contributions of the
various terms in the stiffness matrix will have different magnitudes,
which can lead to a stiffness matrix that is ill-conditioned. This problem
can be ameliorated by only enhancing a node when it has a significant
contribution to the stiffness matrix. Therefore, when the discontinuity
splits an element such that a part of the element is much smaller than
the other part, the node that supports the smallest part is not enhanced
if [67]:

min(𝛺+, 𝛺−)

𝛺
< 𝜀 (43)

with 𝜀 a tolerance. Evidently, this will affect the computational results,
but for reasonable values of 𝜀, e.g. 𝜀 ≈ 0.05, numerical experience shows
that these effects are small [69].

The structured mesh of Fig. 11 is now used to further illustrate
the concept. Nodes with a support that is crossed by a discontinuity
are enhanced. These are marked by filled circles. The other nodes,
denoted by the open circles, remain unchanged. Since only the nodes of
elements that are crossed by the discontinuity have additional degrees
of freedom, the increase in the total number of degrees of freedom is
limited compared to the case without a discontinuity. When an element
is supported by one or more enhanced nodes, additional terms will
emerge in the internal force vector and in the stiffness matrix.

Another possibility is to use the enhanced basis terms to represent
singularities, for instance the

√
𝑟 near-tip displacement field that ensues

in linear-elastic fracture mechanics. The enrichment functions that have
to be added to the polynomial displacement field are:

𝜓1 =
√
𝑟 cos(𝜃∕2)

𝜓2 =
√
𝑟 sin(𝜃∕2)

𝜓3 =
√
𝑟 sin(𝜃∕2) sin(𝜃) (44)

𝜓4 =
√
𝑟 cos(𝜃∕2) sin(𝜃)

Clearly, these functions are linearly independent from polynomial basis
functions. Also, they are mutually linearly independent, since they have
been derived on this premise.

Since a key point of the extended finite element method is that
the enrichment is local, enhanced basis functions that accommodate a
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Fig. 12. Crack path that results from the analysis of the single-edge notched beam [67].

Fig. 13. (Left) Third-order B-spline basis functions constructed over the knot vector 𝜩 = {0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4}. (Right) Open B-spline curve (in blue) constructed using
the control net shown in red.

stress singularity, like those stemming from Eq. (44), can be combined
with those that represent a discontinuity, as in Eq. (32), in a single
analysis. This is useful, for instance, when carrying out crack propa-
gation analyses that are based on linear elastic fracture mechanics. In
that case, additional basis function like in Eq. (44) are added around
the crack tip, while Heaviside functions as in Eq. (32) are added in the
wake of the tip.

An example of the application of the eXtended Finite Element
method is given in Fig. 12 for the Single-Edge Notched Beam (SEN
beam) of Fig. 6 as the numerically computed crack path of Fig. 12 is
in excellent agreement with experimental observations. It is noted that
the excellent agreement also depends on the smoothness of the stress
field. Normally, the stresses are non-smooth around a crack tip, but a
stress averaging over a finite domain, typically with a radius of three to
four elements, results in stresses that can reliably be used in the crack
propagation criterion [67].

4.5. Isogeometric finite element analysis

The fundamental idea of isogeometric analysis [70] is to directly
use geometric design models for analysis purposes, thereby by-passing
the need for meshing operations. Originally, Non-Uniform Rational B-
Splines (NURBS) have been used, but more recently T-splines [71] have
also been used to overcome some of the deficiencies of NURBS. Perhaps
bigger advantages of splines are the smoothness of the interpolation,
and the ease to elevate and reduce the order of interpolation, e.g. from
0 to 1 and vice versa.

A univariate B-spline is a parameterised curve which maps the one
dimensional parameter domain �̂� onto a curve in the physical domain
𝛺 through, see Fig. 13:

𝐱(𝜉) =
𝑛∑
𝑘=1

𝑁𝑘,𝑝(𝜉)𝐗𝑘 (45)

In this expression {𝑁𝑘,𝑝(𝜉)}
𝑛
𝑘=1

are piecewise polynomial shape func-
tions, with 𝑛 and 𝑝 denoting the number and order of basis functions,

respectively. The coefficients 𝐗𝑘 – which play a similar role as the
nodal coordinates in the finite element method – are referred to as the
control points. The basis functions are defined over a non-decreasing
knot vector 𝜩 =

{
𝜉1, 𝜉2,… , 𝜉𝑛+𝑝+1

}
, which subdivides the parameter

domain into elements (positive knot intervals). Here we will restrict
the discussion to open B-splines, the class of B-splines which is created
using knot vectors in which the first and the last knot values are
repeated 𝑝 + 1 times.

The B-spline basis {𝑁𝑘,𝑝(𝜉)}
𝑛
𝑘=1

is defined recursively, starting with
piecewise constant (𝑝 = 0) functions:

𝑁𝑖,0(𝜉) =

{
1 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

0 otherwise
(46)

from which the higher-order (𝑝 = 1, 2,…) basis functions follow from
the Cox-de Boor recursion formula [72,73]:

𝑁𝑖,𝑝(𝜉) =
𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

𝑁𝑖,𝑝−1(𝜉) +
𝜉𝑖+𝑝+1 − 𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1
𝑁𝑖+1,𝑝−1(𝜉) (47)

The continuity of B-spline basis functions depends on the order of the
B-spline and the multiplicity of the knots, see Fig. 13. When a knot is
not repeated, a B-spline is 𝑝−1-continuous. At a knot with multiplicity
𝑚 the continuity is equal to 𝑝−𝑚. Hence, higher-order continuous bases
can be constructed directly by increasing the B-spline order. As for
0-continuous Lagrange finite elements, univariate B-spline elements
support 𝑝 + 1 basis functions. This implies that the band width of the
constructed matrices is similar to that of higher-order 0-continuous
finite elements. Since B-spline basis functions are non-interpolatory,
the imposition of essential boundary conditions directly through the
control point coefficients is generally not possible, similar to meshfree
methods. While simple boundary conditions such as constant edge
displacements can be imposed directly, alternative methods, must be
used for the imposition of more general essential boundary conditions.

A drawback of B-splines is their inability to exactly represent a
number of objects that are of engineering interest, for instance, conic
sections. For this reason, Non-Uniform Rational B-Splines (NURBS),
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a rational generalisation of B-splines, have superseded B-splines in
computer-aided geometric design. NURBS parameterise geometric ob-
jects with as basis functions:

𝑟𝑘(𝜉) =
ℎ𝑘(𝜉)𝑊𝑘

𝑤(𝜉)
(48)

where 𝑤(𝜉) =
∑𝑁
𝑘=1 ℎ𝑘(𝜉)𝑊𝑘 is the weighting function. Defining a

NURBS requires the control net {𝐩𝑘}
𝑁
𝑘=1

to be supplemented with a set
of scalar control point weights, {𝑊𝑘}

𝑁
𝑘=1
. Singularities in the rational

basis functions are avoided by requiring all control point weights to be
positive.

Multivariate B-splines, necessary for representing two and three-
dimensional objects, are created by means of a tensor product structure.
Surfaces and volumes constructed in this way are referred to as bivari-
ate and trivariate patches, respectively. The required bivariate basis
functions defined over the parameter domain 𝑉 ⊂ R

2 with parametric
coordinate 𝝃 = (𝜉, 𝜂) are given by:

ℎ𝑎(𝝃) = ℎ𝑘(𝜉)ℎ𝑙(𝜂) (49)

with 𝑎 = (𝑙 − 1)𝑁2 + 𝑘 and univariate B-spline basis functions ℎ𝑘(𝜉) and
ℎ𝑙(𝜂) defined over the knot vectors 𝜩𝜉 and 𝜩𝜂 , respectively. Note that
we distinguish the bivariate basis functions, {ℎ𝑎(𝝃)}

𝑁
𝑎=1
, from the uni-

variate functions {ℎ𝑘(𝜉)}
𝑁1

𝑘=1
and {ℎ𝑙(𝜂)}

𝑁2

𝑙=1
, by means of its argument,

which is a scalar in the latter case, and a vector in the former case.
By extension, the trivariate basis functions defined over the parameter
domain 𝑉 ⊂ R

3 with parametric coordinate 𝝃 = (𝜉, 𝜂, 𝜁 ) are

ℎ𝑎(𝝃) = ℎ𝑘(𝜉)ℎ𝑙(𝜂)ℎ𝑚(𝜁 ) (50)

with 𝑎 = (𝑚 − 1)𝑁1𝑁2 + (𝑙 − 1)𝑁2 + 𝑘, and univariate B-spline basis
function ℎ𝑚(𝜁 ) defined over the knot vector 𝜩𝜁 .

The availability of a Bézier representation for splines is of pivotal
importance for the efficient implementation of isogeometric analysis,
as it provides a unified approach to spline technologies that is com-
patible with standard finite element technology. The idea behind the
Bézier representation is that since B-spline basis functions are piece-
wise polynomials, it is possible to express the B-spline basis functions
over an element as a linear combination of a canonical set of basis
functions. The element matrices containing the coefficients of these
linear combinations are referred to as the element extraction operators.
These extraction operators lump all global information – such as the
inter-element continuity conditions – onto the elements.

When the element extraction operators are available, the basis func-
tions can be constructed from the canonical set of elements. This makes
isogeometric analysis an element technology, suitable to integrate in
existing finite element codes. All information required for carrying out
an analysis is assembled in a Bézier mesh, which contains:

• The (global) control net, {𝐗𝑘}
𝑛
𝑘=1
, supplemented with control

point weights, {𝑊𝑘}
𝑛
𝑘=1
, in the case of NURBS.

• A set of Bézier elements, each supplemented with a list containing
the global indices of the basis functions with support over the
element (commonly referred to as the connectivity array), and an
element extraction operator.

The Bézier mesh can be regarded as an extension of the mesh used in
standard finite element analysis, in which the control point weights and
Bézier extraction operators are generally omitted.

As alluded to in the beginning of this subsection, higher-order
continuity is important in problems which are described by higher-
order differential equations, such as Kirchhoff–Love plates [75], in
problems where higher-order gradients in the constitutive relation
play a role as in gradient-damage models (see Section 5), or when
fluxes (and their continuity) are important, for instance fluid fluxes
in poroelasticity [76]. The ability of NURBS and T-splines to elevate
or lower the order of continuity in a straightforward manner is useful
in discrete crack propagation analysis. Indeed, lowering the order of
continuity to −1 is tantamount to creating a crack [74]. An example is
shown in Fig. 14, where T-splines are used to model crack propagation
in the Single-Edge Notched beam of Fig. 6.

5. Smeared crack analyses

As discussed in the preceding, the difficulties that come with dis-
crete crack models, in particular the non-trivial implementation aspects
and the complications which ensue when attempting to extend a dis-
crete formulation to three dimensions, have led to ongoing attempts to
formulate a neat and well-defined smeared-crack formulation. Herein,
we will first provide a historical setting of the smeared-crack approach
before outlining more systematic approaches embedded within the
damage mechanics concept [77]. The incorporation of damage evolu-
tion within a classical, rate-independent continuum model comes with
a caveat, namely the loss of well-posedness of the initial value prob-
lem and the consequential mesh sensitivity beyond a certain level of
damage. Indeed, the inclusion of higher-order spatio-temporal deriva-
tives is necessary to restore this well-posedness. Especially gradient-
dependent damage models have become very popular. Although not
used frequently, higher-order gradient damage models (with gradients
higher than two) require a higher degree of continuity than stan-
dard 0-continuous finite elements can offer, and in this context the
Element-Free Galerkin method [78] and isogeometric finite element
analysis [79] have been exploited successfully. The most recent de-
velopment is the phase-field approach to brittle fracture, which bears
similarities to gradient damage models.

5.1. Early approaches: stress drop and stiffness reduction

In the classical smeared-crack approach, the nucleation of one or
more cracks in the volume that is attributed to an integration point
is translated into a deterioration of the current stiffness and strength
at that integration point. A crack is initiated when the combination
of stresses satisfies a certain criterion, e.g. the major principal stress
exceeds the tensile strength 𝑓𝑡. At this integration point the elas-
tic, isotropic stress–strain relation is then replaced by an orthotropic
elasticity-type relation with the 𝑛, 𝑠-axes being axes of orthotropy; 𝑛 is
the direction normal to the crack and 𝑠 is the direction tangential to
the crack. Initially, the orthotropic relation was defined as [7]:

⎛
⎜⎜⎝

𝜎𝑛𝑛
𝜎𝑠𝑠
𝜎𝑛𝑠

⎞⎟⎟⎠
=

⎡⎢⎢⎣

0 0 0

0 𝐸 0

0 0 0

⎤⎥⎥⎦

⎛⎜⎜⎝

𝜖𝑛𝑛
𝜖𝑠𝑠
𝛾𝑛𝑠

⎞⎟⎟⎠
(51)

for a plane-stress situation. Eq. (51) shows that both the normal stiff-
ness and the shear stiffness across the crack were set equal to zero upon
cracking. Consequently, all effects of lateral contraction/expansion dis-
appear.

With 𝝈ns = (𝜎𝑛𝑛, 𝜎𝑠𝑠, 𝜎𝑛𝑠)
T and 𝝐ns = (𝜖𝑛𝑛, 𝜖𝑠𝑠, 𝛾𝑛𝑠)

T we can also write
the orthotropic elastic stiffness relation in the 𝑛, 𝑠-coordinate system as:

𝝈ns = 𝐃s𝝐ns (52)

where the secant stiffness matrix 𝐃s is defined as:

𝐃s =

⎡⎢⎢⎣

0 0 0

0 𝐸 0

0 0 0

⎤⎥⎥⎦
(53)

If we introduce 𝜙 as the angle from the 𝑥-axis to the 𝑠-axis we can
relate the components of 𝝐ns and 𝝈ns to those in the global 𝑥, 𝑦-
coordinate system via standard transformation matrices 𝐓𝜖(𝜙) and
𝐓𝜎 (𝜙): 𝝐ns = 𝐓𝜖(𝜙)𝝐xy and 𝝈ns = 𝐓𝜎 (𝜙)𝝈xy. The local secant stiffness
relation (52) then transforms into a secant stiffness relation in the
global 𝑥, 𝑦-coordinate system:

𝝈xy = 𝐓−1
𝜎 (𝜙)𝐃s𝐓𝜖(𝜙)𝝐xy (54)

When 𝜙 changes continuously, e.g. to keep the direction of the crack
orthogonal to the direction of the major principal stress, the rotating
smeared crack model is obtained [80]. The approach with 𝜙 fixed at
crack initiation is known as the fixed smeared crack model.
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Fig. 14. Discrete crack analysis of Single-Edge Notched beam using T-splines [74].

Fig. 15. Classical smeared-crack analysis. The central part of the Single-Edge Notched
beam is shown. The short lines denote integration points where the tensile strength
has been exceeded and are orthogonal to the major principal stress at the moment
when it exceeded the tensile strength [82]. Subfigure (a) shows all smeared cracks,
while subfigure (b) shows only those smeared cracks where no tensile stresses are
transmitted.

Eq. (51) can lead to ill-conditioning of the tangential stiffness matrix
and can lead to physically unrealistic and distorted crack pattern. To
remedy these anomalies a reduced shear modulus 𝛽𝐺(0 ≤ 𝛽 ≤ 1) was
inserted in the stiffness relation [81], resulting in the following secant
stiffness matrix:

𝐃s =

⎡
⎢⎢⎣

0 0 0

0 𝐸 0

0 0 𝛽𝐺

⎤
⎥⎥⎦

(55)

The use of the so-called shear retention factor 𝛽 not only reduces
numerical difficulties, but also improves the capturing the physics,
because it can be regarded as a representation of some effects of friction
or aggregate interlock within the crack.

Setting the stiffness normal to the crack in Eq. (55) equal to zero
gives a sudden drop in stress from the tensile strength 𝑓𝑡 to zero
on crack initiation. Again, a sudden drop tends to cause numerical
problems. A gradual decrease of the tensile carrying capacity, as in

𝐃s =

⎡⎢⎢⎣

𝜇𝐸 0 0

0 𝐸 0

0 0 𝛽𝐺

⎤
⎥⎥⎦

(56)

gives results that are physically more appealing and computations that
are numerically more stable. In Eq. (56), 𝜇 is a factor which gradually
decreases from one to zero as a function of the normal strain 𝜖𝑛𝑛,
𝜇 = 𝜇(𝜖𝑛𝑛). Further sophistication comes when the Poisson effect is
restored partially.

The introduction of the reduced normal stiffness 𝜇𝐸 was originally
motivated by the argument that in reinforced concrete the volume
attributed to an integration point contains a number of cracks and
that due to the bond between concrete and reinforcing steel, the intact
concrete between the cracks adds stiffness which would be underesti-
mated by a sudden drop to zero of the tensile strength (the so-called

tension-stiffening effect). Later, servo-controlled experiments on plain
concrete have shown that concrete is not a perfectly brittle material in
the Griffith sense, but that it has some residual load-carrying capacity
after the tensile strength. Indeed, the term quasi-brittle has come en
vogue for this class of materials, which encompasses concrete, rocks,
ceramics, among others. The interpretation of the ‘reduction’ factor 𝜇 is
now different, namely that it is related to the descending branch which
models the gradually diminishing tensile strength of a quasi-brittle
material upon further opening, often denoted as tension-softening.

An example of a smeared-crack analysis as outlined in the preceding
is shown in Fig. 15, which depicts the centre part of the Single-Edge
Notched beam analysed before using interface elements, cf. Fig. 6.
Since the stresses are monitored in the integration points, the fracture
criterion is evaluated in these points. Whenever the tensile strength is
exceeded, a crack is formed and the isotropic stress–strain relation is
replaced by Eq. (56). The crack is assumed to run orthogonal to the
major principal stress at crack initiation and is visualised by a small
line through the integration point in Fig. 15.

It is finally noted that finite element models with embedded dis-
continuities provide an elegant way to implement smeared-crack mod-
els [83–85]. Indeed, the embedded discontinuity approaches enhance
the deformational capabilities of the elements, especially when the
standard Bubnov–Galerkin approach is replaced by a Petrov–Galerkin
method, which properly incorporates the discontinuity kinematics [86].
At the expense of a non-symmetric stiffness matrix, the high local strain
gradients inside crack bands are captured more accurately. However, a
true discontinuity is not obtained because the kinematics of the em-
bedded crack band are diffused over the element when the governing
equations are cast in a weak format. Indeed, for lower order elements it
has been shown that the embedded discontinuity approaches and con-
ventional smeared crack models are equivalent [87]. Consequently, the
embedded discontinuity approaches inherit many of the disadvantages
of conventional smeared crack models, including the sensitivity of crack
propagation to the direction of mesh lines.

5.2. A proper framework: Damage mechanics

Starting from the late 1980s smeared-crack analysis has been carried
out using the formalism of damage mechanics. Usually, an isotropic
damage format has been used, which is why we will use this as a
starting point. Formally, an isotropic format is not able to capture the
smeared-crack approach outlined in the preceding subsection and an
orthotropic version, which can be made equivalent with the classical
smeared crack approaches has been developed [88]. Nevertheless, the
differences in practical analyses are fairly small, which is why most
analyses resort to the simpler isotropic format.

The basic stress–strain relation for an isotropic damage model reads:

𝝈 = (1 − 𝜔)𝐃e ∶ 𝝐 (57)

with 𝜔 a scalar damage variable that grows from zero to one (at
complete loss of integrity) and 𝐃e the fourth-order elastic stiffness
tensor. The total stress–strain relation, Eq. (57) is complemented by
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Fig. 16. Left: Bar with length 𝐿 subject to an axial stress 𝜎. Right: Elastic-linear damaging material behaviour.

Fig. 17. Response of an imperfect bar in terms of a stress–average strain curve.

a damage-loading function 𝑓 , which in a strain-based format reads as
follows:

𝑓 = 𝑓 (𝜖, 𝜅) (58)

with 𝜖 a scalar-valued function of the strain tensor and 𝜅 the history
variable. The damage-loading function 𝑓 and the rate of the history
variable, �̇�, have to satisfy the Karush–Kuhn–Tucker loading–unloading
conditions

𝑓 ≤ 0, �̇� ≥ 0, �̇�𝑓 = 0 (59)

The history parameter 𝜅 starts at a damage threshold level 𝜅𝑖 and is
updated by the requirement that during damage growth 𝑓 = 0. Damage
growth occurs according to an evolution law such that 𝜔 = 𝜔(𝜅), which
can be determined from a uniaxial test.

For metals, a commonly accepted choice for 𝜖 is

𝜖 =

√
1

𝐸
𝝐 ∶ 𝐃e ∶ 𝝐 (60)

with 𝐸 Young’s modulus. However, this definition gives equal weights
to tensile and compressive strain components, which makes it unsuit-
able to describe the mechanical behaviour of quasi-brittle materials like
concrete and rock. To remedy this deficiency, [89] have suggested the
definition

𝜖 =

√√√√ 3∑
𝑖=1

⟨𝜖𝑖⟩2 (61)

with 𝜖𝑖 the principal strains, and ⟨𝜖𝑖⟩ = 𝜖𝑖 if 𝜖𝑖 > 0 and ⟨𝜖𝑖⟩ = 0

otherwise. A third definition for the equivalent strain has been pro-
posed in [90]. This proposition, for which the name Modified von Mises
definition has been coined, is given by:

𝜖 =
𝑘 − 1

2𝑘(1 − 𝜈)
𝐼1 +

1

2𝑘

√
(𝑘 − 1)2

(1 − 2𝜈)2
𝐼2
1
+

6𝑘

(1 + 𝜈)2
𝐽2 (62)

with 𝐼1 the first invariant of the strain tensor and 𝐽2 the second
invariant of the deviatoric strain tensor. The parameter 𝑘 governs
the sensitivity to the compressive strain components relative to the
tensile strain components. The definition of 𝜖 is such that a compressive
uniaxial stress 𝑘𝜎 has the same effect as a uniaxial tensile stress 𝜎. 𝑘 is
therefore normally set equal to the ratio of the compressive uniaxial
strength and the tensile uniaxial strength.

5.3. Issues: Mesh dependence and poor convergence

A fundamental problem of incorporating damage evolution in stan-
dard continuum models is the inherent mesh sensitivity that occurs
after reaching a certain damage level. This mesh sensitivity goes be-
yond the standard discretisation sensitivity of numerical approximation
methods for partial differential equations and is not related to deficien-
cies in the discretisation method. Instead, the underlying reason for this
mesh sensitivity is a local change in character of the governing partial
differential equations. This local change of character of the governing
set of partial differential equations leads to a loss of well-posedness of
the initial boundary value problem and results in an infinite number
of possible solutions. After discretisation, a finite number of solutions
results. However, for a finer discretisation, the number of solutions
increases, which explains the observed mesh sensitivity.

Mesh sensitivity in a standard continuum equipped with a strain-
softening stress–strain relation is conveniently demonstrated by the
example of a simple bar loaded in uniaxial tension. see Fig. 16. Let the
bar be divided into 𝑚 elements. Prior to reaching the tensile strength 𝑓𝑡,
a linear relation is assumed between the normal stress 𝜎 and the normal
strain 𝜖: 𝜎 = 𝐸𝜖. After reaching the peak strength, a descending slope
is defined in this diagram through an affine transformation from the
measured load–displacement curve. This is visualised in Fig. 16, where
𝜅𝑢 marks the point where the load-carrying capacity is exhausted. In
the post-peak regime, the constitutive model thus reads:

𝜎 = 𝑓𝑡 + ℎ(𝜖 − 𝜅𝑖) (63)

where, evidently, in case of degrading materials, ℎ < 0 being the
softening modulus. For linear softening, we have ℎ = −𝑓𝑡∕(𝜅𝑢 − 𝜅𝑖).

We next suppose that one element has a tensile strength that is
marginally below that of the other 𝑚 − 1 elements. Upon reaching
the tensile strength of this element, failure will occur. In the other
neighbouring elements, the tensile strength is not exceeded and they
will unload elastically. Beyond the peak strength, the average strain in
the bar is thus given by

𝜖 =
𝜎
𝐸

+
𝐸 − ℎ
𝐸ℎ

𝜎 − 𝑓𝑡
𝑚

(64)

For linear softening and introducing 𝑛 as the ratio between the strain
𝜅𝑢 at which the residual load-carrying capacity is exhausted and the
threshold damage level 𝜅𝑖, 𝑛 = 𝜅𝑢∕𝜅𝑖 and ℎ = −𝐸∕(𝑛 − 1), gives

𝜖 =
𝜎
𝐸

+
𝑛(𝑓𝑡 − 𝜎)

𝑚𝐸
(65)
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Fig. 18. Localised failure mode in a deformed SiC/C specimen [91].

This result has been plotted in Fig. 17 for different ratios of 𝑛∕𝑚.
The computed post-peak curves do not seem to converge to a unique
curve. In fact, they do, because the governing equations predict the
failure mechanism to be a line crack with zero thickness. The numerical
solution simply tries to capture this line crack, which results in a
localisation in one element, irrespective of the width of the element.
The impact on the stress–average strain curve is obvious: for an infinite
number of elements (𝑚 → ∞), the post-peak curve doubles back on the
original loading curve. Indeed, the problem is that, since in continuum
mechanics the constitutive model is phrased in terms of a stress–strain
relation and not as a force–displacement relation, the energy that is
dissipated tends to zero upon mesh refinement, simply because the
volume in which the failure process occurs also becomes zero. From
a physical point of view, this is unacceptable.

The above observations are by no means exclusive to the simple one-
dimensional example discussed above. A more complicated boundary
value problem is the silicium carbide specimen of Fig. 18 [91], which is
reinforced with carbon fibres (SiC/C composite). The dimensions of the
specimen are 30 μm×30 μm and a uniform horizontal loading is applied
to the vertical sides. The fibres are assumed to remain elastic and also
the bond between fibres and matrix material is assumed to be perfect.
A degrading mechanism is only considered for the matrix material, for
which a simple von Mises plasticity model with linear softening has
been used.

After the onset of softening, a clear localisation zone develops, as
is shown in Fig. 18. This figure shows the fine mesh, which consists of
15 568 elements. The computed load–displacement curve has been plot-
ted in Fig. 19, together with those for the two coarser discretisations,
with 3892 and 973 elements, respectively. The same picture arises as
for the simple one-dimensional example: a more brittle behaviour is
obtained when the mesh is refined and there seems to be convergence
towards a solution with zero energy dissipation. In fact, the solution
not only becomes more brittle upon mesh refinement, but also the peak
load is reduced. Moreover, the solution process becomes very unstable
for finer discretisations. This shows through the rather irregular shape
of the load–displacement curve for the finest discretisation and by
the observation that the solution could not be continued at some
stage, no matter how sophisticated solution techniques were employed.
The explanation for this phenomenon is that, as shown in the simple

bar problem, a refinement of the discretisation introduces more and
more possible equilibrium states. The iterative solution process has to
‘choose’ between these equilibrium states and tends to pick another
equilibrium state every subsequent iteration. Ultimately, this leads to a
divergence of the iterative solution procedure.

From a mathematical perspective the severe mesh sensitivity is
caused by the local loss of ellipticity, or, equivalently, loss of hy-
perbolicity for dynamic loadings. Since the underlying reason is of a
mathematical rather than of a numerical nature, the sensitivity to the
discretisation occurs for any discretisation method, including mesh-free
methods [92].

5.4. Gradient-dependent damage models

In a non-local generalisation the equivalent strain 𝜖 is normally
replaced by a spatially averaged quantity in the damage-loading func-
tion [93]:

𝑓 (𝜖, 𝜅) = 𝜖 − 𝜅 (66)

where the non-local strain 𝜖 is computed from

𝜖(𝐱) =
1

𝛹 (𝐱) ∫𝛺 𝜓(𝐲, 𝐱)𝜖(𝐲)d𝛺, 𝛹 (𝐱) = ∫𝛺 𝜓(𝐲, 𝐱)d𝛺 (67)

with 𝜓(𝐲, 𝐱), a weight function. Often, the weight function is assumed
to be homogeneous and isotropic, so that it only depends on the norm
𝑠 =∥𝐱−𝐲∥. In this formulation, all the other relations remain local: the
local stress–strain relation (57), the loading–unloading conditions (59),
and the dependence of the damage variable 𝜔 on the history parameter
𝜅: 𝜔 = 𝜔(𝜅). As an alternative to Eq. (67), the locally defined history
parameter 𝜅 may be replaced in the damage-loading function 𝑓 by a
spatially averaged quantity �̄�:

�̄�(𝐱) =
1

𝛹 (𝐱) ∫𝛺 𝜓(𝐲, 𝐱)𝜅(𝐲)d𝛺 (68)

The fact that in elasticity-based damage models the stress can be
computed directly from the given strain enables that a straightforward
algorithm can be set up for non-local damage models.

Non-local constitutive relations can be considered as a point of
departure for constructing gradient models, although it is emphasised
that the latter class of models can also be defined directly by supplying
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Fig. 19. Load–displacement curves for SiC/C specimen obtained with three different
discretisations and a standard softening plasticity model [91].

higher-order gradients in the damage-loading function. Yet, we will
follow the first-mentioned route to underline the connection between
integral- and differential-type non-local models. This is done either by
expanding the kernel 𝜖 of the integral in Eq. (67) in a Taylor series, or
by expanding of the history parameter 𝜅 in Eq. (68) in a Taylor series.
We will here consider the expansion of 𝜖, and refer to [94] for 𝜅. If
we truncate after the second-order terms and carry out the integration
implied in (67) under the assumption of isotropy, the following relation
ensues:

𝜖 = 𝜖 + 𝑐𝑔∇
2𝜖 (69)

where 𝑐𝑔 is a gradient parameter of the dimension length squared. It
can be related to the averaging volume and then becomes dependent
on the precise form of the weight function 𝜓 . For instance, for a
one-dimensional continuum and taking

𝜓(𝑠) =
1√
2𝜋𝑙

e−𝑠
2∕2𝓁2 (70)

we obtain 𝑐𝑔 = 1∕2𝓁2. Here, we adopt the phenomenological view that
𝓁 =

√
(2𝑐𝑔) reflects the length scale of the failure process which we

wish to describe macroscopically.
Formulation (69) has a disadvantage when applied in a finite el-

ement context, namely, that it requires computation of second-order
gradients of the local equivalent strain 𝜖. Since this quantity is a
function of the strain tensor, and since the strain tensor involves
first-order derivatives of the displacements, third-order derivatives of
the displacements have to be computed, which would necessitate 2-
continuity of the shape functions. To obviate this problem, Eq. (69) is
differentiated twice and the result is substituted again into Eq. (69).
Again neglecting fourth-order terms leads to

𝜖 − 𝑐𝑔∇
2𝜖 = 𝜖 (71)

In [95], it has been shown that the implicit gradient formulation (71)
becomes formally identical to a fully non-local formulation for a spe-
cific choice of the weighting function 𝜓 in Eq. (67), which underlines
that this formulation has a truly non-local character, in contrast to the
explicit gradient formulation (69).

Higher-order continua require additional boundary conditions. With
equation (71) governing the damage process, either the averaged equiv-
alent strain 𝜖 itself or its normal derivative must be specified on the
boundary 𝛤 of the body:

𝜖 = 𝜖s or 𝐧𝛤 ⋅ ∇𝜖 = 𝜖ns (72)

In most example calculations in the literature, the natural boundary
condition 𝐧𝛤 ⋅ ∇𝜖 = 0 has been adopted.

Numerical schemes for gradient-enhanced continua typically have
the character of a coupled problem and normally depart from the weak
form of the balance of momentum:

∫𝛺 ∇sym𝜼 ∶ 𝝈d𝛺 = ∫𝛤 𝜼 ⋅ 𝐭𝑝d𝛤 (73)

and a weak form of the averaging equation, for example, for Eq. (71):

∫𝛺 𝜁 (𝜖 − 𝑐𝑔∇
2𝜖 − 𝜖)d𝛺 = 0 (74)

with 𝜁 being the test function for the non-local strain 𝜖. Transforming
equation (74), using the divergence theorem and the natural boundary
condition 𝐧𝛤 ⋅ ∇𝜖 = 0 yields

∫𝛺(𝜁𝜖 + 𝑐𝑔∇𝜁 ⋅ ∇𝜖)d𝛺 = ∫𝛺 𝜁𝜖 d𝛺 (75)

From Eq. (75) it becomes clear that in this formulation a 0-
interpolation for 𝜖 suffices. Accordingly, we can discretise the displace-
ments 𝐮 and the non-local strains

𝐮 = 𝐍𝐚 and 𝜖 = �̄�𝐞 (76)

with 𝐍 and �̄� containing 0-interpolation polynomials, which can
differ. Similarly, for the test functions

𝜼 = 𝐍𝐰 and 𝜁 = �̄�𝐳 (77)

Substitution into Eqs. (73) and (75) and requiring that the result
holds for arbitrary (𝐰, 𝐳), yields the discrete format of the equilibrium
equation:

∫𝛺 𝐁T𝝈d𝛺 = ∫𝛤 𝐍T𝐭𝑝 d𝛤

and the averaging equation:

∫𝛺(�̄�
T�̄� + 𝑐𝑔(∇�̄�)

T∇�̄�)d𝛺 = ∫𝛺 �̄�T�̃� d𝛺 (78)

The tangent stiffness matrix needed for an iterative solution via the
Newton–Raphson method reads [96] as follows:

[
𝐊𝑎𝑎 𝐊𝑎𝑒

𝐊𝑒𝑎 𝐊𝑒𝑒

](
d𝐚

d𝐞

)
=

(
𝐟 ext𝑎 − 𝐟 int𝑎

𝐟 int𝑒 −𝐊𝑒𝑒𝐞

)
(79)

with 𝐟 int𝑒 given by the right-hand side of Eq. (78). The stiffness matrices
are given by

𝐊𝑎𝑎 = ∫𝛺(1 − 𝜔)𝐁
T𝐃e𝐁d𝛺 (80)

𝐊𝑎𝑒 = ∫𝛺 𝑞𝐁
T𝐃e𝝐�̄�d𝛺 (81)

𝐊𝑒𝑎 = ∫𝛺 �̄�T
(
𝜕𝜖
𝜕𝝐

)
𝐁d𝛺 (82)

𝐊𝑒𝑒 = ∫𝛺
(
�̄�T�̄� + 𝑐𝑔(∇�̄�)

T∇�̄�
)
d𝛺 (83)

where 𝑞 = 𝜕𝜔∕𝜕𝜅 for loading and vanishes if otherwise. The ex-
pressions for 𝐊𝑎𝑒 and 𝐊𝑒𝑎 exhibit a non-symmetry. However, this
non-symmetry is caused by the damage formalism and not by the
gradient enhancement.

To illustrate the ability of gradient-enhanced damage models to
accurately simulate fracture patterns, the Single-Edge Notched beam
has again been chosen. The gradient-damage model outlined in the
preceding has been used with material parameters, dimensions and
boundary conditions as given in [97]. Fig. 20 shows an excellent agree-
ment between the damage contours that result from the simulation and
the experimentally observed crack pattern.
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Fig. 20. Damage contours and experimentally observed crack patterns for the Single-
Edge Notched beam using a gradient-enhanced damage model [97]. Only the centre
part of the beam is shown.

5.5. The phase-field approach to brittle fracture

The central idea in the phase-field approximation to brittle fracture
is the replacement of the Dirac function 𝛿

(
𝑥𝑛
)
by an approximated or

regularised function [9,10]:

𝛿𝓁(𝑥𝑛) =
1

2𝓁
exp

(
−
||𝑥𝑛||
𝓁

)
(84)

with 𝓁 > 0 a length scale parameter. Evidently

∫
∞

−∞

𝛿𝓁(𝑥𝑛)d𝑥𝑛 = 1 (85)

for arbitrary 𝓁, and 𝑥𝑛 is a coordinate normal to the crack.
An issue with the smeared Dirac function approximation, Eq. (84),

is that the generalisation towards more dimensions is less obvious.
Therefore, it is obtained implicitly through the solution of the boundary
value problem

⎧⎪⎨⎪⎩

𝑑 − 4𝓁2 d2𝑑

d𝑥2𝑛
= 0 𝑥𝑛 ∈ R∖0

𝑑 = 1 𝑥𝑛 = 0

𝑑 = 0 𝑥𝑛 = ±∞

(86)

with 𝑑(𝑥𝑛) ∈ [0, 1] a scalar field, which equals 1 at the centre of the
discontinuity, i.e. for 𝑥𝑛 = 0, and vanishes for 𝑥𝑛 = ±∞. When 𝑑(0) = 1

is not imposed, solution of the differential equation (86) is equivalent
to minimising

𝐼(𝑑) =
1

4 ∫𝛺
(
𝑑2 + 4𝓁2 d𝑑

d𝑥𝑛

)
d𝑉 (87)

Since d𝑉 = 𝛤d𝑥𝑛, we have

𝐼(𝑒−|𝑥𝑛|∕𝓁) = 𝓁𝛤 (88)

where the crack surface can be expressed through the following volume
integral:

𝛤 = ∫𝛺 𝛾𝓁d𝑉 (89)

with the crack density

𝛾𝓁 =
(

1

4𝓁
𝑑2 + 𝓁||∇𝑑||2

)
(90)

which is the multi-dimensional generalisation of 𝛿𝓁(𝑥𝑛).
We now consider a volume 𝛺 with an internal discontinuity bound-

ary 𝛤𝑑 and we consider the potential energy for brittle fracture in the

Griffith sense [2,8]:

𝛹pot = ∫𝛺 𝜓
𝑒(𝜺) d𝑉 + ∫𝛤𝑑 𝑐 d𝐴 (91)

with the elastic energy density 𝜓𝑒 a function of the strain tensor 𝜺. The
elastic energy density is expressed by Hooke’s law for an isotropic linear
elastic material as 𝜓𝑒(𝜺) =

1

2
𝜆𝜀𝑖𝑖𝜀𝑗𝑗 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 with 𝜆 and 𝜇 the Lamé

constants, and the summation convention applies. The potential energy
𝛹pot governs the balance between elastic energy in the bulk material
and the fracture energy.

Next, the a priori unknown crack surface is approximated by the
crack density function 𝛾𝓁 , cf. Eqs. (89) - (90). This allows us to express
the work required to create a unit crack area as a volume integral which
depends on the phase field variable 𝑑 and the fracture energy 𝑐 :

∫ 𝛤𝑑

𝑐d𝐴 = ∫ 𝛺
𝑐𝛾𝓁(𝑑,∇𝑑) d𝑉 (92)

The final step is inspired by concepts developed in damage mechanics
and relies on the assumption that the evolution of the phase field is
directly related to crack growth. As such it can be used to model the loss
of stiffness of the bulk of the solid. This is achieved by the introduction
of a degradation function 𝑔 = 𝑔(𝑑). A quadratic polynomial is widely
used:

𝑔(𝑑) = (1 − 𝑑)2 (93)

but, motivated by work of Lorentz on gradient-damage models [98,99],
a rational function has gained popularity more recently

𝑔(𝑑) =
(1 − 𝑑)2

(1 − 𝑑)2 + 𝑚𝑑 (1 + 𝑝𝑑)
(94)

with 𝑚 and 𝑝 material parameters. The latter degradation function has
been shown to be able to mimic cohesive-like behaviour, e.g. [100–
102]. The degradation function 𝑔 is then multiplied with the elastic
energy density of the undamaged state, 𝜓0, such that the elastic energy
density of the damaged state reads [9]:

𝜓𝑒(𝝐, 𝑑) = 𝑔(𝑑)𝜓0(𝝐) (95)

Noting that fracture occurs mainly in tension, it was subsequently as-
sumed that the elastic energy of the undamaged state can be additively
decomposed into a tensile or damage contribution, and an compressive
or intact part, 𝜓0 = 𝜓d

0
+𝜓 i

0
, and that the degradation function 𝑔(𝑑) only

acts on the damaged part [103]:

𝜓𝑒(𝝐, 𝑑) = 𝑔(𝑑)𝜓d
0
(𝝐) + 𝜓 i

0
(𝝐) (96)

Substituting Eqs. (92) and (96) into Eq. (91) yields the smeared form
of the total potential energy for brittle fracture:

𝛹 = ∫𝛺 𝑔(𝑑)𝜓
d
0
(𝝐) + 𝜓 i

0
(𝝐) + 𝑐𝛾𝑙(𝑑,∇𝑑) d𝑉 (97)

Minimisation of 𝛹 and introduction of the history field  to enforce
irreversibility [104] lead to the strong form:

∇ ⋅ 𝝈(𝝐, 𝑑) = 𝟎 𝐱 ∈ 𝛺 (98a)

𝝈 ⋅ 𝐧 = �̄� 𝐱 ∈ 𝛤𝑡 (98b)

𝐮 = �̄� 𝐱 ∈ 𝛤𝑢 (98c)

𝑐
(
𝑑

2𝓁2
− 2𝛥𝑑

)
=

d𝑔(𝑑)

d𝑑
 𝐱 ∈ 𝛺 (98d)

∇𝑑 ⋅ 𝐧 = 0 𝐱 ∈ 𝛤 (98e)

where �̄� and �̄� are the prescribed boundary tractions and displace-
ments, respectively. The Cauchy stress 𝝈 and the history field  read:

𝝈(𝝐, 𝑑) = 𝑔(𝑑)
𝜕𝜓d

0

𝜕𝝐
+
𝜕𝜓 i

0

𝜕𝝐
(99)

(𝑡) = max
𝑡
𝜓d
0
(𝑡). (100)
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Fig. 21. Notched plate. Left: geometry and boundary conditions. Right: Contours of the phase field.

The weak form of Eq. (98) can be derived in a standard fashion.
The finite element approximation of the domain problem involves the
following approximations of the field variables and their derivatives:

{
𝐮(𝐱) = 𝐍𝑢(𝐱)𝐮

𝑒

𝑑(𝐱) = 𝐍𝑑 (𝐱)𝐝
𝑒

⎧⎪⎨⎪⎩

𝝐(𝐱) = 𝐁𝑢(𝐱)𝐮
𝑒

𝜕𝑑(𝐱)

𝜕𝐱
= 𝐁𝑑 (𝐱)𝐝

𝑒
(101)

Substitution of these approximations into the weak form of Eq. (98d)
leads to the following set of algebraic coupled equations:

∫𝛺 𝐁T
𝑢

(
𝑔(𝑑)𝐃d + 𝐃i

)
𝐁𝑢𝐮

𝑒d𝑉 = 𝐟ext (102a)

∫𝛺
[
𝑐

(
1

2𝓁
𝐍T
𝑑𝐍𝑑 + 2𝓁𝐁T

𝑑𝐁𝑑

)
𝐝𝑒 +

d𝑔(𝑑)

d𝑑
𝐍T

𝑑

]
d𝑉 = 𝟎 (102b)

where 𝐟ext is the external load vector, and 𝐃d and 𝐃i correspond to
the damaged and intact parts of the elasticity matrix, respectively. The
solution of the coupled set, Eqs. (102), is usually done using a staggered
scheme, cf. [104], but there are indications that this can be at the
expense of accuracy and that very fine load steps are needed to match
the accuracy of monolithic schemes [105].

As an example a notched square plate of unit length, Fig. 21, is
considered, which is subjected to a shear load, see [104,105] for details.
The bottom edge is fixed, and the top edge is moved horizontally. The
vertical displacements are prevented on the entire boundary, including
on the initial notch. The results are given in Fig. 21 and were obtained
using a monolithic scheme, a 100 × 100-element mesh of linear quadri-
laterals, and a length scale 𝓁 = 0.02 mm. The example shows that
the brittle phase-field formulation is capable of predicting free crack
propagation.

Phase-field methods have become very popular as a versatile, easy-
to-implement method for simulating crack propagation, which obviates
any need for complicated criteria for crack branching, and extends
directly towards three dimensions. The meshes that are required, how-
ever, need to be dense, as several elements should fit in the specified
internal length scale. This can lead to a huge demand on the computer
run time for realistic structures. Also, the implementation of models
which require the crack opening as input parameter, such as cohesive
zone models, or transport of fluid in cracks, is problematic, since
this parameter is not readily available. Several approaches have been
suggested to repair this deficiency, such as augmenting the phase-
field by an additional field that describes the crack opening [106], or
reconstructing the crack opening from crack strains [107,108], but a
fully robust solution does not seem to have been found yet.

6. Concluding remarks

In continuum modelling the smeared and discrete crack approaches
have found strong supporters and adversaries, but it seems that the

evolution have made them grow closer. For instance, discrete crack
modelling requires some form of discretisation adaptivity in order to
produce physically realistic crack patterns. At the same time, advanced
smeared methods like the phase-field approach require locally very
dense meshes, which cannot be realised unless adaptivity is exploited.
A major advantage of smeared methods is that they require less sophis-
ticated data structures and that the extension to three dimensions is
straightforward, which is not the case for discrete approaches. How-
ever, the proper implementation of models where a crack opening is
an input parameter, such as cohesive-zone models or models in which
fluid transport in cracks is considered, remains a challenge for smeared
approaches, and this issue still awaits a thorough solution.
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