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Inner generalized Weyl algebras and their simplicity criteria

V. V. Bavula

Abstract

The aim of the paper is to introduce a new class of rings — the inner generalized Weyl
algebras (IGWA) — and to give simplicity criteria for them. For each IGWA A a derivative
series of IGWAs, A - A" — A" — .- — A — ... is attached where « is an arbitrary
ordinal. In general, all rings A are distinct. A new construction of rings, the inner (o,7,a)-
extension of a ring, is introduced (where o and 7 are endomorphisms of a ring D and a € D).

Key Words: generalized Weyl algebra, inner generalized Weyl algebra, simplicity criterion,
normal element, defining relations, grading, endomorphism, automorphism, reqular element,
centre, fized ring, ideal, module.

Mathematics subject classification 2020: 16D30, 16P40, 16D25, 16U70, 16W50, 16P50,
16585.

1 Introduction

Generalized Weyl algebras D(c,a) with central element a.

Definition, [1]-[8]. Let D be a ring, ¢ be a ring automorphism of D, a be a central element of
D. The generalized Weyl algebra of rank 1 (GWA, for short) D(o,a) = D[z,y;0,a] is a ring
generated by the ring D and two elements = and y that are subject to the defining relations:

xd = o(d)z and yd =0 (d)y forall d € D, yr =a and zy = o(a). (1)

In 1987, I introduced the generalized Weyl algebras of arbitrary rank when I was an algebra
postgradute student at Taras Shevchenko National University of Kyiv, the Department of Algebra
and Mathematical Logic, and they were the subject of my PhD thesis “Generalized Weyl algebras
and their representations” submitted at the end of 1990 (defended at the beginning of 1991).

Generalized Weyl algebras with two endomorphisms and a left normal element a.
In [9], a more general construction of GWAs is introduced.

Definition, [9]. Let D be a ring, o and 7 be ring endomorphisms of D, and a € D. Suppose
that

To(a) =a, ad =70(d)a and o(a)d = o7(d)o(a) forall d € D. (2)

The generalized Weyl algebra (GWA) of rank 1, A = D(o,7,a) = Dlz,y;0,7,al, is a ring
generated by D, x and y subject to the defining relations:

xzd=o(d)x and yd =7(d)y forall d € D, yzr=a and zy = o(a). (3)

The ring D is called the base ring of the GWA A. The endomorphisms o, 7 and the element a are
called the defining endomorphisms and the defining element of the GWA A, respectively. By (2),
the elements a and o (a) are left normal in D. An element d of a ring D is called left (resp., right)
normal if dD C Dd (resp., Dd C dD). An element d € D is called a normal element if Dd = dD.
To distinguish ‘old” GWAs from the ‘new’ ones the former are called the classical GWAs. Every
classical GWA is a GWA as the conditions in (2) trivially hold if a is central and 7 = o~ .

It is an experimental fact that many popular algebras of small Gelfand-Kirillov dimension
are GWAs, [1]-[8]: the first Weyl algebra A; and its quantum analogue, the quantum plane, the



quantum sphere, Usl(2), U,sl(2), the Heisenberg algebra, Witten’s and Woronowicz’s deformations,
Noetherian down-up algebras, etc.

Every GWA A = @, ;, Dv; is a free left D-module where vy = 1, v; = z' and v_; = 3 for
i > 1, [9]. The opposite ring to a GWA is called the right GWA, [9]. Since A? =, , v;DP is a
free right D-module the adjective ‘right’ is added.

Inner generalized Weyl algebras. The aim of the paper is to introduce the inner generalized
Weyl algebras.

Definition. Let D be a ring, o and 7 be ring endomorphisms of D, and a € D. Suppose that

i€

o(a) =7(a) and o(a)7(d) = o(d)o(a) forall d € D. (4)

The inner generalized Weyl algebra (IGWA) of rank 1, A = D(o,7,a)in = D[z, y;0, T, a}in, is
a ring generated by D, x and y subject to the defining relations:

xd=o(d)x and dy =y7(d) forall d€ D, yzr=a and zy =o(a). (5)

The ring D is called the base ring of the IGWA A. The endomorphisms o, 7 and the element a
are called the defining endomorphisms and the defining element of the IGWA A, respectively.
The following identities in the ring A explain the origin of the conditions in (4):

y7(a) = ay = yry = yo(a) and o(d)o(a) = o(d)zry = zdy = zy7(d) = o(a)7(d).

Notice that if o = 7 then the conditions in (4) hold automatically.

For a GWA (resp., a right GWA), all the elements of the base ring D can be moved to the
left (resp., right) but for an IGWA this is not the case, in general. There are elements of D that
are locked between the variables y and z, like y*dz?, that cannot be moved neither to the left nor
right. This is the reason why the adjective ‘inner’ is added in the definition of IGWA.

Since we cannot move coefficients (i.e., elements of D) to one side and the conditions on the
element a in (4) are less restrictive than in (2) (in (4) there are 2 conditions but in (2) there
are 3) properties of IGWAs are less predictable and different in comparison to the ones of GWAs
(Theorem 1.1). The proof of existence of IGWAs (Theorem 1.1) is much more complicated and
involved than to the proof for GWAs [9, Theorem 2.2]. In Section 4, the IGWAs of rank n > 1
are introduced.

Existence of inner generalized Weyl algebras. Theorem 1.1 shows consistency of the
conditions in (4) and the defining relations (5). So, for an arbitrary choice of o, 7 and a that
satisfy (4) the IGWA A = Dl[z,y; 0,7, al;, exists. We denote by D the image of the ring D under
the homomorphism

v:D— A d—d. (6)

In general, ker(v) # 0. In Section 2, an ideal Dy of the ring D is introduced, see (21), such that
Dy C ker(v), and Proposition 2.2 is an explicit description of the ideal Dy. Theorem 2.11.(1)
shows that ker(v) = Dy.

The sum

D' = Zyiﬁxi (7)

i>0
is a subring of A such that D C D’.

Theorem 1.1 The IGWA A = Dlx,y;0,7,alin is a Z-graded ring A = @,, Ai where Ay =
D' #0, Ay = D'z ~ pD' and A_; = y*D' ~ D', for all i > 1. Furthermore, D' =~ D', an
isomorphism of D-bimodules given by (23), where the D-bimodule D' is defined in (22).

The idea of the proof of Theorem 1.1 is to study, first, properties of the D-bimodule D’ :='D/'T
(see Section 2) where o
"D ~ @ T Do"

i>0



is an infinite sum of twisted D-bimodules and '7T is an explicit D-subbimodule of ‘D, see (20).
The reason for that is the fact that the D-bimodules D’ and D’ are isomorphic (Theorem 1.1) and
properties of the IGWA A are mainly determined by the ring D’. In Section 2, the D-bimodule
D' is studied in detail. As a result we have plenty of information about the ring D’. An explicit
description of elements of the ring D’ (and an explicit description of a basis of D’ where D is an
algebra) is given in Theorem 2.6. The ideal Dy is o- and 7-invariant (Corollary 2.9). This fact
implies that ¢ and 7 yield ring endomorphisms of the factor ring

D=D/D,

(see (32)) that can be extended to ring endomorphisms o and 7 of the ring D', respectively (see
(33)). The IGWA A = Dlx,y; 0,7, ali is canonically isomorphic to the IGWA A = D[z, y; 0, T, G)in
where @ = v(a) (Theorem 2.16). Theorem 2.16 implies that the ring D is a subring of the ring A.
So, in order to study IGWAs without loss of generality we can assume that the ring D is a subring
of A.

Theorem 2.11 gives a criterion for the ring homomorphism v : D — D’ to be a mono-, epi- or
isomorphism. Properties of the rings D and D’ are almost unrelated, in general. For example, for
a free algebra in infinitely many variables D = K(x1,x2,...) over a field K we can have D' = K
and A ~ K[z, 27 !] is a commutative K-algebra (Corollary 2.20). For each natural number n > 0,
the sum > y*Da’ is a subring of D'. So, in general, the ring D’ is not finitely generated over D
(Theorem 2.22). Lemma 2.18 describes 4 important classes of IGWAS, it is a source of examples
of IGWAs. Plenty of examples of IGWAs are given at the end of Section 2 (Corollary 2.20, Lemma
2.21, Theorem 2.22, Theorem 2.23, Lemma 2.24 and Corollary 3.12).

The derivative series of IGWAs A(® associated with an IGWA A. For each IGWA
A = D[z,y;0,7,alin we can attached the IGWA,

/ ’ .
A'=D [x17y170-1a7—1;a]ina

its first derivative, where o1 and 71 are extensions of ¢ and 7 to D’. Repeating the process
repeatedly, we obtain the derivative series of IGWAsS,

A A A" o5 A

for all ordinals o. In general, the IGWAs A(®) are distinct (Lemma 2.24). Lemma 2.24 describes
the rings A(®) in an explicit way for the IGWA A = D[z, y; 0,7, 0]y, for arbitrary ¢ and 7.

Connections of IGWAs with GWAs. In general, the classes of IGWAs and GWAs are
distinct (Lemma 2.19, Corollary 2.20 and Lemma 2.21) but their intersection is a large class as
the following proposition demonstrates.

Proposition 1.2 Let A = D[z,y;0,T,alin be an IGWA. If the endomorphisms T (resp., o) of D
is an automorphism then A = Dlx,y;0,7 %, a] is a GWA (resp., A is a right GWA).

Simplicity criterion for IGWAs (general case). Let D be a ring and o be its ring
endomorphism. The subring of D, D7 = {d € D|o(d) = d}, is called the ring of o-invariants,
and each element of D7 is called a o-invariant. An element d € D is called left (resp., right)
regular if dyd = 0 (resp., dd; = 0), where dy € D, implies that d; = 0. A left and right regular
element is called a regular element. Every left normal, left regular element d of D yields a ring
endomorphism of D:

wag:D — D, dy— wy(dy), where dd; = wq(dy)d. (8)
Every right normal, right regular element d of D yields a ring endomorphism of D:
wh D — D, dy > wh(dy), where did = dw}(dy). 9)

Theorem 1.3 gives a simplicity criterion for IGWAs.



Theorem 1.3 Let A = D[z,y;0,7,alin. The following statements are equivalent:
1. A is a simple ring.

2. (a) The elements a and o(a) are reqular in D',
(b) For all nonzero ideals I of D', I' := 1+ 3,5, (y'Iz' + D'a*(I)o*(a)---o(a)D’) = D.

(c) None of the ring endomorphisms ¢™ (n > 1) of D' is equal to the ring endomorphism
wq (see (8)) where d is a o-invariant, regular, left normal element of D’.

3. (a) The elements a and 7(a) are reqular in D',
(b) For all nonzero ideals I of D', I' := 1+~ (y'Iz' + D'r(a)---7'(a)7*(I)D’") = D.

(¢) None of the ring endomorphisms ™™ (n > 1) of D' is equal to the ring endomorphism
W/, (see (9)) where d is a T-invariant, regular, right normal element of D'.

If one of the equivalent conditions holds then D C D', o and T are monomorphisms of D',
the elements o'(a) are left regular, the elements 7%(a) are right reqular, and the elements a and
c'(a)---o(a) =7(a) - 7%(a) are reqular in the ring D’ for all i > 1.

Remark. In view of (10) and (11), the set I’ in statement 2(b) is equal to the set I’ in statement
3(b).

In [11], Jespers proved that if a group G is an abelian group and a ring R is G-graded, then
the ring R is a simple ring if and only if it is graded-simple (i.e., every G-graded ideal of R is R)
and the centre of R is a field (see also the papers of Jespers [12], and Nystedt and Oinert [15] for
further generalizations).

Simplicity criteria for inner generalized Weyl algebras where either the endomor-
phism o or 7 is an epimorphism of D. Let D be a ring and o be its ring endomorphism. An
ideal I of D is called o-stable if o(I) = I. The ring D is called a o-simple ring iff 0 and D are the
only o-stable ideals of the ring D. An endomorphism o is inner if 0 = w, for some unit v € D
where w, (d) = udu=?! for all d € D. Theorem 1.4 (resp., Theorem 1.5) is a simplicity criterion for
an IGWA where o (resp., 7) is an epimorphism of D.

Theorem 1.4 Let A = D[z,y;0,7,alin. Suppose that o is an epimorphism of D. Then the
following statements are equivalent:

1. A is a simple ring.

2. (a) The elements a and o(a) are regular in D,
(b) D is a o-simple ring,
(c) for alli > 1, o® is not an inner automorphism of the ring D, and
(d) for alli>1, aD + o*(a)D = D.
If one of the equivalent conditions holds then D' = D, o is an automorphism and T = w;(a)a 8 a

monomorphism of D, S;'A ~ D[z, 2™ ;0] is a skew Laurent polynomial ring (x*'d = o*'(d)z*!
for alld € D, and S, := {x'|i > 0}), the elements a and o(a) are right normal in D.

Theorem 1.5 Let A = Dlz,y;0,7,alin. Suppose that 7 is an epimorphism of D. Then the
following statements are equivalent:

1. A is a simple Ting.
2. (a) The elements a and o(a) are reqular in D,
(b) D is a T-simple ring,
(c) for alli > 1, 7° is not an inner automorphism of the ring D, and

(d) for all i > 1, Da+ D7%(a) = D.



If one of the equivalent conditions holds then D' = D, T is an automorphism and o = Wo(a)T 18
a monomorphism of D, AS;1 ~ Dly,y~ Y 7], is a right skew Laurent polynomial ring (dy*' =
yTlrE(d) for all d € D), the elements a and 7(a) = o(a) are left normal in D.

Lemma 2.19 shows that in Theorem 1.4 and Theorem 1.5, D # D, in general. A particular case of
Theorem 1.4 (resp., Theorem 1.5) where o (resp., 7) is an automorphism of the ring D is Corollary
3.8 (resp., Corollary 3.9). Corollary 3.10 is the case where both endomorphisms ¢ and 7 of D are
automorphisms.

In Section 3, a criterion is given for an IGWA to be a domain (Proposition 3.4). Necessary
and sufficient conditions are found for the elements = and y of an IGWA A to be regular elements
(Proposition 3.3).

The centre of an IGWA. The next theorem describes the centre of an IGWA.

Theorem 1.6 Let A= D(z,y;0,7,alin. Then the centre of A, Z(A) = B>, Y Z—i ® P~ Zix',
is a Z-graded subring of A where Zy = Z(D)?" :={d € D'|o(d) = d,7(d) = d} and, fori > 1,
Z; = {a € D |yaxr = ac'(a),da = ac’(d) for alld € D'} and Z_; = {3 € D" |yBx =
7¢(a)B, Bd = 7¢(d)B for all d € D'}.

Involutions on GWAs. An anti-isomorphism x of a ring R ((ab)* = b*a* for all a,b € R) is
called an involution if a** = a for all elements a € R.

Proposition 1.7 Let A = D[z, y;0, T, alim. Suppose that the ring D is equipped with an involution
x such that 7 = xox and a* = a. Then the involution x can be extended to an involution * of the
ring A by the rule x* =y and y* = x.

2 Inner generalized Weyl algebras

Throughout the paper A = D[z, y;0,T,alin is an IGWA. The aim of this section is to prove that
the construction of inner generalized Weyl algebras is consistent (Theorem 1.1). In the first half
of the section, we study the D-bimodule D’ in great detail. As we mentioned already in the
Introduction, the reason for this is the fact that D/ ~ D’ as D-bimodules. In particular, we show
that D" # 0 (Corollary 2.3.(2)) and this is the main reason for A # 0.

The elements (n, —n) of D where n > 1. For each natural number n > 1, let (n,—n) :=
o™(a)---o(a). Then, by (4),

(n,—n) = c"(a)o" *(a)---o(a) = 7(a)?(a)--- 7" (a). (10)

Proof. The case n = 1, o(a) = 7(a), is given, see (4). Now, we obtain the equality by induction
on n:
0"+ (a)---0(a) = o((n.~m)o(a) £ o(@)7((n.~m)) £ 7(@)--- 7"+ (a). D
Each element (n,—n) can be written in 2" different ways similar to (10), see (12). To prove this
claim we need one more property of the elements (n, —n), see (11). For all elements d € D and
n>1,
o"(d)(n, —n) = (n, —n)7"(d). (11)

Proof. The case n = 1, o(d)o(a) = o(a)7(d), is given, see (4). Now, by induction on n we obtain
the equality:

o (d)(n,—n) = o No(d)o(@)n—1,-n+1) 2 " Yo(a)r(d)(n —1,—n + 1)

= an(a)onfl(T(d))(n —1,-n+1) ind. o"(a)(n—1,—n+ 1)7"(d) = (n,—n)7"(d). O

Let IT = {+, —}. For each natural number n > 2 and an element € = (g,,6n_1,...,62) € "L,
consider the following elements of the ring D,

. ,,En,En—1 €2 !’ . ,,E En—1 £2
Une = o "y - pa?o(a) and ay, o= g - pp*T(a)



where the maps p* : D — D are given by the rule:

o Jo'(a)d ife=+,
Hild) = {dTi(a) ife=—.

For example, as (1, — 1) = 0°(a)o*(a)o(a)7*(a)7*(a) and af (, ) = 0®(a)o*(a)7(a)7*(a)7*(a);

[l

Un(+,...+) = 0"(a)---0(a) and a]

NG

Then, for all n > 2 and € € [I" !,

) = 7(a) - 7"(a).

(n,—n) =an = a’ms. (12)

Proof. Since o(a) = 7(a), an,c = aj, . for all e € [I"~!. To finish the proof it suffices to show that
(n, —n) = ay. for all e € II"~!. For n = 2, the elements as = 0?(a)o(a) and az — = o(a)73(a) =
7(a)7*(a) are equal, by (10). Suppose that n > 2. Then, we obtain the result by induction on n:

Qn,e = :ufzn((n - 17 —n+ 1)) = {

(1 (n,—m). O

o™a)(n—1,—n+1) ifsn+,_{an(a)-.-a(a) if £, = +,

(n—1,-n+1)7"(a) ife,=—, |7(a)---7"(a) ife,=—

IGWA is a Z-graded ring. Let A = D|x,y;0,7,alin. The defining relations of the IGWA
A show that the algebra A admits a Z-grading where the elements y, d € D, and z have graded
degree —1, 0 and 1, respectively:

D'zt ifi>1,
A=EPA; where A; = D' if i =0, (13)
i€Z ylilD if i < —1,

and D' =" .., y' Dz is a subring of A, the zero graded component of A. There is a natural ring
homomorphism (see (6)),
v:D—= D', dwd, (14)

which is neither a monomorphism nor an epimorphism, in general (Theorem 2.11). Abusing
notation, an element d + ker(v) of D', where d € D, is written as d (see (14)). We identify the
image of v,

D =im(v),

with the factor ring D/ker(v). The ring D’ is a D-bimodule. The rings D’ and D have very
complicated relations (see Theorem 2.11). The multiplication in the ring D’ is given by the rule:
For all natural numbers 4,57 > 0 and elements dy,ds € D,

Yt -yl = V07 DB, (15)
Wi (dy (1, —1))dox?  if i < j.
In more detail, for i > 1, 2y’ = 2°~lo(a)y"! = oi(a)a’ "ty = ... = o(a)---0(a) = (i, 1),
and then
i2j:  ydi' -y don? = y'dha’ (G, —j)dpa’ = y'dio" T ((j, =) da)a’!
i<j: yidia' -yl doa? = ytdy (i, —i)y' "idex? = o7 7T (dy (i, —1))doa? . O
In particular, for all integers 7,5 > 0,
y'Da' -y Da? C y*Da* where k = max{i,}. (16)
So, the ring D’ contains the descending chain of ideals:
D'=DLy2DY 22D, D 2D, = (D, where D\, =) y'Da'. (17)

n>0 i>n



Proposition 2.12 is a criterion for the ideals D%, to be distinct/equal. Furthermore, the ring D’
contains the ascending chain of subrings:

D=D.,CD,C---CDL,C---CD =|]J DL, where DL, := Y  y'Da’. (18)
n>0 0<i<n

By (16), each subring D’ is a D-subbimodule of D’.

Let R be a ring, Aut(R) be the group of ring automorphisms of R, End(R) be the semigroup
of ring endomorphisms of R, & € End(R) and M be an R-module. The Z-module M has another
structure of R-module given by the rule:

r-m=oa(r)m forall r€ R and m € M.

The new module *M is called the R-module M twisted by the endomorphism «. If N be an
R-bimodule and «, 3 € End(R) then in a similar way the twisted R-bimodule ®N? is defined:

r1-n-de = a(dy)nf(ds) for all elements n € N and dj,ds € R.

The D-bimodules 'D and 7. The D-bimodules ‘D and ’T that we are going to introduce
are instrumental in the proof of Theorem 1.1. Let

'D =Py Dz’ (19)
i>0
be a direct sum of D-bimodules where y°Dx? := D and for i > 1 the D-bimodule y*Dz® is, by
definition, the twisted D-bimodule ™ D", i.e., the map
™D 4Dt d s yidat
is an isomorphism of Z-modules and, for all elements d, dy,ds € D,
dy -y'da’ - dy = y'1'(dy)do’ (do)x".

Let T be the Z-submodule of D generated by the set 7(D)o(D). Each element of T is a finite
sum of the type Y1, 7(d;)o(d}) for some elements d;,d, € D. Abusing the notation we write
T =71(D)o(D). Let

D:=D/T.
If we treat the Z-module D as the twisted D-bimodule "D? then T is a D-subbimodule of " D?
(since 7(D)T (D) C T), and then D is the D-bimodule "D? /T
For each natural number i, there is a Z-homomorphism

s;:'D—='D, dw—y'da’ (ie., y/dz’ — yda™ forall j > 0and d € D).

For all i > 1, s; = s{. The map s; is an injection and im(s;) = D, v/ D7 is a D-subbimodule
of /D which is isomorphic to ™ ("D)?", that is s; : 7 /D°" — im(s;) is a D-bimodule isomorphism.
Clearly,

'D =im(sg) D im(s1) D -+ Dim(s,) D -

is a strictly descending chain of D-subbimodules of ‘D such that (), -,im(s,) = 0. The D-
bimodule 'D contains the ascending chain of D-subbimodules B

D='DggC'Dcy C+-C'Dgyy €+ C'D =) 'D<yp where ‘D, :i= @ y'Da’.
n>0 0<i<n

Definition. Let 'T be a Z-submodule of 'D generated by the set of elements

{yiT(d1)U(d2)l‘i —y"tdyader ™ |dy,dy € D,i > 1}. (20)



The idea of introducing "7 is inspired by the following relations in the IGWA A = Dlx, y; 0, T, ain:

i i i— i—1 ) - i—1 &) - i—
y'7(dr)o(de)x* = y° 1 ~y7(dy)o(d2)x - x 1© vl dyyady - 2t © vy tdiadezt ™t

In fact, 'T is a D-subbimodule of ' D: For all elements d},d, € D,
dy (y'7(dy)o(do)a’ =y~ dyadaz'™ ) dy = y'7 (771 (dy)dy o (dao' ™ (dh))a' =y~ 7N (d) ) dyadaot~ (dh)z'

For all i > 0, s;("T) C’7T. The D-bimodule "7 admits the induced ascending filtration {'7<, }n>0
where
,T§n = /Dgn Nn'T.
Clearly, 'T = U,,>o ' T<n and each "T<, is a D-subbimodule of "7 The zero component of this
filtration,
Dy := /TSO =DnN ,T, (21)

which is an ideal of D, is a key to study the structure of the ring D’ (the zero component of the
IGWA A) and to prove that A # 0 (Theorem 1.1).
The D-bimodule "7 has another ascending filtration {'7,,}m>1 where 'T,, is a Z-submodule
of 'T generated by the elements in (20) where 1 < i < m. Clearly, 'T,, is a D-subbimodule of 'T
such that "7, €' T<p and T = U,,>1 " Tm-
Definition. Let us consider the factor D-bimodule
D :='D/'T. (22)
Clearly, the Z-homomorphism
v: D' = D' ylde' +'T = y'da’ (de D, i>0) (23)

is a D-bimodule epimorphism. We will see that ¢ is an isomorphism of D-bimodules, D’ ~ D’
(Theorem 1.1). This isomorphism is used in the proofs of almost all statements about the ring D’.
So, first we study the D-bimodule D’ in great detail (Lemma 2.1 — Theorem 2.8). These results
are used in the proof of Theorem 1.1 which also shows that the map ¢ is an isomorphism. As soon
as this fact is proven then Lemma 2.1 — Theorem 2.8 become statements about the ring D’ (and
its ideals).

Since s;("T) C'T for all 4 > 1, we have the induced maps

5.:D =D, ydo! +'T vy Hda™ +'T

where d € D and j > 0. Notice that 5; = E’i.
The maps 0 and ¢. The Z-homomorphism, where ® := ®y,

0: DD 23 DoD "D, d®e— 7(d)o(e) (24)
is a D-bimodule homomorphism since for all elements dy,ds € D and 6 € D ® D,
H(dlédg) = T(dl)e(é)d(dg) = d1 . 9(6) . dz.

Clearly, im(¢) = T is a D-subbimodule of "D?. Let K = ker(é). Then ker(7)® D+ D®ker(c) C K
and we have the short exact sequence of D-bimodules

05K=DeDST 0. (25)
Let us consider the D-bimodule homomorphism
¢p:=-a:D®D — D, d® e+ dae. (26)

Its image im(¢) = DaD = (a) is an ideal of the ring D. Let K, := ker(¢). Then lLannp(a) ® D +
D ®@r.annp(a) C K, and we have the s.e.s. of D-bimodules

0= Ke—>D®D3 (a) 0. (27)

The following lemma reveals connections between the endomorphisms o and 7, the ring D and
the maps ¢ and 6. The equalities of the lemma are used in many proofs of the paper.



Lemma 2.1 Let A = D|xz,y;0,7,alin and K := ker(c) Nker(7) which is an ideal of the ring D.
Then

1. For all elements 6 € D@ D, 0¢(d) = 0(a)0(5) and 7¢(5) = 0(d)o(a) = 0()7(a).

2. $(K) Cim(¢) NK = (a) N K.

Proof. 1. Let § =3, a; ® f; € D ® D where o, ; € D. Then

0d(8) = 3 olano(a)o(B) L ola) Y 7(ai)o(B) = o(a)6(6),

A i

r9(0) = Yo rle)r(@r(8) 2 Y r(adola)r(s) < (Zf<ai>o<m>> o(a) = 0(5)o(a).
2. By statement 1, 0¢(K) = 0(a)0(K) = 0 and 7¢(K) = 0(K)o(a) = 0 since K = ker(). Hence,
#(K) Cim(¢) NK = (a) NK (since im(¢) = (a)). O

For each natural number ¢ > 1, the sum

Ti= Y (0@)' —y o))
seDRD
is a D-subbimodule of “T. For all ¢,5 > 0, s;(T;) = Ti4+;. In particular, Tj11 = s1(T;). By the
definition of the sets ‘T and "Tp, (m > 1): 'T =3, T; and "Tp,, = 321" | T;. So, each element of
"T.. is a sum -

Z (ylﬁ(éz)xl — yiilgb(éi)xifl) for some elements dy,...,0, € D® D.

i=1

The D-bimodule 'T contains the descending chain of D-subbimodules {1, }m>0 where T, :
Yoism Li- Forallm > 1,'T ="Tp, + Ty
Let R be aring and o : R — R be a ring endomorphism. Then

ker(o) C ker(o?) C --- C ker(c?) C - -
is an ascending chain of ideals of R, and their union

K(o) := Kr(0) := | J ker(o") (28)

i>1

is an ideal of R such that o(K(0)) C K(o) (since o(ker(c)) = 0 and o(ker(c?)) C ker(c*~1) for all
i >1). Let R(0) := R/K(c). Then the map

7:R(0c) = R(0), r+K(o)— o(r)+K(o) (29)

is a ring monomorphism.
Description of the ideals Dy ,, of the ring D where m > 1. The ideal Dy = DN'T of
the ring D admits the induced ascending filtration {Dg y, }m>1 where

DO,m = Do N /Tm =DnN ITm
is an ideal of the ring D (since Do = DN'T C'T =,,>1 Tm)- So,
Do1 CDo2C - C Doy C---C Do = U Do,m
m>1

is an ascending chain of ideals of the ring D.
The next proposition presents an explicit description of the ideals Dy and Dy ,,, where m > 1,
of the ring D.



Proposition 2.2 1. Dy = ¢(K) C (a) N K.

2. For all m > 2, Dy, = {¢(61)]| there exists an element (61,...,0m) € (D ® D)™ such
that 0., € K and 0(6;) = ¢(0;41) for i =1,...,m —1}. So, Dy = {¢(01) ]| there exists an
element (01,...,0m) € (D ® D)™ for some m > 1 such that §,, € K and 0(0;) = ¢p(d;i1) for
i=1,...,m—1}.

3. Let an element (01,...,0m) € (D® D)™ be as in statement 2. Then for all natural numbers
1,7 such that 1 <i,7 <m and i+ j <m,

(a) 07¢(5;) = o7 (a) -~ 0(a)p(di1;) and 77 $(6;) = ¢(3irj)7(a)- - 77 (a).
(8) 01 6(61) = 0" (@) -+ o (@)p(5) and 771G = P r(a) - T a).
(c) o7 p(8;) = o7 (a) -~ 0(a)0(disj) and T7H14(8;) = 0(i45)7(a) -~ 77 (a).
(d) If, in addition, i + j = m then o7 71¢(8;) = 0 and 7771 (5;) = 0.

4. For allm > 2,

(a) o™ (Dom) € 0™ Ha) - o(a)p(K) =™ (a)---o(a) Dox € 0™ !(a) -~ o(a)-((a)N
K). In particular,

Do C (c™ 1)1 (qu(a) - o(a)p(K)) .

(b) ;m_l(DO,nl%) C o(K)r(a)-- 7™ 1(a) = Do17(a)--- 7™ (a) C ((a)ﬁK)T(a) crml(g).
n particular,
Do € (717 H(o(K)7(a) --- 7" Ha)) -

(¢) Furthermore, c™(Dgm) =0 and 7 (Do ,m) =0, i.e., Do m C ker(c™) Nker(7™).

5. Dy C K(o) N K(7) where K(o) := ;s ker(c*) and K(7) := U, ker(7"). In particular, if
either o or T is a monomorphism then Do = 0. B

Proof. 1. An element d = y0(d1)x — ¢(01) of "T1 (where 61 € D ® D) belongs to the set
Do =DN'T1 it 6(61) = 0iff §; € K iff d € ¢(K). So, Do1 = ¢(K). By Lemma 2.1.(2),
6(K) C (a) K.

2. Similarly, by (19), an element d = " | (y*0(d;)z" —y "1 ¢(8;)z" ) of ' Ty, (where §; € DRD)
belongs to the set Dy ,, iff

y'0(6:)x" = y'p(0i41)x" for i=1,...,m —1 and y™0(6,,)z™ =0

iff the conditions in statement 2 hold, and in this case d = —¢(d1) (—Do,m = Do,m since the set
Dy, is an ideal of the ring D).

3(a). The statement (a) follows from Lemma 2.1.(1) by induction on j: For j =1, 0¢(d;) =
0(a)0(8;) = o(a)p(di+1) and 7¢(6;) = 0(d;)7(a). For j > 1, using induction we finish the proof,

0?9(6;) = o(o'7a): - 0(a)$(8i4-1)) = 07 (a) - 0% (a)0d(8i+j-1) = 07 (a) -+~ 7(a)0(Disj-1)
= o'(a) - o(a)(divy),
T¢(6:) = 7(¢(0isj—1)7(a) 77 Ha)) = T¢(di4j1)7(a) - 7 (@) = 0(8iz)7(a) - 7 (a).
3(b). The statement (b) is a particular case of the statement (a).
3(c). Apply the endomorphism o (resp., 7) to the first (resp., second) equality in the statement
(a) and then use Lemma 2.1.(1) to obtain the result.
3(d). The statement (d) follows from the statement (c) since 4, € ker(6).
4. By Lemma 2.1.(2) and the statement 3(b), for all m > 2,
amfl (DO,m)
7_m—l (DO,m)

o™ a)---o(a)p(K) =™ a)---o(a)Do1 C o™ (a) - o(a) ((a) NK),
d(K)r(a)--- Tm_l(a) =Dy7(a)--- Tm_l(a) C ((a) N K)T(a) e ).

N 1N
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Now, by applying the endomorphisms ¢ and 7 to the first and the second inclusion of the statement
4, respectively, we obtain that ¢ (Dg ) = 0 and 7 (Do) = 0 (since K = ker(o) N ker(7)).

5. Since Dy = ,,,>1 Do,m, statement 5 follows from statement 4(c). O

Proposition 2.2.(4) is a very effective tool in finding the ideals Dy and Dy, (m > 1) of the
ring D. The next corollary is the reason why the IGWA A # {0} (Theorem 1.1).

Corollary 2.3 1. Dy # D.
2. D' #0.

Proof. 1. Recall that D = J,,~; Do,m-. Suppose that Dy = D. Then 1 € Dy, for some m > 1
and then, by Proposition 2.2.(4),

1=0""(1) ¢ 0m+1(D07m) =0,

a contradiction. Therefore, Dy # D. o
2. Since, by statement 1, 0 # D/Do = D/(DN'T) C D', statement 2 follows. [

Lemma 2.4 For allm > 1, "T<,, ='Tm + y™ Dox™.
Proof. Notice that "7,, C'T<y, and 'T ="Tp, + T>pmt1, and so
"Tem ="T N Dy = ("Ton + Tomi1) V' D = "Ton + Tomi1 N Dy
We repeat the argument of the proof of Proposition 2.2.(2) to show that

Tsm+1 N Dy, = {(0m+1) | there is an element (8,41, - -, Omtn) € (D ® D)
for some n > 1 such that 8,1, € K and 0(6pm+i) = ¢(Smtit1)
fori=1,...,n—1} =y™Doz™,

by Proposition 2.2.(2). O
For each natural number m > 0, the intersection of two D-bimodules ’ [m] = "TNy™Dz™ is
also a D-bimodule. The direct sum

Tise) = €D Tim

m>1

is the largest ‘homogeneous’ D-subbimodule of "7 for the direct sum decomposition’D = €, y™ Dz™.
For each m > 1, B
l7’[m] 2 /7—[m] N /Tm — ymem N ITm — y’mme’m

for some Z-submodule L,, of D such that 7™(D)L,,0™(D) C L,,. The set L,, is described in
Proposition 2.5.(2).

Let R be a ring. For an element r € R, the sets Lanng(r) = {s € R|sr = 0} and r.anng(r) =
{s € R|rs = 0} are called the left and right annihilator of the element r in R, respectively. An
element r € R is called a left (vesp., right) reqular element if Lanng(r) = 0 (resp., r.anng(r) = 0).
The sets of left and right regular elements of the ring R are denoted by 'Cr and Cj, respectively.
Their intersection Cr = 'Cg N CY, is the set of regular elements of R, the set of non-zero-divisors.

Proposition 2.5.(1,2) is an explicit description of the sets "7}, and Lyy,.

Proposition 2.5 1. ") = Do and "Tpy = y(Do + L1)x where L1 = 0(K,).

2. Forallm > 2, T, = y" (Do+Lp)x™ and Ly, = {0(m) | there is an element (01, ...,0,) €
(D ® D)™ such that 61 € Ko and 0(5;) = ¢(0;41) fori=1,...,m —1}.

3. Let an element (01,...,0m) € (D ® D)™ be as in statement 2. Then for all natural numbers
i,7 such that 1 <i,7<m andi+j < m,

11



(a) 076(0:;) = 07 (a)---o(a)p(dir;) and T76(6;) = ¢(di4;)7(a) -7/ (a).
(b) oa7*1(5;) = o7 (a) -+ 0(a)0(dit;) and I G(8;) = 0(ds15)7(a) -7/ (a).

(¢) In particular, fori=1and j=1,...,m—1,

0 = 6(01) = 0 (a) - o(a)pl,1) and 0= TI(61) = B(64)7(a) -+ (@),
0 = o/¢(6) =0 (a) - a(a)0(d;41) and 0= 77T14(61) = 0(6j11)7(a)--- 77 (a).

4. For allm>1, 0™(a)---0(a)Ly, =0 and Lyy7(a)---7™(a) =0, i.e.,

L,, Clannp(m, —m) Nr.annp(m, —m).

5. If one of the conditions (a)—(c) below holds then L, =0 for m > 1:

(a) Lannp(m,—m) Nr.annp(m, —m) =0 form > 1,
(b) all elements (m,—m), where m > 1, are either left reqular or right regular in D,
(c) all elements o™ (a), where m > 1, or all elements 7™ (a), where m > 1, are either left
reqular or right reqular in D.
Proof. 1-2. For m =0, "Tio) ='T N D = Dy.
For m > 1, "Tp) N/ Ton =y Lipe™, and using Lemma 2.4, we see that
/7—[m] = h7’[m] N /Tgm = /ﬁm] N (/Tm + ymDOxm) = ymDOxm + Iﬁm] N /Tm = ym(DO + Lm)xm

Notice that "Tj;) N7y = y#(Ky)x, and statements 1 and 2 follow.
3(a). Repeat the proof of Proposition 2.2.(3a).
3(b). Apply the endomorphism o (resp., 7) to the first (resp., second) equality in the statement
(a) and then use Lemma 2.1.(1) to obtain the result.
3(c). The statement (c), as a particular case of the statement (b), is obvious (since d; € ker(¢)).
4. For m =1, L1 = 6(K,), by statement 1. Now using Lemma 2.1.(1), we see that

0(a)8(Kq) = 0p(Ky) =0 and 0(K,)71(a) = 7¢(K,) = 0.
For m > 2, the result follows from statement 2 and the statement 3(c) when j = m — 1. By (10),
(m,—m) =0"(a)---o(a) =7(a)---7™(a). Hence,
L,, Clannp(m, —m) Nr.annp(m, —m).

5. Statement 5 follows from statement 4. [

The associated graded D-bimodule gr(D’). The D-bimodule D’ = 'D/'T admits the
induced filtration {D’<,, := ("D<m +'T)/'T }m>o from the D-bimodule 'D. Theorem 2.6 is an
explicit description of the associated graded D-bimodule

gr(D') = @ D'<rn /D' <im1

m>0

where gg—l := 0. By the very definition, all the sets D’<,, are D-bimodules, hence so are
D' </ D <1

Theorem 2.6 gr(D’) = D/Dy & D51y (D/(Do +T))z™, i.e., D'« ~ D/Dqy and for m > 1,
D c1n/D -1 = 4" Da™ [y (Do + T)a™ = y™ (D /(Do + T))a™.

Proof. Form =0, D'<o/D'<_1 = D'<o = ('D<o+'T)/)!T = (D+'T))'T =~ D/DN'T ~ D/D.
Form > 1,

D'cn/D'<m1 = (‘Dem+'T)/(Dem1+'T) ~="Den/('Dem1 + D N'T)

= "Dem/(Damr 4+ Tm) "2 D/ ((Damr + Ty + y™ Doz™)
= 'Dep/(' D<ot +y™0(D)x™ + y™ Doz™) ~ y"™ Dz™ [y™ (Do + T)z™
~ y"™(D/(Do+T))z™. O
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The associated graded D-bimodule gr (D’). The D-bimodule ‘D admits a descending
D-bimodule filtration {' D>y, }m>0 where "D, = @, ¥'Dz’, 'D>o ='D and ()50 D>m = 0.
Then the D-subbimodule "7 of ' D inherits the induced descending D-bimodule filtration {'7>,, :=
"T' N D> tm>o0, To0 ='T and (5 T>m = 0. Similarly, the factor D-bimodule D’ ='D/'T
inherits the induced descending D-bimodule filtration

{D">m = ("Dzm +'T)/'T o,
where D’>q = D’. The next Lemma gives an explicit description of the filtration {!T,,}.

Lemma 2.7 '"T>o ='T and "T>m = y" L™ 4+ Tspmy1 for allm > 1 (the sets Ly, are defined in
Proposition 2.5.(1,2)). In particular, 'T>1 = y0(KC,)z™ + T>o.

Proof. For m > 1,

/sz = '"Tn /DZm = (/Tm + T2m+1) N /Dzm =T N /DZm + T>mt1
- /Tm n ymem + T2m+1 = /Tm ﬂ/ [m] + T2m+1 = ymLml‘m + T2m+1

since "Tp, Ny Da™ ="T, VT Ny™ Da™ = "Tpy NV Tyy) = Yy Lipz™. O
Theorem 2.8 is an explicit description of the associated graded D-bimodule associated with
the descending D-bimodule filtration {D’>,, }.

Theorem 2.8 gr(D') ~ D/(a) ® @,,5,y"(D/((a) + Ln)z™, i.e., D'>0/D’>1 =~ D/(a) and
D> /D' sms1 =y Da™ [y™((a) + Lin)2™ = y™(D/((a) + Ly )z™.
Proof. For m =0,

D'50/D'>1 =~ ('D+'T)/('Dz1+'T) 2'D/('Dz1+'T) = (D/'D>1)/(('Dz1 +'T)/'Dz1)
D/((Dz1 & im(p))/'D>1) ~ D/im(p) ~ D/(a)

since im(¢) = (a). For m > 1,

D'5m/Dsmsr > (‘Dom+'T)/(Domy1+'T) >~ 'Dom/( D1 +'Dsm N'T)
"Don/(Dsmir +'Tom) "2 Do/ Domsr + Y Lina™ + T
"Dom/(Demi1 +y" Lnz™ + y"(a)z"™) ~ y™ Da™ [y ((a) + Ly)z™
y"™(D/((a) + Ly)z™. O

12
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Proof of Theorem 1.1. Recall that D’ # 0 (Corollary 2.3.(2)). Let

A =P A4

1€Z

be a direct sum of left D-modules where A} = D', A, = D'z* ~ pD’ and A, = y'D’ ~ 7 D' for
i > 1. Recall that D’ ='D/'T. The idea of the proof of the theorem is to define the structure of
left A-module on A’. That is to define the action of the elements z and y on A’ and to show that
the defining relations (5) of the IGWA A holds. This would prove existence of the GWA A (since
A C Endz(A")) and give

AA >~ AA/.

The action of the elements x and y on A’ is given below but first we prove properties (i)—(vi), see
below. Let us extend the ring endomorphism o of D to a Z-module endomorphism o of "D by the
rule: For all elements d € D and j > 1,

o(yde?) =y o (a)da ! = 77 (a)dad T (30)

13



The origin of this extension is the following identities in the algebra A:
z-yde! = o(a)y tde! = o (a)ded T - =y T (a)da T

since o(a) = 7(a).
(i) o('T) C'T: For all elements dy,dy € D and j > 2,

30

—~
s

o(y7(dy)o(d2)x — dyads) 0 o(a)T(d1)o(ds) — o(di)o(a)o(ds) = o(di)o(a)o(dr) — o(di)o(a)o(ds) =0,
o(yir(d)o(dr)a? — i dradyad ) L g tr(rI @)y (d)ad ! — P79 (a)dyadya 2 €T

By the statement (i), the Z-module endomorphism o of 'D yields the Z-module endomorphism o
of the factor module D’ ='D/"T by the rule

o(d+'T)=0(d)+'T forall 'de’D.

(ii) For all elements d € D and’d € 'D, o(d-'d) = o(d)o('d): This is obvious for elements 'd € D
since ¢ is a ring homomorphism of D. For all elements d; € D and j > 1,

o(d-ydiz?) = o(yri(d)dia?) =
Q-1 o(d)o(a)

= o(d) -y 7 0(a

i () @)yt =y o (a) ()

j_
)dlxjj_l = yj_lTj_l(U(d)> i g (a)dy !
)di2? ™t = o(d) - oy’ dia?),

and the statement (ii) follows.

(iii) For all elements d € D and d' € D', o(dd’) = o(d)o(d’): The statement (iii) follows from
the statement (ii).

Let us extend the ring homomorphism 7 of the ring D to a Z-module endomorphism 7 of "D
by the rule: For all elements d € D and j > 1,

T(yf da?) = yI Trda T (31)
(iv) 7(T) C'T: Trivial.
By the statement (iv), the Z-module endomorphism 7 of ' D yields the Z-module endomorphism
of the factor module D’ ='D/"T by the rule
7(d+'T)=7(d)+'T forall 'de’D.

(v) For all elements d € D and’'d € 'D, 7(7(d) - 'd) = dr('d): This is obvious for 'd € D since
7 is a ring homomorphism of D,

7(7(d) -'d) = y7(d) - 'de = d - y'dz = dr('d).
Foralldy € D and j > 1,
7(7(d) - di2?)) = 1T d)dya?) = o TN d)dy T = d -y P T = d - T (P dya).

(vi) For all elements d € D and d' € D', 7(7(d) - d') = dr(d’): The statement (vi) follows from
the statements (iv) and (v).

Let us define the multiplication of the elements x and y on A’ by the rule: For all elements
deD,i>0and k> 1,

d'xt o(d)xitt d'xF T(d)xk1
€ - = . and y-q . =9 .
ykd/ yk 17_k: lo_(a)d/ yzdl thld/.

Let us verify that all the relations in (5) hold (we keep the notation as above):

14



(vil) zd = o(d)x:

4 d'zt o(dd )zt (i) | o(d)o(d)z ! ©) | o(d)o(d)zt
‘r . = = =
i Pt et @ A @@ B @)
o(d)z'+! d'zt
= a(d)- {yk—lTk—la(a)d/ =o(d)z- Jrd.

(viii) dy = y7(d):

dy.{d’xk B d.{T(d/)ZEk_l {dT(d’)xk_l (vi) {T(T(d)d’)xk—l

yid/ yi+1d/ yi+17_i+1(d)d/ yi+17_i+1(d)d/
7(d)d'z* d'z"
= . S = d) - )
Y {szH—l(d)d/ yT( ) yldl.
(ix) yx = a: Notice that yo(d' )z = ad' in D’. Now,
d'z’ o(d)z* ) |yo(d)z - 2t ad'z’ d'z’
€T - = . = = = Q-
Yy yk:d/ Yy ykf 7_kfla(a)d/ yk,rk(a)d/ aykd/ ykd/.
(x) zy = o(a)
d'z" yd'x - 2k o(a)d z* (@) d'z"
Ty - i = xI- . = P =o\a) - .
Y yzd/ yz+1d/ szzO.(a)d/ y’d’.

This finishes the proof of consistency of (4) and (5). The left A-module A’ = Al is a Z-graded
A-module, by the very definition. By (23),

D'~ D'

Then, by (13), 4A" ~ 4 A, and the theorem follows. O o
Till the end of the paper, we identify the D-bimodules D' and D' via (23), i.e.,

D' = D’ (Theorem 1.1).

As a result, the filtrations {DZ, } and {D%,,} on D’ coincides with the filtrations {D’<,,} and

{D’>,,} on D', respectively. So, Theorem 2.6 and Theorem 2.8 are results about the filtrations
{DL,,} and {DX, } of D’ (since Dy = 0 in A).

Corollary 2.9 o(Dy) C Dy and 7(Dy) C Dy.

Proof. In the ring A, we have the equalities, 0(Dg)xz = Do = 0 and y7(Do) = Doy = 0. By
Theorem 1.1, 0(Dg) € DN'T = Dy. O

By Corollary 2.9, the ring endomorphisms o, 7 of D yield the following ring endomorphisms of
D = D/Dy denoted by the same symbols:

o,7:D — D, o(d+ Do) =o(d) + Dy and 7(d+ Dy) = 7(d) + Do. (32)

Remark. In general, the endomorphisms ¢ and 7 of the ring D are not monomorphisms: Suppose

that ker(o) = 0 and ker(7) # 0. Then Dy = 0, by Proposition 2.2.(5), i.e., D = D and ker(7) # 0.
In view of (32), Theorem 2.6 can be written as follows.

Corollary 2.10 gr(D') = D ® @,,5, y™(D/(r(D)o(D)))z™, i.e., D.y = D and for m > 1,
D, /D, 1= y" Dx™ /y™(7(D)o(D))a™ ~ y™ (E/(T(ﬁ)a(ﬁ)))xm
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Connection between rings D and D’. Recall that we have the ring homomorphism v :
D — D', see (14). Theorem 2.11 below describes the kernel and the image of v, it also gives a
criterion for the homomorphism v to be an isomorphism.

Theorem 2.11 1. ker(v) = Dy and im(v) ~ D/Dy.
2. The homomorphism v is a monomorphism (i.e., D C D’) iff Dy = 0.

3. The homomorphism v is an epimorphism iff D = Do + T. If the homomorphism v is an
epimorphism then D' ~ D/Dy.

4. The homomorphism v is a isomorphism (i.e., D =D') iff Do =0 and D =T.

Proof. 1. Recall that we identified the D-bimodules D’ and D’ (Theorem 1.1). Then v : D —
D" ='D/'T, and so ker(v) = DN'T = Dy. Hence, im(v) ~ D/Dy.

2. Statement 2 follows from statement 1.

3. Statement 3 follows from Theorem 2.6 and Theorem 1.1.
4. Statement 4 follows from statements 2 and 3. O

Proposition 2.12 1. D' =D, iff D = (a) iff D' = D5, for allm > 1.

2. Given m > 1. Then D%, = D%, ., iff D = (a) + L.

Proof. Statements 1 and 2 follow from Theorem 2.8 bearing in mind that D’ = D’ as D-
bimodules. [J

The subrings A, and A_ of A. By Theorem 1.1, the IGWA A = D[z, y; 0, T, ali, contains
the skew polynomial ring Ay = D’'[z; 0] (where xd = o(d)x for d € D’) and the right the skew
polynomial ring A_ = D’[y; 7], (where dy = y7(d) for d € D) where the ring endomorphisms o

and 7 of the ring D’ are extensions of the ring endomorphisms o and 7 of the ring D (see (32))
and are given by the rule: For all j > 1 and d € D,

a(yjdxj) = yjflTj(a)d:Ej*1 = cf(a)yjfldxj*1 and T(yjd:cj) = yjfldaj(a)xj*1 = yjfldmjflT(a).

(33)

In more detail, x - y/da? = y/ =177 (a)dz? ™! - x and yIda? -y = y -y~ 1do’ (a)x’ 7L, and (33)
follows from Theorem 1.1. For all numbers 1 < i < j,

o'(yda?) =y TIITH(i,—0))da? Tt = (4, —a)y’ T da’ T,
T ylda?) = Yy Tide? TN ((i, —4))ad T =y T idad T (i, ).

Since D’ ='D/'T, for all numbers 1 < ¢ < j and all elements d’ € D’,
o' da?) = (i, =)y "'d'2?™" and Ty d'a?) = o Tt 2T (i, —i). (34)
The subrings A, and A_ are homogeneous subrings of A such that
A=A, +A_ and A, NA_=D"

The multiplication in the IGWA A is given by the rule: For all elements d},d, € D', i,j > 1 and
s,t > 0:

10 (G —d)dy)at ™ if i > g,
YT dy (6, —1))dy i<,

ydhdixd -2t if i > g,

dzt -y d, = and 'd, -dxt=<{7 2 .
e { yezh Yyt ytdadiat if i <,

dix® - dyxt = dyo® (dy)x5t and y°dy - y'dy = yS T (d))d).
Corollary 2.13 1. Ifo(a) € 'Cp then ker(o) D ker(r).
2. If o(a) € Cp then ker(o) C ker(T).
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3. If o(a) € Cp then ker(o) = ker(T).

Proof. By (4), o(d)o(a) = o(a)7(d) for all elements d € D. Now, statements 1-3 follow. [
Abusing the notation, we can write

A= D[z,y;0,7,a); Z y'Dz? and D' = ZyiD;vi. (35)

i,5>0 i>0

IGWAs and (o, 7)-skew polynomial rings. Let us introduce a new class of rings.
Definition. Let R be a ring, 0,7 € End(R) and ¢ be a variable. The ring D = R[t; o, 7] which
is (freely) generated by R and t subject to the defining relations:

o(r)t = tr(r) for all elements r € R,

is called a (o, 7)-skew polynomial ring.

If 7 (resp., o) is an automorphism of R then D ~ R[t;o7~!] is a skew polynomial ring (resp.,
D ~ R[t; 707 1], is a right skew polynomial ring). In general, a (o, 7)-skew polynomial ring is far
from being a (right) skew polynomial ring: Let R = K[s| be a polynomial algebra over a ring K,
o = id be the identity automorphism of R, and 7 € Endk (R) be given by the rule 7(s) = 0. Then
Ks][t;id, 7] ~ K (s,t)/(st). Theorem 2.14 is a source of many non-trivial examples of IGWAs.

Theorem 2.14 Let D = R[t; 0, 7] be a (0, T)-skew polynomial ring such that (o7(r) —To(r))t =0
and t(o7(r) — To(r)) = 0 for all elements r € R (eg, o7 = 70 ). Then

1. The ring endomorphisms o and 7 of the ring R can be extended to ring endomorphisms of
the ring D by the rule: o(t) =t and 7(t) =t. For alln > 1 and r € R, t"7"(r) = o™ (r)t".

2. Let u € RN Z(R) be a unit and n > 1 be a natural number where R™™ := {r € R|o(r) =
r, 7(r) =r}. Then A= Dlx,y;0", 7", ut"]in is an IGWA.
Proof. 1. Since for all r € R,

o(o(d)t) = oo(d)t =tro(d) =tor(d) = o(tT(d)),
T(o(d)t) = 7o(d)t =o7(d)t =tr7(d) = 7(t7(d)),
the first part of statement 1 follows.

We prove the equality t"7"(r) = o™(r)t" by induction on n. The initial case when n = 1
is obvious (since the ring R is a (o, 7)-ring). Suppose that n > 2 and the equality holds for all
n’ < n. Now,

() = t-t" () =t 0" () T =t ( T(r)t) - "2
= t.o"2 (T (r t) =t-o" (UTJ(T)t) =t.o" 3 (TUz(T)t) 2
= o= t-ro" )t = 0" ()"

2. We have to verify that for the element a = wut™ the two conditions in (4) hold. Clearly,
o"(a) = ut™ = 7"(a). For all elements r € R,

o (a)T"(r) ut" ™ (r) = uo™(r)t" = o"(r) - ut" = o"(r)a = o™ (r)c"(a),
oc"(a)t = wt™=oc(u)t-t" =tr(u)t" =t - ut" =ta =to"(a),
as required. [J
Ezample. Let K be a ring. We have seen above that the ring D = K (s, t)/(st) ~ K]|s][t;id, 7] is

a (o, 7)-skew polynomial ring where 7(s) = 0. Let u € Z(K) be a unit. Since the endomorphisms
id and 7 commute, by Theorem 2.14,

A = Dz, y;id, 7", ut"]in
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is an IGWA. o o
The ideals D>,, (m > 0) of the ring D. The descending chain of ideals {Dlzm}meN of the

ring D’ induces the descending chain of ideals of the subring D of D', {D >, }men, where
527" =Dn D,Zm

In particular, 520 = DN D' = D. The next proposition presents an explicit description of the
ideals D>y,

Proposition 2.15 1. D>; = (a) = DaD.

2. For all m > 2, D>y, = (Ap—1 + Do)/Do where A,—1 = DN ( Ton—1 + y™ Ha)z™™1),
Ay = {¢(61) |61 € DR D such that 0(51) € (a)} and form >3, An—1 = {¢p(d1) | there exists
an element (81,...,6m_1) € (D ® D)™ such that (5,,—1) € (a) nd 0(0;) = ¢(0;41) for
i=1,...,m—2}.

3. Let an element (01,...,0m) € (D ® D)™ (m > 2) be as in statement 2 (0(6.,,) € (a) and
0(6;) = ¢(8i41) fori=1,...,m—1). Then for all natural numbers i,j such that1 <i,j <m
andi+j <m,

(a) o7(6;) = 07 (a) - 0(a)$(diy;) and 77 $(6;) = P(dis;)7(a) -7 (a).
(b) 7F16(0:) = 07 (a) -+~ 0(a)0(div;) and TIFIH(S;) = 0(di1;)7(a) -+ 7T (a).
4. For allm > 2, 0™ (D>m) C o™ (a)---o(a)-(a) and ¢™(D>m) = (a) - 7(a) - - 7™(a).

Proof. 1. Recall that im(¢) = DaD. Now,

Doy ~ (D+'T)N(Dsy+'T)/'T = (DO (Dsy+'T)+'T)/'T
= (DN (m(¢) @ 'D>1) +'T)/'T = (im(¢) +'T)/'T = (DaD +'T)/'T = DaD.
2. For m > 2,
D> (D+'T)N(Dem +'T))/'T =DN(Dzom+'T)+"T)/'T = (DN (' Dzm +"To) +"T)/'T
= (DN ('Dom @ (Ton1 +y™ Ha)z™ ) +'T)/)'T (since im(¢) = (a))
= (DN (To-1 +y™ Ha)z™ ) +'T)/'T (since DZ,,_y N D%, =0)
~ (DO (Tret + ™ (@2 1))/ (Do N (Tonot + ™M (@)2™ 1) (since DN'T = Dy)
~ (DN (Tm—1 +y™ " (a)z™ ") + Do) /Do = (Am—1 + Do)/ Do.

3. Repeat the proof of Proposition 2.2.(3).

4. Statement 4 follows from statement 3(b) for j = m — 1, i = 1 and the explicit description
of the sets A,,_1 given in statement 2. [J

By (33)’ O—(D,>m) = O—(a)D;nL—l Cc D/>m—1 and T(D/>m) = D/>7n—17_(a’) g D/>m—1 for all

m > 1. Hence, for all numbers m > i > 1,
ai(D’Zm) =o'(a)---o(a) Sm_i and Ti(D'Z,,L) DS, _(a)- - 7'(a). (36)
In particular, for all i =m > 1,
ai( /Zm) =o0'(a)---o(a)D’ and 7'(DL Som) = D'r(a)---7%(a).

It follows that o™ (DX%,,) (resp., 7™(D%,,,)), where m > 1, is an ideal of the ring D’ iff the element
(m, —m) is rightﬁ(r@., left) normaiin_the ring D',
The ideal of D, D>, := ﬂmzo D>, is a (o, 7)-invariant ideal, i.e.,

0(D>0) € Dsoo and 7(Dsoo) € Dsoo (37)
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since 0(Ds>s) Co(DNDL, ) Co(D)No(DL,,)CDND.,,_; and 7(Dss) € 7(D)N7(D%,,) C
DND.,, _; forallm>1. - - -
The IGWA A = D[z,y;0,7,a]. Recall that D = im(v) ~ D/Dy is a subring of D’ (Theorem
2.11.(1)). By Corollary 2.9, we have the IGWA A := D|x,y; 0, 7,a] where the endomorphisms o
and 7 of D are defined in (32) and @ = a + Dy. In fact, the ring A is canonically isomorphic to A.

Theorem 2.16 The map A Az z,y—y, d s d, where d € D, is a ring isomorphism. In
particular, D is a subring of A and (D)o = 0.

Proof. The map A — A, x +— x, y — ¥y, d — d + Dy, where d € D, is a ring homomorphism
which, by the very definition, is the inverse of the ring homomorphism A — A. Hence, A ~ A, D
is a subring of A and (D)o = 0. O

So, in order to study IGWAs without loss of generality we can assume that the ring D is a
subring of D’.

The opposite ring of an IGWA.. Let R be a ring. The opposite ring R°P of R is a ring that
is equal to R as an abelian group but the multiplication in R°? is given by the rule r-s = sr. The
defining relations of an IGWA are left-right symmetric in the sense that the opposite of an IGWA
is again an IGWA: Let A = DIz, y; 0,7, alin. Then

A% = DPly,z;7,0,a]in. (38)

So, as a class, IGWAs are left-right symmetric. It suffices to study, say, only left properties of
them. Then the right ones are obtained automatically by using (38), and vice versa. The opposite
of a GWA is the, so-called, right GWA, see [9].

Proof of Proposition 1.2. In view of (38), it suffices to consider the case when 7 is an
automorphism. Let A’ = D[z, y; 0,71, a]. Since the rings A and A’ are generated by D, x and v,
it suffices to show that they have the same defining ideal of relations and the same conditions on
the element a:

ola) = 7(a & 77'0(a) = a,

)
o(d)o(a) & o(a)d = o7 (d)o(a) & ad = 77 o (d)a,
dy = yr(d) < yd=71"'d)y.
Therefore, A = A’. O

If the defining endomorphisms of a GWA are automorphisms then the GWA is a right GWA
where the defining endomorphisms are automorphisms, and vice versa, see [9] for details. So,

Q
—
&

=
—
&

|

e when the defining endomorphisms are automorphisms we have
IGWA = GWA = right GWA.

Left and right normal elements, [9]. Let D be a ring. An element a € D is called a left
(resp., right) normal element of D if aD C Da (resp., Da C aD). If a is a left normal element in
D then the left ideal Da is an ideal of D. Similarly, if a is a right normal element in D then the
right ideal aD is an ideal of D. An element a € D is normal if aD = Da, i.e., a is left and right
normal. Let -a := -ap : D — D, d — da, and a := ker(-a). In particular, aa = 0. Similarly, let
a-:=ap-: D — D,dw ad, and b := ker(a-). In particular, ab = 0. If the element a is left normal
then b is an ideal of the ring D: a- DbD C DabD = 0. If the element a is right normal then a is
an ideal of the ring D: DaD -a C DaaD = 0. The sets L, := {d € D|da = ad’ for some d’' € D}
and R, := {d € D|ad = d'a for some d’ € D} are subrings of D such that a C L, and b C R,.
Furthermore, a is an ideal of L, (L,alL, -a C LyaaD = 0, and so L,all, C a) and b is an ideal
of R, (a R bR, C DabR, = 0). If a is a left (resp., right) normal element of D then L,a = aD
(resp., Da = aR,).

Suppose that a € D is a left normal element. Then, for each element d € D, ad = d;a for some
element d; € L, which is unique up to adding a (d;a = (d; + a)a). Hence, the map

we:D/b—=1Lg/a, d+b—d+a, (39)
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is a ring isomorphism and we can write ad = wy(d)a for all d € D. The left normal element a is
a normal element iff L, = D. If the element a is a normal element then L, = D and the map
we : D/b— D/a, d+ b+ d; + a, is a ring isomorphism.
Similarly, suppose that the element a € D is a right normal element. Then, for each element
d € D, da = ad, for some element d, € R, which is unique up to adding b (ad, = a(d, + b)).
Hence, the map
whi:D/a—=R,/b, d+a—d.+b, (40)

is a ring isomorphism and we can write da = aw/,(d) for all d € D.

A right normal element a is a normal element iff R, = D. If the element «a is a normal element
then R, = D and the map w/, : R/a — R/b, d + a — d, + b, is a ring isomorphism. So, for a
normal element a of D,

ad = wy(d)a and da = aw!,(d) for all d € D. (41)

Lemma 2.17 ([9, Lemma 2.1].) If the element a € D is a normal element then the maps wq :
D/b — D/a and w), : D/a — D/b are ring isomorphisms such that !, = w;'. If, in addition, a
is a reqular element then the maps wq,w!, : D — D are ring isomorphisms such that w!, = w; !

a -

Proof of Theorem 1.6. The ring A is a Z-graded ring, hence so is its centre and we have the
sum as in the theorem for some subsets Z; of D’ for 7 € Z.

(i) 29 = Z(D)”>": Notice that Zy C Z(D'). Let d € Z(D’). Then d € Z, iff 0 = [z,d] =
(o(d) —d)z and 0 = [d,y] = y(7(d) — d) iff d € Z(D)?7, by Theorem 1.1.

(ii) Z(A)NA; = Z;xi fori > 1: Let « € D' and d € D’. Then 0 = [d, az'] = (da—aoci(d))z! &
da = aci(d); 0 = [z,az’] = (o(a) — a)z't! & a € D'7; and 0 = [y, az’] = (yaz — aci(a))z’~! &
yax = ac'(a), and the statement (ii) follows.

(iii) Z(A) N A_; = y*Z_;: Use similar arguments as in the proof of the statement (ii). O

Examples of IGWAs. Using Lemma 2.18 we can construct plenty of examples of IGWAs.

Lemma 2.18 1. If o =7 then Eq. (4) holds.
2. If the element o(a) is central and reqular in D then Eq. (4) is equivalent to o = .
3. If the element o(a) is left normal and regular in D then Eq. (4) is equivalent to 0 = wy(q)T-
4. If the element o(a) is right normal and regular in D then Eq. (4) is equivalent to 7 = w;(a)o.

Proof. 1-2. Statements 1 and 2 are obvious.

3. If the element o(a) is a left normal and left regular element then the equality o(d)o(a) =
o(a)7(d) for d € D can be written as (0(d) — wy(q)7(d))o(a) = 0, or equivalently, as 0 = Wy (4)T.
Taking d = a, we have the equality o(a)o(a) = o(a)7(a), and so o(a) = 7(a) since the element
o(a) is right regular in D.

4. Use arguments similar to the ones in the proof of statement 3. [J

Ezamples. 1. Let R be a ring and D = R[t;v] be a skew polynomial ring (tr = (r)t for all
r € R) such that « is a ring monomorphism of R. Then the element ¢ is a left normal, regular
element in D. Hence, so is the element @ = ut™ where u is a unit of R and n > 1. Let 7 € Aut(D)
and 0 = Wy(q)7. Then 7(a) is a left normal, regular element in D. The equality 0 = wy(q)7 implies
the equalities 0(a)7(a) = wy(q)T(a)o(a) = o(a)o(a). Hence, 7(a) = o(a) since the element o(a) is
regular. By Lemma 2.18.(3),

A= D[Iv Y Wo(a)T, T, 0 = Utn]in

is an IGWA.

2. Let R be a ring and D = R[t; 7], be a skew polynomial ring (rt = ty(r) for all € R) such
that + is a ring monomorphism of R. Then the element ¢ is a right normal, regular element in
D. Hence, so is the element a = ut™ where u is a unit of R and n > 1. Let o € Aut(D) and
T = w0 By Lemma 2.18.(4),

A= Dlz,y;0,Ws0)0,a = ut"]in
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is an IGWA.

Lemma 2.19 Let A = D[z, y;0,0,alin, see Lemma 2.18.(1). Suppose that a is a central unit of D
and o is an epimorphism of D. Then Dy ,, = ker(c™) for allm > 1, Dy = K(o), D' ~ D/Dy =
D(o) and A ~ D/Dgylx,x~1;5] where K(o) and & are defined in (29).

Proof. Let y' = a='y. Then A = D[z,y';0,7,1] where o = 7 since the element a is a central
unit of D. So, we may assume that a = 1. Since ¢ = 7 is an epimorphism, 7 = D, and so

D' ~ D/Dy,

by Theorem 2.6. Since D = |J,,~1 Do,m, in order to finish the proof of the lemma it suffices to
show that Dy, = ker(¢™) for all m > 1. We split the proof into several steps.

(i) ker(9) = C + ker(o) ® 1 where C' is a left D-submodule of D ® D generated by the elements
d®1—1®d where d € D: Clearly, C C ker(). Using the equality di ® d2 = d1(1 ® dy — d2 ®
1)+ dida®1in D ® D where dy,ds € D, we see that

DeD=C+D®]l. (42)

Since C' C ker(f) (as o = 7), we have the result.
(ii) C C ker(¢): Trivial (since a = 1).
(iii) ¢(ker(f)) = ker(o): By the statements (i) and (ii), ¢(ker(d)) = ker(c) - a = ker(o) since
a=1.
(iv) Dg,m = ker(c™) for all m > 1: Suppose that m = 1. Then, by Proposition 2.2.(1) and
the statement (iii),
Dy,1 = ¢p(ker(0)) = ker(o).

Suppose that m > 2. By Proposition 2.2.(4c), Dy, C ker(¢”). To show that the reverse inclusion
holds for each element d € ker(¢™) we have to find an element § = (d1,...,d,,) € (D ® D)™ that
satisfies the conditions in Proposition 2.2.(2). Let 6; = d; ® 1 where d; = d € ker(o™); then
#(81) = d. Suppose that we have found elements §; = d; ® 1 for some elements d; € ker(c™+17%)
fori = 2,...,n < m. Let 0,41 = dypt1 ® 1 where d,,41 = o(d,) € ker(¢™~ ™). Then 0(d,,) =
o(dn) = ¢(dp+1). By induction on n, we can find the element ¢ (since 0,, = d,, ® 1 where
dpm € ker(o), 0(6,,) =0). O

Corollary 2.20 Let D be either a polynomial ring K[z1,..., %y, ...] or a free ring K{xq,...,2pn,...)
over a ring K, and m = (x1,22,...) be the ideal of D generated by the variables x;. Let o be a
ring endomorphism of D such that o(K) = K, o|x € Aw(K), o(xz1) =0 and o(z;) = x;—1 for
alli > 2. By Lemma 2.18.(1), A = D[x,y;0,0,ali is an IGWA for an arbitrary choice of a. If a
is a central unit of K then Do =m, D' ~ D/Dy ~ K and A = K[z,x~';0|k]| is a skew Laurent
polynomial ring over K.

Proof. The corollary is a particular case of Lemma 2.19 where (o) =m. O

Lemma 2.21 Let D = K[z1,2,...] be a polynomial ring over a ring K and A = D|x,y; 0,0, a|in
be an IGWA (Lemma 2.18.(1)).

1. Let o be a K-endomorphism of D given by the rule o(x;) = x9; for all i > 1. Then
D' =D& @DlyiD;@dmi where Dj—dd = (z1,23,...) is an ideal of D generated by the
variables x1, s, . . ..

2. Let o be a K-endomorphism of D given by the rule o(x;) = Tty for alli > 1 when n > 1
is a natural number. Then D' = D & @5,y iPrat where PF = (x1,...,2,) is an ideal of
D generated by the variables x4, ..., x,.
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Proof. In both statements the endomorphism ¢ is a monomorphism of D. Then, by Proposition
2.2.(5), Dy =0, and so D C D'. Clearly,

Klzo, x4, .. ] in statement 1,

T =im(o) = {

K[Zni1,Tnta,...] in statement 2.

Since
B {D:dd @ 7T in statement 1,

PraoT  in statement 2,
the lemma follows from Theorem 2.6. In more detail,

(Df,®T)/T ~ D}, instatement 1,

D/(Do+T)=D|T = {(P,f &T)/T ~ P+ in statement 2. O

The elements (i, —i) of D' where i € Z. For each i > 0, the elements (i, —i) = z'y" and
(—i,i) := y'x® belong to the ring D’ where (0,0) := 1.

e For alli > —1, (i,—i) € D (since (—=1,1) = a). In general, none of the elements (—i,i),
where 1 > 2, belongs to the ring D.

Example. Take a = z1 in Lemma 2.21.(1). Then for i > 2, y'2’ = y*~lrizt"t ¢ D=D. O
For all 0 <i < n,

n—i, .n—: n,.n

ol(y"x™) = (i, —i)y" 'z and 7'(y"z") = y" 2" (i, —i).

In particular, for all n > 1,

0,7L(yn$n) — (,',L7 _n) — TTL(yTL n).

The IGWAs A = D[z, y; 0, 7,0]i,. For a = 0, the conditions in (4) hold, and so for an arbitrary

choice of o and 7 we have the IGWA A = D[z, y;0,7,0}in. Then ¢ = 0 and 'T = @, y' T’
where T = 7(D)o (D). Now, B

D'="D)/T~D® @ylii/yiTxi ~Do® @y’f)x’

i>1 i>1
is a direct sum of D-bimodules where D = D /T, and statement 1 of Theorem 2.22 follows.
Theorem 2.22 Let A = D|x,y;0,7,0}in. Then

1.Dy=0,DC D, D =D&D. and D) = @,5,y'Da’, D = D/T and T = 7(D)o(D);
y'Dx' ~ 7 (D/T)° as D-bimodules.

2. (a) kerp/(0') = kerp(c*) @ D%, for alli >1 and Kp/(0) = Kp(o) @ D%,
(b) kerp/(1") = kerp(r") @ D%, for alli > 1 and Kp:(1) = Kp(1) ® D%,

3. 7(DYo(D') =T and D' =D & D> y! D' where D' := D' /7(D")o(D").
Proof. Statements 2 and 3 follow from statement 1. OJ

Remark. Theorem 2.22 shows that if kerp(c) = 0 (resp., kerp(7) = 0) then kerp/ (o) # 0
(resp., kerp/ (1) # 0).

The derivative series of IGWAs A(®) associated with an IGWA A. Let A = D[z, v; 0, T, alin
be an IGWA. Recall that the ring endomorphisms o and 7 of D are extended respectively to ring
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endomorphisms o1 and 71 of D’ (’extended’ means that for all elements d € D, vo(d) = o1v(d)
and v7(d) = myrv(d), see (14)).

Definition. The IGWA A’ = D’[xy1,y1; 01,71, alin is called the first derivative of the IGWA A
(the conditions in (4) hold automatically).

Furthermore, we have the ring homomorphism

AB A vz, you, dw— v(d) (de D). (43)

The homomorphism fj is a Z-graded homomorphism. Repeating the same construction inductively
we obtain the derivative series of IGWAs associated with A:

AT qr Iy qr Sy Tnst gy Sy A By g1 T @) Ty (44)
where « is an arbitrary ordinal number where

A" = (A, A = (ADY AR = im A

is the direct limit of rings. Let I' be the set of all ordinals. If o € T is not a limit ordinal, i.e.,
a = +1, then
A = APy,

If o € T is a limit ordinal then A :=lim ., A®), the direct limit of rings. Since the homomor-
phisms f,, are Z-graded we have the derivative series of rings associated with D:

DR p XA prya. st p) iy pMN) M p(N1) TR p(e) Yy (45)

where D" = (D')',..., D™ = (D=V) DM .= lim, D™ is the direct limit of rings. If
«a € T is not a limit ordinal, i.e., « = § + 1, then

D@ .= (DB,
If o € T is a limit ordinal then D(®) := lim.,, D", the direct limit of rings. For all a € T,
Al® = pl@ [l'ou Yas;0a, Tary a] (46)

and v, is the restriction of f, to D). For all ordinals, o and 3, (A)B) = Ale+8) and
(D(@))(®) = D+8) " Given two ordinals a, § € T' such that o < 8. We have maps

D@ — DB and A@ — A®),

When for an element d € D(®) (resp., d € A®)), we write d € D) (resp., d € A®)) we mean its
image under the above maps. This notation simplifies many formulae.
For each ordinal o > 2,

D@ =D+ Z Z yf(’\)Dzz(’\) (47)
A n(X)
where the sums are taken over all [-tuples A = (A1,...,\) € It such that A\; < --- < \; where

1 >1and n(A) = (n(A\1),...,n(N)) € N\{(0,...,0)},

m;\b(A) — x;bf/\l) . wzl()"') and y:()‘) = yzfm e yf\Ll()\l)

(in the reverse order), xo := x and yo := y. The ‘D’ in the sum above means the image of the ring
D under the ring homomorphism D — D(®),

Ezample. For oo =2, D® = D + Zi21 y' Dzt + 2121 ZiZO y{yzD:ﬁw{

The next theorem shows that for all ordinals o > 2 the sets Kp (o) and Kpw) (7) are very
large, in general.
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Theorem 2.23 Let a be an ordinal. Then
1. For alla>2, D' = D' 4+ K (0a) N Kp (Ta) = D' + Kpw) (0a) = D' + Kpie) (Ta)-

2. For all i > 1, kerp (0f) = limg, keer)(aé) and ker ) (78) = limg<q kerD(ﬁ)(Té);
/CD(Q)(UQ) = lim5<a ’CD(B) (05) and /CD(Q) (Ta) = lim5<a ICD([;)(TB).

Proof. 2. The first equality follows from the fact that for all ordinals v < 8, o is an ‘extension’
of o, (i.e., sigmas and nus commute in (45)). By a similar reason, the second equality holds.
1. We use induction on a. Let a = 2. We have to show that

D" = D'+ Kpr(o) N Kpn(r).

Recall that A = D[z,y;0,7,a}in 2 D' and A" = D'[x1,y1;01,71,alin 2 D”. For all elements
d €D andi>1,
yid'zi —y'd'x' € kerpn(ol) Nkerpn (7})

since of (yid'xl) = (i, —i)d' = o' (y'd'z?) = ot (yid'x?) and 7i(yid'x}) = d'(i,—i) = 7' (yid'a?) =
Ti(yid'z?), and the equality follows.

Suppose that o > 2 and the equalities in statement 1 hold for all ordinals 8 such that 8 < «.
If @ = 8+ 1 for some ordinals  then the result follows from the case a = 2 since D(®) = (D(®)Y
(or repeat the arguments above using (47)). If « is the limit ordinals then the result follows from
the equalities for 8 < a and statement 2. [J

Lemma 2.24 shows that, in general, the procedure of creating the rings A(® from A never
stops.

Lemma 2.24 Let A = D[x,y;0,7,0)in. Then for all ordinals o, 8 € T such that o < 8 the maps
D@ — DB gnd A@ — AB) are strict inclusions. In more detail,

1. For every ordinal o > 2, A = D [2,,94; 04, Ta, alin where D@ = D & D) s a di-
rect sum of D-bimodules, D(®) = EBA@ N y/\()‘)DmA( ) where the sums are taken over
all I-tuples X = (M1,...,N) € TV (I > 1) such that \y < -+ < N < a and n(\) =
(n(A1), ..., n(N)) € N\{(0,...,0)} (D =D/T).

2. (a) kerp)(0?) = kerp(c?) @ D) for all i > 1 and Kp (0) = Kp(o) © D).
(b) ker o) (71) = kerp(7') @ D) for alli > 1 and K pw) (1) = Kp(1) @ D),

3. T(D&a))aa(D(o‘)) — 7 and D@ =D @ D) (where D@ .= D) /7,(D®)g, (D).

Proof. By Theorem 2.22.(1), D C D’ and A C A" = D'[z1,y1;01, 71, 0]in are strict inclusions
and the lemma follows. [

The inner (o, 7,a)-extension of a ring. Definition. Let A = Dlx,y;0,7,alin. The subring
D’ of A is called the inner (o, 7,a)-extension of the ring D. By (33), the ring D’ admits the
endomorphisms ¢ and 7. We have seen above that repeating the process iteratively we obtain its
derivatives, see (45).

Proof of Proposition 1.7. We have to show that * respects (4) and (5). Notice that

o(a)" = r(a*) = T(a) = o(a).

(i) o(a) = 7(a): o(a)” = 7(a)".
(ii) o(d)o(a) = o(a)7(d) for all d € D: (o(d)o(a))* = o(a)T(d*) = o(d*)o(a) = 7(d)*o(a) =
a)T(d))*.
(iii) zd = o(d)z: (xd)* = d*y = y7(d*) = ( .
(iv) dy = yr(d): (dy)* = ad" = o(d")x = 7(d)"s = (yr(d))".
(V) yz=a: (yz)" =yz=a=a"
(vi) 2y = o(a): (29)" = 2y = 0(a) = o(a)*. O

For a commutative ring D, the identity map of D is an involution on D which is called the
trivial involution on D.

(o(

~—
<
Q
—
&
*
I
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Corollary 2.25 Let A = D[z,y;0,0,alin and D be a commutative ring. Then the trivial involu-
tion on D can be extended to an involution x of D by the rule x* =y and y* = x.

Proof. The result follows from Proposition 1.7. O

3 Simplicity criteria for inner generalized Weyl algebras

In this section, proofs of simplicity criteria for IGWAs are given (Theorem 1.3, Theorem 1.4 and
Theorem 1.5). Different approaches are used in the proofs. A criterion is given for an IGWA to
be a domain (Proposition 3.4). Necessary and sufficient conditions are found for the elements z
and y of an IGWA A to be regular elements (Proposition 3.3).

Ore sets and denominator sets. Let S be a nonempty subset of a ring R. Let ass;(S) :=
{r € R|sr =0 for some s = s(r) € S} and ass,(S) := {r € R|rs =0 for some s = s(r) € S}. A
nonempty subset S of R\{0} is called a multiplicative set if SS C S and 1 € S. A multiplicative
set S is called a left (resp., right) Ore set if the left (resp., right) Ore condition holds: For all
elements s € S and r € R, St N Rs # 0 (vesp., 7S NsR # 0).

It follows from the Ore condition that if S is a left (resp., right) Ore set of R then ass;(S)
(resp., ass,(S)) is an ideal of the ring R. The sets of left and right Ore sets of R are denoted by
Ore;(R) and Ore,(R), respectively. Their intersection Ore(R) = Ore;(R) N Ore,(R) is the set of
Ore sets of R.

A left Ore set S of R is called a left denominator set of R if ass;(S) D ass.(S). A right
Ore set S of R is called a right denominator set of R if ass;(S) C ass,(S). The sets of left
and right denominator sets are denoted Den;(R) and Den,(R), respectively. Their intersection
Den(R) = Den;(R) N Den,(R) is the set of denominator sets. For an ideal a of R, Den;(R,a) :=
{S € Den(R)|ass;(R) = a} and Den,(R,a) := {S € Den,(R)|ass,(R) = a}. For each S €
Den;(R), the ring S7'R = {s7'r|s € S,r € R} is called the left quotient ring of R at S or the
left localization of R at S. For each S € Den,(R), the ring RS~ = {rs™!|s € S,r € R} is
called the right quotient ring of R at S or the right localization of R at S. If S € Den(R) then
ass)(S) = ass,(9) and S~'!R~ RS~

For each natural number ¢ > 1, let us consider the maps l;,r; : D’ — D’ given by the rule

li(d') = (i,—i)d and r;(d') = d'(i,—i) for d' € D'.
For a subset S of D', let I;1(S) := {d’ € D' |1;(d') € S} and r; *(S) := {d' € D" |r;(d') € S}.

Proposition 3.1 Let A = Diz,y;0,7,alin be an IGWA, K(o) := Kp/(0), K(7) := Kp/ (1) (see
(28)) and S, = {x*|i > 0}. Then
1. S; € Deny(A, a) where a:= (P, Yl (K (o) @ D> L(o)z'.
2. Ala ~ @,-, y'D'/I; (K(0)) ® D'(0)[x; 3] where D'(c) := D'/K(0), the endomorphism &
of D'(c) is a monomorphism, and 7(d' + K(0)) := o(d') + K(o) for all d' € D', see (29).
3. ass,q(Sz) = @i21 y'kerp:(3;) where 5, : D' — D', d' s y'd'z*. Furthermore, kerp:(5;) C
kerp(l;) C 171 (K(o)) for alli > 1.
4. The ring A, := S; A ~ S;YA, is the skew Laurent polynomial ring Ay o[x*™'; o] where
Az = Uiso x7 D' (0)x and o(z7(d + K(0))x?) := 27 (o(d') + K(0))z® for all d' € D'.
The addition and multiplication in the ring A, o are given in (49). Elements x~"(d} +
K(o))xt, 2= (dy+ K(c))z? € D'(0), where i < j, are equal iff dy + K (o) = o774(d}) + K (o).
5. (a) kera(z:) = EBiZlyikerD/(Ti(a)) P @izokerp/(a)xi; x € Cy iff kerp/(0) = 0 and
{r(a)|i > 1} CCY,.
(b) kera(-z) = D, y'kerp/ (31) where sy : D' — D', d' w yd'x; x € 'Cy iff kerp/(31) = 0.
(c) v €Ca iff kerp: (o) =0 and {t(a) |i > 1} C C},.

25



6. ass;(Sy) = ass,(Sz) iff kerp/ (o) = 0. If assi(Sz) = ass,-(Sy) then their common value is
equal to €D, y'kerp: ((i, —i)-) and I *(K(0)) = kerp/(5;) = kerpi ((i, —i)-) for alli > 1.

7. Sy € Den(A) iff o is an automorphism of the ring D'. If S, € Den(A) then ass(S;) =
@i21 y'kerp:((4, —1)").

Proof. 3. Let b := ass,(S;). Since the ring A =

is a homogeneous element,

sez Ai is a Z-graded ring and the element z
b=EPb: where b; :=bnA;.
i€z
Since the element x € Ay = D'[x;0] is a right regular in A, we have that b, = 0 for all ¢ > 0.
Forall j >i>1and d € D', y'd - 27 = y'd'z" - 277", Hence,

b_;, = yikerD/ (El)

Suppose that y'd’ € b_;. That is y*d’z* = 0. Then 0 = 2*-y'd'z* = (i, —i)d'z’, and so (i, —i)d’ = 0.
Therefore, d’ € kerp:(I;) = 1;*(0) C I;*(K(0)), and so kerp/(3;) C I; 1 (K(0)).

1(i) S; € Ore;(A): This fact follows from the inclusions 2/ A; C D’x*J where j > 1 such that
i+7=0.

(ii) ass;(S;) = a: By the statement (i), a’ := ass;(S;) is a homogeneous ideal of the ring A,

a = @ag where a :=a’ N A;.
i€z

For all i > 0 a; = K(0)z" since 2/ : D'z" — D'z d'z’ v oI (d')z*+I. For all i > 1,

o =yl (K(0))

—1

since for all j > 0, x'*7. : y*D' — D'aJ, y'd' + o7 ((i,—i)d’)x?. Therefore, a’ = a.

(iii) Sy € Den;(R,a): By statement 3, ass,(S;) C a, and so the statement (iii) follows from
the statements (i) and (ii).

2. Statement 2 follows from statement 1.

4. S7'A~ S 1A, : By statement 2, the left Z-graded A -module A/A, is S,-torsion, and so
S;1A~ S 1A, . Now,

Sy AL =S (A /AL Na) = S D(0) [#;5] = Ago[z™ 0]
is a skew Laurent polynomial ring where A, ¢ and o are as in statement 4 since
T - x*i(d/ + ]C(U)):L'l — x*i(o_(d/) + ]C(O'))SEZ - o_(xfi(d/ + K(U))xl) .

Notice that by (29) the homomorphism 7 : D'(¢) — D'(0), d' = d' + K(o) — o(d') + K(0) is
a monomorphism. Every element z~'d’z" of the ring A, o, where i > 0 and d’ € D'(0), can be
written also as follows

vt = a7 I d iy = a7 i (d) 2" for j > 0. (48)

So, the addition and multiplication in the ring A, ¢ are given by the rule:

el d e e = a7 (Jj(d’) + ai(e’))xi“ and x7'dzt - xiele? = 27 i (d)) - oi(e)xtT
B B (49)
Since x - 2 'd's"* = 2 lo(d' )z’ - * = o(z7'd'z")z, the ring A, is the skew polynomial ring
Ay o[zt o).
Clearly, the elements x~%(d} + K(0))z', 279 (dy + K(c))x? € D'(c), where i < j, are equal iff

dy + K(o) =2/ (o7 (d}) + K(a))x_(j_” = o7 (d}) + K(o).
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5(a) Notice that ker4(x-) is a homogeneous right ideal of A. Then the equality in the statement
(a) follows from the following equalities: For all d’ € D/,

z-y'd =y a)d (i>1) and x-d'2' = o(d)2z" (i >0).

Then the ‘iff” statement in (a) follows from the equality for ker 4 (z-).
5(b) Notice that ker 4 (-z) is a homogeneous right ideal of A. Then the equality in the statement
(b) follows from the following equalities:

yide =y -ydz =y5(d) forall i>1 and d' € D'

Then, z € 'C4 iff kerp/ (51) = 0.
5(c) The statements (c) follows from the statements (a) and (b) and the fact that kerp:(51) =0
provided that 7(a) € Ch:

ydz=0=0=z -ydz=r71(a)dz=1(a)d =0=d =0.

6. By statements 1 and 3, ass;(S,) = ass,(S,) iff kerp/ (o) = 0 and I, *(K(0)) C kerp (3;) iff
kerp: (o) = 0 and for each i > 1, (i, —i)d’ = 0 for some d’ € D’ implies y'd'z* = 0 since

17X (K(0)) ={d € D' |o’((i,—i)d') = 0 for some 7}

iff kerp/(0) = 0 and since the second condition is redundant ((i, —i)d’ = 0 = 0 = 2iy'd'x? =
ol(yid'zH)at = 0 = o'(y'd'z") = 0 = y'd'x’ = 0 since kerp/ (o) = 0). In particular,
171 (K(0)) = kerp/ (5;) = kerp((i, —i)-) forall i > 1.

2

Now, if ass;(S;) = ass,(S,) then their common value is @, y'kerp: ((i, —i)-).

7. By statement 1, S, € Den(A) iff S,, € Den,.(A) (by statement 3) iff S, is a right Ore set
of A and ass;(S;) = ass,(S;) iff S, is a right Ore set iff o is monomorphism of the ring D’ (by
statement 6) iff o is an epimorphism and o is a monomorphism of D’ iff ¢ is an isomorphism of
D'. If S, € Den(A) then, by statement 6, ass(S,) = @, , y'kerp((i, —i)-). O

Proposition 3.2 follows from Proposition 3.1 and (38).

Proposition 3.2 Let A = D[z,y;0,7,alim be an IGWA, K(7) := Kp/(1), K(7) := Kp/ () and
S, ={y'|i>0}. Then

1. Sy € Den, (A, a°) where a® := EBzZO yK(T) @ @121 r N K(T))at

2. AJa® ~ D'(1)[z; 7], © @,5, D' /r; *(K(7)) - #° where D'(1) := D'/K(7), the endomorphism
7 of D'(7) is a monomorphism, and 7(d + K(7)) := 7(d) + K(7).

3. assi(Sy) = @leerpl( )zt where 3; : D' — D', d' ~ y'd'zt. Furthermore, kerp/(3;)
kerp:(r;) C r; ' (K(7)) for alli > 1.

N

4. The ring Ay = ASy’1 ~ A_Sy’1 is the right skew Laurent polynomial ring A, oyt 7],

Dicz Ayoy’ where Ayo = Uy’ D'(1)y™", 7(y'(d + K(r))y™") = y'(r(d) + ( )y~
for all d' € D', and ay = y7(a) for all « € Ayo. The elements y'(dy + K(7))y =%, v (ds +
K(1))y=7 € D'(1), where i < j, are equal iff dy + K(7) = 7974(d}) + K(7).

5. (a) kera(-y) = Byzoy'kerp/ (1)) ® B>y kerp (-o'(a))z’; y € 'Ca iff kerp/(1) = 0 and
{oi(a) i > 1} C "Cpr.
(b) kera(y-) = ;> kerp: (51)z" where 5, : D' — D', d' — yd'z; y € C)y iff kerp:(51) = 0.
(c) y € Ca iff kerp/(7) =0 and {c*(a)|i > 1} C'Cp.

Ll

6. ass;(S;) = ass.(Sz) iff kerp/ (1) = 0. If ass;(Sy) = ass.(Sy) then their common value is
equal to P, kerpr(-(i, —i))x* and r; (K (7)) = kerp/ (5;) = kerp (-(i, —i)) for all i > 1.
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7. Sy € Den(A) iff T is an automorphism of the ring D'. If S, € Den(A) then ass(Sy) =
D>, kerp/(+(i, —i))z"

Regularity criterion for the elements x and y of an IGWA.

Proposition 3.3 The following statements are equivalent:
1. z,y € Ca (where C4 is the set of reqular elements of A).
2. ¢ and T are monomorphisms of the ring D', o*(a) € 'Cps and 7%(a) € Cp, for all i > 1.
3. a,0(a) € Cpr.

Proof. (1 < 2) By Proposition 3.1.(5¢) and Proposition 3.2.(5¢), =,y € C4 iff 0 and 7 are
monomorphisms of the ring D', o%(a) € 'Cps and 7%(a) € Cp, for all i > 1.

(1 & 3) The equivalence follows from the equalities yz = a and zy = o(a). O

A criterion for an IGWA to be a domain.

Proposition 3.4 An IGWA A = Diz,y;0,T,alin is a domain iff D’ is a domain and a,o(a) €
D\{0}.

Proof. (=) If A is a domain then so is the ring D’ and a,c(a) € D\{0} (since x # 0 and y # 0
in A, yr =a # 0 and o(a) = zy # 0).

(<) By the assumption a,c(a) € D\{0}. Hence, a,c0(a) € Cp/, and so z,y € C4 and o and T
are monomorphisms of D', by Proposition 3.3. Now, the ring A is a domain (see the expression
for multiplication of homogeneous elements in the ring A). O

The next corollary is used in the proof of a simplicity criterion for GWAs (Theorem 1.4 and
Theorem 1.5).

Lemma 3.5 Let A= D[z,y;0,7,aln, a; := yD'z+0'(a)o’"1(D') and b; := yD'z+7"1 (D)7 (a)
fori>1, and n > 1 be a natural number. Then

1. (z9)y=Afori=1,....,niff D' =a; fori=1,...,n. In particular, (z*) = A for all i > 1 iff
D' =aq; for alli > 1.

2. (W) =Afori=1,....,niff D' =0b; fori=1,...,n. In particular, (y*) = A for all i > 1 iff
D' =b; foralli>1.

Proof. 1. (=) The ideal (2') is a homogeneous ideal of A. Hence,
(2")im1 = (@")ND'z" ' =yD"-2' + 2 - yD' = (yD'z + o' (a)o" (D))" " = az* .

If (#') = A then D’ = a;.

(<) For n = 1, (x)g = ap = D', and so (z) = A. We use induction on n to prove the
implication. So, let n > 1 and we assume that D’ = a; for ¢ = 1,...,n. By induction on n,
(r)=---= (2"!) = A. Since

(™)1 = apz™ ' 32" (as a, = D),

we must have A = (z"~1) C (a") C (2"71) = 4, i.e., (2") = A, as required.

2. By (38), statement 2 follows from statement 1. OJ

Recall that for each i > 1, we have the map 5; : D’ — D', d' — y'd'z*. Since 5; = (51)?,

kerp/(31) Ckerp/(S2) C--- Ckerp/(5;) C -

Proposition 3.6 describes the kernels kerp (s;) for ¢ > 1.
Proposition 3.6 For all m > 1, kerp/(3,,) = (L + Do)/Do C D where the sets L,, are defined
in Proposition 2.5.(1). In particular, kerp/(51) = (0(Ka) + Do)/ Do.
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Proof. By Theorem 2.6, o
kerD/(Em) CcD= D/Do.

Therefore,
kerp/(Sp) ={d € D|y"™das™ € T} ={d+ Do € D|y"daz"™ € Ty} = (Lm + Do)/ D,
by Proposition 2.5.(1,2). In particular, kerp/ (51) = (6(Kq) + Do)/ Dy, by Proposition 2.5.(1). O
Lemma 3.7 1. For alli > 1, kerp/(3;) C kerp/ ((i, —i)-) Nkerp/ (- (4, —7)).
2. 7(kerps(-a)) + o(kerps(a-)) C kerp/(51) C kerps(o(a)-) Nkerp/(-o(a)).

3. If either (i,—i) € C, for alli > 1 or (i,—i) € 'Cps for all i > 1 then kerp/(3;) = 0 for all
12> 1.

Proof. 1. Suppose that d’ € kerp:(3;), that is y’d’z* = 0. Multiplying this equality on the
left by ' and on the right by y* we have the equalities (i, —i)d’z’ = 0 and y'd’(i,—i) = 0, and
statement 1 follows.

2. The first inclusion follows from the equalities y7(d')z = d’a and yo(d')z = ad’. The second
inclusion is a particular case of statement 1 for i = 1.

3. Statement 3 follows from statement 1. [J

Let R = Dlx;0] be a skew polynomial ring. Let u = d,2" + dp,— 12" + -+ + dpz™ be a
nonzero element of R where d; € D, d,, # 0 and d,;, # 0. The natural number I(u) = n —m is
called the (graded) length of w.

Proof of Theorem 1.3. (1 = 2) Suppose that the ring A is simple. Recall that S, € Den;(A)
(Proposition 3.1) and S, € Den,(A) (Proposition 3.2). Then ass;(S;) = 0 and ass;(Sy) = 0, i.e.,
the elements = and y are regular in A. By Proposition 3.3, the statement (a) holds.

Let I be a nonzero ideal of the ring D’. The zero component (I)y of the homogeneous ideal
(I) = AIA of the ring A is equal to

S ATA =T

i€z
Since the ring A is simple and the ideal (I) is a nonzero homogeneous ideal of A, we have (I)g = D,
and so the statement (b) holds.

Finally, suppose that the statement (c) is false, i.e., 0™ = w, for some o-invariant, regular, left
normal element d of D’, we seek a contradiction. Then

dd' = ¢"(d")d for all elements d' € D'.

CLAIM. The ideal of A generated by the element u = x™ + d is not equal to A.

Notice that ux = zu (since o(d) = d) and ud’ = o™(d")u for all d' € D’ (since 0" = wy).
This means that the element u € A} = @,.,D’z" is a left normal element of the ring A;. In
particular, A, uA, = A u is an ideal of A,. Suppose that

AuA = A.
Then 1 € 35, ;<; Aiud; for some I € N. Then 2* = 212! € Aud; = Ayu, and so 2 = vu

for some element v € A;. Then
U:x2l7n+'”+dmxm

where d,,, € D\{0} and d,,z™ is the least term of v (w.r.t. the Z-grading of A). Then
0=dpz™d=dpno™(d)z™ = d,,dz™

(since o(d) = d), ie., dnd = 0. The element d is regular and d,, # 0, hence d,,d # 0, a
contradiction. This means that 0 # (u) # A, as claimed. Therefore, the statement (c) holds.
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(2 = 1) Suppose that the conditions (a)—(c) hold. By the statement (a), the elements a
and o(a) are regular in D’. By Proposition 3.3, z,y € C4 and 0,7 are monomorphisms. Then
xt,yt € Cq for all i > 1, D C D' (Proposition 2.2.(5)), o*(a) € 'Cp: (Proposition 3.2.(5¢)) and
7%(a) € C}, for all i > 1 (Proposition 3.1.(5¢)). For all i > 0, (i, —i) = 2'y’ and (—i,i) := y'a’ are
regular elements of D’.

Let J be a nonzero ideal of A. We have to show that J = A. The ideal J contains a nonzero
element, say u, of least possible length, say [.

If I = 0 then J contains a nonzero element, say d, of D’ (since 2* and 3’ are regular element
of Aforalli>1). Let I = D'dD’. Then J D I' = D, by the statement (b), and so J = A, as
required.

Suppose that [ > 1. Replacing the element u by z*u or y*u for some s > 0, we may assume
that u = ug + w1y + - - + wyy' for some elements u; € D such that uy # 0 and u; # 0 (since z°
and y® are regular elements in A). Let I = D'ugD’, a nonzero ideal of D’. Then

T2 AuA_; =Y AwgA_j+-- =TI+

1€EZ i€EL

where the three dots means smaller terms, i.e., elements of the set @, y*D'. By the statement
(b), the ideal J contains an element of the form v =14 ---. Then

O£ w:=vel =dy+dix+ - +d_1z"" +2leJ

where d; € D’ and dy # 0, by the minimality of /. By the minimality of I, the element

-1

[z, w] = (o(di) — di)a' € J

=0

must be zero, i.e., zw = wx and o(d;) = d; for all i = 0,1,...,l — 1. In particular the element dg
is o-invariant. Similarly,

-1
ol (dyw — wd =Y (o'(d)d; — dio"(d))2’ € J forall de D'.
=0

Therefore, o!(d)w = wd and ¢'(d)d; = d;o%(d) for all i = 0,1,...,] — 1. In particular,
ol(d)dy = dod for all d e D',

i.e., the element dy € D’ is a left normal element of D’. The element dy is a regular element of
D’. Since otherwise we would have either d’'dy = 0 or dod’ = 0 for some d’ € D’. Then either
0 # dw = Zi;i d'dixt +d'zt € Jor 0 # wd = Ei: diot(d)x® + ol(d)z! € J (since o is a
monomorphism). In both cases, this would contradict the minimality of I. Clearly, o!(dg) = do
(since the element dy is a regular element of D’ and dody = o'(do)dy, and so o'(dy) = do).
Therefore, 0! = wy, where the element dy € D’ is a o-invariant, regular, left normal element of
D’. This fact contradicts to the property (c). Hence, J = A, as required.

(1 & 3) This equivalence follows from the equivalence (1 < 2) by the left-right symmetry of
IGWAS, see (38). O

Proof of Theorem 1.4. Since o is an epimorphism of the ring D, the homomorphism
v: D — D' is an epimorphism, by Theorem 2.6, and so D’ ~ D and A ~ D[z,y; 0,7, alin-

(1 & 2) In view of Theorem 1.3, without loss of generality we can assume that the condition
(a) holds for the ring A and we have to show that the ring A is simple iff the conditions (b)—(d)
hold. By Proposition 3.3, 2,y € C4 and o,7 are monomorphisms of the ring D. So, ¢ is an
automorphism of the ring D. Then the elements o?(a) (i > 1) are regular in D. By Proposition
3.1.(7), Sy € Den(A) with ass(S;) = 0. By Proposition 3.1.(4),

S 1A~ S 1A, =8 'Dlx o]~ Dz, ;0]
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since ¢ is an automorphism of the ring D. Recall that ([9, Proposition 3.1.(3)]): If S is a left and
right denominator set of a ring R then R is a simple ring iff ST'R is a simple ring, ass(S) = 0
and RsR = R for all elements s € S. Therefore, the ring A is simple iff S; A is a simple ring and
(v') = A for all i > 1. It is a classical result that the skew polynomial ring S;*A = D[z, 2~ ;0]
is simple iff the conditions (b) and (c) hold, see [13] or [14, Theorem 1.8.5]. By Lemma 3.5.(1),
(') = A for all i > 1 iff for all i > 1,

D =yDz + o' (a)o" (D) = yzo (D) + o'(a)D = aD + o' (a)D

iff the condition (d) holds. The proof of (1 < 2) is complete.
Suppose that the ring A is simple. Then o € Aut(D). Hence, the regular elements a and o(a)
are right normal in D since

o(a)7(d) = o(d)o(a) and ac~'7(d) = da for all d € D.

It follows that 7 = w/ ,0 is a monomorphism of D. [J

Proof of Theorem 1.5. Theorem 1.5 follows from Theorem 1.4 by the left-right symmetry
for IGWAs, see (38). O

Corollary 3.8 is a particular case of Theorem 1.4 where Dy = 0 since o € Aut(D) (Proposition
2.2.(5)).

Corollary 3.8 Let A = D[z,y;0,7,alin. Suppose that o is an automorphism of D. Then the
following statements are equivalent:

1. A is a simple ring.

2. (a) The elements a and o(a) are regular in D,
(b) D is a o-simple ring,
(c) for alli > 1, o' is not an inner automorphism of the ring D, and
(d) for alli>1, aD + o'(a)D = D.
If one of the equivalent conditions holds then D' = D, T = w! o is a monomorphism of D,

S7'A ~ D[x,x71;0] is a skew Laurent polynomial ring (x*'d = o*'(d)x*! for all d € D), and
the elements a and o(a) are right normal in D.

Corollary 3.9 is a particular case of Theorem 1.5 where Dy = 0 since 7 € Aut(D) (Proposition
2.2.(5)).

Corollary 3.9 Let A = D|z,y;0,7,alin. Suppose that T is an automorphism of D. Then the
following statement are equivalent:

1. A is a simple ring.

2. (a) The elements a and o(a) are reqular in D,
(b) D is a T-simple ring,
(c) for alli > 1, 7% is not an inner automorphism of the ring D, and

(d) for alli>1, Da+ D7%(a) = D.

If one of the equivalent conditions holds then D' = D, 0 = ws(q)T 15 a monomorphism of D,
-1 ~1. : : o 1 _ 41+l

AS ' ~ Dly,y~ ;7] is a right skew Laurent polynomial ring (dy™" = y*='7(d) for all d € D),

and the elements a and 7(a) = o(a) are left normal in D.

Corollary 3.10 Let A = D[z,y;0,7,alin. Suppose that o and T are automorphisms of D. Then
the following statements are equivalent:

1. A is a simple ring.
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2. (a) The elements a and o(a) are regular in D,
(b) D is a o-simple ring,
(c) for alli > 1, o' is not an inner automorphism of the ring D, and

(d) for alli>1, aD + o'(a)D = D.

3. (a) The elements a and o(a) are reqular in D,
(b) D is a T-simple ring,
(c) for alli > 1, 7% is not an inner automorphism of the ring D, and
(d) for alli > 1, Da+ D7%(a) = D.

If one of the equivalent conditions holds then D' = D, the elements a and o(a) = 7(a) are
normal in D, 7 = w;(a)a and 0 = Wy(a)T, S 1A ~ D[z,x71;0] is a skew Laurent polynomial ring
(x*'d = o (d)z*! for alld € D), and AS,; ' ~ Dly,y~*; 7], is a right skew Laurent polynomial
ring (dy*' =yt 7+1(d) for alld € D).

Proof. The result follows from Corollary 3.8 and Corollary 3.9. J

Left normal elements in Dz;0] and IGWAs. Let R = D[x;0] be a skew polynomial
ring. Let S be a subset of R such that S # {0}. Then [(S) := min{i(u) |u € S\{0}} is called the
(graded) length of S. Clearly, [(Sz?) = [(S) for all i > 0. Let

M(S) = {u € S|l(u) = ()},

Mi(S) ={ue S|l(u)=1(S) and u=2"+---}. (50)

The natural numbers

deg, (M(S)) := min{n € N| deg, (u),u € M(S)}, (51)

deg, (M1(S5)) := min{n € N| deg,(u),u € M1(S)},
are called the degrees of the sets M(S) and M;(5), respectively. Notice that M;(S) C M(S), and
so deg, (M1(S5)) > deg,(M(S)) provided M;(S) # (. Clearly, [(R) = 0, the set M(R) contains
precisely all nonzero homogeneous elements of R, M;(R) = {z'|i > 0} and deg,(M;1(R)) = 1.
For each nonzero ideal J of R, Theorem 3.11 describes the set M (J) under a mild condition on
the ring R. The sets M;(J) are used to construct IGWAs.

Theorem 3.11 Let R = D|x;0] be a skew polynomial ring such that for each nonzero left ideal
I of D such that Io*(D) C I for some i > 0, D = I' where I’ := > js0 Do’ (1) (e.g., D is a
o-simple ring and o is an automorphism). Then B

1. The endomorphism o of the ring D is a monomorphism.

2. Let J be a nonzero ideal of R and n = deg,(M1(J)). Then My(J) = {uz®|i > 0} for a
unique nonzero element v = " + dp_12" L + - + dpam such that d; € D° N'Cp provided
d; # 0, and 0™ (d)d; = d;o*(d) for alli=m,...,n—1 and d € D. The element u is regular,
left normal in R, ux = zu, ud = o™(d)u for all d € D, and o™ = wq,0® for all nonzero
elements d; (e.g., dym ). The subring of R generated by D and uz? is isomorphic to the skew
polynomial ring D[uz’; o™ 7] where j € N.

3. The ring R is a prime ring.

Proof. 1. Suppose that o is not a monomorphism. Then the kernel of o, I = ker(0), is a proper
ideal of D such that D =I' = DI = I # D, a contradiction. Therefore, o is a monomorphism.

2. Let I = 1(J).

(i) My(J) # 0: Fix an element u = d,2" + d,, 12" + - + dpz™ in M(J) where d; € D,
dn #0, dy # 0and | = n —m. Let Iy = Dd,o®(D) (the (D,0°(D))-subbimodule of pDgs(p)
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generated by the element dg). By the assumption, D = Zf:o Do?(I,) for some k > 0 (since
1 € D). Then the set (written symbolically as)

zk:ij“ka_j = {(éDUj(In))xn + g (éDJj(Is))x”}xk (52)

Jj=0

contains an element of length [ with highest coefficient 1, as required.

(ii) My1(J) = {uz’|i > 0} where u is the element of My(J) of least degree in xz: Clearly,
M1 (J) 2 {ux®|i > 0}. The reverse inclusion follows from the fact that for each i > n, there is a
unique element of degree ¢ that belongs to the set Mj(J) (since all the elements of the set M (J)
are monic and of minimal length).

(iii) uz = zu: The statement follows from the inequality [(ux — zu) < | and the minimality of
l.

(iv) ud = o™ (d)u for all d € D: The statement follows from the inequality {(ud — o™ (d)u) <1
and the minimality of [.

(v) o™(d)d; = d;o*(d) for alld € D and i = m,...,n — 1: The statement (v) follows from the
statement (iv) be equating the coefficients of 2% in the equality ud = o™ (d)u.

(vi) d; € D” N'Cp provided d; # 0: By the statement (iii), all d; € D?. Suppose that d; # 0
and dd; = 0 for some d # 0 of D, we seek a contradiction. Then the element ' = du has length
I but the number, say c(u’), of nonzero coefficients of u’ is strictly smaller than the number, say
c(u), of nonzero coefficients of u. Replacing the element u by v’ and using the argument in (52)
we then obtain an element in M (J), say u”, with ¢(u”) < ¢(u’) < ¢(u). This fact contradicts to
the statement (ii) (since c(u) = c(uz?) for all i > 0). Therefore, d; € 'Cp.

(vil) 0™ = wq,0 for all nonzero elements d; (by the statements (v) and (vi)).

(viii) The element u is a regular element of R: The statement (viii) follows from the fact that
o is a monomorphism and the leading term of the element u is 1.

3. By statement 2, every nonzero ideal of R contains a regular element, and statement 3
follows. Hence, the product of two nonzero ideals of R is a nonzero ideal, and statement 3 follows.
(I

Definition. The unique element u in Theorem 3.11.(2) is called the core of the nonzero ideal .J
and is denoted by c(J).

Using Theorem 3.11, we can construct many examples of IGWAs as the next corollary shows.

Corollary 3.12 We keep the notation as in Theorem 3.11. In particular, v = z™ + Z::nll d;zt.

Then we have IGWAs D[zy,y1;0" 1, 0", di]in and Rl[z1,y1; 0" 4 07 uxk]y,, where o(z) = z,
for all 5,k >0 and d; # 0.

For a ring R, we denote by Aj(R) and N (R) the sets of all left normal and normal elements,
respectively. The sets Nj(R) and N (R) are multiplicative monoids that contain the group R* of
units of R, and N(R) C N(R). A nonzero element of N;(R) is called a left normal irreducible
element of R if it is not a product of two left normal elements and each of them is not a unit. Let
M,irr (R) be the set of all left normal irreducible elements of R.

Corollary 3.13 We keep the notation as in Theorem 3.11. If the ideal J is a nonzero prime ideal
of the ring R then its core ¢(J) is a left normal irreducible element of R.

Proof. Suppose that v = ¢(J) is not a left normal irreducible element of R. Then u = ab for
some elements N;(R)\R*. Then I(a) < l(u) and I(b) < I(u).

It follows from (a)(b) = RaRbR C Rab = Ru C J that either (a) C J or (b) C J (the ideal J
is prime), and so either a € J or b € J. This fact contradicts to the choice of the element u. O

4 Inner generalized Weyl algebras of rank n

In this section the class of inner generalized Weyl algebras of rank n is introduced.
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Inner generalized Weyl algebras of rank n. Let A be a ring and ¢ be an endomorphism
of A. A subring B of A is called o-invariant if o(B) C B. The ring

A=D[z1,%1;01,7T1,01]in - [Tn, Yn; Tns Tns nlin

is called an iterated IGWA of rank n. Let A; := D[z1,y1;01,71,01)in " [Tis Yi; 04y Ti, @il fOT
i=1,...,n. Then there is a chain of ring homomorphisms
DA A= = A, 1 — A, =A. (53)

Let D; :=im(D — A;). Then there is a chain of ring homomorphisms
D=Dy—Dy—Dy— -+ — Dy_1— D,. (54)

To simplify the notation the image of an element d € D; in D;, where ¢ < j, is denoted also by d.
Definition. An iterated IGWA A = D[z1,y1;01, 71,01 in - - - [Zns Yn; Ony Tn, Gn)in 18 called the
inner generalized Weyl algebra of rank n if a; € D;, 0;(D;) C D; and 7;(D;) C D; for all
i=1,...,n; and for all integers 7,5 = 1,...,n such that i > j:
oi(w;) = Nijj, 0i(y;) = YN, Tilws) = pigrs, Ti(ys) = Yk,
for some elements )\ij,)\;j,,uij and ng of the ring D;_;. The elements A = (\;;), A’ = ()\91-),
M = (pij) and M" = (uf;;) are called the defining coefficients of A. The n-tuples of endomorphisms
o= (01,...,0n) and 7 = (71,...,7,) are called the defining endomorphisms of A, and the n-tuple
of elements a = (aq, ..., a,) is called the defining elements of A. The IGWA A of rank n is denoted
by A = D|z,y;o0,7,a, A, N, M, M'];, where z = (21,...,z,) and y = (y1,- .., Yn)-

The restrictions o;|p, , and 7;|p,_, are also denoted by o; and 7;, respectively.

An element A = ();;) (where 1 < j <i < n) (resp., A" = ()\;;)) is called a lower (resp., upper)
triangular half-matriz with coefficients in D. The set of all such elements is denoted by L, (D)
(xesp., Un(D)).

The next lemma describes IGWAs of rank n via generators and defining relations.

Lemma 4.1 Let A= Dix,y;o0,7,a, A, N, M, M'];n, be an IGWA of rank n and a(A) := ker(D —
A). Then

1. The ring A is generated by the ring D and the elements x1,...,x, and y1,...,Y, subject to
the defining relations:

a(A) = 0; (55)
foreachi=1,...,n and d € D;,
zid = oy(d)x;, dy; = yimi(d), viwi =a; and x;y; = 04(a;); (56)
for alli > 7,
TiTj = NjTTi, TiYj = YiNTis Ty = YikigT; and Yy = Yiyi R, (57)

{03

2. The ring A = @,Yezn A, is a Z"-graded ring where A, = ®{a,ﬂEN"|—a+ﬂ='y} y* DB,y =
Yo -y (reverse order) and P = xfl -o-aPn . In particular, for each i = 1,...,n, the
ring A; = D[x1,y1;01, 71, G1lin - - - [T4, Yi5 04, Ti, Qilin 05 a Z'-graded ring.

3. For each i = 2,...,n, the endomorphisms o; and 7; of the IGWA A;_, respect the Z'~'-
grading of A;_1.

Remark. Since ker(D — D) C ker(D — D,,) = a(A), the equalities in (56) and (57) make
sense due to (55).

Proof. 1. Statement 1 follows from the definition of the IGWA A = Dlz, y;0,7,a, A, ', M, M'];,.

2. Statement 2 follows from statement 1.

3. Statement 3 follows from statements 1 and 2. [J

For the IGWA A = Dix,y;o0,7,a,A, A, M, M'];5, the next proposition describes conditions
that its defining data must satisfy for the ring A to be an iterated IGWA.
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Proposition 4.2 Let A = Dz, y;0,7,a, A, ', M, M']in, be an IGWA of rank n. Then the defining
data of the IGWA A define the iterated IGWA A = D[x1,y1;01,7T1,01)in " [Tns Yni Ons Tn, Gnlin Uff
the following conditions hold: For alli=1,...,n andd € D,

oi(a;) = 7i(a;), and oi(d)oi(a;) = oi(a;)Ti(d); (58)
foralli>j,
oi(ai)pi; = Nijojoi(a;) and Njoi(a;) = j00(aq) pwy; (59)
foralli>j and d e D,
)\ijO'jO'i(d) = O'Z‘O'j(d))\ij and TjO’i(d)/\;i = /\;-iO'iTj(d), (60)
11i5057i(d) =m0 (d)piy and 7ymi(d) ) = pimiTi(d); (61)
foralli>j >k,
)\ijgj(Aik))\jk = Ji()\jk)Aiko'k()\ij) and Tj()\ik)ujkak()\;-i) = )\;'Z‘Ji(llfjk))\ika (62)
11505 (pir) N = Ti( N ) pinon (i) and 75 (i) ok (1) = w5, mi(1ge) ik, (63)
Ti(Xij)Nej 0 (Net) = Neioi(Ngj)Nig and ;75 (M) Ny = (V) N0 (1), (64)
Tk(ﬂij))\kjaj(ﬂki) = Mkﬂi()\b)/‘ij and M;chj(/‘;m‘)M;i = Tk(M}i)MkiTi(Mkj)é (65)
foralli>j,
oi(a;) = yiNjNiga; and 7i(a;) = v, s, (66)
oioj(aj) = Nijoj(a;)N;; and 705(a;) = pjios(az) ;. (67)

Remark. The equalities above hold in the corresponding rings: equalities (58)—(65) and (67)
hold in the ring D;_; and equalities (66) hold in the ring A;_;.

Proof. The proof is based on the fact that the IGWA A of rank n is a special type of the
iterated GWA of rank n and Theorem 1.1. By Lemma 4.1.(1), the ring A is generated by the
ring D and the elements x1,...,z, and yi,...,y, subject to the defining relations in (56) and
(57) (by the definition of A). The remaining equations in (58)—(67) follow from (4) and (5)
bearing in mind the iterated nature of the IGWA A and the definition of the endomorphisms
Ol,.-y0n,T1,-..,Tn. BEqualities (58) and (59) are the conditions (4) written for all IGWAs A;,
see (53). In more detail, the equalities in (59) are the equalities o;(d;_1)o;(a;) = 04(a;)7i(di—1) in
the IGWA A, = A;_1[zi,Yi; 04, Ti, Gilin for d;i—q1 = x; and d;—1 = y; (i > j), respectively:

“)

dioy =5 oila)prg = oi(ai)ri(x;) = oi(x;)oi(a:) = Aijzjoi(as) = Aijojoi(as)z;,
4)
dicv=yj:  yiNpoilai) = 0i(y;)oi(ai) = oi(ai)Ti(yy) = oia)yp; = yimioi(ai)w;.
Equalities (60), ..., (67) guarantee that the four defining relations of the IGWA A; are respected
by all the automorphisms o; and 7; for ¢ > j. In particular, equalities (60), ..., (65) guarantee

that for all ¢+ > j the automorphisms o; and 7; respect the equalities x;d;_1 = Uj(dj,l)xj and
d;j—1y; = y;7;(y;j—1) in the ring A; where d;_1 = d (d € D), zi, yx, (where i > j > k): For alli > j
and d € D,

0i, di—1 =d: oi(z;d) = Zjxjal(cl) = \ijoioi(d)zj, o,(oj(d)x;) = oi0;(d)Nijz;,
(dy;) = oi(d)y; N = yimjoi(d)Nsy, 0i(y;mi(d) = y;jNji0imi(d).
zjd) = pijrimi(d) = pijoiri(d)z;, 7i(oj(d)z;) = 1i0;(d)pijey,
) = Ti( @)y = yimimi( )W, Ti(yTi(d) = yiumimi(d).

Tis di—l =d: Ti
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For all i > j > k,

0iy di1 = Tk - oi(xjrr) = NijaiAinTr = Xijo;(Nik) Njrrets, 0i(Ajrxrx;) = 0i(Njg) AikZrAi T
= 0 (Aje) Nikor(Nij) TR,
oi(Trys) = NikThYj Ny = Nikyi kTN = Y57 (Nak) wikok (N 2r,
oi(y;Ti(zr)) = oi(yjpinar) = yiNjoi(te) Nintr;
Tiy dim1 = Tp - Ti(xj2k) = pij@ipin®r = pijo; (pin) Njpere, 7i(0(wr)x;) = 7 (Njpara;)
= Ti(Ajk )ik piig vy = Ti(Aje) ko (pig ) or s,
Ti(TRY) = HikTRYj G = YT (i) ikTr iy = Y5 Ti (Bik) ik ok (1) T,
iy (@) = Ti(yi i) = Y057 (k) HinTns
d(T5Uk) = N Ty = iUk N TiNe: = YeTh(Nij) Ny (N )5,
i(oj(yr)wy) = UZ(Uk)‘kng) = yk)‘kzaz()‘kg))‘wxjv
((YrYs) = YeNei¥iNji = UkYi T (Vi) Njs = YUt 75 (Nei) N
oi(y;Ti(ye)) = Ul(yjykukj) = YNk N0 (1) = Y5 YT (Nji) Mg i (1)
Tiy djo1 =k s Ti(TjUR) = HijTiYkih = iU N 05 (W) L5 = YkTh (i) N0 (1 )25
(0 (yr)xj) = Tz(ykAijJ) = yk:u‘le’L(Akj)Mljxjv
Ti(YkY) = Ykl = Y5 Ui T (W) i
(w575 (yk)) = Ti(Yjunitig) = YitlgiuniiesTi(eg) = YiynTh (1) i (g ) -

\]

Q

04y dic1 = Y

Q

Q

3

Ti

The equalities (66) and (67) guarantee that, for all ¢ > j, the endomorphisms o; and 7; respect
the equalities 0;(a;) = z;y; and a; = y,z;:

o; oi0i(a;) = /\ija?jyj)\;-i = \ijo; (aj))\;-i,
o Tiog(ag) = piTiying = piios(ag) i,
o oila) =Y\,

o miley) =y O

Corollary 4.3 provides an important class if IGWAs of rank n.

Corollary 4.3 Let D be a ring, 0 = (01,...,0,) and 7 = (T1,...,T) be n-tuples of ring endo-
morphisms of D, a = (a1,...,a,) € D", A = (X\ij),M = (nij) € Ln(D) and A" = (X};), M' =
(1) € Un(D) be such that the following equalities hold in the ring D: For alli = 1,...,n and
de D,

O'i(ai) = Ti(ai)7 and Jl(d)O'Z(al) = 0'7;(0,1‘>T7;(d); (68)
foralli>j,
oi(a;)pi; = Nijojoi(a;) and Njoi(a;) = 7j04(ai) ;s (69)
foralli>j and d e D,
)\ijO'jO'i(d) = O'iO'j(d))\ij and Tjai(d)/\;i = /\;-iO'iTj(d), (70)
pijo;7i(d) = 10 (d)pi; and 7;7i(d)ps; = pmiTi(d); (71)
foralli>j >k,
Nijoi(Nie) Ak = ai( M) Nikon(Nig) and 7 (Nig) pgror(N};) = )\}ﬂi(ﬂjk))\ik, (72)
11505 (i) Njke = Ti(Ngi ) pinok (pag) and 7 (i) pywon (1) = Wil ik (73)
i (Aij) kjoj( i) = N ;cj))‘ij and M;chj( )X ( ) Ui(:ukj) (74)
Tk(Mz‘j))\ijj(Nki) = Mkﬂi(/\;cj)ﬂij and M;chj(/’Lki)Mji = ( )I’LkZTl(Mkj) (75)
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foralli > j, NyuXij = >0, (D} )0 (Dij.s) and plpig = 2, 7i(d5; 4)0(qije) for some elements
/
pji,sv cee 7qij,t S D7

Ui ijl s@jPij,s and T a] quz t@j4ig,ts (76)

S

0i0;(a;) = Nijo;(a;)Nj; and 105(a;) = pjio(az) ;. (77)

Then

1. The conditions of Proposition 1.2 hold and we denote by A = Dlx,y;o,7,a, A, A", M, M'}in
the corresponding IGWA of rank n.

2. The IGWA of rankn, A = Dz, y;o,7,a, A, N, M, M']sn, is a ring generated by D, x1, ..., Ty
and yi,...,Yyn subject to the defining relations: For alli=1,...,n and d € D,

rid = oi(d)z;, dy; =yimi(d), yizi =a; and x;y; = 0(a;); (78)
foralli>j,
Tty = NijTiTi, Ty = YiNuTi, Ty = Yifiit; and Yy = iy, (79)

Proof. 1. The equalities of the corollary imply the conditions of Proposition 1.2. In more
detail, equalities (68)—(75) and (77) imply equalities (58)—(65) and (67). The two equalities in
(76) imply the two equalities in (66):

oi(aj) = yj)‘gz)‘uxj = y](ZT] p]z )05 (Pij,s ) ijz s@jPij,s)
Ti(a;) = yj:u;'i:“ijxj =Y ( Z Tj (q]z )05 (Gijoe ) Z Qji 4@ ij,e-
t

2. By statement 1, the defining relations given in statement 2 imply the defining relations in
Lemma 4.1.(1) (use the fact that A is an iterative IGWA of rank n and Theorem 1.1 on each step
of iteration). OJ
Ezample. If 0 = (01,...,0,) is an n-tuple of commuting endomorphisms of the ring D,
T:=0=(01,...,00), a = (a1,...,a,) € Z(D) and 0i(a;) = a; for all i # j; and \j; = \}; =
pij = pi; = 1 for all i > j, then we have the IGWA A = D[z,y;0,0,a]in of rank n. The ring A
is generated by D, x1,...,x, and y1,...,y, subject to the defining relations: For alli=1,...,n
and d € D,
rid = oi(d)z;, dy; =yimi(d), vizi =a; and x;y; = 0(a;); (80)

for all ¢ # j,
BT =TT, TY; = YT, and Yy = Yy (81)
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