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The Question of Arnold on classification of co-artin

subalgebras in singularity theory

V. V. Bavula

Dedicated to André Leroy on his retirement.

Abstract

In [1, Section 5, p.32], Arnold writes: “Classification of singularities of curves can be
interpreted in dual terms as a description of ‘co-artin’ subalgebras of finite co-dimension in
the algebra of formal series in a single variable (up to isomorphism of the algebra of formal
series).” In the paper, such a description is obtained but up to isomorphism of algebraic
curves (i.e. this description is finer).

Let K be an algebraically closed field of arbitrary characteristic. The aim of the paper
is to give a classification (up to isomorphism) of the set of subalgebras A of the polynomial
algebra K[x] that contains the ideal xmK[x] for some m ≥ 1. It is proven that the set
A =

∐
m,Γ

A(m,Γ) is a disjoint union of affine algebraic varieties (where Γ
∐
{0,m,m+1, . . .}

is the semigroup of the singularity and m − 1 is the Frobenius number). It is proven that
each set A(m,Γ) is an affine algebraic variety and explicit generators and defining relations
are given for the algebra of regular functions on A(m,Γ). An isomorphism criterion is given
for the algebras in A. For each algebra A ∈ A(m,Γ), explicit sets of generators and defining
relations are given and the automorphism group AutK(A) is explicitly described. The auto-
morphism group of the algebra A is finite iff the algebra A is not isomorphic to a monomial
algebra, and in this case |AutK(A)| < dimK(A/cA) where cA is the conductor of A. The set
of orders of the automorphism groups of the algebras in A(m,Γ) is explicitly described.

Key Words: an algebraic curve, a singularity, normalization, an algebraic variety, the al-

gebra of regular functions on an algebraic variety, moduli space, automorphism, isomorphism,

generators and defining relations.

Mathematics subject classification 2010: 14H20, 14H37, 14R05, 14H10, 14J10.
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1 Introduction

Motivation: A singularity of a curve means the germ of a holomorphic map of the complex line
into complex space at a singular point, [1]. Classifying curve singularities up to diffeomorphism
is a classical problem in the theory of algebraic curves. A singularity is called simple if all the
singularities of the neighbouring mappings belong to a finite set of equivalence classes. Simple
singularities of plane curves were classfied by J. W. Bruce and T. J. Gaffney [3], and simple
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singularities of space curves by C. G. Gibson and C. A. Hobbs [5]. The classification of simple
singularities of curves is described by Arnold [1].

In [1, Section 5, p.32], Arnold writes: “Classification of singularities of curves can be interpreted
in dual terms as a description of ‘co-artin’ subalgebras of finite co-dimension in the algebra of
formal series in a single variable (up to isomorphism of the algebra of formal series),” see the end
of the Introduction for more details. Such a description is obtained in the present paper but up
to isomorphism of algebraic curves (i.e. this description is finer).

The following notation will remain fixed throughout the paper: K is an arbitrary algebraically
closed field of arbitrary characteristic (many results of the paper are true for an arbitrary field);
K× := K\{0}; algebra means K-algebra; K[x] is a polynomial algebra in the variable x over K;
m ≥ 2 is a natural number; A(m) is the set of all K-subalgebras A of K[x] such that xmK[x] ⊂ A
but xm−1 ̸∈ A, i.e. the ideal xmK[x] of A is the largest ideal of A which is also an ideal of K[x],
i.e. the ideal xmK[x] = annA(K[x]/A) is the conductor of A as the polynomial algebra K[x] is
the normal closure of A;

A := A/xmK[x] ⊆ F := Fm := K[x]/xmK[x];

AutK(A) is the automorphism group of the K-algebra A.

The canonical basis of the algebra A. Let S(m) be the set that contains the empty set
and all non-empty subsets Γ of the set {2, . . . ,m− 2} such that Γ + Γ ⊆ Γ∪ [m,∞). Notice that,
by definition, m − 1 ̸∈ Γ; S(m) ̸= ∅ iff m ≥ 4. For m = 1, 2, 3, the set A(m) contains the only
algebra K + xmK[x]. So, we will assume that m ≥ 4.

Let A ∈ A(m). The the ideal (x) of the finite dimensional algebra F = Fm is its radical. The
(x)-adic filtration on F is also the radical filtration. It induces a filtration on the subalgebra A of
F = Fm and the associated graded algebra (see (2) and (3))

gr(A) = K ⊕
⊕

γ∈ΓA

Kxγ , where ΓA := {γ |xγ ∈ gr(A), 1 ≤ γ ≤ m− 1} ∈ S(m),

is a graded algebra. For each Γ ∈ S(m), let A(m,Γ) := {A ∈ A(m) |ΓA = Γ}. Then

A(m) =
∐

Γ∈S(m)

A(m,Γ).

We will see that each set A(m,Γ) is an affine algebraic variety (Lemma 4.1, Theorem 4.2 and
Theorem 4.3). In the literature, for each algebra A ∈ A(m,Γ), the subsemigroup Γ ∪ {0,m,m +
1, . . .} of the semigroup of natural numbers (N,+) is called the semigroup of the singularity

and the number m− 1 is called the Frobenius number.
Proposition 2.1 states that for each algebra A ∈ A(m,Γ}, there is a unique basis {1, fγ , | γ ∈ Γ}

of the algebra A such that

fγ = xγ +
∑

δ∈CΓ(γ)

λγδx
δ where λγδ ∈ K and CΓ(γ) := {δ | δ ̸∈ Γ, γ < δ ≤ m− 1}.

The basis {1, fγ , | γ ∈ Γ} is called the canonical basis of the algebra A. The canonical basis has
many remarkable properties. It is used in many proofs of this paper. In particular, the elements of
the canonical basis are common eigenvectors for the automorphism group of the algebra A (each
element σ ∈ AutK(A) preserves the conductor of A and hence induces an automorphism of the
algebra A) and this is the key fact in finding the automorphism group AutK(A).

Generators and defining relations of the algebras A ∈ A(m,Γ) and A.

Each non-empty set Γ ∈ S(m) is a disjoint union Γ = ind(Γ)
∐

dec(Γ) where ind(Γ) is the
set of indecomposable elements of Γ and dec(Γ) is the set of decomposable elements of Γ. An

2



element γ ∈ Γ is called decomposable if γ = γ1 + γ2 for some elements γ1, γ2 ∈ Γ. Every decom-
posable element is a linear combination of indecomposable ones with natural coefficients (which
is highly non-unique, in general). We denote by dec(Γ)≥2 the set of all decomposable elements
that admits at least 2 distinct linear presentations. Let ind(Γ) = {ν1, . . . , νs} where s = |ind(Γ)|.
For each element γ ∈ Γ, we fix a vector a(γ) = (a(γ)1, . . . , a(γ)s) ∈ Ns such that γ =

∑s
i=1 a(γ)iνi.

The algebras in A(m,Γ) are partitioned into three isomorphism invariant classes:
(I) |ind(Γ)| = 1,
(II) |ind(Γ)| ≥ 2 and dec(Γ)≥2 = ∅,
(III) |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅.

For each algebra in the classes (I), (II) and (III) explicit sets of generators and defining rela-
tions are given in Lemma 2.14, Corollary 2.16 and Theorem 2.17, respectively.

Isomorphism problems and the automorphism groups of algebras A.

Theorem 3.1.(2) and Proposition 3.3 are isomorphism criteria for algebras in A :=
∐

m≥2 A(m).
For algebras A,A′ ∈ A such that A ≃ A′, Theorem 3.1.(3) describes the set IsoK(A,A′) of all K-
algebra isomorphisms from A to A′. Theorem 3.4.(1) is an explicit description of the automorphism
groups of algebras in A(m). Theorem 3.4.(2-4) gives criteria for the automorphism group to be
infinite/finite/trivial (see also Corollary 3.5).

Let O(m) be the set of orders of all finite automorphism groups of algebras in A(m). By
Corollary 3.6.(1),

O(m) ⊆

{
{1, . . . ,m− 3} if 4 ≤ m is even,

{1, . . . ,m− 4} if 5 ≤ m is odd.

Let p be a prime number. A natural number i ≥ 1 is a unique product i = pdip for some natural
numbers d and ip such that (p, ip) = 1. The natural number ip is called the p-co-prime divisor of
i. For a natural number m ≥ 4, let u(p,m) := max{ip | 1 ≤ i ≤ m − 3, i + j ≤ m − 1 for some
natural number j = j(i) ≥ 2 such that j ∤ m− 1}. By Corollary 3.6.(1),

maxO(m) =





m− 3 if 4 ≤ m is even, charK = 0,

m− 4 if 5 ≤ m is odd, charK = 0,

u(p,m) if 4 ≤ m, charK = p > 0.

Theorem 3.7 and Corollary 3.9 are explicit descriptions of the set O(m). The set O(m) is an
intricate set (see (32), (33) and (34)). Lemma 3.12 and Lemma 3.13 are examples of algebras in
A(m) with sophisticated orders of automorphism groups (the canonical bases are explicitly given).

The set A(m,Γ) is an affine algebraic variety. It is proven that each set A(m,Γ) is an
affine algebraic variety. Lemma 4.1, Theorem 4.2 and Theorem 4.3 give explicit generators and
defining relations for the algebra O(A(m,Γ)) of regular functions on A(m,Γ) in the cases (I), (II)
and (III), respectively. In the case (III), two different sets of defining relations are given (Theorem
4.2 and Theorem 4.3). Theorem 4.3 gives a lower bound for the dimension of the algebraic variety
A(m,Γ).

The algebraic torus T = {tλ |λ ∈ K×} acts on the set A(m) by the rule:

T×A(m) → A(m), (tλ, A) 7→ tλ(A),

where tλ(x) = λx. The subsets A(m,Γ) of A(m), where Γ ∈ S(m), are T-stable (that is
TA(m,Γ) = A(m,Γ)). By Theorem 3.1.(1), the set of T-orbits of A(m),

A(m) := A(m)/T = {TA |A ∈ A(m)},
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is the set of isomorphism classes of algebras A(m). By (4),

A(m) =
∐

Γ∈S(m)

A(m,Γ) where A(m,Γ) := A(m,Γ)/T

is the set of isomorphism classes of algebras in A(m,Γ), see Section 4 for details. The sets A(m,Γ)
are explicitly described by Theorem 3.1.(2) and Proposition 3.3.

For each automorphism group G, Corollary 4.5 gives an explicit description of the isomorphism
classes of algebras in A(m,Γ) with automorphism group G.

Connections with the problem of classification of singularities of holomorphic

maps. K[[x]] is the algebra of formal power series in the variable x over K; m ≥ 2 is a nat-

ural number; Â(m) is the set of all K-subalgebras B of K[[x]] such that xmK[[x]] ⊂ B but
xm−1 ̸∈ B i.e. the ideal xmK[[x]] of B is the largest ideal of B which is also an ideal of K[[x]].

For each Γ ∈ S(m), let Â(m,Γ) := {B ∈ Â(m) |ΓB = Γ} where ΓB is defined in the same fashion
as in the affine case. Then

Â(m) =
∐

Γ∈S(m)

Â(m,Γ).

The ‘analytic’ group of automorphisms Gan = {x 7→
∑

i≥1 λix
i} of the algebra K[[x]] respects

the sets Â(m,Γ) (where λi ∈ K and λ1 ̸= 0). Classification of the orbits Â(m,Γ)/Gan is an old
open classical problem (see, for example, [1]), the problem of classification of curve singularities
(a curve singularity is the germ of a holomorphic map of the complex line into complex space at
a singular point).

Proposition 1.1 The map A(m,Γ) → Â(m,Γ), A 7→ A + xmK[[x]] is a bijection with inverse
B 7→ B/xmK[[x]] + xmK[x] where B/xmK[[x]] ⊆ ⊕m−1

i=0 Kxi ⊆ K[x].

Proof. Straightforward. □

The algebra A+ xmK[[x]] is the (x)-adic completion of the algebra A. So, each algebra B in

Â(m,Γ) is the completion of the algebra B/xmK[[x]] + xmK[x] in A(m,Γ) which is called the

affine partner of the algebra B. So, the class of algebras Â(m,Γ) is completely described by the
class A(m,Γ). Clearly, if two algebras in A(m,Γ) are isomorphic then so are their completions,

i.e. the map A(m,Γ) → Â(m,Γ), A 7→ A+ xmK[[x]] is isomorphism-invariant. The classification
(up to isomorphism) of algebras in A(m,Γ) is finer than the classification of topological algebras

in Â(n,Γ) up to the action of the group Gan. Furthermore,

Â(m,Γ)/Gan ≃ A(m,Γ)/Gan
1 := A(m,Γ)/Gan

1 (m) (1)

where Gan
1 is a subgroup of Gan that contains all automorphisms with λ1 = 1, A(m,Γ) :=

{A |A ∈ A(m,Γ)} and Gan
1 (m) is the subgroup of automorphism of the algebra K[x]/(xm) of the

type x 7→ x+
∑m−1

i=2 λix
i where λi ∈ K. In 1965, Ebey [4] obtained a classification of the algebras

B in several ‘initial’ cases where the set Γ is ‘small’.

2 The canonical basis, generators and defining relations of

algebras A and A where A ∈ A(m,Γ)

In this section, the field K is an arbitrary field, i.e. not necessariuly algebraically closed.
The aim of the section is to show that each algebra A = A/xmK[x], where A ∈ A(m),

admits a unique K-basis which is called the canonical basis (Proposition 2.1) that has remarkable
properties as we will see later in the paper. Existence of this basis basis is a key fact in finding
the automorphism group of the algebra A and an isomorphism criterion for algebras A. Using
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the canonical basis of A, several explicit sets of generators and definig relations are found for the
algebra A (Corollary 2.3, Theorem 2.7 and Theorem 2.11) and for the algebra A (Theorem 2.13,
Theorem 2.15 and Theorem 2.17)

Given an algebra A ∈ A(m), i.e. K[x] ⊃ A ⊇ xmK[x] and xm−1 ̸∈ A, m ≥ 2, the polynomial
algebra K[x] is the normal closure of the algebra A and (xm) = xmK[x] is the largest ideal of A
which is also an ideal of K[x]. It is called the conductor of A and is the sum of all ideals of K[x]
that are contained in A. Then

A := A/xmK[x] ⊂ F := K[x]/(xm)

is a proper inclusion of finite dimensional, local, commutative K-algebras. In particular, their
maximal ideals A ∩ (x) and (x) are their radicals rad(A) and rad(F ), respectively.

The induced radical filtration on A and the semigroup ΓA ∪ {∞} of A. The radical
filtration (the (x)-adic filtration) on F ,

F ⊃ (x) ⊃ (x)2 ⊃ · · · ⊃ (x)m−1 ⊃ (x)m = 0,

induces the induced radical filtration on the algebra A,

A ⊇ A≥1 ⊇ A≥2 ⊇ · · · ⊇ A≥m−1 ⊇ A≥m = 0,

where A≥i := A∩(x)i. The asociated graded algebra of F , gr(F ) :=
⊕

i≥0(x)
i/(x)i+1 is isomorphic

to the algebra F .
Let N+ := {1, 2, . . .}. Then (N+,+) is an abelian semigroup and the set m + N is its ideal

(N+ + (m + N) ⊆ m + N). Let N+,m := N+/(m + N), a factor semigroup. Then N+,m =
{1, 2, . . . ,m− 1,∞} where the addition in N+,m is given by the rule

i+ j =

{
i+ j if i+ j < m,

∞ if i+ j ≥ m,

and i+∞ = ∞ for all elements i ∈ N+,m. We denote by Sub(N+,m) the set of all subsemigroups
of N+,m. The algebra gr(F ) ≃ F =

⊕
i∈Nm

Kxi is an Nm-graded algebra where Nm := N/(m +
N) = {0, 1, . . .m − 1,∞} is a commutative monoid, x∞ := 0 and Kx∞ = 0. Clearly, N+,m is a

subsemigroup of Nm. The associated graded algebra gr(A) =
⊕m−1

i=0 A≥i/A≥i+1 is a homogeneous
subalgebra of gr(F ) = F . In particular,

gr(A) = K ⊕
⊕

γ∈ΓA

Kxγ (2)

where ΓA := {γ |xγ ∈ gr(A), 1 ≤ γ ≤ m− 1}. Clearly,

ΓA + ΓA ⊆ ΓA

∐
[m,∞) and m− 1 ̸∈ ΓA. (3)

In particular, the set ΓA∪{∞} is a subsemigroup of N+,m. Notice that ΓA = ∅ iff A = K+xmK[x].
We will see that the number m and ΓA are isomorphism-invariants of the algebra A (algebras
A ∈ A(m) and A′ ∈ A(m′) are isomorphic then m = m′ and ΓA = ΓA′ , Theorem 3.1.(2)).

Let S(m) be the set that contains the empty set and all non-empty subsets Γ of the set
{2, . . . ,m − 2} such that Γ + Γ ⊆ Γ ∪ [m,∞). Notice that, by definition, m − 1 ̸∈ Γ; S(m) ̸= ∅
iff m ≥ 4 (for all m ≥ 4, Γ = {m − 2} ∈ S(m)); and the map from the set S(m) to the set of all
subsemigroups of N+,m which is given by the rule Γ 7→ Γ ∪ {∞}, is an injection.

For each Γ ∈ S(m), let A(m,Γ) := {A ∈ A(m) |ΓA = Γ} where ΓA is the set of all natural
numbers i such that 2 ≤ i < m − 1 and there is an element ai = xi +

∑
j>i λijx

j ∈ A for some
λij ∈ K. Clearly, ΓA ∈ S(m). Then

A(m) =
∐

Γ∈S(m)

A(m,Γ). (4)
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We will see that each set A(m,Γ) is an affine algebraic variety (Lemma 4.1, Theorem 4.2 and
Theorem 4.3).

The canonical basis of the algebra A where A ∈ A(m,Γ). Let CΓ = {2, . . . ,m − 1}\Γ.
For each i ∈ {2, . . . ,m− 1}, let Γ(i) := {γ ∈ Γ | γ > i} and CΓ(i) := {δ | δ ̸∈ Γ, i < δ ≤ m− 1}.

Proposition 2.1 For each algebra A ∈ A(m,Γ}, there is a unique basis {1, fγ , | γ ∈ Γ} of the
algebra A that satisfies the condition that fγ = xγ +

∑
δ∈CΓ(γ) λγδx

δ where λγδ ∈ K and CΓ(γ) =

{δ | δ ̸∈ Γ, γ < δ ≤ m− 1}.

Proof. (i) Existence: By (2), we can find aK-basis {1, gγ | γ ∈ Γ} where gγ = xγ+
∑

γ<δ≤m−1 Kxδ

and λγδ ∈ K. Suppose that Γ = {γ1, . . . , γt} where 2 ≤ γ1 < · · · < γt ≤ m − 2. The element
fγt

:= gγt
satisfies the condition of the proposition. Now, we use the downward induction on i

starting at i = t. To show existence we suppose that i < t and we have found already the elements
fγi+1 , . . . , fγt

that satisfy the condition given in the proposition. The element gγi
can be written

as follows
gγi

= xγi +
∑

δ∈CΓ(γ)

λγiδx
δ +

∑

γ′∈Γ(γ)

λγiγ′xγ′

.

Then
fγi

:= gγi
−

∑

γ′∈Γ(γ)

λγiγ′fγ′

satisfies the condition of the proposition. Now, existence follows by induction on i.
(ii) Uniqueness: If Γ = ∅ then there is nothing to prove. Suppose that Γ ̸= ∅ and {1, f ′

γ | γ ∈ Γ}
is another K-basis as in the proposition. Then

fγ − f ′
γ ∈ A ∩

( ∑

δ∈CΓ(γ)

Kxδ

)
= 0

for all elements γ ∈ Γ, and we are done. □

Definition. The K-basis {1, fγ | γ ∈ Γ} in Proposition 2.1 is called the canonical K-basis of
the algebra A. Any K-basis of the type {1, λγfγ | γ ∈ Γ}, where λγ ∈ K×, is called a canonical

K-basis of the algebra A.

The structure constants of the algebra A with respect to the canonical basis. For
an algebra A ∈ A(m,Γ), let {1, fγ | γ ∈ Γ} be the canonical basis of the algebra A = A/xmK[x]
where

fγ = xγ +
∑

δ∈CΓ(γ)

λγδx
δ and λγδ ∈ K. (5)

The total number of the parameters {λγδ} is equal to

∏

γ∈Γ

|CΓ(γ)|. (6)

In general, they are not algebraically independent. For each subset S of the set {2, . . . ,m − 1},
let us consider the characteristic function of the set S,

χ(·, S) : {2, . . . ,m− 1} → {0, 1}, i 7→ χ(i, S) =

{
1 if i ∈ S,

0 if i ̸∈ S.

Then, by direct computation, for all elements γ, γ′ ∈ Γ,

fγfγ′ =

{
xγ+γ′

+
∑

ξ∈CΓ(γ+γ′) λγ,γ′;ξx
ξ +

∑
ρ∈Γ(γ+γ′) µγ,γ′;ρx

ρ if γ + γ′ < m− 1,

0 if γ + γ′ ≥ m− 1.
(7)
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where

λγ,γ′;ξ = λγ,ξ−γ′χ(ξ−γ′, CΓ(γ))+λγ′,ξ−γχ(ξ−γ, CΓ(γ′))+
∑

{δ+δ′=ξ | δ∈CΓ(γ),δ′∈CΓ(γ′)}

λγδλγ′δ′ , (8)

µγ,γ′;ρ = λγ,ρ−γ′χ(ρ− γ′, CΓ(γ)) + λγ′,ρ−γχ(ρ− γ, CΓ(γ′)) +
∑

{δ+δ′=ρ | δ∈CΓ(γ),δ′∈CΓ(γ′)}

λγδλγ′δ′ .

(9)
For elements i, j ∈ {2, . . . ,m − 1} such that i < j, let Γ(i, j) := {k ∈ Γ | i < k < j} and
CΓ(i, j) := {k ∈ CΓ | i < k < j}.

For each algebra A ∈ A(m,Γ), Proposition 2.2.(1) and (9) determine explicitly the structure
constants of the algebra A with respect to its canonical basis.

Proposition 2.2 Given an algebra A ∈ A(m,Γ). Let {1, fγ | γ ∈ Γ} be the canonical basis of the
algebra A, see (5). Then for all elements γ, γ′ ∈ Γ such that γ + γ′ < m− 1,

1. fγfγ′ = fγ+γ′ +
∑

ρ∈Γ(γ+γ′) µγ,γ′;ρfρ, and

2. fγ+γ′ = xγ+γ′

+
∑

ξ∈CΓ(γ+γ′) λγ,γ′;ξx
ξ −

∑
δ∈CΓ(γ+γ′)

(∑
ρ∈Γ(γ+γ′,δ) µγ,γ′;ρλρδ

)
xδ.

3. For all elements δ ∈ CΓ(γ + γ′), λγ+γ′,δ = λγ,γ′;δ −
∑

ρ∈Γ(γ+γ′,δ) µγ,γ′;ρλρδ.

Proof. Let D be the double sum in statement 2. By (5) and (7),

fγfγ′ = xγ+γ′

+
∑

ξ∈CΓ(γ+γ′)

λγ,γ′;ξx
ξ −

∑

ρ∈Γ(γ+γ′)

∑

δ∈CΓ(ρ)

µγ,γ′;ρλρδx
δ +

∑

ρ∈Γ(γ+γ′)

µγ,γ′;ρfρ

= xγ+γ′

+
∑

ξ∈CΓ(γ+γ′)

λγ,γ′;ξx
ξ −D +

∑

ρ∈Γ(γ+γ′)

µγ,γ′;ρfρ

= fγ+γ′ +
∑

ρ∈Γ(γ+γ′)

µγ,γ′;ρfρ +

{
−

∑

δ∈CΓ(γ+γ′)

λγ+γ′,δx
δ +

∑

ξ∈CΓ(γ+γ′)

λγ,γ′;ξx
ξ −D

}
.

Since A ∋ fγfγ′ − fγ+γ′ −
∑

ρ∈Γ(γ+γ′) µγ,γ′;ρfρ = {· · · }, we must have {· · · } = 0 (as three sums

in {· · · } are over CΓ(γ + γ′) and the LHS of the equality is an element of the algebra A and if it
is nonzero then the LHS unless it is not = λxγ′′

+ · · · for some element λ ∈ K× and γ′′ ∈ Γ, a
contradiction), and statements 1–3 follow. □

Generators and defining relations of the algebra A. Corollary 2.3 defines the commu-
tative algebra A via generators and defining relations.

Corollary 2.3 Given an algebra A ∈ A(m,Γ), we keep the notation of Proposition 2.2. Then the
commutative algebra A is generated by the elements {fγ}γ∈Γ subject to the defining relations:

fγfγ′ = fγ+γ′ +
∑

ρ∈Γ(γ+γ′)

µγ,γ′;ρfρ for all γ, γ′ ∈ Γ such that γ + γ′ < m− 1,

fγfγ′ = 0 for all γ, γ′ ∈ Γ such that γ + γ′ ≥ m− 1.

Proof. The corollary follows at once from Proposition 2.2.(1) and (7). □

Each non-empty set Γ ∈ S(m) is a disjoint union

Γ = ind(Γ)
∐

dec(Γ)
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where ind(Γ) is the set of indecomposable elements of Γ and dec(Γ) is the set of decomposable
elements of Γ. An element γ ∈ Γ is called decomposable if γ = γ1+γ2 for some elements γ1, γ2 ∈ Γ.
Fix Γ ∈ S(m) and let

ind(Γ) = {ν1, . . . , νs} where 2 ≤ ν1 < · · · < νs ≤ m− 2. (10)

Let Q be the field of rational numbers. For the s-dimensional vector space Qs =
⊕s

i=1 Qei, let
ab :=

∑s
i=1 aibi the scalar product on it where a = (a1, . . . , as), b = (b1, . . . , bs) ∈ Qs. The set of

elements e1, . . . , es is the canonical Q-basis of Qs. Define

νΓ := ν := (ν1, . . . , νs) ∈ Ns
+ ⊂ Qs. (11)

For each element γ ∈ dec(Γ), let

Rel(γ) := {a ∈ Ns | aν = γ}.

Clearly |Rel(γ)| < ∞. For each element γ ∈ dec(Γ), we fix an element

a(γ) ∈ Rel(γ). (12)

For each νi ∈ ind(Γ), we set a(ν1) = νi. In particular, a(γ)ν = γ for all γ ∈ Γ. The choice of a(γ)
is arbitrary but fixed. By definition, a(νi) := ei for all i = 1, . . . , s. Let

dec(Γ)≥2 := {γ ∈ dec(Γ) | |Rel(γ)| ≥ 2}. (13)

Recall that fνi
= xνi +

∑
j∈CΓ(νi)

λνi,jx
j for i = 1, . . . , s and CΓ(νi, k) = {j | νi < j < k, j ̸∈ Γ}.

For each natural number k such that 2 ≤ k ≤ m− 1, let

Λ(k) := {λνi,j | i = 1, . . . , s; νi < k; j ∈ CΓ(νi, k)}. (14)

Given an algebra A ∈ A(m,Γ). Let {1, fγ | γ ∈ Γ} be the canonical basis of A. For each
a = (ai) ∈ Ns, let fa :=

∏s
i=1 f

ai
νi
. In particular, for each γ ∈ dec(Γ) and νi ∈ ind(Γ), fa(γ) =∏s

i=1 f
a(γ)i
νi and fa(νi) = fνi

.

Lemma 2.4 For all nonzero elements a ∈ Ns,

fa = faν +
∑

γ′∈Γ(aν)

cγ′(fa)fγ′ ,

faν = xaν +
∑

aν<δ<m

cδ(f
a)xδ −

∑

γ′∈Γ(aν)

cγ′(fa)fγ′ ,

where cγ′(fa) is the coefficient of xγ′

of the polynomial fa = xaν +
∑m−1

j=aν+1 cj(f
a)xj. The

coefficient cγ′(fa) is an explicit polynomial in the variables Λ(γ′), see (14).

Proof. Recall that fνi
= xνi +

∑
j∈CΓ(νi)

λνi,jx
j for i = 1, . . . , s. By multiplying out, we get

the equality

fa = xaν +
m−1∑

j=aν+1

cj(f
a)xj

where each cj(f
a) is an explicit polynomial in the variables Λ(j). For each element γ ∈ Γ, let

tγ := fγ − xγ , the tail of the polynomial fγ . Then

fa = xaν +
∑

δ∈CΓ(aν)

cδ(f
a)xδ −

∑

γ′∈Γ(aν)

cγ′(fa)tγ′ +
∑

γ′∈Γ(aν)

cγ′(fa)fγ′

= faν +
∑

γ′∈Γ(aν)

cγ′(fa)fγ′ +∆
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where ∆ = −taν +
∑

δ∈CΓ(aν) cδ(f
a)xδ −

∑
γ′∈Γ(aν) cγ′(fa)tγ′ ∈

∑
δ∈CΓ(aν) Kxδ. Then

∆ = 0

since ∆ = fa − faν −
∑

γ′∈Γ(aν) cγ′(fa)fγ′ ∈ A (if ∆ ̸= 0 then on the one hand ∆ ∈ K×xδ + · · ·

for some δ ∈ Γ(aν) since ∆ ∈ A, on the other hand δ ∈ CΓ(aν), a contradiction; the three dots
denote higher degree terms), and the first equality of the lemma follows.

The second equality of the lemma follows from the first and the third equalities of the lemma
(the second equality of the lemma is equivalent to the equality ∆ = 0). □

Elements of the canonical basis as polynomial in fν1
, . . . , fνs

. Lemma 2.5.(2) represents
each element fγ of the canonical basis of the algebra A ∈ A(m,Γ) as an explicit polynomial
in fν1

, . . . , fνs
. For each element γ ∈ dec(Γ)≥2 and element b ∈ Rel(γ)\{a(γ)}, Lemma 2.5.(3)

represents the element f b as an explicit linear combination of the elements {fa(γ) | γ ∈ Γ}.

Lemma 2.5 Let A ∈ A(m,Γ) and ind(Γ) = {ν1, . . . , νs} (see above). Then

1. The set {1, fν1
, . . . , fνs

, fa(γ) | γ ∈ dec(Γ)} is a K-basis of the algebra A.

2. For each element γ ∈ Γ, fγ = fa(γ)+
∑

γ′∈Γ(γ) ηγγ′fa(γ′) for unique elements ηγγ′ ∈ K. Each

element ηγγ′ is an explicit polynomial in Λ(γ′), see (15) (if γ = νi then fνi
= fa(νi) = fνi

is
a tautology).

3. For each element γ ∈ dec(Γ)≥2 and each element b ∈ Rel(γ)\{a(γ)},

f b = fa(γ) +
∑

γ′∈Γ(γ)

θγ,γ′;bf
a(γ′)

for unique elements θγ,γ′;b ∈ K. Each element θγ,γ′;b is an explicit polynomial in Λ(γ′), see
also (16).

Proof. 1. Statement 1 follows from the fact that fa(γ) ∈ fγ +
∑

γ′∈Γ(γ) Kfγ′ where {1, fγ | γ ∈

Γ} is the canonical basis of the algebra A.
2. Statement 2 follows from statement 1 and Lemma 2.4.
3. Statement 3 follows from statement 2 and Lemma 2.4. □

Explicit expressions for the elements ηγγ′ and θγ,γ′;b. We keep the notation of Lemma
2.5. In order to write explicit defining relations of the algebra A (Theorem 2.15) and the algebra
A (Theorem 2.17) we need an explicit expression for the elements θγ,γ′;b, see (16). In order to
obtain it we use Lemma 2.4 and Lemma 2.5. There are two K-bases for the algebra A: the
standard basis {1, fγ | γ ∈ Γ} where the order of elements are increasing (if Γ = {γ1 < · · · < γt}
then {1 < fγ1

< · · · < fγt
}) and the K-basis {1, fa(γ) | γ ∈ Γ} where the order of elements is also

increasing, i.e. {1 < fa(γ1) < · · · < fa(γt)}. Recall that a(νi) = ei for all i = 1, . . . , s. By Lemma
2.4,

fa(γ) = fγ +
∑

γ′∈Γ(γ)

cγ′(fa(γ))fγ′ , γ ∈ dec(Γ),

fa(νi) = fνi
, i = 1, . . . , s.

It follows from the equalities above that the change-of-basis matrix CA (from the standard basis
to the second one) is a lower unitriangular matrix (i.e. a lower triangular matrix with identities on
the diagonal). The elements of the matrix CA are the coefficients in the equalities above. So, the
matrix CA is a sum CA = 1 + nA of the identity matrix 1 and a strictly lower triangular matrix
nA. Hence, the inverse matrix of CA,

C−1

A
=

dim(A)∑

i=0

(−nA)
i, (15)
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is also a lower unitriangular matrix elements of which are explicit expressions, i.e. the elements
ηγγ′ (in Lemma 2.5.(2)) are explicit expressions. Now, when we substitute the expression for
fa(γ) from Lemma 2.4 into the sum in Lemma 2.5.(2) to obtain the result: For each element
γ ∈ dec(Γ)≥2 and element b ∈ Rel(γ)\{a(γ)},

f b = fγ +
∑

γ′∈Γ(γ)

cγ′(f b)fγ′

= fa(γ) +
∑

γ′∈Γ(γ)

ηγγ′fa(γ′) +
∑

γ′∈Γ(γ)

cγ′(f b)
(
fa(γ′) +

∑

γ′′∈Γ(γ′)

ηγ′γ′′fa(γ′′)
)

= fa(γ) +
∑

γ′∈Γ(γ)

(
ηγγ′ + cγ′(f b) +

∑

δ∈Γ(γ,γ′)

cδ(f
b)ηδγ′

)
fa(γ′).

In order to get the last equality we changed the order of summation in the double sum and replaced
(γ′, γ′′) by (δ, γ′). Therefore, for each element γ ∈ dec(Γ)≥2 and element b ∈ Rel(γ)\{a(γ)},

θγ,γ′;b = ηγγ′ + cγ′(f b) +
∑

δ∈Γ(γ,γ′)

cδ(f
b)ηδγ′ . (16)

By Lemma 2.5.(3), the elements θγ,γ′;b can be also found recursively by using the equality

θγ,γ′;b = cγ′

(
f b − fa(γ) −

∑

γ′′∈Γ(γ,γ′)

θγ,γ′′;bf
a(γ′′)

)
(17)

where the RHS is the coefficient of xγ′

of the polynomial in the brackets.

Consider the monoid (Ns,+) and its subsemigroup

Ns(m− 1,Γ) := {c ∈ Ns | cν ≥ m− 1} = {c ∈ Ns | cν > m− 1}.

The subsemigroup Ns(m−1,Γ) is also an ideal of the monoid (Ns,+), that is Ns+Ns(m−1,Γ) ⊆
Ns(m− 1,Γ).

Claim. The set

indNs(m− 1,Γ) := Ns(m− 1,Γ)\
(
Ns(m− 1,Γ) + (Ns\{0})

)

of minimal generators of the ideal Ns(m− 1,Γ) is a finite set.
Proof. Let Λ be the (homogeneous) subalgebra of K[x] that is generated by the elements

xν1 , . . . , xνs (where ind(Γ) = {ν1, . . . , νs}). Then the ideal a = Λ ∩ xm−1K[x] of the Noetherian
algebra Λ is a finitely generated and the finite set {xδν | δ ∈ indNs(m − 1,Γ)} is its minimal set
of generators (as a Λ-module). In particular, the factor algebra

K[xν1 , . . . , xνs ]/(xδν | δ ∈ indNs(m− 1,Γ)) = K ⊕
⊕

γ∈Γ

Kxγ (18)

is finite dimensional. Its dimension is 1 + |Γ|. □

Lemma 2.6 is a characterization of algebras A ∈ A(m) with |ind(ΓA)| = 1. For a rational
number q ∈ Q, we denote by [q] the integer part of q, i.e. the unique integer [q] such that
[q] ≤ q < [q] + 1.

Lemma 2.6 Given an algebra A ∈ A(m,Γ). Suppose that ind(Γ) = {ν1}. Then A ≃ K[fν1 ]/(f
[m−1

ν1
]+1

ν1 )

and vice versa, i.e. if A ≃ K[f ]/(f [m−1
d

]+1) for some algebra A ∈ A(m) where f = xd+λd−1x
d−1+

· · ·+ λm−1x
m−1 ∈ K[x] then ind(Γ) = {d}, d ≥ 2 and d ∤ m− 1.
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Proof. (⇒) Since ind(Γ) = {ν1}, Γ = {iν1 | 1 ≤ i ≤ [m−1
ν1

]} and A = K ⊕
⊕[m−1

ν1
]

i=1 Kf i
ν1

with

f
[m−1

ν1
]+1

ν1 = 0, and the implication follows.
(⇐) Straightforward. □

In view of Lemma 2.6, we will assume that s = |ind(Γ)| ≥ 2. Theorem 2.7 shows that the set
{fν1

, . . . , fνs
} is a minimal set of generators of the algebra A, it also presents defining relations

of the algebra A that the set of generators satisfies. In general, some of the defining relations
that are given in the first equation of Theorem 2.7 are redundant. An irredundant set is given in
Theorem 2.11.

Theorem 2.7 Given an algebra A ∈ A(m,Γ). Suppose that s = |ind(Γ) ≥ 2 and we keep the no-
tation as above. Then the algebra A is generated by the the minimal set of generators {fν1

, . . . , fνs
}

that satisfies the defining relations (as a commutative algebra):

f b = fa(γ) +
∑

γ′∈Γ(γ)

θγ,γ′;bf
a(γ′) where γ ∈ dec(Γ)≥2 and b ∈ Rel(γ)\{a(γ)},

f c = 0 where c ∈ indNs(m− 1,Γ).

Proof. By Lemma 2.5.(2), the elements fν1
, . . . , fνs

are generators of the algebra A. They are
a minimal set of generators for the algebra A since ind(Γ) = {ν1, . . . , νs}. Clearly, they satisfy the
relations of the theorem (by Lemma 2.5.(3) and the definition of the semigroup Ns(m− 1,Γ)).

Let A
′
be a commutative algebra that is generated by indeterminates fν1

, . . . , fνs
subject to

the defining relations of the theorem. Then A
′
= K +

∑
γ∈Γ Kfa(γ), by the definition of the sets

indNs(m− 1,Γ) and dec(Γ). Hence the epimorphism

ϕ : A
′
→ A, fνi

7→ fνi

is an isomorphism since A = K ⊕
⊕

γ∈Γ Kfa(γ). □

Remarks. 1. The relations ‘f c = 0′ are obvious ones. They imply that the algebra that satisfies
them is a finite dimensional Γ-graded algebra.

2. The relations ‘f b = fa(γ) + · · ·′ are not obvious ones. In general, some of them are
redundant. Theorem 2.11 replaces this set of defining relation by the one none element of which
can be dropped. In order to prove Theorem 2.11, we need to introduce more concepts and to
prove some more results (Lemma 2.8).

Recall that ν = (ν1, . . . , νs) (see (11)) and s ≥ 2. The kernel of the Q-linear map

·ν : Qs → Q, a 7→ aν =

s∑

i=1

aiνi

is equal to
⊕s

i=2 Q(νie1 − ν1ei). Its Q-dimension is equal to s − 1. The rank of the Z-module
kerQs(·ν) ∩ Zs is equal to s− 1 since the intersection contains

⊕s
i=2 Z(νie1 − ν1ei). Consider the

‘ideal of relations’ of the semigroup Γ,

IΓ :=
∑

γ∈dec(Γ)≥2

∑

a,b∈Rel(γ)

N(a− b) =
∑

γ∈dec(Γ)≥2

∑

a,b∈Rel(γ)

Z(a− b) ⊆ kerQs(·ν) ∩ Zs. (19)

The second equality follows from the equality N(a − b) + N(b − a) = Z(a − b). Clearly, the set
IΓ is a free abelian group of rank r = rΓ and 0 ≤ r ≤ s − 1. The rank rΓ is equal to zero iff
dec(Γ)≥2 = ∅ iff each elemenet γ ∈ Γ is a unique sum of the elements ν1, . . . , νs (counted with
multiplicity), and Lemma 2.8 follows from Theorem 2.7.

Lemma 2.8 Given an algebra A ∈ A(m,Γ). Suppose that dec(Γ)≥2 = ∅. Then

A = K[fν1 , . . . , fνs
]/(f c)c∈indNs(m−1,Γ),
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the sets {fν1 , . . . , fνs
} and {f c | c ∈ indNs(m− 1,Γ)} are minimal sets of generators and defining

relations of the algebra A.

In view of Lemma 2.8, we will assume that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅.

Sets of generators and defining relations of the algebra Amon where Amon ∈ A(m,Γ)
is the monomial algebra. An algebra A ∈ A(m) is called a monomial algebra if it admits a
monomial basis. Let Γ = ΓA. The algebra A is a monomial algebra iff

A = K ⊕
⊕

γ∈Γ

Kxγ ⊕ xmK[x]

iff {1, xγ | γ ∈ Γ} is the canonical basis of the algebra A. We denote the monomial algebra in
A(m,Γ) by Amon = Amon(Γ).

If either |ind(Γ)| = 1 or |ind(Γ)| ≥ 2 and dec(Γ)≥2 = ∅ then the generators and defining
relations of the algebra Amon are given in Lemma 2.6 and Lemma 2.8, respectively.

Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅. Recall that ind(Γ) = {ν1, . . . , νs}. The set
fν1

= xν1 , . . . , fνs
= xνs is a minimal set of generators of the monomial algebra Amon. Let M =

M(Γ) be the factor algebra of the (abstract) polynomial algebra K[fν1
, . . . , fνs

] in s indeterminates
modulo the ideal (f c)c∈indNs(m−1,Γ). The algebra

M = K ⊕
⊕

γ∈Γ

Mγ , where Mγ :=
⊕

a∈Ns,aν=γ

Kfa,

is a finite dimensional, local, graded algebra where n = (fν1
, . . . , fνs

) is its maximal ideal which is
a homogeneous ideal. There is a graded K-algebra epimorphism M → Amon, fνi

7→ fνi
= xνi for

i = 1, . . . , s. By Theorem 2.7, the kernel a = aΓ is a homogeneous ideal which is generated by the
set {f b − fa(γ) | γ ∈ dec(Γ)≥2, b ∈ Rel(γ)\{a(γ)}}. Furthermore,

M = K ⊕
s⊕

i=1

Kfνi
⊕

⊕

γ∈dec(Γ)

fa(γ) ⊕ aΓ and aΓ =
⊕

γ∈dec≥2(Γ)

⊕

b∈Rel(γ)\{a(γ)}

K(f b − fa(γ)). (20)

By Nakayama’s Lemma, any K-basis of the vector space a/na, say

B = BΓ = {f b1 − fa(µ1), . . . , f bt − fa(µt)}, µ1 ≤ · · · ≤ µt, t = tΓ := dimK(a/na), (21)

together with the set {f c | c ∈ indNs(m− 1,Γ)} is a set of defining relations for the algebra Amon.
The choice of the elements µ1 ≤ · · · ≤ µt (counted with multiplicity) is unique since the ideals a,
n and na are homogeneous.

The elements b1, . . . , bt can be effectively found. There is not much freedom in their choice.
Let BΓ := {b | b ∈ Rel(γ), γ ∈ dec≥2(Γ)},

B′
Γ := BΓ\

( s⋃

i=1

(ei + BΓ)

)
= {b′1, . . . , b

′
τ} and µ′

1 := b′1ν, . . . , µ
′
τ := b′τν (22)

where e1, . . . , es is the standard Q-basis of the s-dimensional Q-vector space Qs =
⊕s

i=1 Qei. For
each element µ′

i, where 1 ≤ i ≤ τ , let B′
Γ(µ

′
i) = {b′j | 1 ≤ j ≤ τ, b′jν = µ′

i}.
Let us show that always we can chose the elements b1, . . . , bt from the set {b′1, . . . , b

′
τ} changing

the choice of the elements a(γ) if necessary. Let

µ′
i1

< · · · < µ′
iσ

be all the distinct elements of the set {µ′
1, . . . , µ

′
τ}.

Definition. The element µ′
iα

∈ Γ, where 1 ≤ α ≤ σ, is called an avoidable element if

Rel(µ′
iα
) ∩

( s⋃

i=1

(ei + BΓ)

)
= ∅,
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and non-avoidable, otherwise. The sets of avoidable and non-avoidable elements are denoted by
Γav and Γna, respectively. Therefore,

{µ′
i1
, . . . , µ′

iσ
} = Γav

∐
Γna.

Definition. The set {a(γ) | γ ∈ Γ} is called a non-avoidable set provided a(µ′) ̸∈ B′
Γ(µ

′) for all
µ′ ∈ Γna.

It follows from the definition, that there are plenty of non-avoidable sets. Proposition 2.9 shows
that the set BΓ is unique provided that {a(γ) | γ ∈ Γ} is a non-avoidable set.

Proposition 2.9 We keep the notation as above. Let {a(γ) | γ ∈ Γ} be a non-avoidable set. Then
the set BΓ is uniquely defined. Furthermore,

1. {b1, . . . , bt} = B′
Γ\{a(µ

′) |µ′ ∈ Γav} and t = tΓ = |B′
Γ| − |Γav| (see (21) and (22)).

2. The set {µ′
i1
, . . . , µ′

iσ
} contains precisely all the distinct elements of the set {µ1, . . . , µt}, i.e.

{µ1, . . . , µt} = {µ′
i1
, . . . , µ′

iσ
} (after deleting repetitions), and the multiplicity of the element

µi is equal to

mult(µi) =

{
|B′

Γ(µi)| − 1 if µi ∈ Γav,

|B′
Γ(µi)| if µi ∈ Γna.

Proof. 1. Since the set {a(γ) | γ ∈ Γ} is a non-avoidable set, {b1, . . . , bt} = B′
Γ\{a(µ

′) |µ′ ∈
Γav}, and so t = tΓ = |B′

Γ| − |Γav|.
2. Statement 2 follows from statement 1. □

Summarizing, we have the following proposition which gives generators and defining relations
for the algebra Amon.

Proposition 2.10 Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅. Then the monomial algebra
Amon is generated by the minimal set of generators {fν1

= xν1 , . . . , fνs
= xνs} that satisfies the

defining relations:

f bi = fa(µi) for i = 1, . . . , t = tΓ,

f c = 0 where c ∈ indNs(m− 1,Γ).

None of the relations in the first set can be omitted.

Sets of generators and defining relations of the algebra A where A ∈ A(m,Γ),
|ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅.

Theorem 2.11 Given an algebra A ∈ A(m,Γ). Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅.
Then the algebra A is generated by the minimal set of generators {fν1

, . . . , fνs
} that satisfies the

defining relations:

f bi = fa(µi) +
∑

γ′∈Γ(µi)

θµi,γ′;bif
a(γ′) for i = 1, . . . , t = tΓ, and (23)

f c = 0 for c ∈ indNs(m− 1,Γ), (24)

where the elements θγi,γ′;∗ are defined in (16). None of the relations in (23) can be omitted.

Proof. Let A
′
be a commutative algebra that is generated by the indeterminates fν1

, . . . , fνs

subject to the defining relations of the theorem. The relations f c = 0, where c ∈ indNs(m− 1,Γ),

imply that the algebra A
′
is a finite dimensional algebra. The K-homomorphism

ϕ : A
′
→ A, fνi

7→ fνi
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is an epimorphism. To finish the proof it suffices to show that dimK(A
′
) ≤ dimK(A). The

algebra A
′
admits a descending filtration {A

′

≥i :=
∑

{a∈Ns | aν≥i} Kfa}i∈N. Its image under ϕ,

{ϕ(A
′

≥i)}i∈N, is the induced radical filtration on the algebra A. Hence, we have the epimorphism
of the corresponding graded algebras:

grϕ : grA
′
→ grA = K ⊕

⊕

γ∈Γ

Kxγ = Amon.

The algebra grA
′
is an epimorphic image of the N-graded algebra Λ which is generated by the

indeterminates fν1
, . . . , fνs

subject to the defining relations f bi = fa(µi) for i = 1, . . . , t and f c = 0

for all c ∈ indNs(m − 1,Γ). By Proposition 2.10, Λ ≃ Amon. Hence, dimK(A
′
) ≤ dimK(A), as

required. □

Generators and defining relations for the algebra A ∈ A(m,Γ). For each algebra
A ∈ A(m,Γ), we give explicit sets of generators and defining relations using the sets of generators
and defining relations of the algebra A that we obtained above.

Case: Γ = ∅. The algebra Λ = Λ(M) := K ⊕ xmK[x] is the only element of the set A(m, ∅).

Lemma 2.12 follows at once from the equality Λ(m) =
⊕m−1

i=0 K[xm]xm+i, a direct sum of free
rank 1 K[xm]-modules.

Lemma 2.12 The commutatiove algebra Λ(m) is generated by the elements {xm+i | i = 0, 1, . . . ,m−
1} subject to the defining relations: For all i, j such that 0 ≤ i, j ≤ m− 1,

xm+ixm+j =

{
xmxm+i+j if i+ j < m,

(xm)2xi+j if i+ j ≥ m.

The set {xm+i | i = 0, 1, . . . ,m− 1} is a minimal set of generators and the defining relations above
is a minimal set of defining relations.

We have the direct sum of vector spaces over K, K[x] = K[x]≤m−1⊕ (xm) where K[x]≤m−1 =⊕m−1
i=0 Kxi. We identify the factor algebra

F = K[x]/(xm) =
m−1⊕

i=0

Kxi

with the K-subspace K[x]≤m−1 via the K-linear isomorphism xi 7→ xi for i = 0, 1, . . . ,m − 1.
Then every polynomial p ∈ K[x] is a unique sum

p = p+ [p] where p ≡ p mod (xm) and [p] = p− p ∈ (xm).

In particular, for elements f, g ∈ F , there are two products: fg is in K[x] and f · g is in F . They
are related by the equality in K[x]:

f · g = fg − [fg].

We will use this type of equalities when we obtain defining relations for the algebra A from the
defining relations of the algebra A. Recall that

Λ(m) =

m−1⊕

i=0

K[xm]xm+i ⊆ K[x].

So, for each polynomial p ∈ K[x], its projection [p] onto (xm) is a unique sum

[p] =

m−1∑

i=0

pi(x
m)xm+i where pi(x

m) ∈ K[xm]. (25)

When we write [p] we mean that the element [p] ∈ (xm) is written as the unique sum above.
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Theorem 2.13 We keep the notation of Corollary 2.3. Suppose that A ∈ A(m,Γ) with Γ ̸= ∅.
Then the commutative algebra A is generated by the elements {fγ , x

m+i | γ ∈ Γ, i = 0, 1, . . . ,m−1}
subject to the defining relations:

fγfγ′ − [fγfγ′ ] = fγ+γ′ +
∑

ρ∈Γ(γ+γ′)

µγ,γ′;ρfρ for all γ, γ′ ∈ Γ such that γ + γ′ < m− 1,

fγfγ′ − [fγfγ′ ] = 0 for all γ, γ′ ∈ Γ such that γ + γ′ ≥ m− 1,

xm+ixm+j = [x2m+i+j ] for all i, j = 0, 1, . . . ,m− 1,

xm+ifγ = [xm+ifγ ] for all i, j = 0, 1, . . . ,m− 1 and γ ∈ Γ.

Proof. Let A′ be the algebra which is defined by the generators and defining relations in the
theorem. We have to show that it is isomorphic to the algebra A. By Corollary 2.3, the algebra
A is generated by the elements {fγ , x

m+i | γ ∈ Γ, i = 0, 1, . . . ,m − 1} that satisfy the relations of
theorem. Hence, there is a a natural K-algebra epimorphism:

ϕ : A′ → A, fγ 7→ fγ , xm+i 7→ xm+i.

By Lemma 2.12, the algebra Λ(m) is a subalgebra of A′ that is mapped isomorphically via ϕ onto

its copy Λ(m) in the algebra A. The ideal a =
∑m−1

i=0 K[xm]xm+i of the subalgebtra Λ(m) of A′ is
an ideal of the algebra A′ (see the last two types of the defining relations of the algebra A′). It is
mapped isomorphically by ϕ onto the ideal (xm) = xmK[x] of the subalgebra Λ(m) of K[x]. By

Corollary 2.3, A
′
:= A′/a ≃ A (as the algebra A

′
has the same generators and defining relations

as the algebra A). Now, there is a commutative diagram of algebra homomorphisms:

0 // a //

��

A′ //

ϕ

��

A
′

//

��

0

0 // (xm) // A // A // 0

where the left vertical map is a restriction of ϕ and the right vertical map is induced by ϕ,
they are bijections. Hence, the map ϕ is so, i.e. A′ ≃ A via ϕ. □

Definition. For the algebra A ∈ A(m,Γ), the K-basis {1, fγ , x
i | γ ∈ Γ, i ≥ m is called the

canonical basis of A. By definition, a canonical basis of A is obtained from the canonical basis my
multiplying each its element by an element of K×.

The structure constants of the algebra A ∈ A(m,Γ). The structure constants of the
algebra A ∈ A(m,Γ) with respect to the canonical basis is given by the rule: For all elements
γ, γ′ ∈ Γ and i, j ≥ m,

fγfγ′ =

{
fγ+γ′ +

∑
ρ∈Γ(γ+γ′) µγ,γ′;ρfρ + [fγfγ′ ] if γ + γ′ < m− 1,

[fγfγ′ ] if γ + γ′ ≥ m− 1,

xifγ = [xifγ ]m,

xixj = xi+j ,

where the element [· · · ]m has to be written as a sum
∑

j≥m λjx
j with λj ∈ K.

Lemma 2.14 gives generators and defining relations for algebras A ∈ A(m,Γ) such that
|ind(Γ)| = 1.
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Lemma 2.14 Given an algebra A ∈ A(m,Γ). Suppose that ind(Γ) = {ν1}. Then the algebra A
is generated by the elements {fν1 , x

m+i | i = 0, 1, . . . ,m− 1} subject to the defining relations:

f
[m−1

ν1
]+1

ν1 =

[
f
[m−1

ν1
]+1

ν1

]
,

xm+ixm+j = [x2m+i+j ] for i, j = 0, 1, . . . ,m− 1,

xm+ifν1
= [xm+ifν1

] for i = 0, 1, . . . ,m− 1.

Proof. The lemma follows from Lemma 2.6. □

Theorem 2.15 gives generators and defining relations for algebras A ∈ A(m,Γ) such that
|ind(Γ)| ≥ 2. In general, some of the relations that are given in the first equality of Theorem 2.15
are redundant. An irredundant set is given in Theorem 2.17.

Theorem 2.15 We keep the notation of Theorem 2.7. Given an algebra A ∈ A(m,Γ). Suppose
that s = |ind(Γ)| ≥ 2. Then the algebra A is generated by the elements {fν1

, . . . , fνs
, xm+i | i =

0, 1, . . . ,m− 1} subject to the defining relations (as a commutative algebra):

f b − [f b] = fa(γ) − [fa(γ)] +
∑

γ′∈Γ(γ)

θγ,γ′;b(f
a(γ′) − [fa(γ′)]) where γ ∈ dec(Γ)≥2 and b ∈ Rel(γ)\{a(γ)},

f c = [f c] where c ∈ indNs(m− 1,Γ),

xm+ifνj
= [xm+ifνj

] for i = 0, 1, . . . ,m− 1 and j = 1, . . . , s,

xm+ixm+j = [x2m+i+j ] for i, j = 0, 1, . . . ,m− 1.

Proof. Repeat the proof of Theorem 2.13 word for word but the algebra A′ there is replaced
by the algebra A′ from the theorem and instead of using Corollary 2.3 to prove the isomorphism
A′ ≃ A we use Theorem 2.7 instead. □

Corollary 2.16 is a particular (degenerated) case of Theorem 2.15. For each algebra A ∈
A(m,Γ) such that |ind(Γ)| ≥ 2 and dec(Γ)≥2 = ∅ it gives generators and defining relations.

Corollary 2.16 Given an algebra A ∈ A(m,Γ). Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 = ∅.
Then the algebra A is generated by the elements {fν1

, . . . , fνs
, xm+i | i = 0, 1, . . . ,m− 1} subject to

the defining relations (as a commutative algebra):

f c = [f c] where c ∈ indNs(m− 1,Γ),

xm+ifνj
= [xm+ifνj

] for i = 0, 1, . . . ,m− 1 and j = 1, . . . , s,

xm+ixm+j = [x2m+i+j ] for i, j = 0, 1, . . . ,m− 1.

Theorem 2.17 gives generators and defining relations for algebras A ∈ A(m,Γ) such that
|ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅, and none of the relations given in the first equality of Theorem
2.17 is redundant.

Theorem 2.17 We keep the notation of Theorem 2.11. Given an algebra A ∈ A(m,Γ). Sup-
pose that s = |ind(Γ) ≥ 2 and dec(Γ)≥2 ̸= ∅. Then the algebra A is generated by the set
{fν1 , . . . , fνs

, xm+i | i = 0, 1, . . . ,m− 1} subject to the defining relations:

f bi − [f bi ] = fa(µi) − [fa(µi)] +
∑

γ′∈Γ(µi)

θµi,γ′;bi(f
a(γ′) − [fa(γ′)]) for i = 1, . . . , t = tΓ,

f c = [f c] where c ∈ indNs(m− 1,Γ),

xm+ifνj
= [xm+ifνj

] for i = 0, 1, . . . ,m− 1 and j = 1, . . . , s,

xm+ixm+j = [x2m+i+j ] for i, j = 0, 1, . . . ,m− 1.

None of the relations in the first type of relations is redundant.
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Proof. Repeat the proof of Theorem 2.13 word for word but the algebra A′ there is replaced
by the algebra A′ from the theorem and instead of using Corollary 2.3 to prove the isomorphism
A′ ≃ A we use Theorem 2.11 instead. □

3 Isomorphism problems and an explicit description of the

automorphism groups of algebras A ∈ A(m)

In this section, the field K is an algebraically closed field (unless stated otherwise).

The aim of the section is to give explicit generators for the automorphism groups of algebras
in A(m) (Teorem 3.4.(1)), to give criteria for the automorphism group to be infinite/finite/trivial
(Theorem 3.4.(2–4), and Corollary 3.5). Theorem 3.7 and Corollary 3.9 are explicit descriptions
of the orders of all finite automorphism groups of algebras in A(m).

Let O(m) be the set of orders of all finite automorphism groups of algebras in A(m). By
Corollary 3.6.(1),

O(m) ⊆

{
{1, . . . ,m− 3} if 4 ≤ m is even,

{1, . . . ,m− 4} if 5 ≤ m is odd.

Theorem 3.7 and Corollary 3.9 are explicit descriptions of the set O(m). Lemma 3.12 and Lemma
3.13 are examples of algebras in A(m) with sophisticated orders of automorphism groups.

Notice that AutK(K[x]) = {σλµ |λ ∈ K×, µ ∈ K} where σλµ(x) = λx+ µ. The group

AutK(K[x]) = Sh(K)⋊ T(K)

is a semi-direct product of its normal subgroup, the shift group, Sh(K) := {sµ := σ1,µ |µ ∈
K} ≃ (K,+) (sµ 7→ µ) and the algebraic torus T = T(K) := {tλ := σλ,0 |λ ∈ K×} ≃ (K×, ·)
(tλ 7→ λ). The automorphism group AutK(K[x]) acts in the obvious way on the set of ideals of
the polynomial algebra K[x]. Then the algebraic torus T is the stabilizer of each of the ideals (xi),
i ≥ 1, i.e. T = {σ ∈ AutK(K[x]) |σ((xi)) = (xi)}.

For a natural number n ≥ 2, an element λ ∈ K× is called a primitive n’th root of unity if
λn = 1 and the elements 1, λ, . . . , λn−1 are distinct. If char(K) = 0 then for each n ≥ 2 there are
primitive n’th roots of unity. If char(K) = p > 0 then for each natural number n ≥ 2 there are
primitive n’th roots of unity iff p ∤ n (the field K is algebraically closed). If char(K) = 0 (resp.,
char(K) = p > 0) then for each natural number n ≥ 2 (resp., such that p ∤ n) fix a primitive n’th
root of unit, say λn. Then the identity group and the cyclic groups of order n ≥ 2 if char(K) = 0
(resp., char(K) = p > 0 and p ∤ n),

Cn := ⟨tλn
⟩ = {tiλn

| 0 ≤ i ≤ n− 1}, (26)

are precisely all the finite subgroups of the algebraic torus T.

The set IsoK(A,A′) where A ∈ A(m) and A′ ∈ A(m′). For an algebra A ∈ A(m), let
{1, fγ = xγuγ | γ ∈ ΓA} be the canonical basis of the algebra A where for each γ ∈ Γ, fγ =
xγ +

∑
δ∈CΓ(γ) λγδx

δ = xγuγ (see (5)) where

uγ := 1 +
∑

δ∈CΓ(γ)

λγδx
δ−γ ∈ A

×
(27)

and A
×

is the group of units of the algebra A.

Definition. The elements {uγ | γ ∈ ΓA} of A
×

are called the canonical units of the algebra
A.

Theorem 3.1.(2) is an isomorphism criterion for algebras in
⋃

m≥2 A(m). Theorem 3.1.(3)
describes the set IsoK(A,A′) of all K-algebra isomorphisms from an algebra A to A′.
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Theorem 3.1 (K is an arbitrary field) Given algebras A ∈ A(m) and A′ ∈ A(m′). Let {1, fγ =

xγuγ | γ ∈ ΓA} and {1, f ′
γ′ = xγ′

uγ′ | γ′ ∈ ΓA′} be the canonical bases of the algebras A and A′,
respectively. Then

1. IsoK(A,A′) = {tλ ∈ T | tλ(A) = A′}.

2. A ≃ A′ iff m = m′, ΓA = ΓA′ and there exists an automorphism tλ ∈ T such that tλ(fγ) =
λγf ′

γ for all γ ∈ ΓA iff m = m′, ΓA = ΓA′ and there exists an automorphism tλ ∈ T such
that tλ(uγ) = u′

γ for all γ ∈ ΓA.

3. Suppose that A ≃ A′. Then

(a) IsoK(A,A′) = {tλ ∈ T | tλ(fγ) = λγf ′
γ for all γ ∈ ΓA = ΓA′} = {tλ ∈ T | tλ(uγ) = u′

γ

for all γ ∈ ΓA = ΓA′}.

(b) The T-orbit TA of the algebra A (i.e. the set of all algebras isomorphic to A, by
statement 1) is equal to the set T/AutK(A) = {tλAutK(A) | tλ ∈ T} of all subalgebras
of K[x] that are isomorphic to the algebra A where AutK(A) = {tλ ∈ T | tλ(uγ) = uγ

for all γ ∈ ΓA}.

Proof. 1. We can assume that A,A′ ⊆ K[x] (since the polynomial algebra K[x] is their
commom normalization). Suppose that σ : A → A′ is a K-isomorphism. Then it can be uniquely
extended to an automorphism σ : K[x] → K[x], and necessarily σ((xm)) = ((xm′

)) (since (xm)
and (xm′

) are the conductors of the algebras A and A′, respectively). Then m = m′ and σ(x) = λx
for some λ ∈ K×, i.e. tλ ∈ T, and statement 1 follows.

2. It suffices to prove that the first ‘iff’ holds as the second one follows from the first.
(⇒) Suppose that A ≃ A′. By statement 1, there is an automorphism tλ ∈ T such that

tλ(A) = A′. Then m = m′ (see the proof of statement 1) and the automorphism tλ of K[x]
respects the (x)-adic filtration of the algebra K[x]. As a result, it respects the induced (x)-adic

filtrations on the algebras A = A/xmK[x] and A
′
= A′/xmK[x]. Hence, the automorphism tλ

induces an automorphism of the associated graded algebras, gr(A) ≃ gr(A
′
). Therefore, ΓA = ΓA′

and the image of the canonical basis of the algebra A under tλ is a canonical basis of the algebra

A
′
, and so tλ(fγ) = λγf ′

γ for all elements γ ∈ ΓA = ΓA′ .
(⇐) Clearly, tλ(A) = A′, and so tλ ∈ IsoK(A,A′), by statement 1.
3(a). The statement (a) follows from statement 2.
(b). The statement (b) follows from the statement (a) and the fact that AutK(A) = {tλ ∈

T | tλ(uγ) = uγ for all γ ∈ ΓA}, by the statement (a) where A = A′. □

Description of orbits of the algebraic torus T action on K×s. For each natural number
n ≥ 1, let Un = Un(K) := {λ ∈ K |λn = 1} be the group of n’th roots of unity. In characteristic
zero the set Un is a cyclic group of order n. In prime characteristic p > 0, Un = Un′ is a cyclic
group of order n′ where n = pνn′ for unique natural numbers ν and n′ such that (p, n′) = 1. A
cyclic generator of the group Un is called a primitive n’th root of unity if char(K) = 0 and a
primitive n′’th root of unity if char(K) = p > 0.

Let us consider an action of the algebraic torus T on the set K×s, s ≥ 1: For all λ ∈ T and
(λ1, . . . , λs) ∈ K×s,

λ · (λ1, . . . , λs) = (λn1λ1, . . . , λ
nsλs), (28)

where the integer-valued vector (n1, . . . , ns) ∈ (Z\{0})s is called the weight vector of the action.
For simplicity, we consider the case when all the weights ni are not equal to zero. The general
case is easily reduced to this one.

Let ξ1 be a cyclic generator of the group Un1 , i.e. ξ1 is a primitive n1’th (resp., n′
1’th) root

of unity if char(K) = 0 (resp., char(K) = p > 0, n1 = pν1n′
1 and p ∤ n1). Let H(n1, . . . , ns)

be a (cyclic) subgroup of the group Us−1
n1

which is generated by the element (ξn2
1 , . . . , ξns

1 ). The
order of the group H(n1, . . . , ns) is equal to n1gcd(n1, . . . , ns)

−1 (resp., n′
1gcd(n

′
1, . . . , n

′
s)

−1) if
char(K) = 0 (resp., char(K) = p > 0) where ni = pνin′

i and p ∤ n′
i.

Proposition 3.2 is a criterion for two elements of the set K×s to belong to the same T-orbit.
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Proposition 3.2 Given an action of the algebraic torus T on the set K×s with weight vector
(n1, . . . , ns) ∈ (Z\{0})s. Then elements λ, λ′ ∈ K×s belong to the same T-orbit iff µ(λ′)µ(λ)−1 ∈

H(n1, . . . , ns) where for λ = (λ1, . . . , λn), µ(λ) = (µ(λ)2, . . . , µ(λ)n) and µ(λ)i = λ
−

ni
n1

1 λi.

Proof. Notice that Tλ = T(1, µ(λ)) and Tλ′ = T(1, µ(λ′)). Hence, Tλ′ = Tλ iff µ(λ′) =
µ(λ)(ξn2

1 , . . . , ξns

1 )i for some natural number i ≥ 0, and the result follows. □
Let A ∈ A(m,Γ) and ind(Γ) = {ν1, . . . , νs}. Recall that fνi

= xνiuνi
where uνi

= 1 +∑
j∈CΓ(νi)

λνi,jx
j−νi (see (27)), and for all λ ∈ K×,

tλ(uνi
) = 1 +

∑

j∈CΓ(νi)

λj−νiλνi,jx
j−νi .

For each i = 1, . . . , s, let c(uνi
) = (. . . , λνi,j , . . .), j ∈ CΓ(νi), be the vector of nonzero coeffi-

cients (excluding 1) of the polynomial uνi
and let n(uνi

) = (. . . , j − νi, . . .), j ∈ CΓ(νi), be the
corresponding weight vector. Let c(A) = (c(uν1

), . . . , c(uνs
)) and n(a) = (n(uν1

), . . . , n(uνs
)).

Proposition 3.3 (K is an arbitrary field) Let A ∈ A(m,Γ), A′ ∈ A(m′,Γ′) and ind(Γ) =
{ν1, . . . , νs}. Then A ≃ A′ iff Γ = Γ′, m = m′, n(uνi

) = n(u′
νi
) for all i = 1, . . . , s and

Tc(A) = Tc(A′).

Proof. The result follows at once from Theorem 3.1.(2). □

Remark. Using Proposition 3.2 and Proposition 3.3, we can establish in finitely many steps
whether algebras A,A′ ∈ A are isomorphic or not.

Definition. Let f(x) = xd+ ad−1x
d−1+ · · ·+ a1x+ a0 ∈ K[x] be a monic polynomial of degree

d ≥ 1 where ai ∈ K are the coefficients of the polynomial f(x). Then the natural number

gcd(f(x)) := gcd{i ≥ 1 | ai ̸= 0}

is called the exponent of f(x).
Clearly, the exponent of f(x) is the largest natural number m ≥ 1 such that f(x) = g(xm) for

some polynomial g(x) ∈ K[x].

Definition. Suppose that char(K) = p > 0. Every nonzero natural number n is a unique
product of natural numbers, n = psnp where s ≥ 0 and p ∤ np. The number np is called the
p-co-prime divisor of n. In particular, for a nonscalar polynomial f ∈ K[x], we have the unique
product

gcd(f) = psgcdp(f) where s ≥ 0, gcdp(f) ∈ N and p ∤ gcdp(f). (29)

Let {1, fγ = xγuγ | γ ∈ Γ = ΓA} be the canonical basis of the algebra A, Let

gcd(A) := gcd{gcd(uγ) | γ ∈ Γ},

gcdp(A) := gcd{gcdp(uγ) | γ ∈ Γ},

where p is a prime number. Clealry, gcdp(A) = gcd(A)p, the p-co-prime divisor of gcd(A).

The group AutK(A) where A ∈ A(m). Theorem 3.4 is an explicit description of the
automorphism groups of algebras in A(m).

Theorem 3.4 Let A ∈ A(m,Γ), {1, fγ = xγuγ | γ ∈ Γ} be the canonical basis of the algebra A
and ind(Γ) = {ν1, . . . , νs}. Then

1. AutK(A) = {tλ ∈ T | tλ(fγ) = λγfγ for all γ ∈ Γ} = {tλ ∈ T | tλ(uγ) = uγ for all γ ∈ Γ}.

2. AutK(A) = T iff fγ = xγ for all γ ∈ Γ.
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3. Suppose that fγ ̸= xγ for some γ ∈ Γ (i.e. AutK(A) ̸= T, by statement 2). Then AutK(A) =
Cn = ⟨tλn

⟩ is a cyclic group of order n where

n =

{
gcd(A) if char(K) = 0,

gcd(A)p if char(K) = p > 0,

and λn is a primitive n’th root of unity.

(a) If char(K) = 0 then gcd(A) = gcd{gcd(uνi
) | i = 1, . . . , s}.

(b) If char(K) = p > 0 then gcd(A)p = gcd{gcdp(uνi
) | i = 1, . . . , s}.

4. AutK(A) = {e} iff gcd(A) = 1 if char(K) = 0, or gcdp(A) = 1 if char(K) = p > 0.

Proof. 1. Statement 1 follows from Theorem 3.1.(3).
2. Statement 2 follows from statement 1.
3. The first statement of statement 3 follows from statement 1.
(a,b). Let

n =

{
gcd(A) if char(K) = 0,

gcd(A)p if char(K) = p > 0,
and m =

{
gcd{gcd(uνi

) | i = 1, . . . , s} if char(K) = 0,

gcd{gcdp(uνi
) | i = 1, . . . , s} if char(K) = p > 0.

Then n|m. To finish the proof it is enough to show that m|n. Let t := tλm
. Then t ∈ T and

t(fνi
) ∈ K×fνi

for all i = 1, . . . , s. The elements fν1 , . . . , fνs
are generators of the algebra A.

Hence, t(A) = A, and so t ∈ AutK(A). The order of the automorphism t, which is m, divides the
order of the group AutK(A), which is n, as required.

4. Statement 4 follows fro statement 3. □

Corollary 3.5 is a criterion for an algebra A ∈ A(m) to have an infinite automorphism group.

Corollary 3.5 Given an algebra A ∈ A(m,Γ). Then the algebra A is a monomial algebra iff
AutK(A) = T iff {1, xγ | γ ∈ Γ} is the canonical basis of the algebra A.

Proof. The corollary follows from Theorem 3.4. □

Corollary 3.6 gives the upper bound for the orders of finite automorphism groups of algebras
in A(m).

Corollary 3.6 1. Suppose that A ∈ A(m) and |AutK(A)| < ∞ (i.e. the algebra A ∈ A(m) is
not the monomial algebra). Then

|AutK(A)| ≤

{
m− 3 if 4 ≤ m is even,

m− 4 if 5 ≤ m is odd.

(a) If char(K) = 0 then the upper bounds above are the exact upper bounds, see statements
2(a,b) below.

(b) If char(K) = p > 0 then

|AutK(A)| ≤

{
max{ip | 1 ≤ i ≤ m− 3} if 4 ≤ m is even,

max{ip | 1 ≤ i ≤ m− 4} if 5 ≤ m is odd,

where ip is the p-co-prime divisor of the natural number i. Let u(p,m) := max{ip | 1 ≤
i ≤ m − 3, i + j ≤ m − 1 for some natural number j = j(i) ≥ 2 such that j ∤ m − 1}.
Then u(p,m) = max{|AutK(A)| | A ∈ A(m), |AutK(A)| < ∞}.
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2. (a) If m ≥ 4 is even and A =
∑

i≥0 Kgi + xmK[x] where g = x2(1 + xm−3) then ΓA =

{2i | 1 ≤ i ≤ m−1
2 }, {1, g, x2i | 2 ≤ i ≤ m−1

2 } is the canonical basis of the algebra A and

AutK(A) =

{
⟨tλm−3

⟩ if char(K) = 0,

⟨tλ(m−3)p
⟩ if char(K) = p > 0,

|AutK(A)| =

{
m− 3 if char(K) = 0,

(m− 3)p if char(K) = p > 0,

where λm−3 is a primitive (m− 3)’rd root of unity, (m− 3)p is the p-co-prime divisor
of m− 3 if char(K) = p > 0.

(b) If m ≥ 5 is odd, 3 ∤ m− 1 and A =
∑

i≥0 Kgi + xmK[x] where g = x3(1 + xm−4) then

ΓA = {3i | 1 ≤ i ≤ m−1
3 }, {1, g, x3i | 2 ≤ i ≤ m−1

3 } is the canonical basis of the algebra

A and

AutK(A) =

{
⟨tλm−4⟩ if char(K) = 0,

⟨tλ(m−4)p
⟩ if char(K) = p > 0,

|AutK(A)| =

{
m− 4 if char(K) = 0,

(m− 4)p if char(K) = p > 0,

where λm−4 is a primitive (m− 4)’th root of unity, (m− 4)p is the p-co-prime divisor
of m− 4 if char(K) = p > 0.

Proof. 1. For polynomials of the type xa(1 + λ1x
b1 + · · ·+ λix

bi), where 1 ≤ b1 < · · · < bi and
λj ∈ K×, that belong to the algebra A, m ≥ 2 and bi ≤ m− 1− a ≤ m− 1− 2 = m− 3. If a = 2
and bi ≥ 1 then m ≥ 4 and |AutK(A)| ≤ m− 3, by Theorem 3.4.(1).

If m is even and char(K) = 0 then the algebra in the statement 2(a) has order m− 3. So, the
upper bound m− 3 is sharp in this case.

If m is even and char(K) = p > 0 then |AutK(A)| ≤ max{ip | 1 ≤ i ≤ m − 3}, by Theorem
3.4.(1).

If m is odd then the number m − 3 is even. So, for the algebra in the statement 2(a), the
polynomials of the type x2(1 + λ1x

b1 + · · · + λm−3x
bm−3) do not belong to its canonical basis

(since otherwise m − 1 ∈ ΓA = {2, 4, . . . ,m − 1}, a contradiction). Hence, a ≥ 3. If a = 3 then
1 ≤ bi ≤ m − 1 − a ≤ m − 1 − 3 = m − 4, and so m ≥ 5 and |AutK(A)| ≤ m − 4, by Theorem
3.4.(1).

If m is odd and char(K) = 0 then the algebra in the statement 2(b) has order m− 4. So, the
upper bound m− 4 is sharp in this case.

If m is odd and char(K) = p > 0 then AutK(A)| ≤ max{ip | 1 ≤ i ≤ m − 4}, by Theorem
3.4.(1).

Suppose that char(K) = p and we fix i such that ip = u(p,m), i.e. 1 ≤ i ≤ m−3, i+ j ≤ m−1
for some natural number j = j(i) ≥ 2 such that j ∤ m−1. Let g = xj(1+xi). Then, by the choice
of the natural numbers i and j,

A(g) :=
∑

k≥0

Kgi +K[x]xm ∈ A(m).

By Theorem 3.4.(3b), |AutK(A(g))| = ip. By Theorem 3.4.(3b), u(p,m) ≥ max{|AutK(A)| | A ∈
A(m), |AutK(A)| < ∞}, and so the inequality is the equality.

2(a). Notice that gi = x2i + · · · for all i ≥ 1, and so ΓA = {2i | 1 ≤ i ≤ m−1
2 }. Since

gi ≡ x2i mod (xm) for all i ≥ 2,

the set {1, g, x2i | 2 ≤ i ≤ m−1
2 } is the canonical basis of the algebra A, and the rest of the

statement 2(a) follows from Theorem 3.4.(3).
2(b). Similarly, gi = x3i + · · · for all i ≥ 1, and so ΓA = {3i | 1 ≤ i ≤ m−1

3 }. Since 3 ∤ m − 1,
m− 1 ̸∈ ΓA. For all i ≥ 2,

gi ≡ x3i mod (xm).

So, the set {1, g, x3i | 2 ≤ i ≤ m−1
3 } is the canonical basis of the algebra A, and the rest of the

statement 2(a) follows from Theorem 3.4.(3). □
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An explicit description of the set O(m). For each element ∅ ̸= Γ ∈ S(m) and each prime
number p, let

L(m,Γ) := L(Γ) := {l | 1 ≤ l ≤ m− 1, l + Γ ̸⊆ Γ ∪ [m,∞)} = {l | 1 ≤ l ≤ m− 1, (l + Γ) ∩ CΓ ̸= ∅}.

Lp(m,Γ) := Lp(Γ) := {l | 1 ≤ l ≤ m− 1, p ∤ l, l + Γ ̸⊆ Γ ∪ [m,∞)} = {l | 1 ≤ l ≤ m− 1, p ∤ l,

(l + Γ) ∩ CΓ ̸= ∅}.

So, a natural number l belongs to the set L(m,Γ) (resp., Lp(m,Γ)) if 1 ≤ l ≤ m − 1 (resp., and
p ∤ l) and l + γ ̸∈ Γ ∪ [m,∞) for some element γ ∈ Γ. If l ∈ L(Γ) then

l ≤ m− 3

(since for l ≥ m− 2, l + Γ ⊆ [m,∞)). By definition, L(∅) := ∅ and Lp(∅) := ∅. Let

L(m,Γ)p := L(Γ)p := {lp | l ∈ L(m,Γ))}

where lp is the p-co-prime divisor of l.
Claim.

Lp(m,Γ) = L(m,Γ)p. (30)

Proof. By the very definition, Lp(m,Γ) ⊆ L(m,Γ). Hence, Lp(m,Γ) ⊆ L(m,Γ)p.
Suppose that l ∈ L(m,Γ). We have to show that lp ∈ Lp(m,Γ). Suppose that this is not true,

i.e. lp + Γ ⊆ Γ ∪ [m,∞). We seek a contradiction. Recall that l = pslp for some natural number
s ≥ 0. Then l + Γ = pslp + Γ ⊆ Γ ∪ [m,∞), a contradiction. □

Let

O(m) := {|AutK(A)| | A ∈ A(m), |AutK(A)| < ∞},

O(m,Γ) := {|AutK(A)| | A ∈ A(m,Γ), |AutK(A)| < ∞}.

Clearly, O(m) =
⋃

Γ∈S(m) O(m,Γ). Let

L(m) :=
⋃

Γ∈S(m)

L(m,Γ) and Lp(m) :=
⋃

Γ∈S(m)

Lp(m,Γ)
(30)
=

⋃

Γ∈S(m)

L(m,Γ)p

where p is a prime number. Theorem 3.7 is an explicit description of the set O(m).

Theorem 3.7 Suppose that m ≥ 4. Then

O(m) =

{
L(m) if char(K) = 0,

Lp(m) if char(K) = p > 0.

Remark. Notice that the LHS of the equality above depends on all algebras in A(m) but the
RHS depends only on all semigroups in S(m) (which is a purely combinatorial discrete object).

Proof. Let R be the RHS of the equality in the theorem.

(i) For all Γ ∈ S(m), O(m,Γ) ⊆

{
L(m,Γ) if char(K) = 0,

Lp(m,Γ) if char(K) = p > 0.

In particular, O(m) ⊆ R:
Given an algebra A ∈ A(m) with finite automorphism group G = AutK(A). By Theorem

3.4.(3),

|G| =

{
gcd(A) if char(K) = 0,

gcdp(A) if char(K) = p > 0.
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Let Γ = ΓA and {1, fγ = xγuγ | γ ∈ Γ} be the canonical basis of the algebra A where uγ =
1 +

∑
δ∈CΓ(γ) λγδx

δ−γ and λγδ ∈ K. Since l := |G| < ∞, λγδ ̸= 0 for some δ ∈ CΓ(γ) (by

Corollary 3.5). Hence, δ − γ = δ′l for some natural number δ′ and

γ + δ′l = γ + (δ − γ) = δ ̸∈ Γ ∪ [m,∞)

since δ ∈ CΓ(γ). Hence,

l ∈

{
L(m,Γ) if char(K) = 0,

Lp(m,Γ) if char(K) = p > 0,

since otherwise Γ + l ⊆ Γ ∪ [m,∞), and so Γ + il ⊆ Γ ∪ [m,∞) for all natural numbers i ≥ 1. In
particular, γ + δ′l ∈ Γ ∪ [m,∞), a contradiction, and so the statement (i) follows.

(ii) O(m) ⊇ R: The inclusion follows from Proposition 3.8.(2) (resp., Proposition 3.8.(3)) if
char(K) = 0 (resp., char(K) = p > 0). □

Question. Is

O(m,Γ) =

{
L(m,Γ) if char(K) = 0,

Lp(m,Γ) if char(K) = p > 0,

for each Γ ∈ S(m)? (by the statement (i) in the proof of Theorem 3.7, the LHS ⊆ the RHS).

Proposition 3.8 Given ∅ ̸= Γ ∈ S(m) and l ∈ L(Γ). Then there exists an element γ ∈ Γ such
that γ + l ̸∈ Γ and γ + l ≤ m− 1. Let g = xγ(1 + xl) and Aγl := K +

∑
i≥1 Kgi + xmK[x]. Then

1. Aγl ∈ A(m), ΓAγl
= {iγ | 1 ≤ i ≤ m−1

γ
} ⊆ Γ, ind(ΓAγl

) = {γ} and the polynomial g is an
element of the canonical basis of the algebra Aγl.

2. AutK(Aγl) =

{
⟨tλl

⟩ if char(K) = 0,

⟨tλlp
⟩ if char(K) = p > 0.

3. Suppose that char(K) = p > 0. If, in addition, p ∤ l then AutK(Aγl) = ⟨tλl
⟩.

Proof. 1. Clearly, Aγl := K ⊕
⊕

i≥1 Kgi ⊕ xmK[x]. Hence, Aγl ∈ A(m), ΓAγl
= {iγ | 1 ≤ i ≤

m−1
γ

} ⊆ Γ and ind(ΓAγl
) = {γ}. Since γ + λ ∈ CΓ(γ) and ind(ΓAγl

) = {γ}, the polynomial g is
an element of the canonical basis of the algebra Aγl.

2. Statement 2 follows from statement 1 and Theorem 3.4.(3a,b).
3. Statement 3 is a particular case of statement 2. □

Definition. Let B(m) := {l | 1 ≤ l ≤ m− 1, l+ Γ ⊆ Γ ∪ [m,∞) for all Γ ∈ S(m)} where m ≥ 4.

By the very definition, the set B(m) ∪ {∞} is a subsemigroup of N+/(m+ N), and

{1, . . . ,m− 1} = L(m)
∐

B(m) (31)

is a disjoint union. Clearly,
m− 2,m− 1 ∈ B(m).

In view of Theorem 3.7, in order to find the set L(m) it is much more faster, first, to find the set
B(m) and then apply (31). In general, B(m) ̸= {m− 2,m− 1} (Lemma 3.11.(1)) but the equality
is also possible (Lemma 3.11.(2)).

Question. Find a formula/lower bound/upper bound for the number |B(m)|.

Corollary 3.9 Suppose that m ≥ 4. Then

O(m) =

{
{1, . . . ,m− 1}\B(m) if char(K) = 0,

{l | l ∈ {1, . . . ,m− 1; p ∤ l}\B(m)} = {lp | l ∈ {1, . . . ,m− 1}\B(m)} if char(K) = p > 0.
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Proof. The second equality is obvious. Then the corollary follows from Theorem 3.7, (30) and
(31). □

Lemma 3.10 1. For all m ≥ 4, 1 ̸∈ B(m).

2. For each m ≥ 4, there is an algebra A ∈ A(m) with |AutK(A)| = 1 (eg, A = K⊕Kxm−2(1+
x)⊕ xmK[x] ∈ A(m)).

Proof. 1. Since m ≥ 4, Γ := {m−2} ∈ S(m) and 1+Γ = {m−1} ̸⊆ Γ∪ [m,∞), i.e. 1 ̸∈ B(m).
2. Statement 2 follows from statement 1, Theorem 3.7 and (31) (the fact that |AutK(A)| = 1

follows from Theorem 3.4.(3)). □

Lemma 3.11 1. Let m = n! + 1 where n ≥ 3. Then {m − 1 − i | i = 0, 1, . . . , n} ⊆ B(m). In
particular, |B(m)| ≥ n+ 1.

2. Let m = p+ 1 where p ≥ 3 is a prime number. Then B(m) = {p− 1, p}.

Proof. 1. The numbers 2, 3, . . . , n are divisors of m− 1 = n!. Therefore, for all ∅ ̸= Γ ∈ S(m),
min(Γ) ≥ n+ 1. So, for all i = 0, 1, . . . , n and γ ∈ Γ,

m− 1− i+ γ ≥ m− 1− i+ n+ 1 = m+ (n− i) ≥ m,

i.e. m− 1− i ∈ B(m).
2. Since m − 1 = p is a prime number, Γi := iN+ ∩ [2, p] ∈ S(m) for i = 2, . . . , p − 1. Since

i ∈ Γi and i+(p− i) = p ̸∈ Γi, we have that p− i ∈ L(m,Γi). So, the elements 1, . . . , p− 2 do not
belong to the set B(m). Since {p− 1, p} ⊆ B(m), we must have B(m) = {p− 1, p}. □

For a natural numberm ≥ 2 and a polynomial p ∈ K[x], we denote by p<m a unique polynomial
of degree < m such that p ≡ p<m mod (xm).

Lemma 3.12 Suppose that m ≥ 4. Let gl = xm−1−l(1+xl) = xm−1−l+xm−1 where 1 ≤ l ≤ m−3
and Al = K +

∑
i≥1 Kgil +xmK[x]. Then Al ∈ A(m) and Al ̸= K +xmK[x] iff m− 1− l ∤ m− 1.

If the above equivalent conditions hold then

1. Al = K ⊕Kgl ⊕
⊕

2≤i< m−1
m−1−l

K(gil)<m ⊕ xmK[x] and ΓAl
= {i(m− 1− l) | 1 ≤ i < m−1

m−1−l
}.

2. {1, gl, x
i(m−1−l) | 2 ≤ i < m−1

m−1−l
} is the canonical basis of the algebra Al.

3. AutK(Al) =

{
⟨tλl

⟩ if char(K) = 0,

⟨tλlp
⟩ if char(K) = p > 0.

Proof. Since gl = xm−1−l + xm−1 the ‘iff’-statement is obvious.
1. Statement 1 follows from the fact that gil ≡ xi(m−1−l) mod (xm) for all i ≥ 2.
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2 and Theorem 3.4.(3). □

Clearly, 1 ≤ l ≤ m− 3 ⇔ 2 ≤ m− 1− l < m− 1. The conditions 2 ≤ m− 1− l < m− 1 and
m− 1− l|m− 1 (see Lemma 3.12) are equivalent to the conditions:

m− 1− l =
m− 1

i
, 2 ≤ i ≤

m− 1

2
and i|m− 1

which are equivalent to the conditions:

l = l(i), 2 ≤ i ≤
m− 1

2
and i|m− 1

24



where l(i) := i−1
i
(m− 1). By Lemma 3.12,

L(m) ⊇

{
{1, . . . ,m− 3}\

{
l(i) | 2 ≤ i ≤ m−1

2 , i|m− 1
}

if char(K) = 0,

{l | 1 ≤ l ≤ m− 3, p ∤ l}\
{
l(i)p | 2 ≤ i ≤ m−1

2 , i|m− 1
}

if char(K) = p > 0.
(32)

Lemma 3.13 shows that under certain (explicit) conditions the elements l(i) = i−1
i
(m − 1) in

(32) can belong to the set L(m).

Lemma 3.13 Suppose that m ≥ 4, i|m − 1 for some natural number i such that 2 ≤ i ≤ m−1
2

and the number n(i) := m−1
i

− 1 ≥ 2 is not a divisor of the numbers m − 1 and m − 2. Let

fi = xn(i)(1 + xl(i)) where l(i) = i−1
i
(m− 1), and Ai = K +

∑
j≥1 Kf j

i + xmK[x]. Then

1. Ai ∈ A(m), ΓAi
= {jn(i) | 1 ≤ j < m−1

n(i) } and {1, fi, x
jn(i) | 2 ≤ j < m−1

n(i) } is the canonical

basis of the algebra Ai, and fi = xn(i) + xm−2.

2. AutK(Ai) =

{
⟨tλl(i)

⟩ if char(K) = 0,

⟨tλl(i)p
⟩ if char(K) = p > 0.

Proof. 1. Since f j
i = xjn(i) + · · · for all j ≥ 1, n(i) ≥ 2 and n(i) ∤ m− 1,

ΓAi
=

{
jn(i) | 1 ≤ j <

m− 1

n(i)

}
and Ai ∈ A(m).

Clearly, fi = xn(i) + xm−2. By the assumption, the number m− 2 is not divisible by n(i), hence
m− 2 ̸∈ ΓAi

. For all j ≥ 2,
f j
i ≡ xjn(i) mod (xm).

Therefore, the set {1, fi, x
jn(i) | 2 ≤ j < m−1

n(i) } is the canonical basis of the algebra Ai.

2. By statement 1, the set {1, fi = xn(i)(1 + xl(i)), xjn(i) | 2 ≤ j < m−1
n(i) } is the canonical basis

of the algebra Ai. Hence, gcd(A) = l(i), and statement 2 follows from Theorem 3.4.(3). □

By (32) and Lemma 3.13, if char(K) = 0 then

L(m) ⊇

{
l(i) | 2 ≤ i ≤

1

2
(m− 1), i|m− 1, n(i) ≥ 2, n(i) ∤ m− 1 and n(i) ∤ m− 2

}
(33)

where l(i) = i−1
i
(m− 1) and n(i) = m−1

i
− 1; and if char(K) = p > 0 then

L(m) ⊇

{
l(i)p | 2 ≤ i ≤

1

2
(m− 1), i|m− 1, n(i) ≥ 2, n(i) ∤ m− 1 and n(i) ∤ m− 2

}
. (34)

4 Generators and defining relations for the algebra O(A(m,Γ))
of regular functions on the algebraic variety A(m,Γ)

In this section, the field K is an arbitrary field, i.e. not necessarily algebraically closed (unless
stated otherwise).

The aim of the section is to prove Lemma 4.1, Theorem 4.2 and Theorem 4.3 which show that
the set A(m,Γ) is an affine algebraic variety and gives explicit sets of generators and defining
relations for the algebra O(A(m,Γ)) of regular functions on A(m,Γ).

The action of the algebraic torus T on A(m). The algebraic torus T = {tλ |λ ∈ K×}
acts on the set A(m) by the rule:

T×A(m) → A(m), (tλ, A) 7→ tλ(A).
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The subsets A(m,Γ) of A(m), where Γ ∈ S(m), are T-stable (that is TA(m,Γ) = A(m,Γ)). By
Theorem 3.1.(1), the set of T-orbits of A(m),

A(m) := A(m)/T = {TA |A ∈ A(m)}, (35)

is the set of isomorphism classes of algebras A(m). By (4),

A(m) =
∐

Γ∈S(m)

A(m,Γ) where A(m,Γ) := A(m,Γ)/T (36)

is the set of isomorphism classes of algebras in A(m,Γ).

The set A(m,Γ) is an affine algebraic variety. Let A ∈ A(m,Γ). Recall that ind(Γ) =
{ν1, . . . , νs} and fνi

= xνi +
∑

j∈CΓ(νi)
λνi,jx

j for i = 1, . . . , s. The coefficients {λνi,j | i =

1, . . . , s; j ∈ CΓ(νi)} uniquely determined the algebra A. We treat them as regular functions
on the algebraic variety A(m,Γ).

Lemma 4.1 1. Suppose that |ind(Γ)| = 1, i.e. ind(Γ) = {ν1}. Then the affine algebraic variety
A(m,Γ) is isomorphic to the affine space A|CΓ(ν1)|.

2. Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 = ∅. Then the affine algebraic variety A(m,Γ)
is isomorphic to the affine space A|CΓ(ν1)|+···+|CΓ(νs)| where ind(Γ) = {ν1, . . . , νs}.

Proof. 1. Statement 1 follows from Lemma 2.14.
2. Statement 2 follows from Corollary 2.16. □

So, it remains to consider the case when s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅. The algebra of
differential operators D(K[x]) on the polynomial algebra K[x] is equal to

D(K[x]) =
⊕

n≥0

K[x]∂[n] where ∂[n] :=
∂n

n!
, ∂ :=

d

dx

and the action of the differential operators ∂[n] on the polynomial algebra K[x] is given by the
rule

∂[n](xm) =

{(
m
n

)
xm−n if m ≥ n,

0 if m < n.

If the field K has characteristic zero then the algebra D(K[x]) is generated by the elements x
and ∂ that satisfy the defining relation ∂x− x∂ = 1, and the algebra D(K[x]) is called the Weyl
algebra.

Recall that for a polynomial f ∈ K[x], we denoted by cj(f) the coefficient of xj . Clearly,

cj(f) = ∂[j](f)|x=0. (37)

Recall that A ∈ A(m,Γ); s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅; for each element γ ∈ Γ, we fixed
an element a(γ), see (12); ind(Γ) = {ν1, . . . , νs} and fνi

= xνi +
∑

j∈CΓ(νi)
λνi,jx

j for i = 1, . . . , s.

The elements {1, fa(γ) | γ ∈ Γ} is a K-basis of the algebra A. For all i = 1, . . . , s and γ ∈ Γ, we
have the equality in the algebra A,

fνi
fa(γ) = fa(νi+γ) +

∑

δ∈Γ(νi+γ)

ηνi,a(γ);δf
a(δ), (38)

where for each i = 1, . . . , s, the coefficients ηνi,a(γ),δ, δ ∈ Γ, are the unique solution of the uni-
triangular system of |Γ| linear equations (the |Γ| × |Γ| matrix of which has diagonal elements that
are equal to 1):

ηνi,a(γ);δ +
∑

δ′∈Γ(νi+γ,δ)

ηνi,a(γ);δ′cδ
(
fa(δ′)

)
= cδ

(
fνi

fa(γ) − fa(νi+γ)
)
, γ ∈ Γ. (39)
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Each element ηνi,a(γ);δ, δ ∈ Γ, is an explicit polynomial in the variables {λνj ,γ′ | 1 ≤ j ≤ s, γ′ ∈
CΓ(νj), γ

′ ≤ δ}. The elements ηνi,a(γ);δ, δ ∈ Γ, can be found recursively using (39).

If a(νi + γ) = ei + a(γ) then the equality (38) is the tautology fνi
fa(γ) = fνi

fa(γ), i.e. all the
coefficients ηνi,a(γ);δ are equal to zero, and vice versa. In particular, if νi + γ ̸∈ dec≥2(Γ) then
a(νi + γ) = ei + a(γ).

Theorem 4.2 shows that the set A(m,Γ) is an affine algebraic variety and gives an explicit set
of its defining equations (see also Theorem 4.3 for another approach).

Theorem 4.2 We keep the notation as above (recall that for each element γ ∈ Γ, we fix an
element a(γ), see (12)). Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅. Then the set A(m,Γ)
is an affine algebraic variety and the algebra of regular functions on it, O(A(m,Γ)), is a factor
algebra of the polynomial algebra P (m,Γ) := K[λνi,j | i = 1, . . . , s; j ∈ CΓ(νi)] in n(m,Γ) :=∑s

i=1 |CΓ(νi)| variables λνi,j by the defining relations: For each pair (νi, γ) ∈ ind(Γ)×Γ such that
νi + a(γ) ̸= a(νi + γ) and j ∈ CΓ(νi + γ),

cj
(
fνi

fa(γ) − fa(νi+γ) −
∑

δ∈Γ(νi+γ)

ηνi,a(γ);δf
a(δ)

)
= 0, i.e.

∂[j]
(
fνi

fa(γ) − fa(νi+γ) −
∑

δ∈Γ(νi+γ)

ηνi,a(γ);δf
a(δ)

)
|x=0 = 0

where the polynomials ηνi,a(γ);δ are defined in (39).

Proof. By the very definition, the generators {λνi,j} of the algebra O(A(m,Γ)) satisfy the
relations of the theorem.

Conversely, suppose that the scalars {λνi,j} are a solution to the system of equations of the
theorem. They determine the elements fνi

= xνi +
∑

j∈CΓ(νi)
λνi,jx

j , i = 1, . . . , s of the algebra

K[x]/(xm). We have to show that the subalgebra A
′
of K[x]/(xm), which is generated by the

elements fν1
, . . . , fνs

, is equal to

V := K ⊕
⊕

γ∈Γ

Kfa(γ)

(since then the subalgebra A′ of K[x], which is generated by the elements fν1
, . . . , fνs

and the
ideal (xm) of K[x], would belong to A(m,Γ)).

Clearly, V ⊆ A
′
(by the definition of the elements fνi

). The defining relations of the theorem
mean that the equality (38) holds for all pairs (νi, γ) ∈ ind(Γ)×Γ such that νi + a(γ) ̸= a(νi + γ).
But for all pairs (νi, γ) ∈ ind(Γ) × Γ such that a(νi + γ) = νi + a(γ) the equality (38) holds
automatically, it is simply the tautology fνi

fa(γ) = fνi
fa(γ). So, the equality (38) holds for all

elements (νi, γ) ∈ ind(Γ)× Γ, i.e. A
′
= V , as required. □

LetA
′
be a subalgebra ofK[x]/(xm) which is generated by the elements fνi

= xνi+
∑

j∈CΓ(νi)
λνi,jx

j ,

i = 1, . . . , s, where we treat the coefficients λνi,j as independent parameters (indeterminates). For
each γ ∈ dec≥2(Γ) and b ∈ Rel(γ)\{a(γ)}, consider the equation (see Theorem 2.11),

f b = fa(γ) +
∑

γ′∈Γ(γ)

θγ,γ′;bf
a(γ′).

The coefficients θγ,γ′;b are a unique solution to the uni-triangular system of |Γ(γ)| linear equations
(the |Γ(γ)| × |Γ(γ)| matrix of which has diagonal elements that are equal to 1):

θγ,γ′;b +
∑

γ′′∈Γ(γ,γ′)

θγ,γ′′;b cγ′

(
fa(γ′′)

)
= cγ′

(
f b − fa(γ)

)
(40)

where Γ(γ, γ′) := {γ′′ ∈ Γ | γ < γ′′ < γ′}. Each element θγ,γ′;b, γ
′ ∈ Γ(γ), is an explicit polynomial

in the variables {λνj ,δ | 1 ≤ j ≤ s, δ ∈ CΓ(νj), δ ≤ γ′}. Theorem 4.3 also shows that the set
A(m,Γ) is an affine algebraic variety and gives an explicit set of its defining equations. It also
gives the lower bound for the dimension of the algebraic variety A(m,Γ).
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Theorem 4.3 We keep the notation as above. Suppose that s = |ind(Γ)| ≥ 2 and dec(Γ)≥2 ̸= ∅.
The set A(m,Γ) is an affine algebraic variety, the algebra of regular functions on it, O(A(m,Γ)),
is a factor algebra of the polynomial algebra P (m,Γ) = K[λνi,j | i = 1, . . . , s; j ∈ CΓ(νi)] in
n(m,Γ) =

∑s
i=1 |CΓ(νi)| variables λνi,j by the defining relations: For each γ ∈ dec≥2(Γ) and

b ∈ Rel(γ)\{a(γ)},

cj(f
b) = cj(f

a(γ)) +
∑

γ′∈Γ(γ)

θγ,γ′;b cj(f
a(γ′)), j ∈ CΓ(γ),

where the polynomials θγ,γ′;b are defined in (40). The number of equations is

l(m,Γ) :=
∑

γ∈dec≥2(Γ)

(
|Rel(γ)| − 1

)
· |CΓ(γ)|.

In particular, the dimension of the variety A(m,Γ) is not smaller than n(m,Γ)− l(m,Γ).

Proof. By Theorem 2.11, the generators {λνi,j} of the algebra O(A(m,Γ)) satisfy the relations
of the theorem.

Conversely, suppose that the scalars {λνi,j} are a solution to the equations of the theorem.
They determine the elements fνi

= xνi +
∑

j∈CΓ(νi)
λνi,jx

j , i = 1, . . . , s of the algebra K[x]/(xm).

We have to show that the subalgebra A
′
of K[x]/(xm), which is generated by the elements

fν1
, . . . , fνs

, is equal to

V := K ⊕
⊕

γ∈Γ

Kfa(γ)

(since then the subalgebra A′ of K[x], which is generated by the elements fν1
, . . . , fνs

and the
ideal (xm) of K[x], would belong to A(m,Γ)).

Clearly, V ⊆ A
′
. On the other hand, the defining relations of the theorem and (40) mean that

for each γ ∈ dec≥2(Γ) and b ∈ Rel(γ)\{a(γ)},

f b = fa(γ) +
∑

γ′∈Γ(γ)

θγ,γ′;b f
a(γ′).

Now, by (20), A
′
= K ⊕

⊕
γ∈Γ Kfa(γ). □

Corollary 4.4 The set of irreducible components of the affine algebraic variety A(m) is the union
of irreducible components of the affine algebraic varieties {A(m,Γ) |Γ ∈ S(m)}.

Proof. The affine algebraic variety A(m) =
∐

Γ∈S(m) A(m,Γ) is a finite disjoint union of its

closed subsets A(m,Γ) (Theorem 4.2 or Theorem 4.3) and the statement follows. □

Recall that fνi
= xνi +

∑
j∈CΓ(νi)

λνi,jx
j for i = 1, . . . , s, and the algebraic group T acts on

the algebraic variety A(m,Γ). The action of the algebraic group on the algebra O(A(m,Γ)) is
given by the rule: For all i = 1, . . . , s, j ∈ CΓ(νi) and λ ∈ K×,

tλ(λνi,j) = λ−νi+jλνi,j (41)

since tλ(fνi
) = λνi

(
xνi +

∑
j∈CΓ(νi)

λ−νi+jλνi,jx
j−νi

)
.

Recall that for each primitive n’th root of unity λn, the group T contains the cyclic group of
order n, Cn = ⟨tλn

⟩. The groups {Cn} are all the finite subgroups of T.

Corollary 4.5 (K is an algebraically closed field). Given n ∈ O(m,Γ).
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1. The set A(m,Γ)Cn of fixed points of the group Cn = ⟨tλn
⟩ ⊆ T (where λn is a primitive

n’th root of unity) is a non-empty closed subvariety of the affine algebraic variety A(m,Γ)
the defining equations of which are λνi,j = 0 for all i = 1, . . . , s and j ∈ CΓ(νi) such
that n ∤ j − νi. The set A(m,Γ)Cn contains precisely all the algebras A in A(m,Γ) with
Cn ⊆ AutK(A).

2. The set A(m,Γ)Cn/T is a set of isomorphism classes of algebras A in A(m,Γ) with Cn ⊆
AutK(A). If n|n′ then A(m,Γ)Cn/T ⊇ A(m,Γ)Cn′ /T.

3. The set A(m,Γ)Cn/T\
⋃

n ̸=l∈O(m,Γ),n|l A(m,Γ)Cl/T is a set of isomorphism classes of alge-

bras A in A(m,Γ) with Cn = AutK(A).

4. The set A(m,Γ)/T\
{
{Amon(Γ)}∪

⋃
1 ̸=l∈O(m,Γ) A(m,Γ)Cl/T

}
is a set of isomorphism classes

of algebras A in A(m,Γ) with AutK(A) = {e}. It is an open set of the algebraic variety
A(m,Γ).

5. A(m,Γ)T = {Amon(Γ)}.

Proof. 1. Statement 1 follows at once from (41).
2. Statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.
5. Statement 5 is obvious.
4. Statement 4 follows from statements 1, 3 and 5. □
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