The
University
s Of

)

2" Sheffield.

This is a repository copy of The question of Arnold on classification of co-artin subalgebras
in singularity theory.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/207318/

Version: Published Version

Article:

Bavula, V.V. orcid.org/0000-0003-2450-2075 (2024) The question of Arnold on
classification of co-artin subalgebras in singularity theory. Journal of Algebra and Its
Applications, 23 (8). 2550035. ISSN 0219-4988

https://doi.org/10.1142/s0219498825500355

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
| university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt S://e I"IntS.WhlterOSG.aC.Uk/




The Question of Arnold on classification of co-artin
subalgebras in singularity theory

V. V. Bavula

Dedicated to André Leroy on his retirement.

Abstract

In [1, Section 5, p.32], Arnold writes: “Classification of singularities of curves can be
interpreted in dual terms as a description of ‘co-artin’ subalgebras of finite co-dimension in
the algebra of formal series in a single variable (up to isomorphism of the algebra of formal
series).” In the paper, such a description is obtained but up to isomorphism of algebraic
curves (i.e. this description is finer).

Let K be an algebraically closed field of arbitrary characteristic. The aim of the paper
is to give a classification (up to isomorphism) of the set of subalgebras A of the polynomial
algebra K[z] that contains the ideal 2™ K[x] for some m > 1. It is proven that the set
A =11, A(m,T') is a disjoint union of affine algebraic varieties (where I' [ [{0,m,m+1,...}
is the semigroup of the singularity and m — 1 is the Frobenius number). It is proven that
each set A(m,T") is an affine algebraic variety and explicit generators and defining relations
are given for the algebra of regular functions on A(m,T"). An isomorphism criterion is given
for the algebras in A. For each algebra A € A(m,T), explicit sets of generators and defining
relations are given and the automorphism group Autx (A) is explicitly described. The auto-
morphism group of the algebra A is finite iff the algebra A is not isomorphic to a monomial
algebra, and in this case |Autx (A)| < dimg(A/ca) where c4 is the conductor of A. The set
of orders of the automorphism groups of the algebras in A(m,T") is explicitly described.

Key Words: an algebraic curve, a singularity, normalization, an algebraic variety, the al-
gebra of regular functions on an algebraic variety, moduli space, automorphism, isomorphism,
generators and defining relations.

Mathematics subject classification 2010: 14H20, 14H37, 14R05, 14H10, 14J10.
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1 Introduction

Motivation: A singularity of a curve means the germ of a holomorphic map of the complex line
into complex space at a singular point, [1]. Classifying curve singularities up to diffeomorphism
is a classical problem in the theory of algebraic curves. A singularity is called simple if all the
singularities of the neighbouring mappings belong to a finite set of equivalence classes. Simple
singularities of plane curves were classfied by J. W. Bruce and T. J. Gaffney [3], and simple



singularities of space curves by C. G. Gibson and C. A. Hobbs [5]. The classification of simple
singularities of curves is described by Arnold [1].

In [1, Section 5, p.32], Arnold writes: “Classification of singularities of curves can be interpreted
in dual terms as a description of ‘co-artin’ subalgebras of finite co-dimension in the algebra of
formal series in a single variable (up to isomorphism of the algebra of formal series),” see the end
of the Introduction for more details. Such a description is obtained in the present paper but up
to isomorphism of algebraic curves (i.e. this description is finer).

The following notation will remain fixed throughout the paper: K is an arbitrary algebraically
closed field of arbitrary characteristic (many results of the paper are true for an arbitrary field);
K* := K\{0}; algebra means K-algebra; K|x] is a polynomial algebra in the variable = over K;
m > 2 is a natural number; A(m) is the set of all K-subalgebras A of K[z] such that 2™ K[x] C A
but 2™~ ¢ A, i.e. the ideal 2™ K[x] of A is the largest ideal of A which is also an ideal of K|x],
i.e. the ideal 2™ K[x] = anns(K|[z]/A) is the conductor of A as the polynomial algebra Klz] is
the normal closure of A;

A:=A/2"K[x] CF :=F,, = K[z]/2"K|x];
Autg (A) is the automorphism group of the K-algebra A.

The canonical basis of the algebra A. Let S(m) be the set that contains the empty set
and all non-empty subsets I' of the set {2,...,m — 2} such that '+ I' C I' U [m, 00). Notice that,
by definition, m — 1 € T; S(m) # 0 iff m > 4. For m = 1,2, 3, the set A(m) contains the only
algebra K + 2™ K|z]. So, we will assume that m > 4.

Let A € A(m). The the ideal (z) of the finite dimensional algebra F' = F,, is its radical. The
(x)-adic filtration on F is also the radical filtration. It induces a filtration on the subalgebra A of
F = F,, and the associated graded algebra (see (2) and (3))

gr(A) =K@ @ K27, where Ty :={v|2" € gr(4),1 <y <m —1} € S(m),
yel A

is a graded algebra. For each I' € S(m), let A(m,T') :=={A € A(m)|T4 =T}. Then

Am)= [ A(m.T).
)

res(m

We will see that each set A(m,T") is an affine algebraic variety (Lemma 4.1, Theorem 4.2 and
Theorem 4.3). In the literature, for each algebra A € A(m,T'), the subsemigroup I" U {0, m, m +
1,...} of the semigroup of natural numbers (N, +) is called the semigroup of the singularity
and the number m — 1 is called the Frobenius number.

Proposition 2.1 states that for each algebra A € A(m,T'}, there is a unique basis {1, f, |y € '}
of the algebra A such that

=7 + Z A5’ where A5 € K and CT(v):={8]6 €T,y <6 <m—1}.
d€CT(7y)

The basis {1, f,, | v € I'} is called the canonical basis of the algebra A. The canonical basis has
many remarkable properties. It is used in many proofs of this paper. In particular, the elements of
the canonical basis are common eigenvectors for the automorphism group of the algebra A (each
element o € Autg(A) preserves the conductor of A and hence induces an automorphism of the
algebra A) and this is the key fact in finding the automorphism group Autg (A).

Generators and defining relations of the algebras A € A(m,I') and A.

Each non-empty set I' € S(m) is a disjoint union I' = ind(T") [ dec(T') where ind(T") is the
set of indecomposable elements of T' and dec(T') is the set of decomposable elements of T'. An



element v € I is called decomposable if v = ~y; 4+ 2 for some elements v1,72 € I'. Every decom-
posable element is a linear combination of indecomposable ones with natural coefficients (which
is highly non-unique, in general). We denote by dec(I')>2 the set of all decomposable elements
that admits at least 2 distinct linear presentations. Let ind(T') = {v1,...,vs} where s = [ind(T")|.
For each element v € T', we fix a vector a(y) = (a(7)1,...,a(y)s) € N® such that v = >"7_, a(v)iv;.

The algebras in A(m,T’) are partitioned into three isomorphism invariant classes:
(1) find(T)| = 1,

(II) |ind(T")| > 2 and dec(T")>2 = 0,

(III) |ind(T")| > 2 and dec(I") > # 0.

For each algebra in the classes (I), (IT) and (III) explicit sets of generators and defining rela-
tions are given in Lemma 2.14, Corollary 2.16 and Theorem 2.17, respectively.

Isomorphism problems and the automorphism groups of algebras A.

Theorem 3.1.(2) and Proposition 3.3 are isomorphism criteria for algebras in A :=[] ., A(m).
For algebras A, A" € A such that A ~ A’, Theorem 3.1.(3) describes the set Isox (A, A’) of all K-
algebra isomorphisms from A to A’. Theorem 3.4.(1) is an explicit description of the automorphism
groups of algebras in A(m). Theorem 3.4.(2-4) gives criteria for the automorphism group to be
infinite/finite/trivial (see also Corollary 3.5).

Let O(m) be the set of orders of all finite automorphism groups of algebras in A(m). By
Corollary 3.6.(1),

{1,...,m—=3} if4<mis even,

O C
(m)_{{lwu,m—‘l} if 5 < m is odd.

Let p be a prime number. A natural number ¢ > 1 is a unique product i = pdip for some natural
numbers d and 4, such that (p,i,) = 1. The natural number i, is called the p-co-prime divisor of
i. For a natural number m > 4, let u(p,m) := max{i, |1 <i <m —3,i+j < m— 1 for some
natural number j = j(i) > 2 such that j{m — 1}. By Corollary 3.6.(1),

m—3 if 4 <mis even, char K =0,
maxO(m)=¢m—4 if 5 <m is odd, char K = 0,
u(p,m) if 4 <m, char K =p > 0.

Theorem 3.7 and Corollary 3.9 are explicit descriptions of the set @(m). The set QO(m) is an
intricate set (see (32), (33) and (34)). Lemma 3.12 and Lemma 3.13 are examples of algebras in
A(m) with sophisticated orders of automorphism groups (the canonical bases are explicitly given).

The set A(m,T") is an affine algebraic variety. It is proven that each set A(m,T) is an
affine algebraic variety. Lemma 4.1, Theorem 4.2 and Theorem 4.3 give explicit generators and
defining relations for the algebra O(A(m,I")) of regular functions on A(m,I") in the cases (I), (II)
and (III), respectively. In the case (III), two different sets of defining relations are given (Theorem
4.2 and Theorem 4.3). Theorem 4.3 gives a lower bound for the dimension of the algebraic variety

A(m,T).
The algebraic torus T = {tx | A € K*} acts on the set .A(m) by the rule:
T x A(m) = A(m), (tr,A) — tr(A),

where tx(z) = Az. The subsets A(m,I') of A(m), where I' € S(m), are T-stable (that is
TA(m,T') = A(m,T)). By Theorem 3.1.(1), the set of T-orbits of A(m),

A(m) == A(m)/T ={TA| A € A(m)},



is the set of isomorphism classes of algebras A(m). By (4),

A(m) = H A(m,T) where A(m,T) := A(m,T)/T
T'eS(m)

is the set of isomorphism classes of algebras in .A(m,I"), see Section 4 for details. The sets A(m,T")
are explicitly described by Theorem 3.1.(2) and Proposition 3.3.

For each automorphism group G, Corollary 4.5 gives an explicit description of the isomorphism
classes of algebras in A(m, ") with automorphism group G.

Connections with the problem of classification of singularities of holomorphic
maps. K][[z]] is the algebra of formal power series in the variable x over K; m > 2 is a nat-
ural number; A(m) is the set of all K-subalgebras B of K|[[z]] such that 2™ K][[z]] C B but
™1 & Bie. the ideal 2™ K[[z]] of B is the largest ideal of B which is also an ideal of K{[z]].
For each I' € S(m), let A(m,T) := {B € A(m) |T'p =T} where I'p is defined in the same fashion

as in the affine case. Then R R
Am)= [ Am,1).
res(m)
The ‘analytic’ group of automorphisms G** = {x — > ,o, A\;z'} of the algebra K|[[z]] respects
the sets ,Zl\(m, I') (where \; € K and A\ # 0). Classification of the orbits ,Zl\(m7 I')/G* is an old
open classical problem (see, for example, [1]), the problem of classification of curve singularities

(a curve singularity is the germ of a holomorphic map of the complex line into complex space at
a singular point).

Proposition 1.1 The map A(m,T) — A(m,T), A — A+ 2™K|[[z]] is a bijection with inverse
B~ B/x"K|[z]] + 2™ K[z] where B/z™K|[z]] C @7, K2’ C K|z].

Proof. Straightforward. OJ

The algebra A + 2™ K|[[z]] is the (z)-adic completion of the algebra A. So, each algebra B in
A(m,T) is the completion of the algebra B/z™K|[[z]] + 2™K|z] in A(m,T) which is called the
affine partner of the algebra B. So, the class of algebras ./Z(m7 I') is completely described by the
class A(m,T). Clearly, if two algebras in A(m,T") are isomorphic then so are their completions,
i.e. the map A(m,T) = A(m,T), A— A+ z™K|[[z]] is isomorphism-invariant. The classification
(up to isomorphism) of algebras in A(m,T") is finer than the classification of topological algebras
in .Z(n, T') up to the action of the group G*". Furthermore,

A(m,T) /G ~ A(m,T)/Gi" := A(m,T) /G (m) (1)
where G{" is a subgroup of G*" that contains all automorphisms with Ay = 1, A(m,T) =
{4 A € A(m,T)} and G§"(m) is the subgroup of automorphism of the algebra K[z]/(z™) of the
type x — z+ ZZZEI M\iz® where \; € K. In 1965, Ebey [4] obtained a classification of the algebras
B in several ‘initial’ cases where the set I' is ‘small’.

2 The canonical basis, generators and defining relations of
algebras A and A where A € A(m,T)

In this section, the field K is an arbitrary field, i.e. not necessariuly algebraically closed.

The aim of the section is to show that each algebra A = A/z™K|z], where A € A(m),
admits a unique K-basis which is called the canonical basis (Proposition 2.1) that has remarkable
properties as we will see later in the paper. Existence of this basis basis is a key fact in finding
the automorphism group of the algebra A and an isomorphism criterion for algebras A. Using



the canonical basis of A, several explicit sets of generators and definig relations are found for the
algebra A (Corollary 2.3, Theorem 2.7 and Theorem 2.11) and for the algebra A (Theorem 2.13,
Theorem 2.15 and Theorem 2.17)

Given an algebra A € A(m), i.e. K[z] D A D 2™K|x] and 2™~ & A, m > 2, the polynomial
algebra K[z] is the normal closure of the algebra A and (2™) = 2™ K] is the largest ideal of A
which is also an ideal of K[z]. It is called the conductor of A and is the sum of all ideals of K{z]
that are contained in A. Then

A:=A/2"K[z] C F = Klz]/(z™)

is a proper inclusion of finite dimensional, local, commutative K-algebras. In particular, their

maximal ideals A N (z) and (x) are their radicals rad(A) and rad(F'), respectively.

The induced radical filtration on A and the semigroup I'4 U {oo} of A. The radical
filtration (the (x)-adic filtration) on F,

Fo@)>@?*>--2@m™t>@)™=0,
induces the induced radical filtration on the algebra A,
ADA1 DA D D A5y 1 D A5, =0,

where As; := AN(z)’. The asociated graded algebra of F, gr(F) := @,~,(z)"/(x)"*! is isomorphic
to the algebra F'. B

Let Ny := {1,2,...}. Then (N4,+) is an abelian semigroup and the set m + N is its ideal
(N + (m+ N) € m+N). Let Nj ,, := Ny/(m + N), a factor semigroup. Then N, ,, =
{1,2,...,m — 1,00} where the addition in N, ,, is given by the rule

S i+g fi+j5<m,
t+) = e
00 ifi+j5>m,

and i + oo = oo for all elements i € N, ,,,. We denote by Sub(N_ ,,,) the set of all subsemigroups
of Ny ;. The algebra gr(F) ~ F = @,y K" is an Ny,-graded algebra where N, := N/(m +
N) = {0,1,...m — 1,00} is a commutative monoid, 2> := 0 and Kz* = 0. Clearly, N} ,, is a
subsemigroup of N,,,. The associated graded algebra gr(A) = @' Asi/Asis1 is a homogeneous
subalgebra of gr(F) = F. In particular,

gr(A) =Ko @ K7 (2)

Y€l A

where 'y := {y|27 € gr(4),1 <~y <m — 1}. Clearly,
Ty+TaCTa]]lm 00) and m—1¢T4. (3)

In particular, the set I' yU{oo} is a subsemigroup of Ny ,,,. Notice that I'y = 0 iff A = K+2™K|x].
We will see that the number m and I'4 are isomorphism-invariants of the algebra A (algebras
A e A(m) and A’ € A(m’) are isomorphic then m =m’ and I'y = ' 4/, Theorem 3.1.(2)).

Let S(m) be the set that contains the empty set and all non-empty subsets I' of the set
{2,...,m — 2} such that ' + T' C T'U [m, o). Notice that, by definition, m —1 & T'; S(m) # 0
ifft m >4 (for all m > 4, I' = {m — 2} € S(m)); and the map from the set S(m) to the set of all
subsemigroups of N ,,, which is given by the rule I' — I' U {00}, is an injection.

For each I € S(m), let A(m,T") := {A € A(m)|T's = I'} where I'4 is the set of all natural
numbers 7 such that 2 < i < m — 1 and there is an element a; = z* + > )\ijxj € A for some
Aij € K. Clearly, T4 € S(m). Then

Am)= J[ A(m.D). (4)

res(m)

J>1



We will see that each set A(m,T") is an affine algebraic variety (Lemma 4.1, Theorem 4.2 and
Theorem 4.3).

The canonical basis of the algebra A where A € A(m,T). Let CT = {2,...,m — 1}\I.
Foreach i€ {2,...,m—1},let T(4):={y €T |y>i} and CT(i):={|d ¢ T,i<d <m—1}.

Proposition 2.1 For each algebra A € A(m,T'}, there is a unique basis {1, f, |y € T'} of the
algebra A that satisfies the condition that f, = x7 + Zéecr(v) A5z where Ays € K and CT'(y) =
{0]0¢T,y<d<m—1}.

Proof. (i) Existence: By (2), we can find a K-basis {1, g, |y € I'} where g = 274> ;. Kaf
and A\ys € K. Suppose that I' = {v,..., v} where 2 < v, < --- < 9 < m — 2. The element
f+ye = g, satisfies the condition of the proposition. Now, we use the downward induction on %

starting at i = t. To show existence we suppose that i < ¢ and we have found already the elements
fryigrs- -+ fr, that satisfy the condition given in the proposition. The element g,, can be written

as follows
Ivi = a + Z )‘7115'%6 + Z /\’Yzi’)"xw,'
J€CT(v) v €L ()
Then
frvi =9y, — Z Ayt [y
v €L ()

satisfies the condition of the proposition. Now, existence follows by induction on 1.
(ii) Uniqueness: If ' = () then there is nothing to prove. Suppose that I' # () and {1, f |y € T'}
is another K-basis as in the proposition. Then

fv—f;eAﬂ( > Kx6>=o

6€CT ()

for all elements v € T', and we are done. O

Definition. The K-basis {1, f, |y € I'} in Proposition 2.1 is called the canonical K-basis of
the algebra A. Any K-basis of the type {1, f, |y € I'}, where A\, € K*, is called a canonical
K-basis of the algebra A.

The structure constants of the algebra A with respect to the canonical basis. For
an algebra A € A(m,T'), let {1, f, |y € T'} be the canonical basis of the algebra A = A/2™K|x]
where

fr=a"+ > Az’ and A€ K. (5)
3€CT(v)
The total number of the parameters {\,s} is equal to
ITierem)l. (6)
~el’
In general, they are not algebraically independent. For each subset S of the set {2,...,m — 1},
let us consider the characteristic function of the set S,
1 ifieS
58):{2,...,m—1} > {0,1}, i~ x(,5) = '
x(+,9) :{ p—{0,1} x(i,S) {0 fids

Then, by direct computation, for all elements v,y € I,

B 7Y 4 ZfECF(’Y-‘r’Y') )\%ﬂ/,;&ajﬁ + ZpEF(’y-‘r’Y') oyt pZP 1y + v <m—1,
Jyfy = i (7)
0 ify++9" >m—1.



where

Myt = Ay ey X (E—, CT(Y)) Ay e X (E—7, CT () + > AysAyrsrs (8)
{6+6'=£|6€CT(v),8’eCT'(v")}

fytip = Ayp—y X(p =7, CT (7)) + Ay oy x(p =7, CT (7)) + Z Ays Ay st
{6+6'=p | 6€CT(7),8'€CT ()}
(9)
For elements 4,5 € {2,...,m — 1} such that i < j, let I'(¢,5) == {k € T']i < k < j} and
CT(i,j) ={keCT|i<k<j}
For each algebra A € A(m,T'), Proposition 2.2.(1) and (9) determine explicitly the structure

constants of the algebra A with respect to its canonical basis.

Proposition 2.2 Given an algebra A € A(m,T'). Let {1, f,| v € '} be the canonical basis of the
algebra A, see (5). Then for all elements v,y € T such that v+~ <m — 1,

1. ffyf'y’ = f’Y+’Y/ + Zpéf‘(fy«f’y’) /'L'Ya'Y/?PfP’ and

2. fyay =27 4 2ecOr (v4) Ay i = 225€0T (v4+) (ZPEF(7+7',5) H”"Y/;p)\p5> g
3. For all elements 6 € CT(y+7'), Ayyr6 = Ayiyris — 2 peT (r47,8) Hrn'spAos-

Proof. Let D be the double sum in statement 2. By (5) and (7),

I fy = RN Z Ay rigt® — Z Z Hoyrip s’ + Z Hytipfp

EECT (v+v') pEL(v+7') 6€CT (p) PEL(v+v')
= 2+ Z )‘%7’;5355 - D+ Z oy yip o
£eCT(v+7) PET(v+7')
5
= fry + Z Hryyspfo + { - Z Ay 52 + Z )‘%’y';img - D}~
pET (v+v) 5€CT (v+v) EeCT (v+v)

Since A 3 fyfy — fyty — 2 pel(ytyt) Friofo = {-+ -}, we must have {---} = 0 (as three sums
in {---} are over CT(y +~') and the LHS of the equality is an element of the algebra A and if it
is nonzero then the LHS unless it is not = Az + --- for some element A € K* and 4" €T, a
contradiction), and statements 1-3 follow. O

Generators and defining relations of the algebra A. Corollary 2.3 defines the commu-
tative algebra A via generators and defining relations.

Corollary 2.3 Given an algebra A € A(m,T), we keep the notation of Proposition 2.2. Then the
commutative algebra A is generated by the elements {f,} er subject to the defining relations:

fyfy = fory + Z Py ripfp forall v,7" € T such that v 4+ <m —1,
PET(v+7)
fvfy = 0 forall 7,9 €T suchthat y++" >m—1.

Proof. The corollary follows at once from Proposition 2.2.(1) and (7). O

Each non-empty set I' € S(m) is a disjoint union

= ind(T H dec(T



where ind(T") is the set of indecomposable elements of T' and dec(I") is the set of decomposable
elements of I'. An element v € I is called decomposable if v = 1 + 2 for some elements 1,72 € T
Fix I' € S(m) and let

ind(T") = {v1,...,vs} where 2<v; < - <y, <m-—2. (10)

Let Q be the field of rational numbers. For the s-dimensional vector space Q° = @;_, Qe;, let
ab:=>""_, a;b; the scalar product on it where a = (ay,...,as),b = (b1,...,bs) € Q°. The set of
elements ey, ..., ez is the canonical Q-basis of Q°. Define

vpi=v:=(v1,...,v5) € NL C Q% (11)
For each element v € dec(T), let
Rel(7) := {a € N°|av = ~}.
Clearly |Rel(7)| < oo. For each element v € dec(T"), we fix an element
a(y) € Rel(). (12)

For each v; € ind(T"), we set a(v1) = v;. In particular, a(y)v = v for all v € T'. The choice of a(v)
is arbitrary but fixed. By definition, a(v;) :=e; for all i =1,...,s. Let

dec(T")>2 := {y € dec(T) | |Rel(v)| > 2}. (13)

Recall that fo, = 2" + > . core,) A jad fori=1,... s and CT(v;, k) = {j|vi <j <k,j €T}
For each natural number k such that 2 < k <m — 1, let

Ak)={\, li=1,...,s8;0; <k;j € CT'(v;, k)}. (14)

Given an algebra A € A(m,TI"). Let {1, f,|v € I'} be the canonical basis of A. For each
a = (a;) € N°, let f*:=T[’_, f&. In particular, for each v € dec(I') and v; € ind(T), e =

H?:l 31‘(7)1 and fa(w) = fu-

Lemma 2.4 For all nonzero elements a € N?,

I = fa+ Z C’y’(fa)f’y’a

~v'€l(av)
fal/ = v + Z C(5(fa)$(s - Z C’y'(fa)f’y’7
av<d<m v €T (av)

where ¢y (f) is the coefficient of 27 of the polynomial f* = z% + Z;n:_a},ﬂ cj(f*)x?. The

coefficient ¢/ (f*) is an explicit polynomial in the variables A(7'), see (14).

Proof. Recall that f,, = 2 + Zjecr(u,-) Ay, jad for i = 1,...,s. By multiplying out, we get
the equality
m—1
fa =W 4 Z Cj(fa)l']
j=av+1

where each ¢;(f®) is an explicit polynomial in the variables A(j). For each element v € T, let
ty := fy — 7, the tail of the polynomial f,. Then

foo= e Y el = D0 e (It DD e (P

§€CT (av) v €T (av) v €T (av)
= fau+ Z C’y/(fa)f’y/ +A
vy el (av)



where A = —tay + > seoran) cs(f4)x? — > orer(an) v (f)y € Xseor(aw) Kx°. Then
A=0

since A = f* — fay = > repan) v (f)) [y € A (if A # 0 then on the one hand A € K*2% + ---
for some § € I'(av) since A € A, on the other hand § € CT(av), a contradiction; the three dots
denote higher degree terms), and the first equality of the lemma follows.

The second equality of the lemma follows from the first and the third equalities of the lemma
(the second equality of the lemma is equivalent to the equality A = 0). O

Elements of the canonical basis as polynomial in f,,..., f,.. Lemma 2.5.(2) represents
each element f, of the canonical basis of the algebra A € A(m,T") as an explicit polynomial
in f,,,..., fu,. For each element v € dec(I')>2 and element b € Rel(y)\{a(v)}, Lemma 2.5.(3)
represents the element f° as an explicit linear combination of the elements { o) |y eT}.

Lemma 2.5 Let A € A(m,T) and ind(T') = {v1,...,vs} (see above). Then
1. The set {1, f,,,..., fo., f¢) |y € dec(I")} is a K-basis of the algebra A.

2. For each elementy €T, f, = f‘l('y)—FZy'eF(v) nvv'fa(’yl) for unique elements ., € K. Fach
element 1., is an explicit polynomial in A(v'), see (15) (if v = v; then f,, = fo) = f,, is
a tautology).

3. For each element v € dec(I')>2 and each element b € Rel(v)\{a(7)},
fb _ fa(’y) + Z 97,7’;bfa(’w)

v €T ()

for unique elements 0., o, € K. Each element 0~ is an explicit polynomial in A(v'), see
also (16).

Proof. 1. Statement 1 follows from the fact that f*() € f, + > rer(y) K fy where {1, f [~ €

'} is the canonical basis of the algebra A.
2. Statement 2 follows from statement 1 and Lemma 2.4.
3. Statement 3 follows from statement 2 and Lemma 2.4. [

Explicit expressions for the elements 7., and 0., ,.,. We keep the notation of Lemma
2.5. In order to write explicit defining relations of the algebra A (Theorem 2.15) and the algebra
A (Theorem 2.17) we need an explicit expression for the elements 6., .., see (16). In order to
obtain it we use Lemma 2.4 and Lemma 2.5. There are two K-bases for the algebra A: the
standard basis {1, f, |y € '} where the order of elements are increasing (if I' = {y1 < --- < v}
then {1 < f,, <--- < f,,}) and the K-basis {1, f¢() |y € T'} where the order of elements is also
increasing, i.e. {1 < f*) < ... < f*00)1 Recall that a(v;) = e; for alli = 1,...,s. By Lemma
2.4,

fo = 4 Z ey (F2ON) £y, v € dec(T),
'€l (y)
f{l(”i) = fl/w 7= 17...,8.

It follows from the equalities above that the change-of-basis matrix C; (from the standard basis
to the second one) is a lower unitriangular matriz (i.e. a lower triangular matrix with identities on
the diagonal). The elements of the matrix C; are the coefficients in the equalities above. So, the
matrix C3 is a sum C7 = 1 4 nz of the identity matrix 1 and a strictly lower triangular matrix
n. Hence, the inverse matrix of Cy,

dim(A)

Oil = Z (7n2)i7 (15)

=0



is also a lower unitriangular matrix elements of which are explicit expressions, i.e. the elements
Nyy (in Lemma 2.5.(2)) are explicit expressions. Now, when we substitute the expression for
2 from Lemma 2.4 into the sum in Lemma 2.5.(2) to obtain the result: For each element
v € dec(I")>2 and element b € Rel(y)\{a(v)},

o= h+ Y ()

v €l ()
— fa('Y)+ Z nv’ylfa(ﬂ“)+ Z (f (fa(’Y Z Ny ’Y”f (v ))
v €T () v E€T(y) Y"€Er(vy’)
PO+ 3 (e (M + D sl sy ) £,
v €L () SET(v,7")

In order to get the last equality we changed the order of summation in the double sum and replaced
(',4") by (8,~"). Therefore, for each element v € dec(I')>2 and element b € Rel(y)\{a(y)},

O ysp = Ty + Cyr (fb) + Z Cé(fb)név’- (16)

SET(7,7')

By Lemma 2.5.(3), the elements 6 -/,; can be also found recursively by using the equality

Oyyrip = Cyr (fb - fa('v) - Z 9%7”;bfa(7”)) (17)

Y er(v,)
where the RHS is the coefficient of 7 of the polynomial in the brackets.

Consider the monoid (N*, +) and its subsemigroup
N(m —1,T):={ceN|ev>m -1} ={ce N°|cv >m — 1}.

The subsemigroup N*(m —1,T) is also an ideal of the monoid (N°, +), that is N°* + N*(m —1,T") C
N*(m — 1,T).
CLAIM. The set

indN*(m —1,T) := N°(m — 1,T)\(N*(m — 1,T) + (N*\{0}))

of minimal generators of the ideal N*(m — 1,T") is a finite set.

Proof. Let A be the (homogeneous) subalgebra of Klz] that is generated by the elements
x¥, ... 2% (where ind(I') = {v1,...,vs}). Then the ideal a = A N z™ ' K[z] of the Noetherian
algebra A is a finitely generated and the finite set {8 € ind N*(m — 1,T')} is its minimal set
of generators (as a A-module). In particular, the factor algebra

Kz, ..., 2"]/(z% |6 € ndN*(m — 1,T)) = K & @va (18)
~yel

is finite dimensional. Its dimension is 1+ |T'|. O

Lemma 2.6 is a characterization of algebras A € A(m) with |ind(T'4)| = 1. For a rational
number ¢ € Q, we denote by [g] the integer part of ¢, i.e. the unique integer [g] such that
[q] <g<lg] +1.
m— 1
Lemma 2.6 Given an algebra A € A(m,T). Suppose thatind(I') = {v1}. Then A ~ K[f,,]/(f,"* +1)
and vice versa, i.e. if A~ K[f]/(f[%]+1) for some algebra A € A(m) where f = x4+ g_ 12971+
ot Apmo12™t € K[z] then ind(T) = {d}, d > 2 and dfm — 1.

10



Proof. (=) Since ind(T) = {m}, T = {im|1<i< ™} and A=K @ 7 |

[m=1]+1 o 1
S = 0, and the implication follows.

(«) Straightforward. O

K f}, with

In view of Lemma 2.6, we will assume that s = |ind(T")| > 2. Theorem 2.7 shows that the set
{furs--+, fo.} is a minimal set of generators of the algebra A, it also presents defining relations
of the algebra A that the set of generators satisfies. In general, some of the defining relations
that are given in the first equation of Theorem 2.7 are redundant. An irredundant set is given in
Theorem 2.11.

Theorem 2.7 Given an algebra A € A(m,T'). Suppose that s = [ind(I') > 2 and we keep the no-
tation as above. Then the algebra A is generated by the the minimal set of generators {fu,,..., fu.}
that satisfies the defining relations (as a commutative algebra):

F£o= 4 YT 0,000 where 7y € dec(I)>2 and b € Rel()\{a(7)},
v er(y)
f¢ = 0 where ¢c€indN°*(m —1,T).

Proof. By Lemma 2.5.(2), the elements f,,,..., f,. are generators of the algebra A. They are
a minimal set of generators for the algebra A since ind(I') = {v1,...,v,}. Clearly, they satisfy the
relations of the theorem (by Lemma 2.5.(3) and the definition of the semigroup N*(m — 1,T)).

Let A be a commutative algebra that is generated by indeterminates f,,,..., f,, subject to

the defining relations of the theorem. Then A=K+ Z’VEF K ™) by the definition of the sets
ind N*(m — 1,T') and dec(I"). Hence the epimorphism

‘PZZI%Z, Jvi = fu;

is an isomorphism since A = K @ @,YGF Kfe™. O

Remarks. 1. The relations ‘ f¢ = 0’ are obvious ones. They imply that the algebra that satisfies
them is a finite dimensional I'-graded algebra.

2. The relations ‘f® = fo() 4 ..." are not obvious ones. In general, some of them are
redundant. Theorem 2.11 replaces this set of defining relation by the one none element of which
can be dropped. In order to prove Theorem 2.11, we need to introduce more concepts and to
prove some more results (Lemma 2.8).

Recall that v = (v4,...,vs) (see (11)) and s > 2. The kernel of the Q-linear map
v:Q°—Q, a»—)az/:Zaiui
i=1

is equal to @;_, Q(vie1 — v1e;). Its Q-dimension is equal to s — 1. The rank of the Z-module
kerg: (-v) N Z* is equal to s — 1 since the intersection contains @;_, Z(v;e1 — v1e;). Consider the
‘ideal of relations’ of the semigroup I,

Iy = Z Z N(a —b) = Z Z Z(a —b) C kerg:(-v) N Z°. (19)

v€dec(I")>2 a,beRel(y) y€dec(I')>2 a,bERel(7y)

The second equality follows from the equality N(a — b) + N(b — a) = Z(a — ). Clearly, the set
It is a free abelian group of rank » = rpr and 0 < r < s — 1. The rank rr is equal to zero iff
dec(I')>o = 0 iff each elemenet v € T is a unique sum of the elements vy, ...,vs (counted with
multiplicity), and Lemma 2.8 follows from Theorem 2.7.

Lemma 2.8 Given an algebra A € A(m,T"). Suppose that dec(I")>2 = 0. Then

A= K[fl’17' .- 7st]/(fc)ceinst(mfl,F)a

11



the sets {fu,s-- -, fu.} and {f¢|c € indN*(m — 1,T')} are minimal sets of generators and defining
relations of the algebra A.

In view of Lemma 2.8, we will assume that s = |ind(T")| > 2 and dec(I")>2 # 0.

Sets of generators and defining relations of the algebra A,,,, where A, € A(m,T)
is the monomial algebra. An algebra A € A(m) is called a monomial algebra if it admits a
monomial basis. Let I' = I'4. The algebra A is a monomial algebra iff

A:K@@Kw’y@xmK[m]
yel’

iff {1,27 |~ € I'} is the canonical basis of the algebra A. We denote the monomial algebra in
A(mv F) by Amon = Amon(r)~

If either |ind(T')| = 1 or |ind(T")| > 2 and dec(I')>2 = () then the generators and defining
relations of the algebra Ao, are given in Lemma 2.6 and Lemma 2.8, respectively.

Suppose that s = |ind(T")| > 2 and dec(I')>2 # 0. Recall that ind(T") = {v4,...,vs}. The set
fo, = 2", ..., f,. = ¥ is a minimal set of generators of the monomial algebra A,on. Let M =
M(T") be the factor algebra of the (abstract) polynomial algebra K|[f,,,..., f,.] in s indeterminates

modulo the ideal (f)ccindans(m—1,r)- The algebra

M:KEB@MV, where M, := @ Kre,

yel a€N® av=~

is a finite dimensional, local, graded algebra where n = (f,,,..., f,.) is its maximal ideal which is
a homogeneous ideal. There is a graded K-algebra epimorphism M — Apon, fo, — f,, = 2V for
i=1,...,s. By Theorem 2.7, the kernel a = ar is a homogeneous ideal which is generated by the
set {f° — o) |~ € dec(T')>2,b € Rel(y)\{a(y)}}. Furthermore,

I\\/H:K@éwa@ B rYoa and ap= P b K(f° — 20y, (20)
=1

yedec(T) y€decx2(T) beRel(v)\{a(y)}
By Nakayama’s Lemma, any K-basis of the vector space a/na, say
B =Br = {fo — fem) b — palmd) oy <<y, t = tp = dimg(a/na), (21)

together with the set {f¢|c € indN*(m —1,T")} is a set of defining relations for the algebra Apon.
The choice of the elements p; < --- < py (counted with multiplicity) is unique since the ideals a,
n and na are homogeneous.
The elements by, ...,b; can be effectively found. There is not much freedom in their choice.
Let Br := {b|b € Rel(7),7y € dec>2(I") },

Br = Bp\( U(ei + Br)) ={b},...,0.} and uf =bly,... ul =0bv (22)
i=1
where e, ..., e; is the standard Q-basis of the s-dimensional Q-vector space Q* = @;_, Qe;. For
each element p;, where 1 <4 <7, let Br(u;) = {01 < j < 7,bfv = ui}.
Let us show that always we can chose the elements by, ..., b from the set {b],..., 0.} changing

the choice of the elements a(y) if necessary. Let
Py <o < g,

be all the distinct elements of the set {uf, ..., pl}.
Definition. The element p; € T, where 1 < a < 0, is called an avoidable element if

S

Rel() )N (U(ei + Bp)> =0,

i=1

12



and non-avoidable, otherwise. The sets of avoidable and non-avoidable elements are denoted by
'y, and Ty, respectively. Therefore,

{/‘217’”»/1/1'0} =Ty Hrnw

Definition. The set {a(v) |y € '} is called a non-avoidable set provided a(u’) & Bj-(u') for all
t € Tha.

It follows from the definition, that there are plenty of non-avoidable sets. Proposition 2.9 shows
that the set Br is unique provided that {a(vy) |~y € '} is a non-avoidable set.

Proposition 2.9 We keep the notation as above. Let {a()|v € T'} be a non-avoidable set. Then
the set Br is uniquely defined. Furthermore,

1. {by,..., b} =Br\{a(W) |1 € Ty} and t =tr = |Br| — |Taw| (see (21) and (22)).

2. The set {u; ,...,p; } contains precisely all the distinct elements of the set {1, ..., s}, i.e.
{pa, . ospey ={pi,, - 15, } (after deleting repetitions), and the multiplicity of the element
w; is equal to

‘Bi—‘(uz” -1 quz S Fav7

‘B/F(/uz” if,ui € Fna-

Proof. 1. Since the set {a(y) |y € '} is a non-avoidable set, {b1,...,0:} = Br\{a(p') |1t €

Tuw}, and so t = tp = |Bf| — Dol
2. Statement 2 follows from statement 1. OJ

mult(p;) = {

Summarizing, we have the following proposition which gives generators and defining relations
for the algebra Apop.

Proposition 2.10 Suppose that s = [ind(I')| > 2 and dec(I')>2 # 0. Then the monomial algebra
Amon 18 generated by the minimal set of generators {f,, = x**,..., f,, = x¥=} that satisfies the
defining relations:

fro= o) for i=1,...,t=tr,
f¢ = 0 where ¢ € indN°(m —1,T).

None of the relations in the first set can be omitted.

Sets of generators and defining relations of the algebra A where A € A(m,I),
lind(T")| > 2 and dec(T)>2 # 0.

Theorem 2.11 Given an algebra A € A(m,T'). Suppose that s = |[ind(T')| > 2 and dec(T")>2 # 0.
Then the algebra A is generated by the minimal set of generators {f,,,..., fu.} that satisfies the
defining relations:

fbi = f‘l(ﬂi) + Z eﬂiy’Y/;bz‘fa(’Y/) for Z = ]-7 . 7t = th and (23)
v €T (1)
f¢=0 for ¢c€indN°(m —1,T), (24)

where the elements 0., .. are defined in (16). None of the relations in (23) can be omitted.

Proof. Let A’ be a commutative algebra that is generated by the indeterminates f,,,..., f..
subject to the defining relations of the theorem. The relations f¢ = 0, where ¢ € ind N*(m —1,T),

imply that the algebra A is a finite dimensional algebra. The K-homomorphism

@ZZI%Z, Jvi = fu,

13



is an epimorphism. To finish the proof it suffices to show that dimg(A4) < dimg(A). The
algebra A admits a descending filtration {lez = D {aens |avsip K S ien. Its image under ¢,

{@(Z/Zi)}ieN» is the induced radical filtration on the algebra A. Hence, we have the epimorphism
of the corresponding graded algebras:

gro: ng/ —orA= K@@Kw“’ = Anon-
yer

The algebra gr A’ is an epimorphic image of the N-graded algebra A which is generated by the
indeterminates f,,, ..., f,. subject to the defining relations fb = fe(#) fori=1,...,tand f¢ =0
for all ¢ € ind N*(m — 1,T'). By Proposition 2.10, A ~ Ap,,. Hence, dimK(Z/) < dimg (A), as
required. [

Generators and defining relations for the algebra A € A(m,T"). For each algebra
A e A(m,T), we give explicit sets of generators and defining relations using the sets of generators
and defining relations of the algebra A that we obtained above.

Case: T'= (). The algebra A = A(M) := K ® 2™K]|z] is the only element of the set A(m, ).
Lemma 2.12 follows at once from the equality A(m) = @1-";01 K[z™a™*t a direct sum of free
rank 1 K[z™]-modules.

Lemma 2.12 The commutatiove algebra A(m) is generated by the elements {z™ %" |i = 0,1,...,m—
1} subject to the defining relations: For all i,j such that 0 <i,57 <m —1,
i _ xmx"”r.“‘]_' ifi+j<m,
(x™)22F ifi+j > m.
The set {z™ % |i =0,1,...,m—1} is a minimal set of generators and the defining relations above

is a minimal set of defining relations.

We have the direct sum of vector spaces over K, K[z] = K[z]<m—1 @ (z™) where K[z]<;m—1 =
@' Kz'. We identify the factor algebra

m—1
F=Kz]/(a™) = @ Kz’
=0
with the K-subspace K[z]<,,—1 via the K-linear isomorphism z¢ ~ % for i = 0,1,...,m — 1.

Then every polynomial p € K[z] is a unique sum
p=p+[p| where p=p mod (z") and [p]=p—p € (2™).

In particular, for elements f, g € F, there are two products: fg is in K[z] and f - g is in F. They
are related by the equality in KJz]:

f-9="rg—1f4g]-
We will use this type of equalities when we obtain defining relations for the algebra A from the
defining relations of the algebra A. Recall that

m—1

A(m) = @ K[z™]z™" C Klx].

i=
So, for each polynomial p € K|[z], its projection [p] onto (z™) is a unique sum

m—1

[p] = Z pi(z™)z™ " where pi(z™) € K[z™]. (25)
1=0

When we write [p] we mean that the element [p] € (2™) is written as the unique sum above.

14



Theorem 2.13 We keep the notation of Corollary 2.3. Suppose that A € A(m,T) with T # (.
Then the commutative algebra A is generated by the elements {f,, ™" |y € ,i=0,1,...,m—1}
subject to the defining relations:

by = fvl = Py D fgnpf, forall v,9" €T such that v 44" <m— 1,
pel(v+7")
fofy = [fyfy] = 0 forall v,v €T suchthat v+~ >m—1,
g™t = [p?™ ] forall i,5 =0,1,...,m — 1,
g™ tif, = [@™Tf,] forall i,j=0,1,...,m—1 and y€T.

Proof. Let A’ be the algebra which is defined by the generators and defining relations in the
theorem. We have to show that it is isomorphic to the algebra A. By Corollary 2.3, the algebra
A is generated by the elements {f,, 2™ |y € I',i = 0,1,...,m — 1} that satisfy the relations of
theorem. Hence, there is a a natural K-algebra epimorphism:

P A S A [y [y, 2 g™

By Lemma 2.12, the algebra A(m) is a subalgebra of A’ that is mapped isomorphically via ¢ onto
its copy A(m) in the algebra A. The ideal a = 37" K[z of the subalgebtra A(m) of A’ is
an ideal of the algebra A’ (see the last two types of the defining relations of the algebra A’). It is
mapped isomorphically by ¢ onto the ideal (z™) = 2™ K[x] of the subalgebra A(m) of K[z]. By

Corollary 2.3, g/ := A’/a ~ A (as the algebra A’ has the same generators and defining relations
as the algebra A). Now, there is a commutative diagram of algebra homomorphisms:

—/

RN
0—>(@") —=A— A 50

where the left vertical map is a restriction of ¢ and the right vertical map is induced by ¢,
they are bijections. Hence, the map ¢ is so, i.e. A" ~ A via . O

Definition. For the algebra A € A(m,T), the K-basis {1, f,,z"|y € [',i > m is called the
canonical basis of A. By definition, a canonical basis of A is obtained from the canonical basis my
multiplying each its element by an element of K*.

The structure constants of the algebra A € A(m,T"). The structure constants of the
algebra A € A(m,T") with respect to the canonical basis is given by the rule: For all elements
v,y €T and i,5 > m,

Ty fy Syrr + 2 per vy Prvindo U fy] iy +9 <m =1,
[fy Sy ify+9 >m-—1,
xif'y = [xif'y]m>
A
where the element [-- -], has to be written as a sum ijm A\jzd with \; € K.

Lemma 2.14 gives generators and defining relations for algebras A € A(m,I') such that
lind(T)| = 1.
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Lemma 2.14 Given an algebra A € A(m,T'). Suppose that ind(T") = {v1}. Then the algebra A

is generated by the elements {f,,,x™ i =0,1,...,m — 1} subject to the defining relations:
[my—l]_,’_l [771”—1]_,’_1
fl/l ! = |:fl/1 ! :| )
g™t = [P for 4,5 =0,1,...,m — 1,

™, = [a™Tf,] for i =0,1,...,m — 1.

Proof. The lemma follows from Lemma 2.6. [J

Theorem 2.15 gives generators and defining relations for algebras A € A(m,T") such that
lind(T")| > 2. In general, some of the relations that are given in the first equality of Theorem 2.15
are redundant. An irredundant set is given in Theorem 2.17.

Theorem 2.15 We keep the notation of Theorem 2.7. Given an algebra A € A(m,T). Suppose
that s = |ind(T")| > 2. Then the algebra A is generated by the elements {fy,,..., fu,, ™" |i =

0,1,...,m — 1} subject to the defining relations (as a commutative algebra):
P10 = SO =) Y (070 = [1°07]) where 5 € dec(T)>2 and b € Rel(7)\{a(7)},
v €r()
f¢ = [f¢] where ¢ €indN°(m —1,T),
g™, = [@"Tf,] for i=0,1,...,m—1and j=1,...,s,
g rigm i = [P for 4,5 =0,1,...,m — 1.

Proof. Repeat the proof of Theorem 2.13 word for word but the algebra A’ there is replaced
by the algebra A’ from the theorem and instead of using Corollary 2.3 to prove the isomorphism
A’ ~ A we use Theorem 2.7 instead. O

Corollary 2.16 is a particular (degenerated) case of Theorem 2.15. For each algebra A €
A(m,T) such that |ind(I')| > 2 and dec(I")>2 = () it gives generators and defining relations.

Corollary 2.16 Given an algebra A € A(m,T). Suppose that s = |ind(T")| > 2 and dec(I')>2 = 0.
Then the algebra A is generated by the elements {fy,,..., fu., 2™ |i =0,1,...,m—1} subject to
the defining relations (as a commutative algebra):

f¢ = [f°] where ¢ € indN°(m —1,T),
™, = "] for i=0,1,...,m—1and j=1,...,s,
g ripm = [T for 4,5 =0,1,...,m — 1.

Theorem 2.17 gives generators and defining relations for algebras A € A(m,I') such that
lind(T")| > 2 and dec(T")>2 # 0, and none of the relations given in the first equality of Theorem
2.17 is redundant.

Theorem 2.17 We keep the notation of Theorem 2.11. Given an algebra A € A(m,T). Sup-
pose that s = |ind(I') > 2 and dec(T')>2 # 0. Then the algebra A is generated by the set
{fors- s fo, 2™ i =0,1,...,m — 1} subject to the defining relations:

oI = ) )Y B ()~ [0 for i =Lt =,
v €T (ps)
f¢ = [f°] where ¢ € indN°(m —1,T),
xm-H’ij - [xm+ifyj] for i=0,1,....m—1 and j=1,...,s,
g™t = [p?MTI] for 4,5 =0,1,...,m — 1.

Nomne of the relations in the first type of relations is redundant.
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Proof. Repeat the proof of Theorem 2.13 word for word but the algebra A’ there is replaced
by the algebra A’ from the theorem and instead of using Corollary 2.3 to prove the isomorphism
A’ ~ A we use Theorem 2.11 instead. [

3 Isomorphism problems and an explicit description of the
automorphism groups of algebras A € A(m)

In this section, the field K is an algebraically closed field (unless stated otherwise).

The aim of the section is to give explicit generators for the automorphism groups of algebras
in A(m) (Teorem 3.4.(1)), to give criteria for the automorphism group to be infinite/finite/trivial
(Theorem 3.4.(2-4), and Corollary 3.5). Theorem 3.7 and Corollary 3.9 are explicit descriptions
of the orders of all finite automorphism groups of algebras in A(m).

Let O(m) be the set of orders of all finite automorphism groups of algebras in A(m). By
Corollary 3.6.(1),

{1,...,m =3} if 4 <mis even,

O(m) C
(m)_{{l,---,m4} if 5 < m is odd.

Theorem 3.7 and Corollary 3.9 are explicit descriptions of the set O(m). Lemma 3.12 and Lemma
3.13 are examples of algebras in A(m) with sophisticated orders of automorphism groups.
Notice that Autg (K[z]) = {ox. | A € KX, u € K} where oy, (z) = Ax + p. The group

Autg (K[z]) = Sh(K) x T(K)

is a semi-direct product of its normal subgroup, the shift group, Sh(K) := {s, = o1,.|p €
K} ~ (K,+) (sy — p) and the algebraic torus T = T(K) := {ty := oap|X € K*} ~ (K*,-)
(tx — A). The automorphism group Autg (K|[z]) acts in the obvious way on the set of ideals of
the polynomial algebra K[z]. Then the algebraic torus T is the stabilizer of each of the ideals (z?),
i>1,ie T={0ecAutg(Klx])|o((z")) = (z%)}.

For a natural number n > 2, an element A € K* is called a primitive n’th root of unity if
A" =1 and the elements 1, \,..., A" "1 are distinct. If char(K) = 0 then for each n > 2 there are
primitive n’th roots of unity. If char(K) = p > 0 then for each natural number n > 2 there are
primitive n’th roots of unity iff p t n (the field K is algebraically closed). If char(K) = 0 (resp.,
char(K) = p > 0) then for each natural number n > 2 (resp., such that p { n) fix a primitive n’th
root of unit, say A,,. Then the identity group and the cyclic groups of order n > 2 if char(K) =0
(resp., char(K) =p > 0 and p{n),

Cp = (tr,) ={ty, |0 <i<n—1}, (26)
are precisely all the finite subgroups of the algebraic torus T.

The set Isox (A, A") where A € A(m) and A’ € A(m’). For an algebra A € A(m), let
{1, fy = 2%uy |y € T4} be the canonical basis of the algebra A where for each v € I', f, =
27+ secr(y) A5z’ = 27u, (see (5)) where

Uy =14 Z sz € A (27)
6€CT ()

and A~ is the group of units of the algebra A.
Definition. The elements {u, |y € T'4} of A" are called the canonical units of the algebra

A.

Theorem 3.1.(2) is an isomorphism criterion for algebras in (J,,~,A(m). Theorem 3.1.(3)
describes the set Isox (A, A’) of all K-algebra isomorphisms from an algebra A to A’.
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Theorem 3.1 (K is an arbitrary field) Given algebras A € A(m) and A’ € A(m'). Let {1, f, =
Vuy |y € Ta} and {1, f], = x'yluvr |7 € Ta} be the canonical bases of the algebras A and A’,
respectively. Then

1. Tsox (A, A') = {ts € T|tr(A) = A'}.

2. A~ A" iff m=m/, T'a =T a4 and there exists an automorphism ty € T such that t5\(f,) =
)\Vﬂ/ forally € Ty iff m =m/, T'y =Ty and there exists an automorphism ty € T such
that ty(uy) = ul, for all v € T 4.

3. Suppose that A~ A'. Then

(a) Isor (A, A') = {tx € T|tA(fy) = AVf;, for ally € Ta =Tar} = {tx € T|tx(uy) = 4},
for all yel'y= FA/}.

(b) The T-orbit TA of the algebra A (i.e. the set of all algebras isomorphic to A, by
statement 1) is equal to the set T/Auti (A) = {txAuti (A) |ty € T} of all subalgebras
of K[z] that are isomorphic to the algebra A where Autk (A) = {tx € T|tr(uy) = u,
for ally € Ty}.

Proof. 1. We can assume that A, A’ C K][x] (since the polynomial algebra K|[z]| is their
commom normalization). Suppose that ¢ : A — A’ is a K-isomorphism. Then it can be uniquely
extended to an automorphism o : K[z] — K[z], and necessarily o((z™)) = ((z™')) (since (z™)
and (™) are the conductors of the algebras A and A’, respectively). Then m = m’ and o(z) = Az
for some A € K*, i.e. ty € T, and statement 1 follows.

2. It suffices to prove that the first ‘iff” holds as the second one follows from the first.

(=) Suppose that A ~ A’. By statement 1, there is an automorphism ¢y € T such that
ta(A) = A’. Then m = m’ (see the proof of statement 1) and the automorphism ¢y of K|[z]
respects the (x)-adic filtration of the algebra K[z]. As a result, it respects the induced (z)-adic
filtrations on the algebras A = A/z™K|[z] and A=A /x™K[x]. Hence, the automorphism ¢y
induces an automorphism of the associated graded algebras, gr(A4) ~ gr(zl). Therefore, 'y =T 4/
and the image of the canonical basis of the algebra A under ¢ty is a canonical basis of the algebra
Z/, and so tx(fy) = A7 f}, for all elements v € T'4 =L/

(<) Clearly, tx(A) = A’, and so ty € Isox (A4, A’), by statement 1.

3(a). The statement (a) follows from statement 2.

(b). The statement (b) follows from the statement (a) and the fact that Autx(A) = {t\ €
T |tx(uy) = uy for all v € T4}, by the statement (a) where A =A’. O

Description of orbits of the algebraic torus T action on K**. For each natural number
n>1,let U, =U,(K) := {\ € K|A\" =1} be the group of n’th roots of unity. In characteristic
zero the set U, is a cyclic group of order n. In prime characteristic p > 0, U,, = U, is a cyclic
group of order n’ where n = pn’ for unique natural numbers v and n’ such that (p,n’) = 1. A
cyclic generator of the group U, is called a primitive n’th root of unity if char(K) = 0 and a
primitive n’’th root of unity if char(K) =p > 0.

Let us consider an action of the algebraic torus T on the set K*%, s > 1: For all A € T and
()\1,...,)\S> e K>3,

A (AL, Ag) = (A A, A ), (28)

where the integer-valued vector (ni,...,ns) € (Z\{0})® is called the weight vector of the action.
For simplicity, we consider the case when all the weights n; are not equal to zero. The general
case is easily reduced to this one.

Let &1 be a cyclic generator of the group U,,, i.e. & is a primitive ny’th (resp., n}’th) root
of unity if char(K) = 0 (resp., char(K) = p > 0, n; = p“*n} and p { n1). Let H(ni,...,ny)
be a (cyclic) subgroup of the group U ! which is generated by the element (£72,...,£7*). The
order of the group H(ni,...,ns) is equal to niged(ny,...,ng) "t (resp., nfged(ny,...,n.)~1) if
char(K) = 0 (resp., char(K) = p > 0) where n; = p“in} and p { n.

Proposition 3.2 is a criterion for two elements of the set K ** to belong to the same T-orbit.
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Proposition 3.2 Given an action of the algebraic torus T on the set K*° with weight vector
(n1,...,ns) € (Z\{0})*. Then elements \,\' € K** belong to the same T-orbit iff u(N)u(\)~! €

ng

H(ni,...,ng) where for A= (A1,..., An), n(A) = (N2, .., p(N)n) and p(N); = A, ™ A,

Proof. Notice that TA = T(1,u(N)) and TN = T(1,u(N)). Hence, TN = TA iff p(N) =
w(N) (€72, ..., £7#) for some natural number i > 0, and the result follows. [J

Let A € A(m,T) and ind(I") = {v1,...,vs}. Recall that f,, = z"iu,, where u,, = 1+
2 jecT(v) A j23 71 (see (27)), and for all A € KX,

t)\(uui) =1+ Z Ajiyi)\ui,jxjiw'
JECT (vs)

For each i = 1,...,s, let c(uy,) = (..., A\, j,.--), J € CT(;), be the vector of nonzero coeffi-
cients (excluding 1) of the polynomial u,, and let n(u,,) = (...,j — v4,...), § € CT(v;), be the
corresponding weight vector. Let ¢(A4) = (¢(uy, ), ..., c(uy,)) and n(a) = (n(uy,),...,n(uy,)).

Proposition 3.3 (K is an arbitrary field) Let A € A(m,T), A" € A(m/,T") and ind(T") =
{vi,...,vs}. Then A ~ A" fff ' =T, m = m/, n(u,,) = n(u,,) for all i = 1,...,s and
Te(A) = Te(4').

Proof. The result follows at once from Theorem 3.1.(2). O

Remark. Using Proposition 3.2 and Proposition 3.3, we can establish in finitely many steps
whether algebras A, A’ € A are isomorphic or not.

Definition. Let f(z) = 2% +aq_12% ' +---+ a1z +a¢ € K[x] be a monic polynomial of degree
d > 1 where a; € K are the coefficients of the polynomial f(z). Then the natural number

ged(f(2)) == ged{i > 1] a; # 0}

is called the exponent of f(x).
Clearly, the exponent of f(z) is the largest natural number m > 1 such that f(z) = g(«™) for
some polynomial g(z) € K|x].

Definition. Suppose that char(K) = p > 0. Every nonzero natural number n is a unique
product of natural numbers, n = p°n, where s > 0 and p { n,. The number n, is called the
p-co-prime divisor of n. In particular, for a nonscalar polynomial f € K[z], we have the unique
product

ged(f) = p°ged, (f) where s >0, ged,(f) € N and p{ged,(f). (29)
Let {1, f, = 27u, |y € L =T 4} be the canonical basis of the algebra A, Let
ged(4) = ged{ged(uy) [y €T},
ged,(4) = ged{ged,(uy) [y €T}

where p is a prime number. Clealry, ged,(A) = ged(A),, the p-co-prime divisor of ged(A).

The group Autg(A) where A € A(m). Theorem 3.4 is an explicit description of the
automorphism groups of algebras in A(m).

Theorem 3.4 Let A € A(m,T), {1, f, = 27u, |y € T} be the canonical basis of the algebra A
and ind(T") = {v1,...,vs}. Then

1. Autg(A) = {tx € T|tr(fy) = AV fy for ally € T} = {ty € T|tr(uy) = u, for ally € T}.
2. Autg(A) =T iff f, =" forally €.
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3. Suppose that fr, # x7 for somey €T (i.e. Auti(A) # T, by statement 2). Then Autk(A) =
Cp = (tr,) is a cyclic group of order n where

)

. ged(A)  if char(K) =0
~ \eed(A), if char(K)=p >0,

and A, is a primitive n’th root of unity.

(a) If char(K) = 0 then ged(A) = ged{ged(u,,) i =1,...,s}.
(b) If char(K) = p > 0 then ged(A), = ged{ged,(uy,) i =1,...,s}.

4. Autg(A) = {e} iff ged(A) = 1 if char(K) = 0, or ged,,(A) = 1 if char(K) = p > 0.

Proof. 1. Statement 1 follows from Theorem 3.1.(3).
2. Statement 2 follows from statement 1.

3. The first statement of statement 3 follows from statement 1.
(a,b). Let

. ged(A)  if char(K) =0, and m = ged{ged(uy,)|i=1,...,s} if char(K) =0,
~ lecd(4), if char(K) =p > 0, B ged{ged, (uy,) [i=1,...,s} if char(K) =p > 0.

Then n|m. To finish the proof it is enough to show that m|n. Let ¢ := ¢ . Then ¢t € T and
t(f,,) € K*f,, for all i = 1,...,s. The elements f,,,..., f,. are generators of the algebra A.
Hence, t(A) = A, and so t € Autx(A). The order of the automorphism ¢, which is m, divides the
order of the group Autg (A), which is n, as required.

4. Statement 4 follows fro statement 3. [

Corollary 3.5 is a criterion for an algebra A € A(m) to have an infinite automorphism group.

Corollary 3.5 Given an algebra A € A(m,T'). Then the algebra A is a monomial algebra iff
Autg (A) =T iff {1,27 |y € T'} is the canonical basis of the algebra A.

Proof. The corollary follows from Theorem 3.4. [J

Corollary 3.6 gives the upper bound for the orders of finite automorphism groups of algebras

in A(m).

Corollary 3.6 1. Suppose that A € A(m) and |Autk(A)| < oo (i.e. the algebra A € A(m) is
not the monomial algebra). Then

m—3 if4<m is even,
m—4 if 5 <m is odd.

[Aut g (A)] < {

(a) If char(K) = 0 then the upper bounds above are the exact upper bounds, see statements
2(a,b) below.

(b) If char(K) =p > 0 then

max{i, |1 <i<m—3} ifd<miseven,

Autg(A)| <
|Autx ( )—{max{ip|1§i§m4} if 5 <m is odd,

where i, is the p-co-prime divisor of the natural number i. Let u(p,m) := max{i,|1 <
1<m-=3,i+7 <m—1 for some natural number j = j(i) > 2 such that j t m — 1}.
Then u(p, m) = max{|Autx (A)| | A € A(m), |Autk(4)] < oo}.
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2. (a) If m > 4 is even and A = 3.+, Kg' + 2™ K[z] where g = 2?(1 + 2™73) then T'a =
{2i]1<i< ™Y {1,9,2% (2 <i < ™} is the canonical basis of the algebra A and

(tam_3) if char(K)

=0, m—3 if char(K)
<t>\(m73)p> if char(K) =p >0,

-0,
Autg(A) = { (m—=3), if char(K)=p >0,

|[Autg (A)| = {

where Ap,—3 is a primitive (m — 3) ’rd root of unity, (m — 3), is the p-co-prime divisor
of m — 3 if char(K) = p > 0.

(b) If m>5is odd, 3tm —1 and A=Y, Kg' + 2™ Klz] where g = 2°(1 + 2™~*) then
Py ={3i|1<i< 2}, {1,9,2% |2 <i < ™} s the canonical basis of the algebra
A and

(tx,_4) if char(K)

=0, m—4 if char(K)
<t>\(m_4)p> if char(K) =p >0,

=0,
Autg (A) = { (m—4), if char(K)=p >0,

[Aut g (A)] = {

where Apy—4 is a primitive (m — 4)’th root of unity, (m — 4), is the p-co-prime divisor

of m — 4 if char(K) =p > 0.

Proof. 1. For polynomials of the type x%(1 + Ajz® + .-+ \;z%), where 1 < b; < --- < b; and
Aj € K*, that belong to the algebra A, m >2and b; <m—-1—-a<m—-1-2=m-3. lfa=2
and b; > 1 then m >4 and |Autx(A)| < m — 3, by Theorem 3.4.(1).

If m is even and char(K') = 0 then the algebra in the statement 2(a) has order m — 3. So, the
upper bound m — 3 is sharp in this case.

If m is even and char(K) = p > 0 then |Autg(A)| < max{i, |1 < i < m — 3}, by Theorem
3.4.(1).

If m is odd then the number m — 3 is even. So, for the algebra in the statement 2(a), the
polynomials of the type x%(1 + A\jz® + --- + \,,_32”»-3) do not belong to its canonical basis

(since otherwise m — 1 € 'y = {2,4,...,m — 1}, a contradiction). Hence, a > 3. If a = 3 then
1<bh;<m-1—a<m-1-—3=m—4, and so m > 5 and |Autx(A)| < m — 4, by Theorem
3.4.(1).

If m is odd and char(K) = 0 then the algebra in the statement 2(b) has order m — 4. So, the
upper bound m — 4 is sharp in this case.

If m is odd and char(K) = p > 0 then Autg(A)| < max{i, |1 < i < m — 4}, by Theorem
3.4.(1).

Suppose that char(K) = p and we fix i such that i, = u(p,m),ie. 1 <i<m-—-3,i+j<m-—1
for some natural number j = j(i) > 2 such that j { m —1. Let g = 27 (1 + ). Then, by the choice
of the natural numbers ¢ and 7,

A(g) = Z Kg' + K[z]z™ € A(m).
k>0
By Theorem 3.4.(3b), |Autx (A(g))| = ip. By Theorem 3.4.(3b), u(p, m) > max{|Autx(A)| | A €
A(m), |Autg (A)] < oo}, and so the inequality is the equality.
2(a). Notice that g' =22 4+ .- for all i > 1, and so I'y = {2i|1 <4 < -1}, Since

g' =2* mod (2™) forall i >2,

the set {1,g,2%"|2 < i < mT_l} is the canonical basis of the algebra A, and the rest of the
statement 2(a) follows from Theorem 3.4.(3).
2(b). Similarly, g' = 2% + .- forall i > 1, and so I'y = {3i|1 < i < 221}, Since 3{m — 1,
m—1¢T 4. For all i > 2
g =23 mod (z™).
So, the set {1,¢,2% |2 < i < ™=11 is the canonical basis of the algebra A, and the rest of the

3
statement 2(a) follows from Theorem 3.4.(3). O
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An explicit description of the set O(m). For each element (} # I' € S(m) and each prime
number p, let
L(m,T) = LO):={]|1<I<m—-1,1+T¢ZTU[m,0)}={l]1<I<m-1, ({+T)NCT #0}.
L,(m,T) = L,T):={l|1<I<m-—-1,pt, I+T ZTU[m,00)}={l]1<I<m-1, ptl,
(I+T)NCT # 0}.

So, a natural number [ belongs to the set L(m,T") (resp., L,(m,I")) if 1 <1 < m —1 (resp., and
ptl) and [+ € T'U[m,00) for some element v € T'. If [ € L(T") then

[ <m-3
(since for I >m — 2,1+ T C [m, 00)). By definition, L(0) := ¢ and L,(0) := 0. Let
L(m,T)p := L), = {lp [l € L(m,T))}

where [, is the p-co-prime divisor of .
CLAIM.
Lp(m, ') = L(m,T),. (30)

Proof. By the very definition, L,(m,I") C L(m,I"). Hence, L,(m,I') C L(m,T"),.

Suppose that [ € L(m,T'). We have to show that I, € L,(m,T"). Suppose that this is not true,
ie. I, +T CT U[m,0). We seck a contradiction. Recall that [ = p®l, for some natural number
$>0. Then [+ T =p°l, + I CT' U [m, o), a contradiction. O]

Let

O(m) = {|Autg(A)[| A€ A(m), |Autg(A)] < oo},
O(m,T) = {JAutg(4)|]| A€ A(m,T), |Autg(A)| < oo}.

Clearly, O(m) = Ureg(m) O(m,T'). Let

Lim):= J Lm,I) and Ly(m) = |J Lym, 1) J Lim.D),
res(m) res(m) resS(m)
where p is a prime number. Theorem 3.7 is an explicit description of the set Q(m).

Theorem 3.7 Suppose that m > 4. Then

_ JL(m) if char(K) = 0,
Ofm) = {Lp(m) if char(K) =p > 0.

Remark. Notice that the LHS of the equality above depends on all algebras in A(m) but the
RHS depends only on all semigroups in S(m) (which is a purely combinatorial discrete object).

Proof. Let R be the RHS of the equality in the theorem.
(i) For all T € S(m), O(m,T) C {L(m’r) if char(K) =0,
L,(m,T') if char(K) =p > 0.
In particular, O(m) C
Given an algebra A €
3.4.(3),

R:
A(m) with finite automorphism group G = Autx(A). By Theorem

Gl = ged(A)  if char(K) =0,
| ged, (A) if char(K) =p > 0.
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Let I' = I'y and {1, f, = 27u, |y € '} be the canonical basis of the algebra A where u, =
1+ 3 seor(y) A2~V and A\ys € K. Since [ := |G| < oo, A5 # 0 for some § € CI'(y) (by
Corollary 3.5). Hence, 6 — v = ¢’l for some natural number ¢’ and

Y+0l=7+(0—7)=0¢TU[m,o0)
since 0 € CT'(y). Hence,
I L(m,T') if char(K) =0,
L,(m,T') if char(K) =p >0,
since otherwise I' +1 C T" U [m, 00), and so I' + 4l C T'U [m, 00) for all natural numbers ¢ > 1. In
particular, v + §’l € T'U [m, 00), a contradiction, and so the statement (i) follows.

(ii) @(m) D R: The inclusion follows from Proposition 3.8.(2) (resp., Proposition 3.8.(3)) if
char(K) = 0 (resp., char(K) =p > 0). O

Question. Is

O(m,T) L(m,T')  if char(K) =0,
m =
’ L,(m,T) if char(K) =p >0,

for each T' € S(m)? (by the statement (i) in the proof of Theorem 3.7, the LHS C the RHS).

Proposition 3.8 Given ) # ' € S(m) and | € L(T"). Then there exists an element v € I' such
that v +1¢ T andy+1<m—1. Let g =27 (1 + 2!) and A, = K+ 5, Kg' +a™Kl[z]. Then

1. Ay e Alm), Ta, = {iv|1 <i < mTfl} CT,ind(Ta,) = {7} and the polynomial g is an
element of the canonical basis of the algebra A.;.
t if char(K) =0
s Nty ) tart) <o,
(tr,) if char(K) =p>0.

3. Suppose that char(K) = p > 0. If, in addition, pt1 then Autg (Ay) = (tx,)-

Proof. 1. Clearly, Ay := K ® @,~, Kg' ® 2™ K[z]. Hence, Ay € A(m), Ty, ={iy[1<i<
mT_l} C T and ind(T'4.,) = {7v}. Since v + A € CT'(y) and ind(I'4_,) = {7}, the polynomial g is
an element of the canonical basis of the algebra A.;.

2. Statement 2 follows from statement 1 and Theorem 3.4.(3a,b).

3. Statement 3 is a particular case of statement 2. [J

Definition. Let B(m) :={l|1<I<m—-1,14+T CTU[m,oc0) for all ' € S(m)} where m > 4.

By the very definition, the set B(m) U {oco} is a subsemigroup of N /(m + N), and

{1,...,m —1} =L(m) [[B(m) (31)

is a disjoint union. Clearly,
m—2,m—1¢cB(m).

In view of Theorem 3.7, in order to find the set L(m) it is much more faster, first, to find the set
B(m) and then apply (31). In general, B(m) # {m —2,m — 1} (Lemma 3.11.(1)) but the equality
is also possible (Lemma 3.11.(2)).

Question. Find a formula/lower bound/upper bound for the number |B(m)|.

Corollary 3.9 Suppose that m > 4. Then

O(m) = {{1,...,m— LH\B(m) if char(K) =

b

0
{Ite{l,....om—=LptI\B(m)} ={l,|le{l,...,m—1}\B(m)} if char(K)=p>0.
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Proof. The second equality is obvious. Then the corollary follows from Theorem 3.7, (30) and
(31). O

Lemma 3.10 1. For allm >4, 1¢ B(m).

2. For each m > 4, there is an algebra A € A(m) with |Autg(A)] =1 (eg, A= K Kz™?(1+
z)® ™ Kz] € A(m)).

Proof. 1. Sincem >4, T :={m—2} € S(m) and 14T = {m—1} Z TU[m, c0), i.e. 1 & B(m).
2. Statement 2 follows from statement 1, Theorem 3.7 and (31) (the fact that |[Autg(A)| =1
follows from Theorem 3.4.(3)). O

Lemma 3.11 1. Letm =n!+4+ 1 wheren > 3. Then {m —1—1i|i=0,1,...,n} CB(m). In
particular, |B(m)| > n + 1.

2. Let m =p+ 1 where p > 3 is a prime number. Then B(m) = {p — 1,p}.

Proof. 1. The numbers 2,3,...,n are divisors of m — 1 = nl. Therefore, for all § # T € S(m),
min(T') > n+1. So, foralli =0,1,...,n and y €T,

m—1—i+y>m—-1—i+n+1l=m+(n—1i)>m,

ie. m—1—1i¢€B(m).

2. Since m — 1 = p is a prime number, T'; := iN; N [2,p] € S(m) for i = 2,...,p — 1. Since
telandi+ (p—i) =p ¢TI, we have that p—i € L(m,I';). So, the elements 1,...,p—2 do not
belong to the set B(m). Since {p — 1,p} C B(m), we must have B(m) = {p—1,p}. O

For a natural number m > 2 and a polynomial p € K[z], we denote by p<,, a unique polynomial
of degree < m such that p = p.,, mod (z™).

Lemma 3.12 Suppose that m > 4. Let gy = 2™ ' (1+2!) = 2™ 1™ where 1 <1 < m—3
and Ay = K+, Kg +2™K|z]. Then A; € A(m) and A; # K +2™K|z] iff m—1—1{m—1.
If the above equivalent conditions hold then

1. AA=K®Kg®@yeie ma K(gf)<m ©@a"K[z] andTa, = {i(m—1-1)[1<i < m—1

m—1—1 m—1-1J"

2. {1,g;, 2" 17D 12 < < m"l;il} is the canonical basis of the algebra A;.
t if char(K) =0

3' AutK(Al) — < >\l> ch a’lr( ) Y
(tr,) if char(K) =p>0.

Proof. Since g; = 2™~ 1= 4 2™~ 1 the ‘iff-statement is obvious.

1. Statement 1 follows from the fact that gi = x*(™~1=0) mod (z™) for all i > 2.

2. Statement 2 follows from statement 1.

3. Statement 3 follows from statement 2 and Theorem 3.4.(3). O

Clearly, 1 <l <m-3<2<m-—1—-—1<m-—1. The conditions 2 <m —1—1<m —1 and
m—1—1lm —1 (see Lemma 3.12) are equivalent to the conditions:
m—1 m —

m—-—1—-1[1= —, 2<:1<
) 2

and ilm — 1
which are equivalent to the conditions:

1 =1(i), 2§z’§m2_

and ijm —1
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where {(i) := =1(m — 1). By Lemma 3.12,

{1,....m=3N\{l(i)[2<i < 2L ijm —1} if char(K)

—0
’ 32
{l1<1<m=3,pt I\ {l(i)p|2<i< 2L dilm—1} if char(K)=p > 0. (32)

L(m) 2 {

Lemma 3.13 shows that under certain (explicit) conditions the elements I(i) = “=1(m — 1) in
(32) can belong to the set L(m).

Lemma 3.13 Suppose that m > 4, ilm — 1 for some natural number i such that 2 < i < mTfl

and the number n(i) := ™= — 1 > 2 is not a divisor of the numbers m — 1 and m — 2. Let
fi = 2D (1 +2'D) where (i) = =2 (m — 1), and A; = K + > o1 Kf] +a™K[z]. Then

1. A; € A(m), Ty, = {jn(i) |1 <j < ’;‘(_Z)l} and {1, fi, 27"V 2 < j < TZT_Z)l} is the canonical

basis of the algebra A;, and f; = ™ 4+ gm=2,
(tny) if char(K) =0,

2. Autg(4;) = {(thu-)p) if char(K) =p > 0.

Proof. 1. Since f/ = 29" 4 ... for all j > 1, n(i) > 2 and n(i) f m — 1,

1
T4 = {jn(i)|1 <j< %} and A; € A(m).

(i

Clearly, f; = ™) 4+ 2™~2. By the assumption, the number m — 2 is not divisible by n(7), hence
m—2¢Tl4,. Forall j > 2,
=29 mod (z™).
Therefore, the set {1, f;,z/"() |2 < j < 73(—;)1} is the canonical basis of the algebra A;.
2. By statement 1, the set {1, fi = 2" (1 + 2/(V) 2970 |2 < j < %} is the canonical basis
of the algebra A,. Hence, gcd(A) = I(i), and statement 2 follows from Theorem 3.4.(3). O

By (32) and Lemma 3.13, if char(K) = 0 then
(m—1), ilm—1, n(t) > 2, n()tm—1and n(i)tm — 2} (33)

where [(i) = =2(m — 1) and n(i) = ™1 — 1; and if char(K) = p > 0 then

(2

(m—1), {m—1, n(é) > 2, n(i)fm —1and n(i) t m — 2}. (34)

4 Generators and defining relations for the algebra O(A(m,I"))
of regular functions on the algebraic variety .A(m,I")

In this section, the field K is an arbitrary field, i.e. not necessarily algebraically closed (unless
stated otherwise).

The aim of the section is to prove Lemma 4.1, Theorem 4.2 and Theorem 4.3 which show that
the set A(m,T') is an affine algebraic variety and gives explicit sets of generators and defining
relations for the algebra O(A(m,T)) of regular functions on A(m,T).

The action of the algebraic torus T on A(m). The algebraic torus T = {ty |\ € K*}
acts on the set A(m) by the rule:

T x A(m) — A(m), (tx, A) s tr(A).
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The subsets A(m,T’) of A(m), where T € S(m), are T-stable (that is T.A(m,T") = A(m,T)). By
Theorem 3.1.(1), the set of T-orbits of A(m),

A(m) = A(m)/T ={TA|A € A(m)}, (35)
is the set of isomorphism classes of algebras A(m). By (4),
Am)= [ A(m,T) where A(m,T):= A(m,T)/T (36)
res(m)

is the set of isomorphism classes of algebras in A(m,T').

The set A(m,T') is an affine algebraic variety. Let A € A(m,T"). Recall that ind(T") =
{vi,...,vs} and f,, = =" + Zjecr(yi))‘w,jmj for i = 1,...,s. The coefficients {),, ;|i =
1,...,8;5 € CT'(v;)} uniquely determined the algebra A. We treat them as regular functions
on the algebraic variety A(m,T).

Lemma 4.1 1. Suppose that |ind(T)| =1, i.e. ind(T) = {v1}. Then the affine algebraic variety
A(m,T) is isomorphic to the affine space AICT(I,

2. Suppose that s = |ind(T")| > 2 and dec(I')>2 = (0. Then the affine algebraic variety A(m,T")
is isomorphic to the affine space AICTWVITHICT@Il yhere ind(T') = {v1,...,vs}.

Proof. 1. Statement 1 follows from Lemma 2.14.
2. Statement 2 follows from Corollary 2.16. [J

So, it remains to consider the case when s = |ind(I")| > 2 and dec(I")>2 # 0. The algebra of
differential operators D(K[z]) on the polynomial algebra K|z] is equal to
6”
. 0: d
n!

D(K[z]) = @K[m]a[n] where 9" = =

n>0

and the action of the differential operators 9™ on the polynomial algebra K [x] is given by the
rule
(m)xm_" if m>n,

o) (™) = {On if m <n.

If the field K has characteristic zero then the algebra D(K[x]) is generated by the elements z
and O that satisfy the defining relation 0x — 29 = 1, and the algebra D(K|z]) is called the Weyl
algebra.

Recall that for a polynomial f € K|z], we denoted by ¢;(f) the coefficient of z7. Clearly,

¢;(f) = Y (f)lo=o- (37)

Recall that A € A(m,T); s = |ind(I")| > 2 and dec(I")> # 0; for each element v € T', we fixed
an element a(v), see (12); ind(I') = {v1,...,vs} and fo, = 2" +3 7 coron Ay, jad fori=1,...,s.
The elements {1, f¢() |y € T'} is a K-basis of the algebra A Foralli=1,...,sand v €T, we
have the equality in the algebra A,

Forf“Or = o 4N e, (38)
S€T(vi+)
where for each i = 1,...,s, the coefficients 7,, 4(y),s, 0 € I, are the unique solution of the uni-

triangular system of |I'| linear equations (the |T'| x |T'| matrix of which has diagonal elements that
are equal to 1):

Nvi,a(y);0 + Z Nvi,a(v);6'Cs (fa(dl)) = Cs (fl/, fa(’Y) - fa(l/mL’Y))’ e L. (39)
8’ €l (v +7,9)
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Each element 1, 4();5, 6 € T, is an explicit polynomial in the variables {\,, ;|1 < j <5, 7 €
CT'(vj), 7 < 0}. The elements 7,, q(y);5, 0 € I, can be found recursively using (39).

If a(v; + ) = e; + a(7y) then the equality (38) is the tautology f,, f*) = £,. ¢ ie. all the
coefficients 7,, 4(y);s are equal to zero, and vice versa. In particular, if v; +~ ¢ dec>2(I") then
a(v; +7) = e; + a(y).

Theorem 4.2 shows that the set A(m,T") is an affine algebraic variety and gives an explicit set
of its defining equations (see also Theorem 4.3 for another approach).

Theorem 4.2 We keep the notation as above (recall that for each element v € T, we fix an
element a(7y), see (12)). Suppose that s = |ind(I")| > 2 and dec(I")>2 # 0. Then the set A(m,T")
is an affine algebraic variety and the algebra of regular functions on it, O(A(m,T")), is a factor
algebra of the polynomial algebra P(m,T) = K[\, ;i = 1,...,sj € CT(v;)] in n(m,T) =
i1 |CT ()| variables Ay, ; by the defining relations: For each pair (v;,~) € ind(I') x T’ such that
vi +a(y) # a(vi +7) and j € CT(v; +),

Cj (fuifa(v) - fa(VH_’Y) - Z nui,a(w);(ifa(é)) = 07 ie.
SeT(vit)

O ("0 = D = ST s D) om0 = 0
SeT(vi+7)

where the polynomials 1,, 4(v);s are defined in (39).

Proof. By the very definition, the generators {),, ;} of the algebra O(A(m,T)) satisfy the
relations of the theorem.
Conversely, suppose that the scalars {\,, ;} are a solution to the system of equations of the

theorem. They determine the elements f,, = 2** + ZjeCF(ui) Au; i@, 1 =1,...,s of the algebra
K[z]/(2™). We have to show that the subalgebra A of K[z]/(«™), which is generated by the
elements f,,,..., fu., is equal to
Vi=KaoPKfw
yel’
(since then the subalgebra A’ of K|z|, which is generated by the elements f, ..., f,. and the
ideal (z™) of K|[z], would belong to A(m,T)).

Clearly, V C A (by the definition of the elements f,,). The defining relations of the theorem
mean that the equality (38) holds for all pairs (v;,7) € ind(T") x T" such that v; + a(y) # a(v; +7).
But for all pairs (v;,v) € ind(T") x T' such that a(v; +v) = v; + a(y) the equality (38) holds
automatically, it is simply the tautology f,, f*) = f,.f*). So, the equality (38) holds for all
elements (v;,7) € ind(T') x T, i.e. A" =V, as required. O

Let A  be a subalgebra of Klz]/(2™) which is generated by the elements f,, = "4+, or(,,) Avi 527,
it =1,...,s, where we treat the coefficients \,, ; as independent parameters (indeterminates). For
each v € dec>2(T") and b € Rel(v)\{a(v)}, consider the equation (see Theorem 2.11),

fo = e 4 Z gvﬁ,;bfa(v’)_
7' €T ()

The coefficients 6., ., are a unique solution to the uni-triangular system of |I'(y)| linear equations
(the |T'(y)| x |T'(y)| matrix of which has diagonal elements that are equal to 1):

Oyn7ib + Z Oy Cyr (fa('yu)) = Cy (fb - fa('Y)) (40)
¥ €L (v,7)

where I'(,7) := {7 € T'|y < +” <~'}. Each element 6, /4, v € T'(7), is an ezplicit polynomial
in the variables {\,, 5|1 < j <'s, 6 € CT'(v;), d < +'}. Theorem 4.3 also shows that the set
A(m,T) is an affine algebraic variety and gives an explicit set of its defining equations. It also
gives the lower bound for the dimension of the algebraic variety A(m,T).
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Theorem 4.3 We keep the notation as above. Suppose that s = |ind(T')| > 2 and dec(I")>2 # 0.
The set A(m,T') is an affine algebraic variety, the algebra of reqular functions on it, O(A(m,T))
is a factor algebra of the polynomial algebra P(m,T)) = KA, ;|t = 1,...,s5 € CT(v;)]
n(m,T) = >0, |CT(v;)| variables A, ; by the defining relations: For each v € dec>2(T) and
b € Rel(v)\{a(7)},

(") = () + D0 by (f100), j€CT(),

v €L ()

where the polynomials 6~ ~.p are defined in (40). The number of equations is

(m,T):= 3 (Rel(y)|=1)-|CT()l.

yE€decs2(T)
In particular, the dimension of the variety A(m,T") is not smaller than n(m,T") —I(m,T").

Proof. By Theorem 2.11, the generators {),, ;} of the algebra O(A(m,T")) satisfy the relations
of the theorem.

Conversely, suppose that the scalars {\,, ;j} are a solution to the equations of the theorem.
They determine the elements f,, = 2" +3 . ccr(,,) Az, i =1,...,s of the algebra K[z]/(z™).
We have to show that the subalgebra A of K [x]/(x™), which is generated by the elements
fors-oy fu., 1s equal to

V= K@@Kfam
~yel

(since then the subalgebra A’ of KJz|, which is generated by the elements f, ..., f,. and the
ideal (z™) of K|[z], would belong to A(m,T)).

Clearly, V C A'. On the other hand, the defining relations of the theorem and (40) mean that
for each v € dec>2(T") and b € Rel(y)\{a(7)},

fo = e 4 Z [ Fo,

7€l ()
—
Now, by (20), A = K& @, K. O

Corollary 4.4 The set of irreducible components of the affine algebraic variety A(m) is the union
of trreducible components of the affine algebraic varieties { A(m,T)|T € S(m)}.

Proof. The affine algebraic variety A(m) = [[rcg,) A(m,T) is a finite disjoint union of its
closed subsets A(m,T') (Theorem 4.2 or Theorem 4.3) and the statement follows. OJ

Recall that f,, = 2" + ZjGCF(Vi) Ay, jad for i = 1,...,s, and the algebraic group T acts on
the algebraic variety A(m,T"). The action of the algebraic group on the algebra O(A(m,T")) is
given by the rule: For alli=1,...,s, j € CT(y;) and A € K*,

ta(ug) = AN (41)
since tA(fVi) =AY (Iyi + ZjECF(w) /\7Vi+j/\l/7‘,7jxjiyi)'

Recall that for each primitive n’th root of unity A,, the group T contains the cyclic group of
order n, C,, = (t),). The groups {C,} are all the finite subgroups of T.

Corollary 4.5 (K is an algebraically closed field). Given n € Q(m,T).
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1. The set A(m,T)" of fized points of the group C,, = (tx,) C T (where )\, is a primitive
n’th root of unity) is a non-empty closed subvariety of the affine algebraic variety A(m,T)
the defining equations of which are A, ; = 0 for all i = 1,...,s and j € CT(v;) such
that n { j — v;. The set A(m,T)" contains precisely all the algebras A in A(m,T) with
C, C Autg(A).

2. The set A(m,T)%" /T is a set of isomorphism classes of algebras A in A(m,T) with C,, C
Autg (A). If n|n’ then A(m,T)%" /T 2 A(m,T)% /T.

3. The set A(m,T)% /T\ Unzico(n,r)mii A(m,T) /T is a set of isomorphism classes of alge-
bras A in A(m,T") with C,, = Autg(A).

4. The set A(m, F)/T\{{Amon(F)}UU#le@(m’F) A(m,T) [T} is a set of isomorphism classes
of algebras A in A(m,T") with Autx(A) = {e}. It is an open set of the algebraic variety
A(m,T).

J. A(m,F)T - {Amon(r)}'

Proof. 1. Statement 1 follows at once from (41).

2. Statement 2 follows from statement 1.

3. Statement 3 follows from statement 2.

5. Statement 5 is obvious.

4. Statement 4 follows from statements 1, 3 and 5. O
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