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TAU FUNCTIONS FROM JOYCE STRUCTURES

TOM BRIDGELAND

Abstract. We argued in [13] that, when a certain sub-exponential growth property holds, the

Donaldson-Thomas invariants of a 3-Calabi-Yau triangulated category can be used to define a

geometric structure on its space of stability conditions. In this paper we show how to associate

a generating function to these geometric structures which we call the τ -function. In the case

of the derived category of the resolved conifold this function reproduces the non-perturbative

topological string partition function of [12], and in the case of the Joyce structures of class

S[A1] constructed in [17] we obtain isomonodromic τ -functions.

1. Introduction

This paper is the continuation of a programme which attempts to encode the Donaldson-

Thomas (DT) invariants of a CY3 triangulated category D in a geometric structure on the

space of stability conditions M = Stab(D). The relevant geometry is a kind of non-linear

Frobenius structure, and was christened a Joyce structure in [13] in honour of the paper [28]

where the main ingredients were first discovered. In later work with Strachan [16] it was shown

that a Joyce structure can be re-expressed in terms of a complex hyperkähler structure on the

total space of the tangent bundle X = TM . The twistor space p : Z → P1 associated to this

hyperkähler structure will play a key role in this paper.

The procedure for producing Joyce structures from DT invariants is conjectural, and requires

solving a family of non-linear Riemann-Hilbert (RH) problems [11] involving maps from the

complex plane into a torus (C∗)n with prescribed jumps across a collection of rays. These

problems are only defined if the DT invariants of the category satisfy a sub-exponential growth

condition. Under this assumption, Kontsevich and Soibelman [30] gave a construction of a less

rigid structure, which is essentially the germ of our twistor space over 0 ∈ P1.

It was discovered in [12] that when D is the derived category of coherent sheaves on the

resolved conifold, the solutions to the associated RH problems can be repackaged in terms of a

single function, which can moreover be viewed as a non-perturbative A-model topological string

partition function, since its asymptotic expansion coincides with the generating function for
1
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the Gromov-Witten invariants. This function was introduced in a rather ad hoc way however,

and it was unclear how to extend its definition to more general settings.

The aim of this paper is to formulate a general definition of such generating functions and

study their properties. We associate to a Joyce structure on a complex manifold M a canoni-

cally defined section of a line bundle over X = TM . Given choices of certain additional data this

section can be expressed as a locally-defined function τ : X → C∗ which we call the τ -function.

In the case of the derived category of the resolved conifold, and for appropriate choices of the

additional data, the restriction of this τ -function to a natural section M ⊂ TM coincides with

the non-perturbative partition function obtained in [12].

There is an interesting class of CY3 triangulated categories D = D(g,m) defined by a genus

g ≥ 0 and a non-empty collection of pole orders m = (m1, · · · , mk). We refer to these as

categories of class S[A1], since they are closely related to the four-dimensional supersymmetric

gauge theories of the same name. They can be defined using quivers with potential associated to

triangulations of marked bordered surfaces [31], or via Fukaya categories of certain non-compact

Calabi-Yau threefolds [37]. The relevant threefolds Y (g,m) are fibered over a Riemann surface

C, and are described locally by an equation of the form y2 + uv = Q(x).

It was shown in [15] that the space of stability conditions on the category D(g,m) is the

moduli space of pairs (C,Q) consisting of a Riemann surface C of genus g, equipped with a

quadratic differential Q with poles of order (m1, · · · , mk) and simple zeroes. The general story

described above then leads one to look for a natural Joyce structure on this space. In the case of

differentials without poles this was constructed in [17], and the generalisation to meromorphic

differentials will appear in the forthcoming work [39]. The key ingredient in these constructions

is the existence of isomonodromic families of bundles with connections.

In several examples, a non-perturbative completion of the B-model topological string par-

tition function of the threefold Y (g,m) is known to be related, via the Nekrasov partition

function of the associated class S[A1] theory, to an isomonodromic τ -function [8, 9, 10]. It

therefore becomes natural to try to relate the τ -function associated to a Joyce structure of

class S[A1] to an isomonodromic τ -function. That something along these lines should be true

was suggested by the work of Teschner and collaborators [19, 20]. The definition of the Joyce

structure τ -function was then reverse-engineered using the work of Bertola and Korotkin [5] on

moduli-dependence of isomonodromic τ -functions, and by comparing the explicit description
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of the Joyce structure in the Painlevé I case [14] with the paper of Lisovyy and Roussillon [32].

The contents of the paper are as follows:

• We begin in Section 2 by recalling the definition of a Joyce structure on a complex

manifold M from [13] and the associated complex hyperkähler structure [16] on the

total space X = TM . We also review the Joyce structures associated to theories of class

S[A1] constructed in [17].

• The geometry of a Joyce structure is often clearer when viewed through the lens of the

associated twistor space p : Z → P1, which also plays an essential role in the definition

of the τ -function. In Section 3 we introduce the basic definitions, and describe some

additional structures which are present in the case of Joyce structures of class S[A1].

• In Section 4 we show how a Joyce structure whose base M is a cotangent bundle

leads to a time-dependent Hamiltonian system. The definition requires the choice of a

Lagrangian submanifold of the twistor fibre Z∞. In the class S[A1] setting we relate the

resulting Hamiltonian systems to the isomonodromy equations.

• Section 5 contains the general definition of the τ -function associated to a Joyce structure.

It depends on the choice of certain additional data, namely symplectic potentials on the

twistor fibres Z0, Z1 and Z∞. We show that when restricted to various loci it produces

generating functions for certain natural symplectic maps. We also show that in the

setting of Section 4 it defines a τ -function in the usual sense of Hamiltonian systems.

• In Section 6 we consider τ -functions associated to uncoupled BPS structures. When

restricted to a section of the projection π : X → M we show that our definition repro-

duces the τ -functions defined in [11]. In particular this applies to the non-perturbative

partition function of [12].

• In Section 7 we consider the Joyce structure arising from the DT theory of the A2 quiver.

This was constructed in [14] using the monodromy map for the deformed cubic oscillator.

In this case we show that our τ -function coincides with the τ -function associated to

Painlevé I, extended as a function of moduli exactly as described in [32].

Acknowledgements. The ideas presented here have evolved from discussions with many peo-

ple over a long period of time. I would particularly like to thank Sergei Alexandrov, Andy

Neitzke, Boris Pioline and Jörg Teschner for sharing their insights, and for patiently explaining
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many basic things to me. I am also very grateful for discussions and correspondence with Mu-

rad Alim, Maciej Dunajski, Lotte Hollands, Kohei Iwaki, Omar Kidwai, Oleg Lisovyy, Fabrizio

Del Monte, Lionel Mason, Ian Strachan and Menelaos Zikidis.

Conventions. We work throughout in the category of complex manifolds and holomorphic

maps. All symplectic forms, metrics, bundles, connections, sections etc., are holomorphic. We

call a holomorphic map of complex manifolds étale if it is a local homeomorphism.

2. Joyce structures

In this section we introduce the geometric structures that will appear throughout the rest

of the paper. They can be described either in terms of flat pencils of symplectic non-linear

connections [13], or via complex hyperkähler structures as in [16]. Most of this material is

standard in the twistor-theory literature, see for example [18, 21], and goes back to the work

of Plebański [36]. In the last part we briefly describe a class of examples of Joyce structures on

spaces of quadratic differentials, following the treatment in [17].

2.1. Pencils of non-linear connections. Let π : X → M be a holomorphic submersion of

complex manifolds. There is a short exact sequence of vector bundles

0 −→ V (π)
i−→ TX

π∗−→ π∗(TM ) −→ 0, (1)

where V (π) = ker(π∗) is the sub-bundle of vertical tangent vectors. Recall that a (non-linear

or Ehresmann) connection on π is a splitting of this sequence, given by a map of bundles

h : π∗(TM) → TX satisfying π∗ ◦ h = 1.

Consider the special case in which π : X = TM → M is the total space of the tangent bundle

of M . There is then a canonical isomorphism ν : π∗(TM) → V (π) identifying the vertical

tangent vectors in the bundle with the bundle itself, and we set v = i ◦ ν.

0 // V (π)
i // TX

π∗ // π∗(TM )

hǫ

��

ν

gg
// 0

Definition 2.1. A ν-pencil of connections on π : X = TM → M is a family of connections

of the form hǫ = h + ǫ−1v parameterised by ǫ−1 ∈ C. We say that the pencil is flat if each

connection hǫ is flat.
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Suppose now that M is equipped with a symplectic form ω ∈ H0(M,∧2T ∗
M). This induces

a translation-invariant symplectic form ωm on each fibre Xm = π−1(m) ⊂ X . We say that a

connection on π is symplectic if the locally-defined parallel transport mapsXm1
→ Xm2

preserve

these forms. Note that if one of the connections in a ν-pencil hǫ = h+ ǫ−1v is symplectic then

they all are.

2.2. Expression in co-ordinates. Let n = 2d be the complex dimension ofM . Given local co-

ordinates (z1, · · · , zn) on M there are associated linear co-ordinates (θ1, · · · , θn) on the tangent

spaces TM,p obtained by writing a tangent vector in the form
∑

i θi ·∂/∂zi. We thus get induced

local co-ordinates (zi, θj) on the space X = TM . We always assume that the co-ordinates zi are

Darboux, in the sense that

ω = 1
2

∑

p,q

ωpq · dzp ∧ dzq, (2)

with ωpq a constant skew-symmetric matrix. We denote by ηpq the inverse matrix.

Given a symplectic ν-pencil hǫ = h + ǫ−1v we can write

vi = v
( ∂

∂zi

)

=
∂

∂θi
, hi = h

( ∂

∂zi

)

=
∂

∂zi
+
∑

p,q

ηpq ·
∂Wi

∂θp
· ∂

∂θq
, (3)

for locally-defined functions Wi on X . The ν-pencil is flat precisely if we can take Wi = ∂W/∂θi

for a single function W , which moreover satisfies Plebański’s second heavenly equations

∂2W

∂θi∂zj
− ∂2W

∂θj∂zi
=

∑

p,q

ηpq ·
∂2W

∂θi∂θp
· ∂2W

∂θj∂θq
. (4)

This function W (zi, θj) will be called the Plebański function.

For later use note that the covector fields dual to the basis of vector fields (3) are

hj = dzj , vj = dθj +
∑

r,s

ηjr · ∂2W

∂θr∂θs
· dzs, (5)

so that (hj , vi) = 0 = (vj, hi) and (hj, hi) = δij = (vj , vi).

2.3. Complex hyperkähler structures. By a complex hyperkähler structure on a complex

manifold X we mean the data of a non-degenerate symmetric bilinear form g : TX ⊗TX → OX ,

together with endomorphisms I, J,K ∈ End(TX) satisfying the quaternion relations

I2 = J2 = K2 = IJK = −1, (6)
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which preserve the form g, and which are parallel with respect to the Levi-Civita connection.

Such structures have appeared before in the literature, often under different names. We define

the closed 2-forms on X

ΩI(w1, w2) = g(I(w1), w2), Ω±(w1, w2) = g((J ± iK)(w1), w2). (7)

Then ΩI is a symplectic form, but Ω± are degenerate.

Consider, as in Section 2.1, the tangent bundle X = TM of a complex manifold M , and let

hǫ = h + ǫ−1v be a ν-pencil of connections on the projection π : X → M . The direct sum de-

composition TX = im(h)⊕im(v) gives an identification TX = C2⊗Cπ
∗(TM). On the other hand,

the complexification of the quaternions H⊗R C can be identified with the algebra EndC(C
⊕2).

Putting these two observations together we obtain endomorphisms I, J,K ∈ End(TX), given in

terms of the vector fields (3) by the expressions1

I(hi) = i · hi, J(hi) = −vi, K(hi) = ivi, (8)

I(vi) = −i · vi, J(vi) = hi, K(vi) = ihi, (9)

A similar argument shows that combining a symplectic form ω on M with the standard

symplectic form on C2 defines a metric g on X given by

g(hi, hj) = 0, g(hi, vj) =
1
2
ωij, g(vi, vj) = 0. (10)

The following result goes back to Plebański [36], and was proved in the form stated here in

[17].

Theorem 2.2. The data (g, I, J,K) associated to a ν-pencil hǫ = h+ ǫ−1v as above gives rise

to a complex hyperkähler structure on X precisely if the ν-pencil is flat and symplectic. �

In terms of the covector fields hi, vj dual to hi, vj , the closed 2-forms (7) are

ΩI =
i
2
·
∑

p,q

ωpq · vp ∧ hq, (11)

Ω+ = 1
2

∑

p,q

ωpq · hp ∧ hq, Ω− = 1
2

∑

p,q

ωpq · vp ∧ vq. (12)

Using the expressions (5) these become

Ω+ = 1
2

∑

p,q

ωpq · dzp ∧ dzq, 2iΩI =
∑

p,q

ωpq · dθp ∧ dzq, (13)

1Compared to [16] we have changed the signs of I and K, and divided the metric by 2.
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Ω− = 1
2

∑

p,q

ωpq · dθp ∧ dθq +
∑

p,q

∂2W

∂θp∂θq
· dθp ∧ dzq +

∑

p,q

∂2W

∂zp∂θq
· dzp ∧ dzq, (14)

where we used the heavenly equation (4) to obtain the last term in (14).

2.4. Joyce structures. A Joyce structure [13, 16] on a complex manifold M can be viewed

as a kind of non-linear Frobenius structure. It consists of the following data:

(a) a symplectic form on M ,

(b) an integral affine structure on M ,

(c) a C∗-action on M ,

(d) a non-linear symplectic connection h on the projection π : X = TM → M ,

subject to various compatibility axioms discussed in full in [17, Section 2.4]. We now briefly

summarise these axioms in terms of local co-ordinates.

Recall that an integral affine structure on M is the data of a flat, torsion-free (linear) con-

nection ∇0 on the tangent bundle TM , together with a parallel sublattice T Z
M ⊂ TM of maximal

rank. The Joyce structure axioms first imply that we can take local Darboux co-ordinates zi

on M as in Section 2.2 such that this lattice is spanned by the tangent vectors ∂/∂zi. Moreover

we can assume that the Euler vector field generating the C∗-action is

E =
∑

i

zi ·
∂

∂zi
, (15)

and that the matrix ηpq/2πi is integral.
2

The symplectic connection h defines a ν-pencil of connections hǫ = h + ǫ−1v. The most

important constraint is that the connections hǫ are all flat. Writing the connection h in the

form (3) defines a Plebański function W satisfying the heavenly equations (4). The remaining

axioms of the Joyce structure are then equivalent to the following symmetry conditions:

(i) W (z1, · · · , zn, θ1 + 2πik1, · · · , θn + 2πikn) = W (z1, · · · , zn, θ1, · · · , θn) for ki ∈ Z,

(ii) W (tz1, · · · , tzn, θ1, · · · , θn) = t−1 ·W (z1, · · · , zn, θ1, · · · , θn) for t ∈ C∗,

(iii) W (z1, · · · , zn,−θ1, · · · ,−θn) = −W (z1, · · · , zn, θ1, · · · , θn).

The C∗-action on M induces an action on the tangent bundle X = TM in the natural way,

which we combine with the inverse scaling action on the linear fibres of π : X → M . In co-

ordinates this means that the generating vector fields for the C∗-action on X and M are given

2The quotient by 2πi introduced here is another small change from [16].
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by the same formula (15). We will denote them both by the symbol E. Writing L for the Lie

derivative, the condition (ii) together with the formulae (13) and (14) give

LE(Ω+) = 2Ω+, LE(ΩI) = ΩI , LE(Ω−) = 0. (16)

The periodicity condition (i) ensures that the ν-pencil of connections hǫ on the map π : X →
M descend to the quotient

X# = T#
M = TM/(2πi) T Z

M , (17)

which is a (C∗)n-bundle over M . The associated complex hyperkähler structure on X also

descends to X#.

Remarks 2.3. (i) Given local co-ordinates on an open subset U ⊂ M , it is really the second

derivatives ∂2W/∂θi∂θj that are well-defined on π−1(U) ⊂ X and satisfy the above

symmetry properties. The function W itself is only well-defined up to the addition of

expressions of the form a(z) +
∑

j bj(z)θj . We can fix these integration constants by

imposing the parity property (iii) above, and the condition that the derivatives ∂W/∂θj

vanish when all θi = 0. One can then check [13, Remark 4.2] that the properties (i)–(iii)

hold on the nose.

(ii) It turns out that in many interesting examples, the ν-pencil hǫ : π
∗(TM) → TX , or

equivalently the hyperkähler structure (g, I, J,K), has poles on X . When expressed in

terms of local co-ordinates as in Section 2.2, this means that the second derivatives of

the Plebański function ∂2W/∂θi∂θj are meromorphic functions. When it is necessary

to be precise about this, we will refer to the resulting structures as meromorphic Joyce

structures. Note that such poles in the Joyce structure could lead to complications in

relation to Remark (i).

(iii) Rather than assuming the existence of a C∗-action it might be better to consider only

the associated Euler vector field E, as in the theory of Frobenius manifolds. The above

definition means that we sometimes have to quotient by a discrete group to get a space

M which carries a genuine Joyce structure, see for example Remark 7.1. For Joyce

structures arising in DT theory the expected picture is clear: there should be a genuine

C∗-action on the space of stability conditions after quotienting by the action of the shift

functors [2k].

2.5. Joyce structures of class S[A1]. The main class of known examples of Joyce structures

are related to supersymmetric gauge theories of class S[A1], and were constructed in the paper
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[17], to which we refer for further details. The base M parameterises pairs (C,Q) consisting of

an algebraic curve C of some fixed genus g ≥ 2, and a quadratic differential Q ∈ H0(C, ω⊗2
C )

with simple zeroes. The generalisation to the case of meromorphic quadratic differential with

poles of fixed orders will be treated in the forthcoming work [39].

There is a natural C∗-action on M which rescales the quadratic differential Q with weight

2. For each point (C,Q) ∈ M there is a branched double cover p : Σ → C defined via the

equation y2 = Q(x), and equipped with a covering involution σ : Σ → Σ. Taking periods of the

form y dx on Σ identifies the tangent space T(C,Q)M with the anti-invariant cohomology group

H1(Σ,C)
−. The intersection pairing on H1(Σ,C)

− then induces a symplectic form on M , and

the integral homology groups H1(Σ,Z)
− defines an integral affine structure T Z

M ⊂ TM .

The usual spectral correspondence associates to a σ-anti-invariant line bundle L on Σ a rank

2 vector bundle E = p∗(L) on C with a Higgs field Φ. A key ingredient in [17] is an extension

of this correspondence which relates anti-invariant connections ∂ on L to connections ∇ on E.

Given this, we can view the space X# appearing in (17) as parameterising the data (C,E,∇,Φ).

The pencil of non-linear connections hǫ is then obtained by requiring that the monodromy of

the connection ∇− ǫ−1Φ is constant as the pair (C,Q) varies.

To explain the construction in a little more detail, let us fix a parameter ǫ ∈ C∗ and contem-

plate the following diagram of moduli spaces:

M(C,E,∇,Φ)

α

vv♠♠♠
♠♠
♠♠
♠♠
♠♠
♠♠ βǫ

((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘

M(C,Q, L, ∂)

π3

��

M(C,Q,E,∇ǫ)

π2

��

ρ′ // M(C,E,∇ǫ)

π1

��
M(C,Q) oo = // M(C,Q)

ρ // M(C)

(18)

Each moduli space parameterises the indicated objects, and the maps ρ, ρ′ and πi are the obvious

projections. The map α is the above-mentioned extension of the spectral correspondence, and

the map βǫ is defined by the rule

βǫ(C,E,∇,Φ) = (C,− det(Φ), E,∇− ǫ−1Φ). (19)

An important point is that α is birational, and βǫ is generically étale.

Given a point (C,Q) ∈ M , an anti-invariant line bundle with connection (L, ∂) on the

spectral curve Σ has an associated holonomy representation H1(Σ,Z)
− → C∗. This determines



10 TOM BRIDGELAND

(L, ∂) up to an action of the group of 2-torsion line bundles on C. We therefore obtain an étale

map from M(C,Q, L, ∂) to the space X#. The isomonodromy connection on the map π1 is a

flat symplectic connection whose leaves consist of connections (E,∇ǫ) with fixed monodromy.

Pulling this connection through (18) gives a family of non-linear symplectic connections hǫ

on the projection π : X# → M , which can be shown to form a ν-pencil. This gives rise to a

meromorphic Joyce structure on M , with the poles arising from the fact that the maps α and

βǫ are only generically étale.

3. Twistor space

In this section we recall the definition of the twistor space of a complex hyperkähler structure,

and discuss the extra properties it has in the case of a Joyce structure. Note that we tacitly

assume throughout that the Joyce structure is well-defined and holomorphic on the whole space

X = TM . Poles in the Joyce structure could cause further complications which would need to

be discussed separately.

The final three subsections are rather tentative. We discuss further structures on twistor

spaces of Joyce structures which appear naturally in the examples of class S[A1]. They relate

to choices of symplectic potentials on the twistor fibres Z0, Z1 and Z∞, and are highly relevant

to the definition of the τ -function in Section 5. It would be interesting to study these structures

in further examples, and examine the extent to which they can be defined in general.

3.1. Definition of twistor space. Take notation as in Section 2. Thus M is a complex

symplectic manifold, and hǫ = h + ǫ−1v is a ν-pencil of flat, symplectic connections on

π : X = TM → M . There is an associated complex hyperkähler structure (g, I, J,K) on X , and

corresponding closed 2-forms ΩI and Ω±.

Definition 3.1. The twistor space Z is the quotient of X × P1 by the integrable distribution

im(sv + th) = ker((J + iK)s2 + 2istI + t2(J − iK)), (20)

where [s : t] are homogeneous co-ordinates on P1.

We denote by q : X × P1 → Z the quotient map. In making the above definition we identify

a vector field on X with the associated vertical vector field on the projection π2 : X×P1 → P1.

There is an induced projection p : Z → P1 satisfying p ◦ q = π2.
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X �

�
(id,iǫ) //

qǫ

��

X × P1

q

��
π2

||

Zǫ
�

� //

��

Z

p

��

{ǫ} � � iǫ // P1

We will use the affine co-ordinate ǫ = t/s and denote by Zǫ = p−1(ǫ) ⊂ Z the twistor fibre

over ǫ ∈ P1, and qǫ : X → Zǫ the quotient map. For ǫ−1 ∈ C the fibre Zǫ is the quotient of X by

the integrable distribution im(hǫ), whereas Z0 = M is the quotient by the vertical sub-bundle

im(v) = ker π∗. Each point x ∈ X determines a section of the map p

σx : P
1 → Z, ǫ 7→ q(x, ǫ), (21)

whose image is a rational curve P1 ⊂ Z known as a twistor line.

The twistor space p : Z → P1 comes equipped with a twisted relative symplectic form. More

precisely, there is a unique section Ω of the line bundle
∧2 T ∗

Z ⊗ p∗(OP1(2)) such that

q∗(Ω) = s2Ω+ + 2istΩI + t2Ω−. (22)

Restricting Ω to a twistor fibre Zǫ gives a complex symplectic form Ωǫ, well-defined up to

multiplication by a nonzero constant. For ǫ−1 ∈ C we fix this scale by taking

q∗ǫ (Ωǫ) = ǫ−2Ω+ + 2iǫ−1ΩI + Ω−. (23)

We equip the twistor fibre Z0 = M with the symplectic form Ω0 = ω. Thus we have relations

q∗0(Ω0) = Ω+, q∗∞(Ω∞) = Ω−. (24)

Remark 3.2. To obtain a well-behaved twistor space we cannot simply take the space of leaves

of the foliation in Definition 3.1. Rather, we should consider the holonomy groupoid, which

leads to the analytic analogue of a Deligne-Mumford stack [33]. We will ignore this subtlety

here, since we only really use Z as a convenient language to describe objects which can easily

be defined directly on X . For example, a symplectic form on the twistor fibre Zǫ is nothing

but a closed 2-form on X whose kernel is equal to im(hǫ) ⊂ TX .

3.2. Twistor space of a Joyce structure. Let us now consider a Joyce structure on a

complex manifold M , and the associated twistor space p : Z → P1. In particular there is a

C∗-action on M , and an induced action on X as discussed in Section 2.4. Taking the standard
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action of C∗ on P1 rescaling ǫ with weight 1, we can then consider the diagonal action on X×P1.

It follows from the conditions (16) that this descends to an action on Z. The map p : Z → P1

is then C∗-equivariant.

We can use the C∗-action to trivialise the map p : Z → P1 over the open subset C∗ ⊂ P1. We

obtain a commutative diagram

Z1 × C∗ m //

π2

��

p−1(C∗)

p

��

�

� // Z

p

��

C∗ oo = // C∗ �
� // P1

(25)

where the map m is defined by the action of C∗ on Z.

Note that, unlike in the case of real hyperkähler manifolds, there is no requirement for an

involution of the twistor space Z lifting the antipodal map on P1. In particular, there need

be no relation between the twistor fibres Z0 and Z∞. There are therefore essentially three

distinct twistor fibres: Z0, Z1 and Z∞, of which Z0 = M is the base of the Joyce structure.

The C∗-action on X induces C∗-actions on the fibres Z0 and Z∞.

Let us introduce 1-forms on X via the formulae

α+ = iE(Ω+), αI = iE(ΩI), α− = iE(Ω−). (26)

The relations (16) together with the Cartan formula imply that

dα+ = 2Ω+, dαI = ΩI , dα− = 0. (27)

These relations will play an important role in what follows.

The form α+ descends to the twistor fibre Z0. To see this, note that if v is a vector field

contracted by q0, then

Lv(α+) = ivd(α+) + div(α+) = 2iv(Ω+)− diEiv(Ω+) = 0, Lv(dα+) = Lv(2Ω+) = 0, (28)

since iv(Ω+) = Lv(Ω+) = 0. Thus we can write α+ = q∗0(α0) for some form α0 on Z0, and we see

that the symplectic form Ω0 is exact, with canonical symplectic potential 1
2
α0. This potential

is moreover homogeneous of weight 2 for the induced C∗-action on Z0, since

LE(α+) = iEd(α+) + diE(α+) = 2α+ + diEiE(Ω+) = 2α+. (29)

Similarly, the form αI provides a canonical symplectic potential for the symplectic form ΩI

on X and satisfies LE(αI) = αI . In co-ordinates we have

α+ =
∑

p,q

ωpqzp dzq, 2iαI =
∑

p,q

ωpqzp dθq. (30)
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3.3. Joyce function. The argument of the previous section shows that the form α− = iE(Ω−)

is the pullback q∗∞(α∞) of a C-invariant form α∞ on the twistor fibre Z∞. However, this form

does not give rise to a symplectic potential on Z∞, and in fact dα∞ = 0. Let us instead consider

a locally-defined function F on Z∞ satisfying dF = −α∞. Note that −F is a Hamiltonian

generating function for the C∗-action on Z∞, and is therefore invariant for this action. We call

such a function F , or its pullback to X , a Joyce function.3

To write an explicit expression for the Joyce function choose a local system of co-ordinates

on X as in Section 2.2, and let W = W (zi, θj) be the corresponding Plebański function.

Lemma 3.3. The locally-defined function on X defined by the expression

F (zi, θj) = v(E)(W ) =
∑

q

zq
∂W

∂θq
(31)

satisfies dF = −iE(Ω∞) and descends to Z∞.

Proof. The formula (14) gives

iE(Ω−) = −
∑

p,q

zq
∂2W

∂θp∂θq
dθp +

∑

p,q

∂2W

∂zp∂θq
(zp dzq − zq dzp) (32)

= −
∑

p,q

zq
∂2W

∂θp∂θq
dθp −

∑

p,q

zq
∂2W

∂zp∂θq
dzp −

∑

q

∂W

∂θq
dzq = −

∑

p

(∂F

∂θp
dθp +

∂F

∂zp
dzp

)

, (33)

where we used the homogeneity property of W in the form
∑

q zq ∂W/∂zq = −W . To see that

F descends to the quotient of X by the horizontal vector fields for the connection h = h∞, note

that if u is such a vector field, then

u(F ) = iu(dF ) = −iuiE(Ω−) = iEiu(Ω−) = 0, (34)

since Ω− is pulled back from Z∞. �

Remark 3.4. There are some subtleties hiding in the above proof. Recall from Remark 2.3(i)

that even after the local co-ordinates on M are chosen, the function W is only well-defined up

to addition of functions of the form a(z) +
∑

j bj(z)θj . Thus in principle the expression (31) is

only well-defined up to the addition of functions pulled back from M . However, if the Joyce

structure has no poles then these integration constants can be fixed, and once this is done

the function W is indeed homogeneous of weight −1 in the variables zi, and the above proof

3In [13] we used the term Joyce function as a synonym for the Plebański function W . Following [3] we now
prefer to use it for the function introduced here, which was also considered by Joyce [28].
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applies. When fixing the integration constants we require that the derivatives ∂W/∂θj vanish

along the locus when all θi = 0. As we will see in the next section, this locus is the inverse

image of a single distinguished point in Z∞. Thus the expression (31) is the unique choice of

Joyce function which vanishes at this point.

3.4. Distinguished point of Z∞. In this section it will be important that the Joyce structure

on X = TM has no poles on the zero section M ⊂ TM . We also assume that the space M is

connected.

Lemma 3.5. The map q∞ : X → Z∞ contracts the zero-section M ⊂ X = TM to a point

0 ∈ Z∞. This point is fixed by the C∗-action.

Proof. Note that the parity property W (zi,−θj) = −W (zi, θj) and the formula (3) implies that

along the zero-section M ⊂ X = TM we have hi = ∂/∂zi. The first claim follows immediately

from this. The second claim holds because the C∗-action on X preserves the zero-section. �

The operator J : TX → TX maps vi to hi and hence identifies the normal bundle to the zero-

section M ⊂ TM with the tangent bundle TM . The derivative of the quotient map q∞ : X → Z∞

identifies this normal bundle with the trivial bundle with fibre TZ∞,0. The combination of these

two maps gives isomorphisms

TM,p
J−→ NM⊂X,p

dq∞−→ TZ∞,0, (35)

and hence a flat connection on the tangent bundle TM . This is the linear Joyce connection from

[13, Section 7], and appeared in the original paper of Joyce [28]. In co-ordinates it is given by

the formula

∇J
∂

∂zi

( ∂

∂zj

)

= −
∑

l,m

ηlm · ∂3W

∂θi ∂θj ∂θl

∣

∣

∣

θ=0
· ∂

∂zm
. (36)

The following result follows immediately from the definitions.

Lemma 3.6. The weight space decomposition for the action of C∗ on TZ∞,0 defines via the

identification (35) a decomposition TM
∼=

⊕

i∈Z Vi into ∇J -flat sub-bundles Vi ⊂ TM . �

If the distinguished point 0 ∈ Z∞ is an isolated fixed point for the C∗ action, there are some

additional consequences described in the following result. An example when this condition

holds is the Joyce structure associated to the DT theory of the A2 quiver. This example was

treated in detail in [14] where all quantities described below were computed explicitly. We

review this material in Section 7 below.
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Lemma 3.7. Suppose the point 0 ∈ Z∞ is an isolated fixed point for the action of C∗.

(i) The Hessian of the Joyce function F defines a non-degenerate symmetric bilinear form

on TZ∞,0. Via the identification (35) this induces a metric on M whose Levi-Civita

connection is the linear Joyce connection ∇J .

(ii) The positive and negative weight spaces of the C∗-action on TZ∞,0 define via the iden-

tification (35) a decomposition TM = V− ⊕ V+ into ∇J -flat sub-bundles. These are

Lagrangian for the symplectic form Ω0.

Proof. Part (i) is immediate from the result of Lemma 3.3 that F is the moment map for the

C∗-action on Z∞. For part (ii), note that since Ω− is C∗-invariant, the positive and negative

weight spaces in TZ∞,0 are Lagrangian for the form Ω−. The result then follows by noting that

the operator J exchanges the forms Ω±, so the identification (35) takes the form Ω+ to Ω−. �

The metric g of Lemma 3.7 is given in co-ordinates by the formula

g
( ∂

∂zi
,
∂

∂zj

)

=
∂2F

∂θi∂θj

∣

∣

∣

θ=0
. (37)

This is the Joyce metric of [13, Section 7], which also appeared in the original paper [28].

3.5. Cotangent bundle structure on Z0. By a cotangent bundle structure on a complex

symplectic manifold (M,ω) we mean the data of a complex manifold B and an open embedding

M ⊂ T ∗
B, such that ω is the restriction of the canonical symplectic form on T ∗

B. We denote by

ρ : M → B the induced projection map, and by λ ∈ H0(M,T ∗
M) the restriction of the Liouville

1-form.

Given local co-ordinates (t1, · · · , td) on B, there are induced linear co-ordinates (s1, · · · , sd)
on the cotangent spaces T ∗

b B obtained by writing a 1-form as
∑

i si dti. In the resulting co-

ordinates (si, ti) on M we have

ω =
∑

i

dti ∧ dsi, λ =
∑

i

si dti.

Note that d(−λ) = ω. When M = Z0 is the base of a Joyce structure there is a C∗-action on

M satisfying LE(ω) = 2ω. It is then natural to seek a cotangent bundle structure M ⊂ T ∗
B such

that LE(λ) = 2λ. Note that this implies that the C∗-action on M preserves the distribution of

vertical vector fields for ρ, since this coincides with the kernel of λ. It follows that there is a
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C∗-action on B, and that the C∗-action on M is given by the combining the induced action on

T ∗
B with a rescaling of the fibres with weight 2.

Consider the Joyce structures of class S[A1] of Section 2.5. The base M = M(C,Q) has

a natural cotangent bundle structure, with B = M(C) being the moduli space of curves of

genus g, and ρ : M → B the obvious projection ρ : M(C,Q) → M(C). Indeed, the tan-

gent spaces to M(C) are the vector spaces TCM(C) = H1(C, TC), and Serre duality gives

H0(C, ω⊗2
C ) = H1(C, TC)

∗. Thus T ∗
B parameterises pairs (C,Q) of a curve C together with a

quadratic differential Q ∈ H0(C, ω⊗2
C ), and M ⊂ T ∗

B is the open subset where Q has simple ze-

roes. We note in passing that in this case the fibres of ρ have a highly non-trivial compatibility

with the Joyce structure: in the language of [17, Section 4] they are good Lagrangians.

Remark 3.8. It is not clear whether the base M = Z0 of a general Joyce structure admits a

natural cotangent bundle structure. In the case when the distinguished point 0 ∈ Z∞ is an

isolated fixed point for the C∗-action, one possibility is to define the projection ρ : M → B

by quotienting by the integrable distribution V− ⊂ TM of Lemma 3.7. Somewhat remarkably,

in the A2 example discussed in Section 7, this procedure leads to the same natural projection

ρ : M → B described in the previous paragraph.

3.6. Cluster-type structure on Z1. A crucial part of the definition of the τ -function in

Section 5 will be the existence of collections of preferred co-ordinate systems (x1, · · · , xn) on

the twistor fibre Z1. These should be Darboux in the sense that

Ω1 =
1
2

∑

i,j

ωij · dxi ∧ dxj , (38)

for some constant skew-symmetric matrix ωij. Although it will not be needed in Section 5,

these co-ordinates are also expected to have the following asymptotic property: given local

co-ordinates (z1, · · · , zn) centered at a generic point m ∈ M as in Section 2.2, there should be

a particular choice of preferred co-ordinates (x1, · · · , xn) on Z1 such that

xi(ǫ
−1z1, · · · , ǫ−1zn, θ1, · · · , θn) ∼ −ǫ−1zi + θi (39)

as ǫ → 0 in the half-plane Re(ǫ) > 0.

When the Joyce structure is constructed via the DT RH problems of [13], the required systems

of preferred co-ordinates xi are given directly by the solutions to the RH problems, and the

property (39) holds by definition. Thus for the Joyce structures of interest in DT theory there

is no problem finding this additional data. It is still interesting however to ask whether such
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distinguished co-ordinate systems exist for general Joyce structures. A heuristic explanation

for why this might be the case can be found in [17, Section 5.3]. This question is also closely

related to the contents of [30, Section 5].

Consider the Joyce structures of class S[A1] of Section 2.5. Choose a reference surface Sg of

genus g, set G = PGL2(C), and define

MCG(g) = π0(Diff+(Sg)), X(g) = Homgrp(π1(Sg), G)/G. (40)

Then the mapping class group MCG(g) acts on the character stack X(g) in the usual way, and

taking the monodromy of the connection ∇− ǫ−1Φ defines a map

µǫ : M(C,E,∇,Φ) → X(g)/MCG(g), (41)

which by definition is constant on the leaves of the connection hǫ. This yields an étale map

µǫ : Zǫ → X(g)/MCG(g). (42)

Suppose we instead consider Joyce structures on moduli spaces of meromorphic quadratic

differentials with fixed pole orders [39]. Then the character stack in the above discussion

should be replaced by a wild character stack parameterising framed local systems on a marked

bordered surface. The preferred co-ordinate systems are expected to be the logarithms of

Fock-Goncharov co-ordinates [22], and are indexed by ideal triangulations of this surface. The

asymptotic property (39) should then follow from exact WKB analysis. In the case of quadratic

differentials on P1 with a single pole of order 7 this story is treated in detail in [14].

3.7. Lagrangian submanifolds of Z∞. At various points in what follows it will be conve-

nient to choose a C∗-invariant Lagrangian submanifold R ⊂ Z∞ in the twistor fibre at infinity.

For example in the next section we show that the choice of such a Lagrangian, together with

a cotangent bundle structure on Z0, leads to a time-dependent Hamiltonian system. Unfortu-

nately, for the Joyce structures arising from the DT RH problems of [13], the geometry of the

twistor fibre Z∞ is currently quite mysterious, since it relates to the behaviour of solutions to

the RH problems at ǫ = ∞. So it is not yet clear whether such a Lagrangian submanifold can

be expected to exist in general.

When discussing the twistor fibre Z∞ for Joyce structures of class S[A1] it is important to

distinguish the case of holomorphic quadratic differentials treated in [17] from the extension to

meromorphic quadratic differentials [39]. In the holomorphic setting, the argument leading to

the local homeomorphism (42) applies also when ǫ = ∞, because the non-linear connection hǫ
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is obtained by fixing the monodromy of the connection ∇ǫ = ∇− ǫ−1Φ, and these connections

are of the same type for all ǫ−1 ∈ C. Moreover, since the C∗-action on X rescales the Higgs

field Φ while leaving C and (E,∇) fixed, the induced action on Z∞ is trivial.

In the meromorphic case, one should combine the data of the curve C with the irregular type

of the connection at the singularities to give the notion of wild curve. Then in order for all the

connections ∇− ǫ−1Φ to lie on the same wild curve it is necessary for the poles of ∇ to have

roughly half the order of those of Φ. This means that the direct analogue of the map (42) takes

values in a wild character stack of a strictly lower dimension, and the fibres of this map are

not well-understood at present. This relates to the problem of understanding the behaviour of

the Fock-Goncharov co-ordinates of the connection ∇− ǫ−1Φ in the limit as ǫ → ∞. Similarly,

since the C∗-action on X now changes the wild curve, the induced action on Z∞ is non-trivial,

as can be seen explicitly in the example of Section 7.

4. Hamiltonian systems

In this section we show how to use a Joyce structure to define a time-dependent Hamiltonian

system. The construction depends on two of the pieces of data discussed in Section 3: a

cotangent bundle structure on Z0 and a Lagrangian submanifold R ⊂ Z∞. We also explain

how, for Joyce structures of class S[A1], this construction gives rise to a Hamiltonian description

of the isomonodromy equations for curves of arbitrary genus.

4.1. Time-dependent Hamiltonian systems. A time-dependent Hamiltonian system con-

sists of the following data:

(i) a submersion f : Y → B with a relative symplectic form Ω ∈ H0(Y,∧2T ∗
Y/B),

(ii) a flat, symplectic connection k on f ,

(iii) a section ̟ ∈ H0(Y, f ∗(T ∗
B)).

For a nice exposition of this definition see [6, Section 5]. Note that Boalch works in the real

C∞ setting, whereas we assume, as elsewhere in the paper, that all structures are holomorphic.

Note also that Boalch assumes that Y = M ×B is a global product, with M a fixed symplectic

manifold and k the canonical connection on the projection f : M × B → B. We can always

reduce to this case locally.

For each vector field u ∈ H0(B, TB) there is an associated function

Hu = (f ∗(u), ̟) : Y → C. (43)
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There is then a pencil kǫ of symplectic connections on f defined by

kǫ(u) = k(u) + ǫ−1 · Ω♯(Hu). (44)

The system is called strongly-integrable if these connections are all flat.

These definitions becomes more familiar when expressed in local co-ordinates. If we take

co-ordinates ti on the base B, which we can think of as times, and k-flat Darboux co-ordinates

(qi, pi) on the fibres of f , we can write ̟ =
∑

i Hi dti and view the functions Hi : Y → C as

time-dependent Hamiltonians. The connection kǫ is then given by the flows

kǫ

( ∂

∂ti

)

=
∂

∂ti
+

1

ǫ
·
∑

j

(∂Hi

∂pj

∂

∂qj
− ∂Hi

∂qj

∂

∂pj

)

. (45)

The condition that the system is strongly-integrable is that

∑

r,s

(∂Hi

∂qr
· ∂Hj

∂ps
− ∂Hi

∂qs
· ∂Hj

∂pr

)

= 0,
∂Hi

∂tj
=

∂Hj

∂ti
. (46)

Suppose given a strongly-integrable time-dependent Hamiltonian system in the above sense.

Let L ⊂ Y denote a leaf of the foliation k1. The restriction ̟|L is then closed, so we can write

̟|L = d log(τL) for some locally-defined function τL : L → C∗. In terms of co-ordinates, since

the projection π : L → B is a local isomorphism, we can lift ti to co-ordinates on L, whence we

have

∂

∂ti
log(τL) = Hi|L. (47)

A τ -function in this context is a locally-defined function τ : Y → C∗ whose restriction τ |L to

each leaf L ⊂ Y satisfies (47). Note that this definition only specifies τ up to multiplication by

the pullback of an arbitrary function on the space of leaves.

4.2. Hamiltonian systems from Joyce structures. LetM be a complex manifold equipped

with a Joyce structure. Thus there is a ν-pencil of flat, symplectic connections hǫ = h + ǫ−1v

on the projection π : X = TM → M , and closed 2-forms ΩI and Ω± on X . We denote by

p : Z → P1 the associated twistor space. Suppose also given:

(i) a cotangent bundle structure M ⊂ T ∗
B,

(ii) a Lagrangian submanifold R ⊂ Z∞.
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For the notion of a cotangent bundle structure see Section 3.5. We denote by ρ : M → B

the induced projection, and β ∈ H0(M, ρ∗(T ∗
B)) the tautological section. If we take local co-

ordinates ti on B, and extend them to canonical co-ordinates (si, ti) on M as in Section 3.5,

then β =
∑

i si · ρ∗(dti). Note that β is almost the same as the Liouville form λ ∈ H0(M,T ∗
M)

appearing in Section 3.5: they correspond under the inclusion ρ∗(T ∗
B) →֒ T ∗

M induced by ρ.

Set Y = q−1
∞ (R) ⊂ X , and denote by i : Y →֒ X the inclusion. There are maps

Y �

� i // X
π // M

ρ // B (48)

Define p : Y → M and f : Y → B as the composites p = π ◦ i and f = ρ ◦ π ◦ i. We make the

following transversality assumption:

(⋆) For each b ∈ B the restriction of q1 : X → Z1 to the fibre f−1(b) ⊂ Y ⊂ X is étale.

The following result will be proved in the next section.

Theorem 4.1. Given the above data there is a strongly-integrable time-dependent Hamiltonian

system on the map f : Y → B uniquely specified by the following conditions:

(i) the relative symplectic form Ω is induced by the closed 2-form i∗(2iΩI) on Y ;

(ii) for each ǫ ∈ C∗ the connection kǫ on f : Y → B satisfies

im(kǫ) = TY ∩ im(hǫ) ⊂ TX ; (49)

(iii) the Hamiltonian form is ̟ = p∗(β) ∈ H0(Y, f ∗(T ∗
B)).

To make condition (iii) more explicit, take local co-ordinates ti on B, and extend to local

co-ordinates (si, ti) on M , and (ti, qj, pj) on Y , as above. Then ̟ =
∑

j p
∗(sj) · f ∗(dtj) and

kǫ

( ∂

∂ti

)

=
∂

∂ti
+

1

ǫ
·
∑

j

(

∂p∗(si)

∂qj

∂

∂pj
− ∂p∗(si)

∂pj

∂

∂qj

)

. (50)

The main non-trivial claim is that the connections kǫ are all flat, so that the conditions (46)

hold for the Hamiltonians Hi = p∗(si).

4.3. Proof of Theorem 4.1. Take a point y ∈ Y ⊂ X with π(y) = m ∈ M and set b = ρ(m).

Given a tangent vector u ∈ TB,b let us choose a lift w ∈ TM,m satisfying ρ∗(w) = u. Using the

maps h, v : π∗(TM) → TX as in Section 2.1 we then obtain tangent vectors hǫ(w), v(w) ∈ TX,y.

Recall that hǫ(w) = ǫ−1v(w) + h(w), and note that h(w) ⊂ TY,y, since Y = q−1
∞ (R), and q∞

contracts the leaves of h = h∞. This implies that for any ǫ ∈ C∗ the following two conditions

are equivalent:
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(a) v(w) ∈ TY,y ⊂ TX,y,

(b) hǫ(w) ∈ TY,y ⊂ TX,y.

Thus when (b) holds for some ǫ ∈ C∗ it holds for all such ǫ.

Consider next the transversality statement

(⋆)ǫ For each b ∈ B the restriction of qǫ : X → Zǫ to the fibre f−1(b) ⊂ Y ⊂ X is étale.

This is equivalent to the existence of a unique lift w ∈ TM,m satisfying condition (b), since it

is equivalent to the statement that h−1
ǫ (TY,y) ∩ ker(ρ∗) = {0} ⊂ TM,m. Thus since we assumed

(⋆)ǫ for ǫ = 1, it holds for all ǫ ∈ C∗.

We can now connections kǫ on π : Y → B for all ǫ ∈ C∗ by setting kǫ(u) = hǫ(w), where w

is the unique lift satisfying condition (b). In more geometric terms, since the connection hǫ is

flat, the condition (⋆)ǫ ensures that the map (f, qǫ) : Y → B × Zǫ is étale, and the connection

kǫ is then pulled back from the trivial connection on the projection B ×Zǫ → B. In particular

kǫ is flat.

The closed 2-form q∗1(Ω1) defines a relative symplectic form on f since the restriction of

q1 : X → Z1 to each fibre f−1(b) ⊂ Y ⊂ X is étale. Recall the identity of closed 2-forms

q∗ǫ (Ωǫ) = ǫ−2q∗0(Ω0) + 2iǫ−1ΩI + q∗∞(Ω∞) (51)

from Section 3.1. On restricting to Y the last term on the right-hand side vanishes, since

R ⊂ Z∞ is Lagrangian. On further restricting to a fibre f−1(b) ⊂ Y the first term also

vanishes, since p−1(b) ⊂ M is Lagrangian. Thus for ǫ ∈ C∗ the forms ǫ · q∗ǫ (Ωǫ) define the same

relative symplectic form Ω on f , and this is also induced by 2iΩI . Note that the the kernel

of the restriction Ωǫ|Y clearly contains the subspace im(kǫ), and hence coincides with it. This

implies that the connection kǫ on f is symplectic [26, Theorem 4].

Observe next that there is a commutative diagram

TX

−(2iΩI )♭ // T ∗
X

TM
ω♭ //

v

OO

T ∗
M

π∗

OO
(52)

since the relations (8)-(9) show that for tangent vectors w1 to M and w2 to X

− 2iΩI(v(w1), w2) = −g(2iIv(w1), w2) = −2g(v(w1), w2) = g((J + iK)h(w1), w2) (53)

= Ω+(h(w1), w2) = (π∗ω)(h(w1), w2) = ω(w1, π∗(w2)). (54)
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The fact that the closed 2-form i∗(2iΩI) induces a relative symplectic form on the map

f : Y → B is the statement that the composite of the bundle maps

ker(f∗)
�

� // TY

(2iΩI )♭ // T ∗
Y

// T ∗
Y /f

∗(T ∗
B) (55)

is an isomorphism. The relative Hamiltonian flow r corresponding to a function H : Y → C is

then the unique vertical vector field on the map f : Y → B which is mapped to dH viewed as

a section of T ∗
Y /f

∗(T ∗
B). In symbols we can write (2iΩI)♭(r) = dH + f ∗(α) for some covector

field α on B.

Consider the canonical section ̟ = p∗(β) ∈ H0(Y, f ∗(T ∗
B)). Note that given a vector field u ∈

H0(B, TB) the corresponding Hamiltonian Hu = (f ∗(u), ̟) = p∗(ρ∗(u), β) on Y is pulled back

fromM . Let us lift u to a vector field w onM as above. Then kǫ(u) = hǫ(w) = h(w)+ǫ−1 ·v(w).
We claim that v(w) is the relative Hamiltonian flow r defined by the function Hu. To prove

this we must show that the 1-form (2iΩI)♭(v(w)) − dHu on Y is a pullback from B. By the

commutative diagram (52) this is equivalent to showing that the 1-form ω♭(w)− d(ρ∗(u), β) on

M is a pullback from B.

This final step is perhaps most easily done in local co-ordinates (si, ti) on M as above in

which β =
∑

i sidti and ω =
∑

i dti ∧ dsi. If we take u = ∂
∂ti

then (ρ∗(u), β) = si and the

lift w has the form w = ∂
∂ti

+
∑

j aj
∂
∂sj

for locally-defined functions aj : M → C. But then

ω♭(w) = dsi −
∑

j aj dtj , and since the ti are pulled back via ρ this proves the claim.

We have now defined the symplectic connections kǫ for ǫ ∈ C∗ and proved the relation (45).

We can then define a symplectic connection k = k∞ by the same relation. Since the kǫ are flat

for all ǫ ∈ C∗ the relations (46) hold, and it follows that k is also flat.

4.4. Hamiltonian systems from Joyce structures of class S[A1]. In this section we con-

sider the Hamiltonian system of Theorem 4.1 in the case of the Joyce structures of class S[A1]

of Section 2.5. Recall that a crucial feature of the construction of these Joyce structures is the

isomondromy connection on the map

π1 : M(C,E,∇1) → M(C). (56)

Note that to construct a Hamiltonian system on this map we need another ‘base’ connection. In

the notation of Section 4, the isomonodromy connection is k1, but we also need the connection

k∞ before we can write the equation (44). This issue is often a little hidden in the literature

because in many examples there is a natural choice for the reference connection k∞ which is
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then taken without further comment. It is discussed explicitly in [27], and is also mentioned

for example in [7, Remark 7.1].

One way to get a base connection k∞ on the map (56) is to choose for each bundle E a dis-

tinguished ‘reference’ connection ∇∞. Then k∞ can be taken to the isomonodromy connection

for the family of connections (E,∇∞). Note that once we have chosen the reference connection

∇∞ we get a whole pencil of connections ∇ǫ = ∇∞ − ǫ−1Φ obtained by setting Φ = ∇∞ −∇1.

Many interesting examples of isomonodromic systems in the literature involve bundles with

meromorphic connections on a genus 0 curve. Since the generic such bundle E is trivial, it is

then natural to take ∇∞ = d. But for bundles with connection on higher genus curves there is

no such canonical choice.

Consider the specific setting of Section 2.5 involving bundles E with holomorphic connections

on higher genus curves. Recall also the character stack X(g) and mapping class group MCG(g)

as defined in (40). The subspace of the quotient X(g)/MCG(g) consisting of monodromy

representations of connections on a fixed bundle E is known to be Lagrangian. Let us choose

another such Lagrangian R ⊂ X(g)/MCG(g). Then for a generic bundle E we can expect these

two Lagrangians to meet in a finite set of points, and so locally on the moduli of bundles we

can define ∇∞ by insisting that its monodromy lies in R.

We can now apply the construction of Section 4.2 to these example. There is a canonical

cotangent bundle structure on Z0 as discussed in Section 3.5. In Section 3.7 it was explained

that the twistor fibre Z∞ has an étale map to the quotient X(g)/MCG(g), so the Lagrangian R

determines by pullback a Lagrangian in Z∞ which we also denote by R. We obtain a diagram

Y = q−1
∞ (R) �

� i //

f
))❙❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙

M(C,E,∇,Φ)
β1 //

��

M(C,E,∇1)

π1

uu❦❦❦❦
❦❦
❦❦
❦❦
❦❦
❦❦
❦❦

M(C)

(57)

where the map β1 is defined by setting ∇1 = ∇− Φ.

The isomonodromy connection defines a flat connection h1 on the map π1. The Hamiltonian

system of Theorem 4.1 defines a whole pencil of flat connections kǫ on the map f . The transver-

sality assumption ensures that the map β1◦i is étale, and the pullback of the connection h1 then

coincides with k1. Thus by choosing the Lagrangian R ⊂ Z∞ and using it to define reference

connections, we have upgraded the isomonodromy connection to a Hamiltonian system.
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5. The τ-function

In this section we define the τ -function associated to a Joyce structure on a complex manifold

M , and discuss some of its basic properties. It is most naturally viewed as the unique up-to-scale

section of a flat line bundle on X = TM . By choosing a section of this line bundle it becomes a

locally-defined function on X , and by pulling back via the multiplication map m : X×C∗ → X

it can be viewed as also depending on a parameter ǫ ∈ C∗.

5.1. Definition of the τ-function. Let M be a complex manifold equipped with a Joyce

structure as above, and let p : Z → P1 be the associated twistor space. We set ΘI = iE(ΩI), so

that as in Section 3.2 we have dΘI = ΩI . Recall the identity of closed 2-forms on X

q∗1(Ω1) = q∗0(Ω0) + 2iΩI + q∗∞(Ω∞). (58)

We start by giving the definition of the τ -function in explicit local form. The geometrically-

minded reader is encouraged to read the next section first.

Definition 5.1. Choose locally-defined symplectic potentials:

(i) Θ0 on Z0 satisfying dΘ0 = Ω0 and LE(Θ0) = 2Θ0,

(ii) Θ1 on Z1 satisfying dΘ1 = Ω1,

(iii) Θ∞ on Z∞ satisfying dΘ∞ = Ω∞ and LE(Θ∞) = 0.

Then the corresponding τ -function is the locally-defined function on X uniquely specified up to

multiplication by constants by the relation

d log(τ) = q∗0(Θ0) + 2iΘI + q∗∞(Θ∞)− q∗1(Θ1). (59)

By pulling back τ via the multiplication map m : C∗ ×X → X we can view it as a function

also of ǫ ∈ C∗. Restricted to the slice {ǫ} ×X it then satisfies

d log(τ) = ǫ−2q∗0(Θ0) + 2iǫ−1ΘI + q∗∞(Θ∞)− q∗ǫ (Θǫ), (60)

where Θǫ = m∗

ǫ−1(Θ1), and we used the relation LE(ΘI) = ΘI . Although the extra parameter

ǫ is redundant, it is frequently useful to introduce it, for example so as to expand τ as an

asymptotic series.

Remark 5.2. Given two symplectic potentials Θ
(i)
0 the resulting functions τ (i) will be related by

log τ (2) − log τ (1) = ǫ−2 · q∗0(G), (61)
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where G is a locally-defined function on Z0 satisfying dG = Θ
(2)
0 −Θ

(1)
0 . Similarly, if we consider

two symplectic potentials Θ
(i)
∞ the resulting functions τ (i) will be related by

log τ (2) − log τ (1) = q∗∞(G), (62)

for some locally-defined function G on Z∞. In either case the function G is independent of ǫ.

Thus if we are interested in the asymptotic expansion of τ in the limit ǫ → 0, it is the choice

of Θ1 in Definition 5.1 which is the most important, since the choices of Θ0 and Θ∞ will only

effect the coefficients of ǫ−2 and ǫ0 respectively.

5.2. Global perspective. Suppose that there exist line bundles with connection (L0,∇0),

(L1,∇1) and (L∞,∇∞) on the twistor fibres Z0, Z1 and Z∞, with curvature forms Ω0, Ω1 and

Ω∞ respectively. For a review of such pre-quantum line bundles see Appendix A. The identity

(58) shows that the connection

(

q∗0(∇0)⊗ 1⊗ 1
)

+
(

1⊗ q∗∞(∇∞)⊗ 1
)

−
(

1⊗ 1⊗ q∗1(∇1)
)

+ 2iΘI

on the line bundle q∗0(L0)⊗ q∗∞(L∞)⊗ q∗1(L1)
−1 is flat. There is therefore a unique flat section

up to scale, which we call the τ -section.

Given a section s0 ∈ H0(U, L0) over an open subset U ⊂ Z0 we can write ∇0(s0) = Θ0 · s0 for
a 1-form Θ0 on U . Then dΘ0 = Ω0|U , so that Θ0 is a symplectic potential for Ω0 on this open

subset. This construction defines a bijection between local sections of L0 up to scale, and local

symplectic potentials for Ω0. Let us take local sections s0, s1 and s∞ of the bundles L0, L1 and

L∞ respectively, and let Θ0, Θ1 and Θ∞ be the corresponding symplectic potentials. Then we

can write the τ -section in the form τ · (s0⊗s∞⊗s−1
1 ), and the resulting locally-defined function

τ on X will satisfy the equation (59).

We can constrain the possible choices of local sections s0 and s∞ using the C∗-actions on

the fibres Z0 and Z∞. The relations LE(Ω0) = 2Ω0 and LE(Ω∞) = 0 show that the symplectic

forms Ω0 and Ω∞ are homogeneous for this action. It follows that the action lifts to the pre-

quantum line bundles L0 and L∞. We can then insist that the local sections s0 and s∞ are

C∗-equivariant, which in terms of the corresponding symplectic potentials translates into the

conditions LE(Θ0) = 2Θ0 and LE(Θ∞) = 0 appearing in Definition 5.1.

Remark 5.3. The existence of the pre-quantum line bundle (L1,∇1) assumed above is equivalent

to the condition that the de Rham cohomology class of Ω1/(2πi) is integral. Note that since
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the forms Ω0 and 2iΩI are exact, the relation (58) shows that this is also the condition for

(L0,∇0) and (L∞,∇∞) to exist.

For Joyce structures arising in DT theory this integrality condition is expected to be a

consequence of refined DT theory. Roughly speaking, the twistor fibre Z1 is covered by preferred

Darboux co-ordinate charts whose transition functions are symplectic maps given by time 1

Hamiltonian flows of products of quantum dilogarithms. The cocycle condition is the wall-

crossing formula in DT theory. The generating functions for these symplectic maps are given

by formulae involving the Rogers dilogarithm, and the cocycle condition for the pre-quantum

line bundle (L1,∇1) is then an extension of the wall-crossing formula involving these generating

functions. The statement is then that this extended wall-crossing formula follows from the wall-

crossing formula in refined DT theory involving automorphisms of quantum tori.

This picture was explained by Alexandrov, Persson and Pioline [2], and by Neitzke [35], and

in the case of theories of class S[A1] plays an important role in the work of Teschner et al

[19, 20]. The Rogers dilogarithm identities were described in the context of cluster theory by

Fock and Goncharov [23, Section 6], and by Kashaev and Nakanishi [29, 35].

5.3. Choice of symplectic potentials. To obtain a well-defined τ -function, we need some

prescription for choosing the symplectic potentials Θ0, Θ1 and Θ∞, or equivalently the local

sections s0, s1 and s∞. We make some general remarks about this here, although some aspects

are still unclear.

It was explained in Section 3.2 that setting

Θ0 =
1
2
iE(Ω0) =

1
2

∑

i,j

ωijzi dzj, (63)

provides a canonical and global choice for Θ0. On the other hand, the key to defining Θ1 is to

assume the existence of a distinguished Darboux co-ordinate system (x1, · · · , xn) on the twistor

fibre Z1 as in Section 3.6. We can then take

Θ1 =
1
2

∑

i,j

ωijxi dxj . (64)

The choice of Θ∞ remains quite mysterious in general. One way to side-step this problem

is to choose a C∗-invariant Lagrangian R ⊂ Z∞ as in Section 3.7, since if we restrict τ to

the inverse image Y = q−1
∞ (R) we can then drop the term q∗∞(Θ∞) from the definition of the

τ -function. It is not quite clear whether this procedure is any more than a convenient trick.

In other words, it is not clear whether τ should be viewed as a function on X , depending on a
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choice of symplectic potential Θ+, or whether the natural objects are the Lagrangian R ⊂ Z∞,

and a function τ defined on the corresponding submanifold Y ⊂ X .

In practice, in examples, the above choices of symplectic potentials Θ0 and Θ1 do not always

give the nicest results. We discuss several possible modifications here. Of course, from the

global point-of-view, these variations correspond to expressing the same τ -section in terms of

different local sections of the line bundles L0 and L1.

5.3.1. Cotangent bundle. Suppose we are given a cotangent bundle structure onM as discussed

in Section 3.5. As explained there, it is natural to assume that the associated Liouville form λ

satisfies LE(λ) = 2λ. We can then consider the following three choices of symplectic potential

ΘL
0 = −λ, Θ0 =

1
2
iE(Ω0), ΘH

0 = iE(Ω0) + λ. (65)

The justification for the strange-looking primitive ΘH
0 will become clear in Section 5.4.4: it is

the correct choice to produce τ -functions for the Hamiltonian systems of Section 4. Applying

the Cartan formula gives

ΘH
0 −Θ0 = Θ0 −ΘL = 1

2
iE(Ω0) + λ = −1

2
iE(dλ) +

1
2
LE(λ) =

1
2
diE(λ). (66)

Thus the resulting τ functions differ by the addition of the global function 1
2
q∗0(iE(λ)).

5.3.2. Polarisation. Suppose the distinguished Darboux co-ordinate system (x1, · · · , xn) on Z1

is polarised, in the sense that the associated matrix ωij satisfies ωij = 0 unless |j − i| = d,

where as before we write n = 2d. We can then take as symplectic potential on Z1

ΘP
1 =

d
∑

i=1

ωi,i+d · xi dxi+d, (67)

This resulting τ -function will be modified by 1
2

∑

i ωi,i+d · xixi+d.

5.3.3. Flipping ΘI . Given local co-ordinates on X as in Section 2.2 there are in fact two obvious

choices of symplectic potential for 2iΩI , namely

2iΘI =
∑

p,q

ωpqzp dθq, 2iΘ′
I = −

∑

p,q

ωpqθp dzq. (68)

In Section 5.4.2 it will be convenient to replace 2iΘI in the definition of the τ -function with

2iΘ′
I . This will change the τ -function by the addition of K =

∑

p,q ωpq · zpθq. Note that

K : X → C is a globally-defined function, since it is the 1-form iE(ω) on M considered as a

function on X = TM . It does not however descend to the quotient X# = TM/(2πi) T Z
M .



28 TOM BRIDGELAND

5.4. Interpretations of the τ-function. By restricting to various submanifolds of X the

τ -function can be viewed as a generating function in a confusing number of ways.

5.4.1. Restriction to the zero-section. Let j : M →֒ X = TM be the inclusion of the zero-section,

defined by setting all co-ordinates θi = 0. Since this is the fibre q−1
∞ (0) over the distinguished

point 0 ∈ Z∞ of Section 3.4 we have j∗q∗∞(Θ∞) = 0. The formula (30) for αI = ΘI shows that

also j∗(ΘI) = 0. The defining relation of the τ -function then implies that

d log(τ |M) = Θ0 − j∗q∗1(Θ1) (69)

is the generating function for the symplectic map q1◦j : M → Z1 with respect to the symplectic

potentials Θ0 and Θ1.

5.4.2. Restriction to a fibre of q0. Let j : F = TM,p →֒ X be the inclusion of a fibre of the

projection π : X = TM → M . Restriction to this locus corresponds to fixing the co-ordinates

zi. By (14), the restriction

ΩF = j∗q∗∞(Ω+) =
1
2

∑

p,q

ωpq · dθp ∧ dθq (70)

is the linear symplectic form on TM,p defined by the symplectic form ω. It follows that ΘF =

j∗q∗∞(Θ+) is a symplectic potential for this form.

Let us take the flipped form 2iΘ′
I in the definition of the τ -function as in Section 5.3.3. The

forms Θ− and 2iΘ′
I vanish when restricted to F , so

d log(τ |F ) = j∗q∗∞(Θ+)− j∗q∗1(Θ1) (71)

is the generating function for the symplectic map q1 ◦ j : F → Z1 with respect to the symplectic

potentials ΘF and Θ1.

5.4.3. Restriction to a fibre of f . Let us consider the setting of Theorem 4.1. Thus we have

chosen a cotangent bundle structure M ⊂ T ∗
B, with associated projection ρ : Y → B, and a

C∗-invariant Lagrangian submanifold R ⊂ Z∞, and set Y = q−1
∞ (R). Let j : F →֒ X be the

inclusion of a fibre F = f−1(b) of the map f : Y → B. By Theorem 4.1 (i) the closed 2-form

2iΩI restricts to a symplectic form on F . As above, we can drop the term q∗∞(Θ∞) from the

definition of the τ -function. Let us take the symplectic potential on Z0 to be ΘL
0 = −dλ as in

Section 5.3.1. Then since π(F ) ⊂ ρ−1(b) we also have j∗q∗0(Θ
L
0 ) = 0. Thus

d log(τ |F ) = j∗(2iΘI)− j∗q∗1(Θ1) (72)
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is the generating function for the symplectic map q1 ◦ j : F → Z1 with respect to the symplectic

potentials j∗(2iΘI) and Θ1.

5.4.4. Hamiltonian system τ -function. Consider again the setting of Theorem 4.1. As before,

we can drop the term q∗∞(Θ∞) from the definition of the τ -function. Let us take the symplectic

potential on Z0 to be ΘH
0 as defined in Section 5.3.1. Then we have

d log(τ |Y ) = j∗q∗0(λ) + j∗q∗0(iE(Ω0)) + j∗(iE(2iΩI))− j∗q∗1(Θ1) (73)

= p∗(λ) + j∗(iE(q
∗
1(Ω1)))− j∗q∗1(Θ1). (74)

Here we used the identity (58), together with the assumption that the Lagrangian R ⊂ Z∞ is

C∗-invariant, which ensures that iE(Ω∞)|R = 0. Let L ⊂ X be a leaf of the connection k1 on

f : Y → B. By construction of k1 this is the intersection of Y with a leaf of the connection

h1 on π : X → M . Note that if u is a horizontal vector field for the connection h1 then

iuiE(q
∗
1(Ω1)) = −iE iu(q

∗
1(Ω1)) = 0. Thus

d log(τ |L) = p∗(λ)|L. (75)

Applying the definition of Section 4.1 it follows that τ |Y is a possible choice of τ -function for

the strongly-integrable time-dependent Hamiltonian system of Theorem 4.1.

6. Uncoupled BPS structures

In the paper [11] it was found that in certain special cases, solutions to DT RH problems

could be encoded by a single generating function, which was denoted τ . The most basic case

is the one arising from the DT theory of the doubled A1 quiver, where the resulting τ -function

is a modified Barnes G-function [11, Section 5]. In the case of the DT theory of the resolved

conifold τ was shown to be a variant of the Barnes triple sine function [12], and interpreted

as a non-perturbative topological string partition function. In this section we show that these

τ -functions can be viewed as special cases of the more general definition given above.

6.1. Uncoupled BPS structures and associated τ-function. Consider as in [11, Section

5.4] a framed, miniversal family of finite, integral BPS structures over a complex manifold M .

At each point p ∈ M there is a BPS structure consisting of a fixed lattice Γ ∼= Z⊕n, with a

skew-symmetric form 〈−,−〉, a central charge Zp : Γ → C, and a collection of BPS invariants

Ωp(γ) ∈ Q for γ ∈ Γ. The miniversal assumption is that the central charges zi = Z(γi) of a

collection of basis vectors γi ∈ Γ define local co-ordinates on M . The finiteness assumption
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ensures that only finitely many Ωp(γ) are nonzero for any given point p ∈ M , and the integrality

condition is that Ωp(γ) ∈ Z for a generic point p ∈ M .

Let us also assume that all the BPS structures parameterised by M are uncoupled, which

means that Ωp(γi) 6= 0 for i = 1, 2 implies 〈γ1, γ2〉 = 0. This is a very special assumption, which

implies [11, Remark A.4] that the BPS invariants Ωp(γ) = Ω(γ) are independent of p ∈ M .

We can then take a basis (γ1, · · · , γ2d), where n = 2d as before, such that 〈γi, γj〉 = 0 unless

|j − i| = d, and such that Ω(γ) 6= 0 implies that γ ∈
⊕d

i=1 Zγi. We set ηij = 2πi · 〈γi, γj〉 and
take ωij to be the inverse matrix. Note that ωi,i+d · ηi,i+d = −1 for all 1 6 i 6 d.

At each point p ∈ M there is a DT RH problem depending on the BPS structure, and also

on a twisted character ξ : Γ → C∗. For 1 6 i 6 d the expressions exp(−ǫ−1zi) · ξ(γi) are

solutions to this problem. We assume that ξ(γi) = 1 for all 1 6 i 6 d which then implies that

Ω(γ) 6= 0 =⇒ ξ(γ) = 1. This amounts to fixing a Lagrangian R ⊂ Z∞. Then by [11, Theorem

5.3], the DT RH problem has a unique solution whose components Xi = exp(xi) can be written

in the form

xi = −ǫ−1zi + yi, yi =
∑

γ∈Γ

Ω(γ) · 〈γ, γi〉 · log Λ
(

Z(γ)

2πiǫ

)

, (76)

where Λ(w) is the modified gamma function

Λ(w) =
ew · Γ(w)

√
2π · ww−

1
2

. (77)

Note that for 1 6 j 6 d we have yj = 0, and

2πiωj,j+d · yj+d = −
∑

k1,··· ,kd∈Z

Ω
(

d
∑

p=1

kpγp

)

· kj · log Λ
(

(2πiǫ)−1

d
∑

p=1

kpzp

)

. (78)

This implies the relations

ωj,j+d ·
∂yj+d

∂zi
= ωi,i+d ·

∂yi+d

∂zj
,

d
∑

i=1

zi ·
∂yj+d

∂zi
+ ǫ · ∂yj+d

∂ǫ
= 0. (79)

The τ -function of [11] was then defined as a locally-defined function τ : M → C∗ satisfying

∂

∂zi
log(τ) = ωi,i+d ·

∂yi+d

∂ǫ
,

∂

∂zi+d
log(τ) = 0 (80)

for 1 6 i 6 d, and homogeneous under simultaneous rescaling of all zi and ǫ.
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6.2. Comparison of τ-functions. We can give M a cotangent bundle structure in which the

map ρ : M → B just projects to the co-ordinates (z1, · · · , zd). We then have

λ =
d

∑

i=1

ωi,i+d · zi+d dzi, Ω0 =
d

∑

i=1

ωi,i+d · dzi ∧ dzi+d. (81)

Taking the polarised choice for Θ1 and the Hamiltonian system choice for Θ0 we have

Θ1 =

d
∑

j=1

ωj,j+d · xj dxj+d, Θ0 =

d
∑

j=1

ωj,j+d · zj dzj+d. (82)

The definition (60) of the τ -function becomes

d log(τ |M) = ǫ−1 ·
d

∑

j=1

ωj,j+d · zj dyj+d. (83)

Expressing τ as a function of the co-ordinates zi, we find that for 1 6 i 6 d

∂

∂zi
log(τ |M) = ǫ−1 ·

d
∑

j=1

ωj,j+d · zj
∂yj+d

∂zi
,

∂

∂zi+d

log(τ |M) = 0. (84)

Using the relations (79) this gives

∂

∂zi
log(τ |M) = ǫ−1 ·

d
∑

j=1

ωi,i+d · zj
∂yi+d

∂zj
= −∂yi+d

∂ǫ
(85)

which coincides with (80).

Thus we see that the τ -functions of [11] are particular examples of the τ -functions introduced

here. The non-perturbative topological string partition function for the resolved conifold ob-

tained in [12] also fits into this framework. Although the relevant BPS structures are not finite,

they are uncoupled, and the above analysis goes through unchanged.

7. A2 example: cubic oscillators and Painlevé I

This example arises from the DT theory of the A2 quiver. It was studied in detail in [14] to

which we refer the reader for further details. We show that with the natural choices of symplectic

potentials Θ0,Θ1,Θ∞, the resulting τ -function coincides with the particular extension of the

Painlevé I τ -function considered by Lisovyy and Roussillon [32].
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7.1. Deformed cubic oscillators. The base M of the Joyce structure is the moduli space of

quadratic differentials on P1 which have a single pole of order 7 and simple zeroes. By applying

automorphisms of P1 any such differential can be brought to the form

Q0(x) dx
⊗2 = (x3 + ax+ b) dx⊗2 (86)

for some a, b ∈ C. The condition on simple zeroes is then that 4a3 + 27b2 6= 0. The group

µ5 ⊂ C∗ of fifth roots of unity acts on P1 preserving the form of the expression (86) but

modifying (a, b) via the action (a, b) 7→ (ζ3 a, ζ2 b). The space M is then the quotient by this

action. Thus

M =
{

(a, b) ∈ C2 : 4a3 + 27b2 6= 0
}

/µ5. (87)

The C∗-action on M is obtained by rescaling the quadratic differential Q0(x)dx
⊗2 with weight

2. In terms of the above parameterisation it is given explicitly by t · (a, b) = (t4/5 a, t6/5 b).

Remark 7.1. In relation to Remark 2.3(iii) note that this C∗-action is not well-defined on the

space C2 with co-ordinates (a, b). Thus one really needs to take the µ5-quotient in (87) to get

a Joyce structure as defined in Section 2.4.

We consider the deformed cubic oscillator

y′′(x) = Q(x)y(x), Q(x) = ǫ−2Q0(x) + ǫ−1Q1(x) +Q2(x), (88)

where the terms in the potential are

Q1(x) =
p

x− q
+ r, Q2(x) =

3

4(x− q)2
+

r

2p(x− q)
+

r2

4p2
, (89)

depending on (q, r) ∈ C2, with p defined implicitly by p2 = q3+aq+b. This is gauge equivalent

to the pencil of connections ∇− ǫ−1Φ on the trivial rank 2 bundle on P1 with

∇ = d−
(

r 0
0 −r

)

dx

2p
, Φ =

(

p x2 + xq + q2 + a
x− q −p

)

dx. (90)

7.2. Local co-ordinates. The double cover Σ corresponding to a point of M is the elliptic

curve y2 = x3+ax+ b. We take a basis of cycles (γ1, γ2) ⊂ H1(Σ,Z) ordered so that γ1 ·γ2 = 1.

Then η12 = 2πi and ω12 = −1/2πi. The local period co-ordinates on M are

zi =

∫

γi

y dx =

∫

γi

(x3 + ax+ b)1/2 dx, (91)
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The space of deformed cubic oscillators considered above can be identified with the quotient

X# = TM/(2πi) T Z
M . Under this identification the fibre co-ordinates θi on X = TM are

θi = −
∫

γi

Q1

2
√
Q0

= −
∫

γi

(

p

x− q
+ r

)

dx

2y
. (92)

We shall need the periods and quasi-periods of the elliptic curve Σ. They are given by

ωi =

∫

γi

dx

2y
, ηi = −

∫

γi

x dx

2y
, (93)

and satisfy the Legendre relation ω2η1 − ω1η2 = 2πi. There are relations

∂

∂a
= −η1

∂

∂z1
− η2

∂

∂z2
,

∂

∂b
= ω1

∂

∂z1
+ ω2

∂

∂z2
. (94)

In terms of the fibre co-ordinates (θa, θb) associated to the co-ordinates (a, b) we then have

θi = −ηiθa + ωiθb. (95)

The functions (θa, θb) are given explicitly by

θa = −1

4

∫ (q,p)

(q,−p)

dx

y
, θb =

1

4

∫ (q,p)

(q,−p)

xdx

y
− r. (96)

7.3. Joyce structure. The Joyce structure on X = TM is obtained by taking the connection

hǫ on π : X → M to be the isomonodromy connection for the equation (88). In terms of the

co-ordinates (a, b, q, r) this is given by

hǫ

(

∂

∂a

)

= −2p

ǫ

∂

∂q
− q

ǫ

∂

∂r
+

(

∂

∂a
− r

p

∂

∂q
− r2(3q2 + a)− qpr

2p3
∂

∂r

)

, (97)

hǫ

(

∂

∂b

)

= −1

ǫ

∂

∂r
+

(

∂

∂b
+

r

2p2
∂

∂r

)

. (98)

The Plebański function has the explicit expression

W =
1

4(4a3 + 27b2)p

(

2apr3 − (6aq2 − 9bq + 4a2)r2 − 3p(3b− 2aq)r − 2ap2
)

. (99)

The fact that W is cubic in r corresponds to the good Lagrangian property of [17, Section 4]

(see particularly equation (53)).

In the co-ordinates (a, b, q, r) the generator for the C∗-action on X is

E =
4a

5

∂

∂a
+

6b

5

∂

∂b
+

2q

5

∂

∂q
+

r

5

∂

∂r
. (100)
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The change of basis (94) gives Ω0 = −(2πi)−1 · dz1 ∧ dz2 = da ∧ db. Thus

iE(Ω0) = −6b

5
da+

4a

5
db. (101)

The expressions (94) and (95) and a short calculation using (96) gives

2iΩI = −da ∧ dθb + db ∧ dθa = dq ∧ dp+ da ∧ dr. (102)

It then follows that

iE(2iΩI) =
2q

5
dp− 3p

5
dq +

4a

5
dr − r

5
da. (103)

7.4. Twistor fibre Z∞. The twistor fibre Z∞ is the space of leaves of the foliation defined by

the connection h = h∞. The functions

φ1 = q +
ar

p
, φ2 =

r

2p
, (104)

descend to Z∞ because they are constant along the flows (97) and (98) with ǫ = ∞. Moreover,

if we restrict to a fibre F of the projection π : X = TM → M by fixing (a, b), then

− 1

2πi
· dθ1 ∧ dθ2

∣

∣

F
= dθa ∧ dθb

∣

∣

F
= −dr

2p
∧ dq

∣

∣

F
= dφ1 ∧ dφ2

∣

∣

F
, (105)

so (φ1, φ2) are Darboux co-ordinates on Z∞.

Since the C∗-action rescales φ1 and φ2 with weights −2
5
and 2

5
respectively, we have

iE(Ω∞) = iE(dφ1 ∧ dφ2) =
2

5
d(φ1φ2). (106)

Thus the Joyce function of Section 3.2, which is well-defined up to the addition of a constant,

can be taken to be V = −2φ1φ2/5.

The distinguished fixed point of Z∞ is defined by (φ1, φ2) = (0,∞). It is an isolated fixed

point. The linear Joyce connection on M is the one whose flat co-ordinates are (a, b), and

the negative and positive weight spaces V− and V+ of Lemma 3.7 are spanned by ∂
∂a

and ∂
∂b

respectively. The Joyce metric is

g =
1

5
· (da⊗ db+ db⊗ da). (107)

Remark 7.2. The alternative Plebański function U : X → C of Appendix B is given by

U =
1

2

∫ (q,p)

(q,−p)

(x3 + ax+ b)1/2 dx, (108)
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because a simple calculation using the flows (97) and (98) shows that

∂U

∂b

∣

∣

∣

∣

φ

= h
( ∂

∂b

)

U = −θa,
∂U

∂a

∣

∣

∣

∣

φ

= h
( ∂

∂a

)

U = θb. (109)

It would be interesting to know whether an analogous formula to (108) exists for all Joyce

structures of class S[A1].

7.5. Hamiltonian system and τ-function. Setting φ2 = 0 defines a Lagrangian R ⊂ Z∞

whose inverse image Y = q−1
∞ (L) ⊂ X is the 3-dimensional locus r = 0. This corresponds to

choosing the reference connection ∇ in (90) to be d.

There is a natural cotangent bundle structure on M for which ρ : M → B is the projection

to the co-ordinate a, which is the Painlevé time. The associated Liouville form is λ = bda. The

map f : Y → B of Section 4 is given by (a, b, q) 7→ a. The Hamiltonian form is ̟ = bda. By

(102) the form 2iΩI induces the relative symplectic form dq ∧ dp. The horizontal leaves of the

connection k∞ are obtained by varying a while keeping (q, p) fixed.

The twistor fibre Z1 is the space of framed local systems, and is covered by birational Fock-

Goncharov co-ordinate charts (exp(x1), exp(x2)). We take the polarised choice for the symplec-

tic potential Θ1, and the Hamiltonian system choice for Θ−. Thus

Θ0 = iE(Ω−) + λ, Θ1 = −(2πi)−1x1dx2. (110)

Omitting the pullbacks q∗ from the notation, the definition of the τ -function reads

d log(τ) = ǫ−2 ·Θ0 + ǫ−1 · 2iΘI +Θ∞ −Θ1. (111)

With the above choices this gives

d log(τ |Y ) = ǫ−2
(

− 6b

5
da+

4a

5
db+ bda

)

+ ǫ−1
(2q

5
dp− 3p

5
dq
)

+
1

2πi
x1dx2. (112)

7.6. Comparison with the Painlevé τ-function. We now compare with the Painlevé τ -

function computed in [32] and use notation as there. Consider the form ω defined in (3.4).

It considers local co-ordinates t,ma, mb with ma, mb constant under Painlevé flow. Let us re-

express ω in terms of the local co-ordinates t, q, p. Using the relations qt = p, pt = 6q2 + t and

Ht = −q appearing on page 1, we get

ω

2
= Hdt+

1

5

(

4tdH + 3qtdq − 2qdqt − (4tHt + 3q2t − 2qqtt)dt
)

(113)

= −H

5
dt+

4t

5
dH +

3p

5
dq − 2q

5
dp. (114)
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Then the authors show that Ω = dω = 4πidν1 ∧ dν2 and define τLR by

d log(τLR) =
1
2
ω − 2πiν1dν2. (115)

To compare with the τ -function τTB of the previous section set pLR = −2pTB, qLR = qTB,

t = 2a, H = 2b. Here the subscript TB means as in this paper, whereas LR means as appearing

in [32]. Also we should set r = 0 and ǫ = 1
2
. The connection ∇− ǫ−1Φ of (90) then becomes

gauge equivalent to the system (2.1a) of [32]. To match the monodromy data we set x1 = 2πiν1

and x2 = −2πiν2. Then in terms of the notation of this paper, the definition (115) becomes

d log τLR = −4b

5
da+

16a

5
db− 6p

5
dq +

4q

5
dp+

1

2πi
x1dx2, (116)

which coincides with (112). It follows that the two τ -functions, which are both well-defined up

to multiplication by a nonzero constant, coincide.

Appendix A. Pre-quantum line bundles in the holomorphic setting

The following result on pre-quantum line bundles in the holomorphic setting is standard and

well-known, but is so relevant to the definition of the τ -function that it seems worth briefly

recalling the proof. As in the rest of the paper, all line bundles, connections, symplectic forms

etc., considered will be holomorphic, but to make clear the distinction from the more familiar

geometric quantization story we will re-emphasize this at several places.

Theorem A.1. Let M be a complex manifold equipped with a holomorphic symplectic form Ω.

Assume that the de Rham cohomology class [Ω] satisfies the integrality condition

[Ω] ∈ (2πi) ·H2(M,Z) ⊂ H2(M,C). (117)

Then there is a holomorphic line bundle with holomorphic connection whose curvature is Ω.

Proof. Consider the following diagram of sheaves of abelian groups on M , in which dO is the

sheaf of closed holomorphic 1-forms, d is the de Rham differential, and the unlabelled arrows

are the obvious inclusions.

Z

��

·2πi // C

��

exp // C∗

��
Z

·2πi // O
exp //

d
��

O
∗

d log
��

dO // dO

(118)
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The sheaf of 1-forms satisfying dΘ = Ω is a torsor for the sheaf dO , and hence defines an

element η ∈ H1(M, dO). The image of η via the boundary map in the central column is the

class [Ω] ∈ H2(M,C). By the integrality assumption, the image of η via the boundary map in

the right-hand column is 1 ∈ H2(M,C∗). Thus, by the long exact sequence in cohomology for

the right-hand column there exist elements φ ∈ H1(M,O∗) satisfying d log(φ) = η. Such a class

φ defines a line bundle L on M , and one can then see that L has a holomorphic connection

with curvature Ω.

Translating the above discussion into Čech cohomology gives the following. Take a covering

of X by open subsets Ui such that all intersections Ui1,··· ,in = Ui1 ∩ · · · ∩ Uin are contractible.

Choose 1-forms Θi on Ui satisfying dΘi = Ω|Ui
, and set Θij = Θi|Uij

− Θj|Uij
. Then dΘij = 0

and the collection {Θij} defines a Cech 1-cocycle for the sheaf dO . On Uij we can now write

d logφij = Θij = Θi|Uij
−Θj |Uij

(119)

for functions φij : Uij → C∗. The integrality assumption implies that, after replacing φij by

rij · φij for constants rij ∈ C∗, we can assume that

φij |Uijk
· φjk|Uijk

· φki|Uijk
= 1. (120)

We then define the line bundle L by gluing the trivial line bundles Li over Ui using multiplication

by φij. The relations (119) show that the connections ∇i = d +Θi on Li glue to a connection

∇ on L. Since ∇i has curvature dΘi = Ω|Ui
, the glued connection ∇ has curvature Ω. �

Remarks A.2. (i) The relation (119) can be phrased as the statement that the gluing map

φij for the line bundle L is the exponential generating function relating the symplectic

potentials Θi|Uij
and Θj|Uij

on Uij .

(ii) Suppose U ⊂ M is a contractible open subset. Then sections s ∈ H0(U, L) up to scale

are in bijection with symplectic potentials Θ on U . Given s we can write ∇(s) = Θ · s
with dΘ = Ω. Conversely, given another symplectic potential Θ′ on U we can write

Θ′ −Θ = d log(f) and hence define a section s′ = f · s satisfying ∇(s′) = Θ′ · s′.

Appendix B. Another Plebański function

Throughout the paper we described the complex hyperkähler structure on X = TM in terms

of local co-ordinates (zi, θj) using the Plebański functionW (zi, θj). For the sake of completeness

we briefly discuss here an alternative generating function, also introduced by Plebański [36].

This function only appears in the body of the paper in Remark 7.2 where we compute it in
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an interesting example. In the literature the function we have been calling W is usually called

the Plebański function of the second kind, whereas the function U introduced below is the

Plebański function of the first kind.

Take notation as in Section 2, and introduce a new system of co-ordinates on X by combining

local Darboux co-ordinates (z1, · · · , zn) on the twistor fibre Z0 = M as in Section 2.2, with the

pullback of a system of Darboux co-ordinates (φ1, · · · , φn) on the twistor fibre fibre Z∞. Then

by definition

Ω+ =
1

2

∑

p,q

ωpq · dzp ∧ dzq, Ω− =
1

2

∑

p,q

ωpq · dφp ∧ dφq. (121)

To find an expression for ΩI , note that since Z∞ is the quotient of X by the distribution

spanned by the vector fields hi of (3), we can write

∂

∂zi

∣

∣

∣

∣

φ

=
∂

∂zi

∣

∣

∣

∣

θ

+
∑

p,q

ηpq ·
∂2W

∂θi∂θp
· ∂

∂θq
, (122)

where the subscripts indicate which variables are being held fixed. Then

∂

∂zr

∣

∣

∣

∣

φ

(

∑

k

ωksθk

)

=
∂2W

∂θr∂θs
, (123)

and the symmetry of the right-hand side shows that there is then a locally-defined function

U = U(zi, φj) on X satisfying

∂U

∂zs
=

∑

k

ωksθk,
∂2U

∂zr∂zs
=

∂2W

∂θr∂θs
. (124)

The formula (13) then becomes

2iΩI = d
(

∑

p,q

ωpqθp dzq

)

=
∑

p,q

∂2U

∂φp∂zq
· dφp ∧ dzq. (125)

Consider the restriction of the form Ω− to a fibre of the projection π : X → M . The formula

(14) then gives
∑

p,q

ωpq · dθp ∧ dθq =
∑

p,q

ωpq · dφp ∧ dφq. (126)

Using (124) we then find that for all indices i, j

∑

r,s

ηrs ·
∂2U

∂φi∂zr
· ∂2U

∂φj∂zs
= −ωij . (127)
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These are known as Plebański’s first heavenly equations.
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