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Abstract 47 

As deep learning (DL) gains popularity for its ability to make accurate predictions in 48 

various fields, its applications in geosciences are also on the rise. Many studies focus on 49 

achieving high accuracy in DL models by selecting models, developing more complex 50 

architectures, and tuning hyperparameters. However, the interpretability of these models, 51 

or the ability to understand how they make their predictions, is less frequently discussed. 52 

To address the challenge of high accuracy but low interpretability of DL models in 53 

geosciences, we study rock classification from thin-section photomicrographs of six types 54 

of sedimentary rocks, including quartz arenite, feldspathic arenite, lithic arenite, siltstone, 55 

oolitic packstone, and dolomite. These rocks’ characteristic framework grains and grain 56 

textures are their distinguishing features, such as the rounded or oval ooids in oolitic 57 

packstone. We first train regular DL models, such as ResNet-50, on these 58 

photomicrographs and achieve an accuracy of over 0.94. However, these models make 59 

classifications based on features like cracks, cements, and scale bars, which are irrelevant 60 

for distinguishing sedimentary rocks in real-world applications. We then propose an 61 

attention-based dual network incorporating both global (overall photomicrograph) and local 62 

(distinguishing framework grains) features to address this issue. Our proposed model 63 

achieves not only high accuracy (0.99) but also provides interpretable feature extractions. 64 

Our study highlights the need to consider interpretability and geological knowledge in 65 

developing DL models, in addition to aiming for high accuracy. 66 

Keywords: Explainable deep learning; Knowledge-infused machine learning; Model 67 

interpretability; Attention-based modal network; Rock classification 68 



1. Introduction  69 

Deep learning (DL) has been highly effective in a range of tasks in geosciences, 70 

including capturing complex relationships in datasets, creating automatic analysis 71 

pipelines and building large and efficient models for numerical simulation and inversion 72 

(Bergen et al., 2019; Reichstein et al., 2019; Camps-Valls et al., 2021). This is partly due 73 

to the large number of tunable parameters and nonlinear model structures available in DL 74 

approaches. However, this over-parameterization also leads to reduced interpretability, 75 

making it difficult for users to understand the results obtained with these methods 76 

(Castelvecchi, 2016; Buhrmester et al., 2021). The lack of interpretability limits the 77 

reliability and application of DL models (Mamalakis et al., 2022). Scientists can neither 78 

verify whether the predictions of DL models are made based on reasonable references nor 79 

can they improve the models’ ability of generalization (e.g., Ebert-Uphoff and Hilburn, 80 

2020).  81 

Since the successful application of deep convolutional neural networks (DCNNs) to 82 

the classification of photographs from a dataset of 1.2 million images with one thousand 83 

classes (Krizhevsky et al., 2012), there have been numerous attempts to use DCNNs for 84 

fossil classification (Romero et al., 2020; Liu et al., 2020, 2022) and mineral classification 85 

(Maitre et al., 2019; Hao et al., 2019; Wang et al., 2021; Ge et al., 2021; Zheng et al., 2022) 86 

from photomicrographs, cathodoluminescence and scanning electron microscope images 87 

in the geoscience community. These efforts have largely focused on evaluating the 88 

performance of DCNNs using metrics such as accuracy or mean average precision. 89 

However, these numerical values can be sensitive to small changes in the input images, 90 



and models with "high accuracy" may not necessarily be robust if they rely on irrelevant 91 

features for classification (Lei et al., 2018; Yang et al., 2020). Given the inherent 92 

heterogeneity of rocks and other geological objects, it is important to understand how 93 

DCNNs make their classifications to ensure their applicability in real-world scenarios. To 94 

address this issue, recent advances in interpretability algorithms, such as the Class 95 

Activation Mapping (CAM) technique, can provide valuable insights into the decision-96 

making process of DCNNs by highlighting the specific regions of an image that are 97 

responsible for the classification using gradient information (Zhou et al., 2016; Selvaraju et 98 

al., 2017). While these algorithms have been demonstrated to be useful, they have not yet 99 

been widely applied to geoscientific tasks. To develop robust and reliable DL models for 100 

geosciences, it is necessary to incorporate interpretability algorithms to deduce the 101 

decision-making process of DL models. 102 

Rock classification is a fundamental task in geoscience that involves identifying rock 103 

types based on observing framework grains, minerals, texture, and structures. The 104 

traditional approach for studying features of rocks in detail consists of first slicing and then 105 

mounting, which makes rock samples sliced into roughly 30-micrometers-thick thin 106 

sections and mounted on glass slides. Then, for affordability and efficiency, thin sections 107 

are usually prepared and photographed as three-channel digital images (red, green, and 108 

blue, RGB), also known as photomicrographs. Geoscientists can observe thin sections 109 

under polarized light microscopes or examine photomicrographs to observe rock 110 

compositions, texture, and other characteristics. Sedimentary rocks cover approximately 111 

three-quarters of the Earth's surface, and understanding sedimentary rock types is 112 



important for characterizing the Earth's landscape and life over time, as well as for 113 

assessing reservoir quality in the oil and gas industry (Dickinson and Suczek, 1979; 114 

Garzanti et al., 2007; Boggs, 2009). As a result, photomicrograph examination has become 115 

a standard workflow in sedimentary geology, and there have been many attempts to use 116 

deep learning approaches to classify rocks based on photomicrographs (de Lima et al., 117 

2019; Koeshidayatullah et al., 2020; Tang et al., 2020; Su et al., 2020; Saxena et al., 2021; 118 

Li et al., 2022; Liu et al., 2022). These studies have primarily focused on the accuracy of 119 

the models but have not yet investigated how deep learning models make their 120 

classifications, which may lead to issues with generalization. This high accuracy yet low 121 

interpretability of DL models for geosciences restricts the utility of DL in real-world 122 

geoscience work.  123 

In this study, we develop an interpretable rock classification DL model to address this 124 

issue by incorporating geological knowledge. We focus on sedimentary rock classification 125 

from thin-section photomicrographs, a common classification task in computer vision, as 126 

the distinguishing features of sedimentary rocks, such as framework grains and textures, 127 

are easy to identify visually. We first applied classical DCNNs, such as ResNet-50, to 128 

classify six types of sedimentary rocks and evaluated the performance of these models 129 

using numerical metrics (accuracy) and interpretable visualizations generated by Gradient-130 

weighted Class Activation Mapping (Grad-CAM). We then develop and test our new 131 

attention-based dual-modal network, SedNet, which integrates global (the whole 132 

photomicrograph) and local (characteristic framework grains) features. Our results show 133 

that classical DCNNs achieve high accuracy but tend to focus on irrelevant parts of the 134 



rock photomicrographs, while our proposed model achieves not only high accuracy but 135 

also better interpretability, as indicated by the highlighting of distinguishing framework 136 

grains in the Grad-CAM visualizations. This study underscores the importance of 137 

interpretability and incorporation of geological knowledge in DL geoscience models. It 138 

suggests that integrating global and local information may improve the generalization 139 

abilities of DL models in this field. 140 

 141 

2. Dataset, data preprocessing, and data augmentation  142 

Six types of sedimentary rocks, including quartz arenite, feldspathic arenite, lithic 143 

arenite, siltstone, oolitic packstone, and dolomite, were selected in this study for 144 

classification (Figure 1; Table 1). Quartz arenite, feldspathic arenite, lithic arenite, and 145 

siltstone are four types of siliciclastic rocks, consisting of grains formed by the 146 

decomposition of rocks following weathering and deposition. These grains are typically 147 

silicates such as quartz and feldspar, but may also include fragments of igneous, 148 

metamorphic, and sedimentary rocks. 149 

The differentiation between siliciclastic rocks lies in the composition of the framework 150 

grains and grain size. For instance, quartz arenite is a sandstone with more than 95% 151 

quartz grains. Therefore, a representative sub-image for quartz arenite showcases a 152 

typical quartz grain. Feldspathic arenite and lithic arenite resemble quartz arenite but 153 

contain predominantly feldspar and lithic grains, respectively. As such, their corresponding 154 

sub-images feature a feldspar grain and a lithic fragment, respectively. Siltstone is a rock 155 

type with smaller grains than sandstone, typically less than 0.063 mm, presenting a distinct 156 



silty texture. A region displaying this texture was chosen as the siltstone sub-image, rather 157 

than a single mineral grain. 158 

In contrast to siliciclastic rocks, carbonate rocks like oolitic packstone and dolomite 159 

are formed through chemical or biochemical processes, consisting primarily of calcite or 160 

dolostone. Oolitic packstone, characterized by ooids—rounded or oval grains with 161 

concentric textures—is represented by a sub-image showcasing an ooid. Dolomite, known 162 

for its high interference colors and euhedral crystal forms, is represented by a sub-image 163 

highlighting these unique attributes. In this manner, the sub-images for each rock type have 164 

been carefully selected to encapsulate their unique mineralogical and textural 165 

characteristics, thereby aiding the deep learning network in differentiating between the 166 

classes more effectively. 167 

 168 

 169 

 170 



 171 

Figure 1. The studied six types of sedimentary rocks and the associated scale bars. 172 

 173 

A total of 1356 cross-polarized light photomicrographs were obtained from 15 samples 174 

covering the six rock types using high-resolution electronic cameras mounted on Nikon 175 

LV100POL microscopes. The images are three-channel RGB with a resolution of 1280 ◊ 176 

860 ◊ 3. The image dataset was split into training, validation, and test sets with a ratio of 177 

6:2:2 (Figure 2). The images were subjected to flipping and rotation to augment the data 178 

for model training. The color information in the images was considered important for 179 

mineral differentiation and was therefore preserved. Furthermore, the overrepresentation 180 

of certain rock types in the dataset (namely quartz arenite, feldspathic arenite, lithic arenite, 181 

and dolomite) as opposed to others (siltstone and oolitic packstone) was motivated by the 182 

inherent complexity associated with distinguishing these rock types. Quartz arenite, 183 



feldspathic arenite, lithic arenite, and dolomite tend to exhibit homogenous grain 184 

compositions and textures, thereby posing a significant challenge in their identification. 185 

Conversely, rock types such as siltstone and oolitic packstone demonstrate distinct 186 

characteristics, such as fine-sized silty textures and oolitic grains, respectively. This 187 

deliberate imbalance in the dataset was designed to accommodate these differential 188 

complexities inherent in rock identification. 189 

 190 

Table 1. Rock type descriptions 

Rock type Framework grains 
Grain size 

（mm） 
Distinguishing features 

Scalar 

bar  

type 

Quartz  

arenite 

>90% quartz grains, 

trace feldspar or lithic 

fragments 

~ 0.25-0.5 

Over 90% quartz grains  

that are gray and clean  

under XPL 

Type 1 

Feldspathic  

arenite 

~40-60% quartz 

grains, 20-40% 

feldspar grains, the 

rest are lithic grains 

~ 0.25-0.5 

Over 1/5 feldspar grains  

that are grey and mostly dirty. 

Tabular in shape, with cleavages 

 or twinning under XPL 

Type 2 

Lithic  

arenite 

30-50% lithic grains, 

the rest are quartz  

and feldspar grains 

~ 0.063-

0.5 

Over 1/3 lithic grains that  

are volcanic or sedimentary  

rock fragments 

Type 1 

Siltstone 
Mostly are quartz  

and feldspar grains 
<0.063 

Silty-sized grains that  

are grey under XPL 
Type 1 

Oolitic  

packstone 
Ooids 0.25-2 

Oval or rounded ooids grains  

with concentric fabrics 
Type 2 

Dolomite Dolostone <0.063  
Euhedural-subhedural dolostone  

that are colorful under XPL 
Type 1 

See scalar bar type in Figure 1. 

 191 



  192 

Figure 2. Numbers of training, validation, and test datasets. QA, quartz arenite; FA, 193 

feldspathic arenite; LA, lithic arenite; SS, siltstone; OP, oolitic packstone; DOL, dolomite. 194 

 195 

3. Model implementation and interpretability  196 

3.1 Model architecture  197 

We introduce a dual-modal network called SedNet to classify sedimentary rocks using 198 

thin-section photomicrographs. Traditional DCNNs can only focus on a small area in the 199 

images due to the limited size of the convolution kernels. Therefore, SedNet incorporates 200 

an attention mechanism and dual-modal input to obtain both kernel-sized and grain-sized 201 

information, resulting in improved performance. The architecture of SedNet is depicted in 202 

Figure 3a. It consists of four modules: a dual feature extraction module, a channel attention 203 

module, a fused feature extraction module, and an output module. The dual feature 204 

extraction module comprises two parallel CNNs, each with two Residual Convolution 205 

blocks and a global pooling layer (Conv blocks in Figure 3a) activated by Rectified Linear 206 

Unit (ReLU) which returns the input values if the input is positive, and 0 if the input is 207 



negative. To capture both global and local features in the rock classification, the dual 208 

feature extraction module takes as input both the rock photomicrographs and cropped 209 

images of distinctive framework grains within the original photomicrographs. For instance, 210 

for feldspathic arenite images, one input would be the original thin-section images, while 211 

the other would be a representative euhedral-subhedral feldspar grain with twining (see 212 

Section 2 for details). The channel attention module includes Squeeze-and-Excitation (SE) 213 

blocks, adapted from SE-Net (Hu et al., 2018). These SE blocks enable the neural network 214 

to emphasize important features and suppress less important features of the input data. 215 

This assignment procedure of feature importance is achieved through the Squeeze and 216 

Excitation operations. The Squeeze operation is a global pooling operation that converts a 217 

N◊N◊C matrix (Uc) into a 1◊1◊C matrix (Zc), as shown in Eq. (1): 218 

Zc = Fsq(Uc(𝑖, 𝑗)) = 1N2 ∑ ∑ UcN𝑗=1N𝑖=1 (𝑖, 𝑗), (1) 219 

Where Fsq  represents the Squeeze operation, c  represents 𝑐𝑡ℎ channel, i  and j 220 

represent the element of the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column, respectively. The output of the 221 

Squeeze operation is a vector that contains information of the input feature maps (Squeeze 222 

vector in Figure 3a). 223 

The Excitation operation takes the output of the Squeeze operation as the input, and 224 

then produces a set of channel-wise weights for each feature. This operation processes 225 

the 1◊1◊C matrix with two fully connected layers and applies the sigmoid activation 226 

function to limit the output values to the range between 0 and 1. These values are then 227 

multiplied by the original N◊N◊C matrix for each channel, as shown in the following 228 

equations: 229 



α = Fex(Z, W) = σ(g(Z, W)) = σ(W2δ(W1Z)), (2) 230 

Xc = Fscale(Uc, αc) = αcUc, (3) 231 

α is a vector representing the weight of each channel, W1 and W2 are learnable weight 232 

matrices. g represents the dimensionality-reduction procedure, δ  denotes the ReLU 233 

activation function,σ  denotes the sigmoid activation function, Xc  is the output of the 234 

channel attention module, αc  is the 𝑐𝑡ℎ  element of α . The output of the Excitation 235 

operation contains information from the input feature maps with weighted feature 236 

importance (Excitation vector in Figure. 3a). 237 

The fused feature extraction module operates the Hadamard product, also known as 238 

the element-wise product, and this operation enables the neural network to contain both 239 

global and local information from the input rock images. The Hadamard product takes two 240 

matrices of the same size and produces a new matrix where each element is the product 241 

of the corresponding elements of the original matrices (Fused Conv blocks in Figure 3a; 242 

as shown in Eq. 4). For example, given matrices 𝐴 and 𝐵 of dimensions 𝑚 × 𝑛 from the 243 

previous channel attention blocks, the fused feature extraction is the Hadamard product of 244 

𝐴 and 𝐵:  245 

(𝐴 ⊙ 𝐵)𝑖𝑗 = (𝐴)𝑖𝑗 ∗ (𝐵)𝑖𝑗, (4) 246 

⊙ and ∗ denote the Hadamard operation, which is an element-wise multiplication, i and 247 

j represent the element of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column, respectively. The output module 248 

consists of global pooling (Fused feature vector in Figure 3a), fully connected and softmax 249 

layers (softmax in Figure 3a) that calculates the predicted probability for each category and 250 

outputs the category with the highest probability as the final prediction.  251 



 252 

 253 

Figure 3. (a) Overall structure of the SedNet. (b) Workflow of the calculation of Grad-CAM, 254 

adapted from Selvaraju et al. (2017). The marked numbers indicate key components of 255 

SedNet; see text for explanations.  256 

 257 

 258 

3.2 Grad-CAM visualization 259 

Grad-CAM is a technique that visualizes the regions in an image that are most 260 

influential in the decision-making process of DCNNs (Selvaraju et al., 2017). In contrast to 261 

the traditional CAM algorithm, Grad-CAM offers enhanced performance due to its distinct 262 

approach to calculate class activation maps. Rather than employing the global average 263 

pooling over the feature map of the last convolution layer, as done in the CAM, Grad-CAM 264 



computes the gradient of the output class with respect to the final convolutional layer of 265 

the DCNN. This gradient information is then globally average-pooled to yield the neuron 266 

importance weights. These weights are crucial in highlighting which features in the map 267 

are most important for predicting the class, thereby resulting in a more effective and 268 

comprehensive visualization of the class activations. In this study, we calculated the 269 

gradient of the output of the DCNNs with respect to the feature maps of the last convolution 270 

layer (Gradient in Figure 3b). The target convolutional layer is Mk, and k denotes the kth 271 

convolutional layer (Figure 3b). The weight of Mk can be calculated by Eq. (5): 272 

𝑤𝑘𝑐 = 1𝑁2 ∑ ∑ 𝜕𝑦𝑐𝜕𝑀𝑖𝑗𝑘𝑁𝑗=1𝑁𝑖=1 , (5) 273 

Where c represents a category, 𝑤𝑘𝑐 is a vector representing the weight of each channel 274 

(Weights in Figure 3b) in 𝑀𝑘, 𝑦𝑐 represents the score belonging to a certain category c. 275 

Then the Grad-CAM can be obtained through the weighted combination of forward 276 

activation and follow it with ReLU:  277 

𝐼𝑘𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝑤𝑘𝑐 ∙ 𝑀𝑘𝐶𝑘=1 ), (5) 278 

Where 𝐼𝑘𝑐 represents the Grad-CAM of the target convolution layer.  279 

 280 

4. Results and discussion  281 

To thoroughly evaluate both the classical DCNNs and SedNet, we compared 282 

numerical metrics and Grad-CAM visualizations. To ensure a fair comparison, we used the 283 

same datasets and hyperparameters, such as training and test data, data augmentation, 284 

batch size, and learning rate, for all models. Additionally, to test the interpretability of 285 

DCNNs, we used scale bars for different rock types with various lengths and sizes. This 286 



allowed us to better understand how the models were making their classifications. 287 

 288 

4.1 The classical models have high accuracies but tend to use irrelevant feature 289 

extractions 290 

The three classical classification models, EfficientNet-B2 (Tan and Le, 2019), 291 

MobileNet-V3 (Howard et al., 2017), and ResNet-50 (He et al., 2016), achieved high 292 

accuracy and low loss values. ResNet-50 and MobileNet-V3 rapidly converged at 293 

approximately 16 epochs, while EfficientNet-B2 reached its plateau after approximately 30 294 

epochs of training (Figure 4). The training accuracies for EfficientNet-B2, MobileNet-V3, 295 

and ResNet-50 are 0.9425, 0.9886, and 0.9871, while the test accuracies are 0.9187, 296 

0.9458, and 0.9474 (Figure 4; Table 2). 297 

 298 



Figure 4. (a) and (b) show the loss and accuracy of the EfficientNet-B2, MobileNet-V3, 299 

ResNet-50, and SedNet. The results of training dataset are represented in solid lines, and 300 

results of validation dataset are represented in dashed lines. (c) and (d) are confusion 301 

matrices of SedNet using the training and test dataset, respectively. QA, quartz arenite; FA, 302 

feldspathic arenite; LA, lithic arenite; SS, siltstone; OP, oolitic packstone; DOL, dolomite. 303 

 304 

Table 2. Evaluation metrics and loss of trained deep learning models 

  SedNet 
EfficientNet-

B2 

MobileNet-

V3 

ResNet-

50 

Accuracy 

Train 0.9988  0.9360  0.9878  0.9866  

Test 0.9963  0.8993  0.9030  0.9104  

Mean 0.9975  0.9176  0.9454  0.9485  

Precision 

Train 1.0000  0.9651  0.9963  0.9926  

Test 1.0000  0.9414  0.9453  0.9457  

Mean 1.0000  0.9533  0.9708  0.9692  

Recall 

Train 0.9988  0.9688  0.9914  0.9938  

Test 0.9963  0.9526  0.9528  0.9606  

Mean 0.9975  0.9607  0.9721  0.9772  

F1-score 

Train 0.9994  0.9669  0.9938  0.9932  

Test 0.9981  0.9470  0.9490  0.9531  

Mean 0.9988  0.9569  0.9714  0.9732  

Loss 

Train 0.0315  0.1773  0.0453  0.0425  

Validation 0.0011  0.3918  0.4704  0.4058  

Mean 0.0163  0.2846  0.2579  0.2242  

 305 

The Grad-CAM visualizations of the three models show uninterpretable features, 306 

suggesting that these models base their predictions on irrelevant features rather than the 307 

distinctive characteristics of sedimentary rocks (Figure 5). Although the characteristic 308 

features of the six rock types are distinct and easily recognizable by geologists, the 309 

classical DCNNs failed to focus on these features. For example, the characteristic features 310 

of quartz arenite, feldspathic arenite, lithic arenite and siltstone include the framework 311 

grains and their sandy or silty size, but the classical three models focus on other features 312 

such as the matrix and even scale bars. While the MobileNet-V3 model focuses on parts 313 



of the framework grains in feldspar arenite, the visualization map indicates that it focuses 314 

on the entire area rather than the distinctive feldspar grains.  315 

Furthermore, the visualization map shows that the EfficientNet-B2 model identifies 316 

siltstone based on a few grains. But, since the investigated siltstones are heterogeneous 317 

in composition and grain size, the whole image or at least most of the siltstone 318 

photomicrograph should be considered. The classical models also perform poorly with 319 

carbonate rocks, where ooids, colorful interference colors, and euhedral dolostone crystal 320 

forms are important features for geologists. However, the DCNNs again tend to focus on 321 

the matrix, scale bar, and only a small number of grains (Figure 5). As the evaluation rules 322 

of the classical DCNNs are not interpretable, these models may not be able to make 323 

accurate predictions in real-world classification applications. 324 

 325 



 326 

Figure 5. Grad-CAM of SedNet, EfficientNet-B2, MobileNet-V3, and ResNet-50. The red 327 

highlighted regions are the parts where models give more weight. Yellow arrows indicate 328 

the highlighted cements, red arrows indicate highlighted cracks, the green arrows indicate 329 

highlighted scale bars. 330 

 331 

4.2 SedNet has not only high accuracy but also interpretable feature extractions 332 

In comparison to the classical DCNNs, SedNet achieved not only high accuracy but 333 

also interpretable visualization maps. SedNet quickly converged at around 16 epochs, with 334 

training and test accuracies of 0.9942 and 1 (Figure 4; Table 2). The confusion matrix for 335 

SedNet shows that the model made very few mistakes, with only one feldspathic arenite 336 

being misclassified as a quartz arenite (Figure 4). Given the close similarity between quartz 337 



and feldspathic arenite with high quartz content, SedNet demonstrated excellent 338 

classification performance. 339 

In addition to its accuracy, the Grad-CAM visualizations of SedNet are interpretable 340 

and align with geologists' knowledge (Figure 5). The visualization maps for quartz, 341 

feldspathic, and lithic arenite show that SedNet focuses on the most prominent quartz, 342 

feldspar, and lithic grains, indicating that the classification was based on these distinctive 343 

framework grains. For siltstone, the majority of the area in the photomicrographs is 344 

highlighted, consistent with the distinguishing feature of silty texture. Similarly, the 345 

visualization maps for the two carbonate rocks provide interpretable results with the ooids 346 

and dolostone in the photomicrographs being highlighted. SedNet used the characteristic 347 

framework grains and overall rock textures, rather than the matrix, scale bars, and cracks, 348 

to classify the rocks, which mimics the approach of geologists and therefore has a high 349 

potential for real rock classification projects.  350 

 351 

4.3 Maximizing accuracy and decision-making power: the importance of 352 

interpretability and geological knowledge 353 

In geosciences, accuracy is a crucial factor in developing and evaluating DL models. 354 

However, we argue that geological knowledge plays a key role in providing context and 355 

understanding for accurate predictions, and therefore its incorporation into DL models is 356 

necessary. Without this knowledge, even highly accurate models may not be reliable or 357 

meaningful. Most contemporary CNNs (e.g., ResNet, He et al., 2016) are characterized by 358 

millions of parameters, necessitating extensive image datasets for optimal performance. 359 



Although these models are effective in numerous tasks, their suitability for specific domains 360 

necessitates additional validation. For example, in tasks like rock image identification, 361 

acquiring a large dataset is often unfeasible. Traditional CNNs tend to overfit by 362 

memorizing distinct features (e.g., cracks, as mentioned in this study) in smaller datasets, 363 

rather than identifying the features geologists typically use for rock classification. However, 364 

this overfitting is often undetected when evaluated solely through the numerical metrics. 365 

Therefore, the integration of geological knowledge into the development and evaluation of 366 

DL models for geoscience applications is essential to ensure accuracy, relevance, and 367 

interpretability (Barnes et al., 2020; McGovern et al., 2019; Ebert-Uphoff and Hilburn, 2020). 368 

There is a trend in the geoscience community towards using machine learning models 369 

with a better understanding of their inner workings. For example, recent research (Zhao et 370 

al.,2019; Doucet et al., 2022; Zou et al., 2022) introduced feature importance and Shapley 371 

Additive Explanations (SHAP; Lundberg and Lee, 2017), an interpretable algorithm based 372 

on cooperative game theory, into geochemistry studies. Using SHAP values, trace 373 

elements in basalts can be used to classify tectonic settings and identify new geochemical 374 

differences between basalts from convergent and divergent boundaries. Toms et al. (2020) 375 

introduced layerwise relevance propagation for identifying meaningful patterns in ENSO 376 

(El Nino-Southern Oscillation) phase identification and seasonal prediction. This algorithm 377 

provides transparency to machine learning by propagating relevance from the output layer 378 

back through the network to the input layer based on the relative contribution of each 379 

neuron (Bach et al., 2015). These interpretable algorithms have shown great value in 380 

meteorology, being used to make subseasonal forecasts (Mayer and Barnes, 2021) and to 381 



reveal slowdowns in decadal climate warming (Labe and Barnes, 2022).  382 

In our study, geologists can easily distinguish sedimentary rocks based on their unique 383 

framework grains and textures. However, classical convolutional neural networks (DCNNs) 384 

often placed more weight on scale bars, cements, and cracks, as evident in the Gradient-385 

weighted Class Activation Mapping (Grad-CAM) visualizations (Figure 5). The rock 386 

photomicrographs used in the study were intentionally presented with various styles of 387 

scale bars (Figure 1) and the studied quartz arenite was the only rock type with cracks. As 388 

a result, the scale bars and cracks became the most distinguishing features of the DCNNs. 389 

Such "noise" can be introduced easily if the rock samples are photographed by different 390 

institutes or in different facilities, and can significantly impact the final outputs. It has been 391 

noted that even slight image transformations can alter the predictions of DCNNs (Azulay 392 

and Weiss, 2018). One potential solution to this generalization issue is a collection of big 393 

datasets. However, it may not always be feasible for geologists to collect the same volume 394 

of images as datasets such as ImageNet. In these cases, the assessment of DCNN outputs 395 

cannot rely solely on numerical metrics like accuracy, as these only indicate the algorithm’s 396 

performance on a known dataset. Without a full understanding of how the algorithm works, 397 

trained models may still face generalization issues. Our proposed dual-modal network is a 398 

potential solution for image classification tasks. It emphasizes distinguishing features in 399 

the DL models and achieves high accuracy and interpretable Grad-CAM visualizations by 400 

integrating global and local features (Figure 5). 401 

The proposed dual-modal network represents one way in enhancing the performance 402 

and interpretability of DCNNs, achieved by integrating domain-specific modules. In addition 403 



to the integration of bespoke modules into the network, alternative strategies also show 404 

potential in this respect. A major challenge in applying deep learning to geosciences is the 405 

lack of labeled training data, often due to subjective or labor-intensive labeling processes. 406 

One solution is to generate synthetic datasets based on fundamental geological principles. 407 

This not only helps in tuning model parameters but also ensures model robustness when 408 

applied to real-world problems. This technique has been used successfully in various 409 

applications, such as detecting permeability from rock images by generating samples of 410 

porous media and assigning permeability labels using the Boltzmann method (Wu et al., 411 

2018), and seismic interpretation where large datasets can be generated through forward 412 

modelling (Wu et al., 2023). 413 

Another approach is to integrate prior knowledge into the loss function. This requires 414 

DCNNs to conform to the training dataset while also adhering to the prior knowledge, such 415 

as physical laws defined by partial differential equations, and this type of neural network is 416 

also known as the physics-informed neural network. The powerful approximation and high 417 

expressivity capacities of DCNNs enable them to infer solutions within the complex space 418 

defined by the governing physical laws, thereby enhancing model performance and 419 

understanding (Cuomo et al., 2022; Zhang et al., 2023). In the realm of rock imaging, the 420 

prior knowledge can be the experience of geologists that some rocks or grains are more 421 

identifiable due to their distinctive features. By applying different weights to the 422 

regularization terms in the loss function, the model's ability to analyze difficult images can 423 

be improved. Given the desire for a physical understanding of DL models in geosciences, 424 

it is expected that interpretability and geological knowledge will be further incorporated in 425 



future applications of DCNNs. Combining interpretability and geological knowledge with 426 

Deep Learning can create more effective and transparent models for geoscience 427 

applications. 428 

 429 

5. Conclusions 430 

To examine the significance of interpretability in DL models for geoscientific tasks, we 431 

conducted automatic sedimentary rock classification using thin-section photomicrographs 432 

and DL models. While classical deep convolutional neural networks (DCNNs) such as 433 

ResNet, EfficientNet, and MobileNet achieved high accuracy (up to 0.96), their Grad-CAM 434 

visualizations were often not geological-reasonable. Framework grains and textures are 435 

key features for distinguishing the studied sedimentary rocks. However, classical DCNNs 436 

tended to classify rocks based on irrelevant features, as indicated by the highlighted 437 

regions of scale bars, cements, and cracks. To address this issue, we proposed an 438 

attention-based dual network that inputs both the original thin-section photomicrographs 439 

and framework grains. By combining information from the whole images and framework 440 

grains, our proposed model achieves not only higher accuracy (0.99) but also produces 441 

interpretable visualization heatmaps in which framework grains were given more weight in 442 

the classification process. Our study highlights the importance of considering 443 

interpretability and geological knowledge in developing DL models, in addition to aiming 444 

for high accuracy. 445 

 446 

Acknowledgement 447 



The authors would like to thank Tingting Gong for providing thin sections and Jiaqi Wu 448 

for helping in capturing photomicrographs. Thanks to three anonymous reviewers for 449 

constructive reviews that substantially improved the manuscript. This work was financially 450 

supported by National Natural Science Foundation of China (Grant Nos. 41888101, 451 

42050104, 42050102, 42202125, 42172137). Additional support was provided by the IUGS 452 

Deep-time Digital Earth (DDE) Big Science Program.  453 

 454 

Code availability statement 455 

The code is made open on Github repository at:  456 

https://github.com/MudRocw1/SedNet_explainable-deep-learning-network 457 

 458 

References 459 

 460 

Azulay, A., Weiss, Y., 2018. Why do deep convolutional networks generalize so poorly to 461 

small image transformations? arXiv Prepr. arXiv1805.12177. 462 

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., Samek, W., 2015. On pixel-463 

wise explanations for non-linear classifier decisions by layer-wise relevance 464 

propagation. PLoS One 10, e0130140. 465 

Barnes, E.A., Toms, B., Hurrell, J.W., Ebert-Uphoff, I., Anderson, C., Anderson, D., 2020. 466 

Indicator Patterns of Forced Change Learned by an Artificial Neural Network. J. Adv. 467 

Model. Earth Syst. 12. https://doi.org/10.1029/2020MS002195 468 

Bergen, Karianne J., Paul A. Johnson, V. Maarten, Beroza., G.C., 2019. Machine learning for 469 

data-driven discovery in solid Earth geoscience. Science (80-. ). 363. 470 

https://doi.org/10.1126/science.aau0323 471 

Boggs Jr, S., Boggs, S., 2009. Petrology of sedimentary rocks. Cambridge university press. 472 

Buhrmester, V., Münch, D., Arens, M., 2021. Analysis of Explainers of Black Box Deep Neural 473 

Networks for Computer Vision: A Survey. Mach. Learn. Knowl. Extr. 3, 966–989. 474 

https://doi.org/10.3390/make3040048 475 

Camps-Valls, G., Tuia, D., Zhu, X.X., Reichstein, M., 2021. Deep learning for the Earth 476 

Sciences: A comprehensive approach to remote sensing, climate science and 477 

geosciences. John Wiley & Sons. 478 

Castelvecchi, D., 2016. The black box of AI. Nature 538, 20–23. 479 

Cuomo, S., Di Cola, V.S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F., 2022. Scientific 480 

machine learning through physics–informed neural networks: Where we are and what’s 481 



next. J. Sci. Comput. 92, 88. 482 

de Lima, R.P., Bonar, A., Duarte Coronado, D., Marfurt, K., Nicholson, C., 2019. Deep 483 

convolutional neural networks as a geological image classification tool. Sediment. Rec. 484 

17, 4–9. https://doi.org/10.2110/sedred.2019.2.4 485 

Dickinson, W.R., Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. 486 

Assoc. Pet. Geol. Bull. 63, 2164–2182. 487 

Doucet, L.S., Tetley, M.G., Li, Z.-X., Liu, Y., Gamaleldien, H., 2022. Geochemical 488 

fingerprinting of continental and oceanic basalts: A machine learning approach. Earth-489 

Science Rev. 104192. 490 

Ebert-Uphoff, I., Hilburn, K., 2020. Evaluation, tuning, and interpretation of neural networks for 491 

working with images in meteorological applications. Bull. Am. Meteorol. Soc. 101, 492 

E2149–E2170. https://doi.org/10.1175/BAMS-D-20-0097.1 493 

Garzanti, E., Doglioni, C., Vezzoli, G., Ando, S., 2007. Orogenic belts and orogenic sediment 494 

provenance. J. Geol. 115, 315–334. 495 

Ge, S., Wang, C., Jiang, Z., Hao, H., Gu, Q., 2021. Dual-input attention network for automatic 496 

identification of detritus from river sands. Comput. Geosci. 151, 104735. 497 

https://doi.org/10.1016/j.cageo.2021.104735 498 

Hao, H., Guo, R., Gu, Q., Hu, X., 2019. Machine learning application to automatically classify 499 

heavy minerals in river sand by using SEM/EDS data. Miner. Eng. 143, 105899. 500 

https://doi.org/10.1016/j.mineng.2019.105899 501 

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, Sun, J., 2016. Deep residual learning for image 502 

recognition., in: Proceedings of the IEEE Conference on Computer Vision and Pattern 503 

Recognition. pp. 770–778. 504 

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., 505 

Adam, H., 2017. Mobilenets: Efficient convolutional neural networks for mobile vision 506 

applications. arXiv Prepr. arXiv1704.04861. 507 

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks, in: Proceedings of the 508 

IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141. 509 

Koeshidayatullah, A., Morsilli, M., Lehrmann, D.J., Al-Ramadan, K., Payne, J.L., 2020. Fully 510 

automated carbonate petrography using deep convolutional neural networks. Mar. Pet. 511 

Geol. 122, 104687. https://doi.org/10.1016/j.marpetgeo.2020.104687 512 

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep 513 

convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105. 514 

Labe, Z.M., Barnes, E.A., 2022. Predicting Slowdowns in Decadal Climate Warming Trends 515 

With Explainable Neural Networks. Geophys. Res. Lett. 49. 516 

https://doi.org/10.1029/2022GL098173 517 

Lei, S., Zhang, H., Wang, K., Su, Z., 2018. How training data affect the accuracy and 518 

robustness of neural networks for image classification. 519 

Li, D., Zhao, J., Ma, J., 2022. Experimental Studies on Rock Thin-Section Image 520 

Classification by Deep Learning-Based Approaches. 521 

Liu, T., Li, C., Liu, Zongbao, Zhang, K., Liu, F., Li, D., Zhang, Y., Liu, Zhigang, Liu, L., Huang, 522 

J., 2022. Research on Image Identification Method of Rock Thin Slices in Tight Oil 523 

Reservoirs Based on Mask R-CNN. Energies 15. https://doi.org/10.3390/en15165818 524 

Liu, X., Jiang, S., Wu, R., Shu, W., Hou, J., Sun, Y., Sun, J., Chu, D., Wu, Y., Song, H., 2022. 525 



Automatic taxonomic identification based on the Fossil Image Dataset (> 415,000 526 

images) and deep convolutional neural networks. Paleobiology 1–22. 527 

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Adv. 528 

Neural Inf. Process. Syst. 30. 529 

Maitre, J., Bouchard, K., Bédard, L.P., 2019. Mineral grains recognition using computer vision 530 

and machine learning. Comput. Geosci. 130, 84–93. 531 

https://doi.org/10.1016/j.cageo.2019.05.009 532 

Mamalakis, A., Ebert-Uphoff, I., Barnes, E.A., 2022. Neural network attribution methods for 533 

problems in geoscience: A novel synthetic benchmark dataset. Environ. Data Sci. 1, 1–534 

17. https://doi.org/10.1017/eds.2022.7 535 

Mayer, K.J., Barnes, E.A., 2021. Subseasonal Forecasts of Opportunity Identified by an 536 

Explainable Neural Network. Geophys. Res. Lett. 48, 1–9. 537 

https://doi.org/10.1029/2020GL092092 538 

McGovern, A., Lagerquist, R., Gagne, D.J., Jergensen, G.E., Elmore, K.L., Homeyer, C.R., 539 

Smith, T., 2019. Making the black box more transparent: Understanding the physical 540 

implications of machine learning. Bull. Am. Meteorol. Soc. 100, 2175–2199. 541 

https://doi.org/10.1175/BAMS-D-18-0195.1 542 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., Prabhat, 543 

2019. Deep learning and process understanding for data-driven Earth system science. 544 

Nature 566, 195–204. https://doi.org/10.1038/s41586-019-0912-1 545 

Romero, I.C., Kong, S., Fowlkes, C.C., Jaramillo, C., Urban, M.A., Oboh-Ikuenobe, F., 546 

D’Apolito, C., Punyasena, S.W., 2020. Improving the taxonomy of fossil pollen using 547 

convolutional neural networks and superresolution microscopy. Proc. Natl. Acad. Sci. U. 548 

S. A. 117, 28496–28505. https://doi.org/10.1073/pnas.2007324117 549 

Saxena, N., Day-Stirrat, R.J., Hows, A., Hofmann, R., 2021. Application of deep learning for 550 

semantic segmentation of sandstone thin sections. Comput. Geosci. 152, 104778. 551 

https://doi.org/10.1016/j.cageo.2021.104778 552 

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D., 2017. Grad-cam: 553 

Visual explanations from deep networks via gradient-based localization, in: Proceedings 554 

of the IEEE International Conference on Computer Vision. pp. 618–626. 555 

Su, C., Xu, S., Zhu, K., Zhang, X., 2020. Rock classification in petrographic thin section 556 

images based on concatenated convolutional neural networks. Earth Sci. Informatics 13, 557 

1477–1484. 558 

Su, D., Zhang, H., Chen, H., Yi, J., Chen, P.-Y., Gao, Y., 2018. Is Robustness the Cost of 559 

Accuracy?--A Comprehensive Study on the Robustness of 18 Deep Image 560 

Classification Models, in: Proceedings of the European Conference on Computer Vision 561 

(ECCV). pp. 631–648. 562 

Tan, M., Le, Q., 2019. Efficientnet: Rethinking model scaling for convolutional neural 563 

networks, in: International Conference on Machine Learning. PMLR, pp. 6105–6114. 564 

Tang, D.G., Milliken, K.L., Spikes, K.T., 2020. Machine learning for point counting and 565 

segmentation of arenite in thin section. Mar. Pet. Geol. 120. 566 

https://doi.org/10.1016/j.marpetgeo.2020.104518 567 

Toms, B.A., Barnes, E.A., Ebert-Uphoff, I., 2020. Physically Interpretable Neural Networks for 568 

the Geosciences: Applications to Earth System Variability. J. Adv. Model. Earth Syst. 12, 569 



1–20. https://doi.org/10.1029/2019MS002002 570 

Wang, C., Ge, S., Jiang, Z., Hao, H., Gu, Q., 2021. Computers and Geosciences 571 

SiamFuseNet : A pseudo-siamese network for detritus detection from polarized 572 

microscopic images of river sands. Comput. Geosci. 156, 104912. 573 

https://doi.org/10.1016/j.cageo.2021.104912 574 

Wu, J., Yin, X., Xiao, H., 2018. Seeing permeability from images: fast prediction with 575 

convolutional neural networks. Sci. Bull. 63, 1215–1222. 576 

Wu, X., Ma, J., Si, X., Bi, Z., Yang, J., Gao, H., Xie, D., Guo, Z., Zhang, J., 2023. Sensing 577 

prior constraints in deep neural networks for solving exploration geophysical problems. 578 

Proc. Natl. Acad. Sci. U. S. A. 120, 1–12. https://doi.org/10.1073/pnas.2219573120 579 

Yang, Y.-Y., Rashtchian, C., Zhang, H., Salakhutdinov, R.R., Chaudhuri, K., 2020. A closer 580 

look at accuracy vs. robustness. Adv. Neural Inf. Process. Syst. 33, 8588–8601. 581 

Zhang, Y., Zhu, X., Gao, J., 2023. Seismic inversion based on acoustic wave equations using 582 

physics-informed neural network. IEEE Trans. Geosci. Remote Sens. 61, 1–11. 583 

Zhao, Y., Zhang, Y., Geng, M., Jiang, J., Zou, X., 2019. Involvement of slab‐derived fluid in 584 

the generation of Cenozoic basalts in Northeast China inferred from machine learning. 585 

Geophys. Res. Lett. 46, 5234–5242. 586 

Zheng, D., Wu, S., Ma, C., Xiang, L., Hou, L., Chen, A., Hou, M., 2022. Zircon classification 587 

from cathodoluminescence images using deep learning. Geosci. Front. 101436. 588 

https://doi.org/10.1016/j.gsf.2022.101436 589 

Zou, S., Chen, X., Brzozowski, M.J., Leng, C., Xu, D., 2022. Application of machine learning 590 

to characterizing magma fertility in porphyry Cu deposits. J. Geophys. Res. Solid Earth 591 

127, e2022JB024584. 592 

 593 

 594 

 595 

List of Figures  596 

 597 

Figure 1. The studied six types of sedimentary rocks and the associated scale bars. 598 
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Figure 2. Numbers of training, validation, and test datasets. QA, quartz arenite; FA, 600 

feldspathic arenite; LA, lithic arenite; SS, siltstone; OP, oolitic packstone; DOL, dolomite. 601 
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Figure 3. (a) Overall structure of the SedNet. (b) Workflow of the calculation of Grad-CAM, 603 

adapted from Selvaraju et al. (2017). The marked numbers indicate key components of 604 

SedNet, see text for explanations.  605 
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Figure 4. (a) and (b) show the loss and accuracy of the EfficientNet-B2, MobileNet-V3, 607 

ResNet-50, and SedNet. (c) and (d) are confusion matrices of SedNet using the training 608 

and test dataset, respectively. QA, quartz arenite; FA, feldspathic arenite; LA, lithic arenite; 609 

SS, siltstone; OP, oolitic packstone; DOL, dolomite. 610 
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Figure 5. Grad-CAM of the SedNet, EfficientNet-B2, MobileNet-V3, and ResNet-50. The 612 



red highlighted regions are the parts where models give more weight. Yellow arrows 613 

indicate the highlighted cements, red arrows indicate highlighted cracks, the green arrows 614 

indicate highlighted scale bars. 615 
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