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Abstract—Traffic missing data imputation is a fundamental 

demand and crucial application for real-world intelligent 

transportation systems. The wide imputation methods in different 

missing patterns have demonstrated the superiority of tensor 

learning by effectively characterizing complex spatiotemporal 

correlations. However, interval-wise missing volume scenarios 

remain a challenging topic, in particular for long-term continuous 

missing and high-dimensional data with complex missing 

mechanisms and patterns. In this paper, we propose a customized 

tensor decomposition framework, named the data fusion 

CANDECOMP/PARAFAC (DFCP) tensor decomposition, to 

combine vehicle license plate recognition (LPR) data and 

cellphone location (CL) data for the interval-wise missing volume 

imputation on urban networks. Benefiting from the unique 

advantages of CL data in the wide spatiotemporal coverage and 

correlates highly with real-world traffic states, it is fused into 

vehicle license plate recognition (LPR) data imputation. They are 

regarded as data types dimension, combined with other 

dimensions (different segments, time, days), we innovatively 

design a 4-way low-n-rank tensor decomposition for data 

reconstruction. Furthermore, to deal with the diverse disturbances 

in different data dimensions, we derive a regularization penalty 

coefficient in data imputation. Different from existing 

regularization schemes, we further introduce Bayesian 

optimization (BO) to enhance the performance in the non-

convexity of the objective function in our regularized 

hyperparametric solutions during tensor decomposition. 

Numerical experiments highlight that our proposed method, 

combining CL and LPR data, significantly outperforms the 

imputation method using LPR data only. And a sensitivity analysis 

with varying missing length and rate scenarios demonstrates the 

robustness of model performance. 

Index Terms— Interval-wise missing imputation; DFCP tensor; 

Regularization solution; Bayesian optimization; LPR and 

cellphone data. 

I. INTRODUCTION 

uccessful deployment of Intelligent Transportation 

Systems and the Internet of Vehicles Systems is largely 

dependent on the availability of accurate, reliable, and 

timely traffic information. For example, real-time traffic 

information (e.g., volume, speed, density) could be used as 

navigation for devising urban traffic management measures and 

formulating urban policies. Among different traffic metrics, 

traffic volume is one of the most intuitive and widely 

recognized performance measures in transportation services. 

Traditional approaches for traffic volume acquisition are 

mainly based on data from various stationary road-based 

sensors [1]. However, the problem associated with missing data 

poses a major challenge in their application. Such issues persist 

mainly due to hardware or software failure, scheduled 

maintenance, disruption in power supply, and communication 

network problems. Traffic data with missing values are usually 

either discarded or averaged inappropriately with other data, 

making less effective use of the traffic sensor data on transport 

networks, which causes the evaluation of the performance 

measures such as traffic flow and travel time reliability, and 

vehicle emission and noise would be substantially 

underestimated [2]. Thus, missing data imputation is crucial for 

enhancing data quality and supporting downstream 

applications. 

In the existing literature, there are three categories of missing 

patterns: missing completely at random (MCR), missing at 

random (MR), and not missing at random (NMR). And then, 

point-wise, interval-wise, and slice-wise missing comprise 

three different types of missing mechanisms [3, 4]. Despite 

recent efforts and advances in traffic data imputation, existing 

studies still focus on point-wise or slice-wise missing scenarios 

from varying missing patterns and mechanisms [10, 11], and it 

remains a challenge to perform efficient imputation on interval-

wise missing. The latter will result in two challenging issues, 

diverse disturbances, and long-term missing data. Furthermore, 

as we note in the following, interval-wise missing is the highly 

common missing mechanism in vehicle license plate 

recognition (LPR) detectors for the addressed problem.  

In recent years, data driven-based approach has been gaining 

popularity in missing data imputation. Unfortunately, due to the 

limitation of parameterization and the potential occurrence of 

overfitting in the machine and deep learning method [13], they 

can not fully utilize both spatial and temporal dimensions 

simultaneously in a unified framework when the missing rate is 

high. In this context, a tensor decomposition-based method has 

demonstrated superiority in imputation tasks by exploiting the 

inner correlations of traffic flow at some dimensions of the day, 

week, and road [5]. Though tensor-based imputation 

approaches are found to be useful in capturing global 

information in certain special cases, in the complex urban 

network, road segments under different usage functions and 

grades still have different traffic volume patterns. For example, 

traffic volume on an arterial road varies from that on a trunk 

road or branch road. However, these inner correlations from 
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varying segment levels cannot be fully utilized [14, 15]. The 

diverse disturbances from available data dimensions can 

significantly affect the imputation performance. Even if the 

addition of regularization items has been used to alleviate this 

impact [16-18], it is still limited by the non-convex problems in 

regularized parameter solving.  

Furthermore, as the studies on adding data dimensions in 

spatiotemporal traffic data have proven that it can effectively 

enhance the imputation performance [19], the fusion of multiple 

feasible data types in tensor can be also regarded as an emerging 

means. Recently, the heterogeneous residual [14] and traffic 

speed [20] have been fused into traffic volume imputation 

successively. Meanwhile, other homogeneous data fusion 

methods with their unique advantages deserve to be studied. 

This is particularly the case in interval-wise missing scenarios, 

where the long-term missing traffic data need to describe the 

large fluctuating trends. 

This study attempts to tackle two technical issues: 1) how to 

achieve high imputation accuracy when dealing with interval-

wise missing data scenarios? 2) how to ensure stable imputation 

performance even with diverse disturbances in urban networks?  

More specifically, we propose a data fusion-based 

CANDECOMP/PARAFAC (DFCP) tensor decomposition 

framework, to realize the interval-wise missing network 

volume data imputation. The spatiotemporal CL data is used as 

a secondary data source for LPR data imputation. These 

integrate correlated data from different day-of-week, segment, 

and time slots to comprise a 4-way tensor. To overcome the 

diverse disturbances from the different road segment types, the 

regularization penalty terms are set for improving the 

performance of imputation during tensor decomposition. The 

overall contribution of this work is threefold: 

1) We integrate homogeneous data fusion into the CP tensor 

decomposition framework for dealing with the long-term 

missing in interval-wise data imputation. By benefiting 

from the similar real-world traffic dynamic and wide 

spatiotemporal coverage, we can better characterize the 

missing traffic data, which is a unique property of CL 

data. 

2) We develop Bayesian optimization (BO) to update 

regularized penalty coefficients in reducing the 

disturbances from the inter variability of urban networks. 

It can capture more reliable regularize hyperparameters in 

the solution of non-convex problems. 

3) We conduct extensive numerical experiments in the urban 

network of Nanjing, China. Imputation performances 

under different interval-wise missing lengths, rates, and 

data patterns illustrate the superiority of DFCP over 

recent state-of-art models. 

The remainder of this paper is organized as follows: in 

section Ⅱ, we review the relevant literature on missing network 

volume imputation. The problem statement is listed in section 

Ⅲ. The mathematical model formulations are introduced in 

section Ⅳ, while the case study is introduced in section Ⅴ. 

Finally, section Ⅵ summarizes the conclusions and discusses 

future research directions. 

II. LITERATURE REVIEW 

Over the last decade, many researchers have investigated 

missing traffic flow data. We summarize these methods from 

the aspect of modeling into two categories: model-based and 

data-driven methods [1, 21]. For model-based data imputation 

methods, when there are only a few missing data, some 

straightforward filling methods such as replacing by a constant 

value could be used. When dealing with a high proportion 

(>40%) of missing data, more sophisticated methods such as the 

compression sensing approach (CSA) [12], probabilistic 

principal component analysis (PPCA) [9], and other regression 

approaches [22] are generally used. However, these approaches 

are principally based on some assumptions that are practically 

irrelevant to real traffic data. Moreover, the form of the function 

should be pre-determined including some parameters during the 

modeling. For data-driven related methods, they usually 

employ the performance of cutting-edge artificial intelligence 

(AI) methods (e.g. Artificial Neural Networks (ANN) [6], 

Stacked Denoising Autoencoder (SDA) [23]) for missing value 

imputation or estimation. Even though these machine learning 

and deep learning methods have the advantages of deep 

structure and hyper-parametric processing, it is usually not clear 

to interpret intrinsic mechanisms of influencing factors, and 

cannot utilize multi-dimensional data correlation.  

Thus, the other kind of data-driven approach, the tensor-

based method, has risen with the multi-correlation description 

for data imputation [5]. The two main categories of tensor 

methods include rank minimization tensor completion (e.g. 

HaLRTC), and low-rank tensor factorization (e.g. CP 

decomposition, and Tucker decomposition) [24]. The details 

about the differences between these two methods can be found 

in the following Section IV.A. Both types of tensor models have 

shown superior performance in the application of data 

imputation. For instance, Tan, et al. [5] applied tensor 

decomposition to utilize the strong spatiotemporal correlation 

patterns for missing imputation by the multidimensional data 
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structure. As to further enhance the robust performance of the 

tensor model, both Chen, et al. [25] and Tang, et al. [10] 

proposed Bayesian-based tensor decomposition approaches. 

The former introduced conjugate priors to derive the posterior 

distributions and then evaluated the performance of different 

data dimensions as model input. The latter applied the Bayesian 

probabilistic-based tensor method for considering the effect of 

the multi-modal distribution of data and found it performs well 

even under extremely missing conditions. Furthermore, adding 

the regularisation terms has been regarded as a feasible 

approach that considers diverse disturbances of data itself in 

tensor methods in some cases. For example, Said and Erradi 

[26] and Deng, et al. [16] applied the regularized tensor method 

for the validation of factorization by urban context data, which 

could overcome the effect of non-unique solutions caused by 

non-convexity in tensor decomposition. However, to our 

knowledge, despite the decent performance in the 

aforementioned Bayesian-based tensor approach, there are still 

fewer studies that considered the non-convexity effect in the 

regularization cases of tensor, and the merits of Bayesian 

optimization in regularized hyperparameter solution should be 

fully exploited. Especially when there are significant 

differences in each factorization matrix caused by variations in 

the urban network.  

In studies of different missing data scenarios, data imputation 

on the interval-wise missing scenario is more challenging due 

to the long-term missing of traffic profile information. 

Especially when the interval size and rate of missing data 

exceed a certain threshold. Existing studies in missing interval-

wise scenarios mainly focused on the effect of missing length 

on interpolation performance. For instance, Van Lint, et al. [3] 

developed linear regression (LR) as an interpolation method for 

processing missing intervals of length up to 30 samples. 

However, they have less considered homogeneous data fusion 

to upgrade the performance of long-term missing imputation. 

Especially with the innovation of digital information 

technology, the characteristics of the full spatiotemporal 

coverage and low-cost acquisition of some probe data emerging 

multi-source floating vehicle data (i.e. mobile phone data, taxi 

Global Positioning System (GPS) data) have great potential to 

be fused into traffic estimation and prediction with their full 

spatiotemporal coverage and low-cost acquisition [27]. With 

the fusion of homogeneous [28] or heterogeneous [29] floating 

vehicle data, the performance of network-wide slice-wise 

missing flow estimation can be effectively improved by the 

transfer learning (TransL) method or graph theory model 

(GTM), respectively. Hence, the study on the data fusion-based 

tensor approach for interval-wise missing deserves to be 

attempted.  

In Table Ⅰ, we summarize the development in missing traffic 

data imputation, characterized in terms of research scenario, 

missing mechanism and patterns, basic approach, and/or 

imputation using a single or multiple data sources. In each row, 

we only list typical methods and references, and more details of 

relevant methods can be found in the literature review of Sun, 

et al. [30] and Xing, et al. [1]. Note that the last row in Table Ⅰ 
highlights the novel contribution of this research compared to 

existing literature.  

III. PROBLEM STATEMENTS 

A. Problem Formulation  

The interval-wise missing traffic volume data is constructed 

into a 4-way tensor, notate that 1 2 3 4I I I I  A R  comprising 

‘time mode’, ‘day mode’, ‘segment mode’, and ‘data type 
mode’. Here, 

1 2 3, ,I I I  and 
4I  depicts the number of time 

intervals, days, segments, and data types, respectively. 

Meanwhile, we define a tensor W  of identical size A , 

representing the indices of observed entries. For a missing 

traffic volume data entry, each element of w , i.e. 
1 2 3 4i i i iw    ,

 1,
n n
i I  equals 0, while a value equals 1 for an observed 

volume data entry. 

Let ( )n
A  denote factor matrices which are factorized by 

tensor A , and 
nT  represent the calibration variables along with 

n th factor mode. The objective function of missing data 

imputation can be simplified as follows 

22(1) (2) ( ) ( )

1

λ1
( , , , )

2 2

N
N nn

w

n

f A A A A
=

 − + L Y Z       (1) 

where = Y W X  and
(1) (2) ( ), , , N

A A A=  LZ W . The 

tensor Y  can be pre-computed for a given X  as neither W  

and X  changes during the iterations, while the tensor Z  can 

also be computed efficiently using tensor completion. In this 

tensor decomposition approaches, the latter term of equation (1) 

adds the regularization term. On this basis, inspired by Acar, et 

al. [31] and Jiang, et al. [17], we extra add customized mode 

averaging in the original regularization term. This adjustment is 

used to reduce the impact of diverse disturbances caused by 

different segment grades and different missing lengths and 

make full use of the unique characteristics of CL data as an 

auxiliary role in process of our interval-wise missing scenario. 

As such, an new objective function for interval-wise missing 

data imputation in urban network is listed as follows 

22(1) (2) ( ) ( )

1

λ1
( , , , )

2 2

N
N nn

w n

n

f A A A A M
=

 − + −L Y Z

(2) 

where 
nM  is the average mode matrix that is used to weigh and 

Time slot

L
a
n
e
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data

Time slot

L
a
n
e

Missing 

data

 

(a) Missing completely at random. (b) Missing at random. 

Fig. 1. Classification of missing value by missing mechanism. 
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reduce the diverse disturbances in the urban network. And these 

details can be found in the following Section Ⅳ. 
Furthermore, regularization parameters  can be viewed as 

a tradeoff between the approximation errors and the fitting error. 

It can be solved by Bayesian optimization, which is composed 

as argmax ( )G 
= L

, where ( )G   denote the error 

function of missing traffic volume imputation. 

B. Classification of Missing Pattern 

Based on the difference in missing mechanisms, missing 

traffic data can be classified into three types [32]: the missing 

completely at random (MCR), missing at random (MR), and not 

missing at random (NMR).  

In MCR, the reason for this missing pattern is mainly due to 

instantaneous lower voltage power or communication fault. 

Herein, these missing points are randomly scattered over all 

periods, and each missing location is completely independent 

of the other. As shown in Fig. 1(a), in MCR, missing entries are 

often caused by physical damage or maintenance backlog, 

while the missing values are related to the readings of their 

temporal or spatial neighbors. And thus, missing patterns tend 

to appear at a particular sequential missing point at the same 

time or on the same sensor. As shown in Fig. 1(b), in MR, the 

missing pattern may occur due to long-term detector 

malfunction. The missing data occur in random patterns, and 

the missing values are like blocks. The first two (MCR and MR) 

imply that there is no underlying mechanism for generative 

models in the description of missing data, while NMR assumes 

the dependence of missing data distribution on the complete 

dataset.  

 Furthermore, the missing data can also be further classified 

by the type of missing length. As the spatial dimension and 

temporal dimension of traffic flow data can be viewed as a two-

dimensional matrix. To determine whether the missing values 

appear sequentially in one dimension or two dimensions, we 

can divide them into two classes: point-wise missing, interval-

wise missing, and slice-wise missing [8]. In point-wise missing, 

the traffic flow data in the road segment is missing only at a 

certain instance, while the data adjacent to the missing point is 

complete. In interval-wise missing, sequential missing values 

appear at consecutive periods in a specific road segment or 

some different space point at the same instance. Slice-wise 

missing is caused by the lack of detectors installed in entire road 

segments. The last type of missing pattern estimation generally 

belongs to coarse-grained imputation or estimation, which is a 

different research field from the former. Compared existing 

traffic studies, particularly that on interval-wise missing data, 

usually take less consideration on the distinction of these 

aforementioned missing patterns [9].  

This study is focused on the interval-wise missing volume 

data extracted from LPR detector with different missing length, 

and compare their performance in different missing ratios and 

two types of missing scenarios: missing at random (MR) and 

not missing at random (NMR).  

C. Study Frameworks 

Fig. 3 presents the proposed framework. The objective is to 

apply CL data and LPR data for characterization in our 

proposed tensor-based model and thus allow us to impute 

interval-wise missing volume. The steps of missing traffic data 

imputation are described as follows: 

Step 1: The set of similar segments from the study area is 

selected to estimate missing traffic volume values. Correlation 

analysis is used for assessing segment similarity. 

Step 2: The structure of the DFCP tensor-based model is 

constructed, with the 4-way tensor model representing the 

dimensions of day by day, segment by segment, time slot by 

time slot, and data by data. Additionally, the size of the input 

data from each dimension is determined. 

Step 3: The regularization penalty coefficients from each 

dimension are calculated. The hyper-parameter method by 

Bayesian optimization is applied to solve the optimal value. 

Step 4: The imputation results both including and excluding 

multi-source data into the tensor model are compared. Also, at 

 

Fig. 2. Framework of interval-wise missing volume imputation. 
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different missing types and different missing rates, and  

evaluated with other baseline methods.  

IV. MATHEMATICAL MODEL FORMULATIONS 

In this work, our goal is to extract the underlying factors via 

our proposed DFCP tensor model from the presence of the 

multi-way nature of the traffic data and recover interval-wise 

missing traffic volume. We assume that four exist certain 

correlations from time series, days, segments, and data type 

modes among each segment on the urban transport network. To 

combine and utilize these four modes well, a tailored four-way 

tensor completion method is developed for interval-wise 

missing data imputation in Section 4.2. And Section 4.3 

introduces a Bayesian optimization method for the 

hyperparameter tuning of regularization penalty coefficients in 

the proposed tensor model. Before that, we first introduce the 

notations and the basic principles of tensor in Section 4.1.  

A. DFCP Tensor Theory and Notations 

1) DFCP Tensor 

Tensor, as the higher-order generalization of an array or 

matrix, can provide a natural way to represent multi-

dimensional data whose entries are indexed by several 

coordinate variables. More formally, a first-order tensor is a 

vector, a second-order tensor is a matrix, and tensors of order 

three or higher are called higher-order tensors. It has proven to 

be a powerful tool for extracting the underlying factors and 

obtaining latent properties between each data mode of global 

structure [33]. Due to the advantages of strong interpretability, 

fast convergence, high accuracy, and small storage space, 

tensor-based approaches have been widely applied in the field 

of psychometrics, chemometrics, signal processing, computer 

vision, data mining, and elsewhere [34].  

Tensor-based methods (e.g., tensor completion) have been 

imported to missing traffic data imputation. Tensor completion 

is defined as a problem of completing an N -th order tensor 

from its known elements based on tensor decomposition and 

low-rank approximation. For example, the global information 

of traffic data can be simultaneously taken into account by the 

underlying multi-mode correlation (day, week, time, and space 

mode). In recent literature, the successful recovery of tensor 

completion mainly relies on its low-rank assumption. The 

methods for tensor completion include two kinds of approaches. 

One is based on a given rank and updates factors in tensor 

completion. The other one directly minimizes the tensor rank 

and updates the low-rank tensor. To improve the computational 

efficiency in the large missing rate of traffic data which has 

low-rank performance, we select the given rank-based tensor 

completion method that is based on the first-order optimization 

as our initial basic method. This given rank-based tensor 

completion method is to approximate the tensor decomposition 

with an estimated low rank or low-n-rank when only parts 

entries of a tensor are observed. And then, the generated 

factorizations from a given rank-based tensor decomposition 

can be used to impute the missing entries, and this procedure 

can be repeated to iteratively determine suitable values for the 

missing entries.  

According to the different research needs, the typical tensor 

decomposition methods can be divided into 

CANDECOMP/PARADAC (CP) decomposition [35] and 

Tucker decomposition [36]. The CP model can be regarded as 

a special case of the Tucker model, which is a high-order 

generalization of singular value decomposition and principal 

component analysis. The rank number determined can affect 

imputation performance in the process of tensor decomposition. 

Too few numbers rank would reduce the accuracy of tensor 

completion. In practice, the rank is generally not known and is 

not easily determined, and the tensor rank is difficult to 

minimize in general since it is a non-convex function. However, 

results from Acar, et al. [37] indicate that CP-based 

decomposition methods have an advantage over other 

decomposition approaches when the rank is over-estimated. 

Both of their optimization methods are NP-hard problems. 

Meaning that the factors in each mode are necessarily linear 

dependent. In practice, the rank is generally not known and is 

not easily determined [34], and tensor rank is difficult to 

minimize in general since it is a non-convex function. But the 

rank of CP decomposition is allowed to be greater than the 

largest data dimension. Furthermore, the tensor composed of 

spatiotemporal traffic flow data is proved to be a low-rank 

property data [38]. Herein, to improve the performance, the CP 

decomposition is regarded as a promising method in our 

research. Computing CP decompositions by applying the 

alternating least squares method, which computes the factor 

matrices one at a time, and iterative imputation is quite effective 

and has the advantages of often being simple and fast. 

Furthermore, the CP tensor factorizations that can exploit the 

global information, have more obvious underlying physical 

interpretability modes than the Tucker tensor. Furthermore, to 

ensure that the value of the un-missing data in the original 

tensor remains unchanged, CP decomposition with weighted 

optimization (CP-WOPT) for dealing with a large amount of 

missing value has been testified to provide a good imputation 

performance [37], which could significantly reduce the storage 

and computation costs.  

With the summary of the aforementioned existing tensor-

based methods, to improve the imputation efficiency, we select 

the given rank-based and CP-WOPT-based tensor 

decomposition methods as our basic methods. Furthermore, our 

goal is to interpolate interval-wise missing data with long-term 

missing, considering the effect of diverse disturbances in 

complex urban networks. In our research, our proposed DFCP 

model can well solve this problem by adding full 

spatiotemporal coverage of CL data and a regularization 

penalty term. With the application of the Bayesian optimization 

for solving, our data imputation performance can be enhanced 

by accurate regularized hyperparametric. In this process, we 

simplify the difficulty of the non-uniqueness/non-convexity 

problem of regularized hyperparametric solutions caused by the 

rank determination of tensor decomposition. The details of this 

method are listed in the following section. 

2) Notations 

In this paper, the notations denoted in Acar et al. [37] and 
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Kolda and Bader [34] were partially adopted. Note that the 

third-order tensors are denoted by calligraphic letters ( , ,...)A B

, matrices by capitals ( , ,...)A B , vectors by lower-case letters 

( , ,...)a b , and special scalars by capital letters 

1 2 3( , , , , ,...)I I I N R . For instance, the element of a third-order 

tensor A is denoted as 
ijk ijk

a =A . The Cartesian product of two 

sets is represented by the symbol “  ”. 
The elements of a third-order tensor are referred to with a set 

of three indices. For third-order tensors, mode-1 and mode-2 

vectors are their columns and rows respectively. In general, we 

can obtain model-n . vectors ( )1,2,3n = by varying the n th 

index while keeping other indices constant. The number of the 

linearly independent model- n  vectors are called mode- n  

rank. It is a generalization of the row rank and column ranks of 

a matrix. Unlike that in the case of a matrix, different model-n

ranks aren’t necessarily equal to each other. 
The model-n product 

( )n

n
MA , 1,2,3n = of a tensor 

1 2 3I I I
A

 R with matrices 
( ) n nj In

M
R  is defined as follows 

1 2 3 1 2 3 1 1

1

1 2 3 1 2 3 2 2

2

1 2 3 1 2 3 3 3

3

(1) (1)

1

(2) (2)

2

(3) (3)

3

( ) ,

( ) ,

( ) ,

J i i i i i j i

i

i J i i i i j i

i

i i J i i i j i

i

M a m

M a m

M a m







=

=

=







A

A

A

 (3) 

where 1 n ni I  , 1 n nj J  .  

An -wayN tensor can be rearranged as a matrix. This process 

is called matricization and is also known as unfolding or 

flattening. The model-n matricization of a tensor, 

1 2 NI I I  L

A R can be denoted as  

1 2 3 3 2 3 1 1 3 1 2 2 1 2 3(1) ( 1) (2) ( 1) (3) ( 1)( ) ( ) ( )i i I i i i I i i i I i i i ia− + − + − += = =A A A , (4) 

where 1 11 i I  , 2 21 i I  , 3 31 i I  . The matricization 

process arranges the mode- n  one-dimensional “fibers” as 
columns of the resulting matrix, see [37] for details.  

B. DFCP Tensor Factorization 

In this section, we present a customized tensor 

decomposition-based method called data fusion-based CP 

(DFCP) factorization with weighted regularization. This 

method enables the imputation of interval-wise missing data 

estA  with high performance, even when the missing traffic 

volume data appear over large periods.  

Based on Kolda and Bader [34], an N-way tensor 

1 2 NI I I   L

A R with missing values can be factorized into N-

factor matrices 
( ) nI Rn

A
R . It can be denoted as 

( ) 2
(1) (2) ( ) (1) (2) ( )1

min , , , = ( , , , )
2

N N

w
f A A A A A A −L LW A (5) 

(1) (2) ( ) (1) (2) ( )

1

, , ,
R

N N

r r r

r

A A A a a a
=

 L o oLo , (6) 

where R  denotes the estimated rank, ‘  ’ denotes the 

Hadamard product of tensors, and ‘. o .’ denotes the outer 

product of vectors. W , which is of the same size as A , is a 

non-negative indicator tensor and can be defined as 

1 2

1 2

1 2

1 if  is known
=

0  if  is missing

N

N

N

i i i

i i i

i i i

x

x





L

L

L

W  .                     (7) 

For all  1,2, ,
n n
i I L  and {1,2, , }n N L , 

( ) nIn

r
a R is 

the r th column vector of ( )n
A . Acquiring the calculated factor 

matrices 
(1) (2) ( ), , , N

A A AL , the missing entries A  can be 

estimated to generate a complete tensor, given as follows 

 
(1) (2) ( )(1 ) , , , N

est
A A A=  + −  LA W A W        (8) 

where 1 is a tensor of all ones with the same size W . The 

representation of CP tensor decomposition is described in Fig. 

3.  

Our goal is to find matrices n( ) I Rn
A

R , {1,2, , }n N L  

that minimize the objective function in equation (5). In the 

solution of this function, we fix the factor matrix in two 

directions to optimize the factor matrix in the other direction, 

and convergence is achieved by alternating. The derivation of 

the gradient in the weighted case is given in Acar, et al. [37]; 

here we just report the formula. In matrix notation, using A  

and 
est
A  from equation (8), we can rewrite the gradient 

equation as  

 ( ) ( )

( ) ( )( )

n

est n nn

f
A

A

−
= −


W =A A ,                    (9) 

where ( ) ( ) ( 1) ( 1) (1)n N n n
A A A A A

− + −= eLe e eLe , for 

1, ,n N= K . The symbol e  denotes the Khatri-Rao product. 

However, the aforementioned approach could suffer from 

scaling and permutation indeterminacy when the input data 

from each dimension has a large variant. For example, in large-

scale study areas, due to differences in road levels and 

commuting times, the degree of correlation from day mode and 

segment mode varies continuously. In this study area, according 

to the correlation description presented in section 5.3, we found 

that the spatiotemporal correlations between day mode and 

segment mode are fluctuant. In addition, some parts with high 

correlation have almost similar trends, and vice versa. Hence, 

to address this issue, we need to utilize these correlations well 

by weighing the similarities between day mode and segment 

mode.  

Furthermore, in the interval-wise missing data problems, an 

increase in the length of interval-wise missing data will have a 

considerable effect on the imputation performance. In this 

context, based on the similar volume trends and high correlation 

between CL data and LPR data, the part of interval-wise 

 

Fig. 3. Representation of CP-based tensor decomposition. 
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missing volume from LPR data could be effectively 

interpolated with the complete CL data. Hence, we established 

a four-way tensor model that includes day mode, segment 

mode, time slot mode, and data type mode. The representation 

of the structure of the four-way tensor model is shown in Fig. 

4. 

As the amount of missing data increases, the performance of 

the algorithm may suffer since the initialization and the 

intermediate models used to impute the missing values will 

increase the risk of converging to a less optimal solution.  

To model and perform the afore-mentioned analysis, a 

Tikhonov regularization loss function is added to the objective 

function as follows 
2

(1) (2) ( ) (1) (2) ( )

2
( )

1

1
min ( , , , )= ( , , , )

2

λ
2

N N

w

N
nn

n

n

f A A A A A A

A M
=

 −

+ −

L LW A

(10) 

Assume that the four-way tensor R  is the actual traffic 

volume value, the four-way tensor Z  is the recovered traffic 

volume value with the same size as R , T  is the time slot mode, 

S  is the road segment mode, D  is the day mode, and C  is the 

data category mode. In equation (10), the Tikhonov 

regularization term is added, and the original objective function 

is transformed as follows 

2 22 (1) (2)1 2

2 2 2
(3) (4) ( )3 4

1

λ λ1
min -

2 2 2

λ λ
2 2

w DS DT

N
n

ST CT

n

f A M A M

A M A M p A 

 

=

= + − + −

+ − + − + +

R Z

,(11) 

where ( ) nI Rn
A

R  is a factor matrix of mode- unfolding, and 

represents matricization of constructed tensor in the 

corresponding mode after tensor decomposition, R  is the 

number of modes. Furthermore,
nM is the average mode matrix, 

which is averaged from the combination of any two traffic 

volume modes in these four data dimensions. And the 

subscripts denote the corresponding four data dimensions: time 

slot mode (T), segment mode (S), day mode (D), and data 

category model (C). For instance, 
DSM  represents the two-

dimensional matrix composed of days and segments, in that the 

data category and time slot mode are eliminated by averaging 

these two data dimensions, and the remaining days and 

segments form this new matrix. As the size of the matrix is 

composed of data category and days, or data category and 

segments is too small and has little impact. Thus, we do not 

consider the regularization of these two matrices. When dealing 

with the diverse disturbances in the urban network, such 

averaging within each dimension and calculating the difference 

between the factorization matrix and it can be used to determine 

the severity of the disturbance in this factorization matrix. 

Then, these disturbances are weighted and reduced by setting 

the value of the coefficients λi
. Among them, coefficients λi

 

for 1, ,4i = L  representing the weights of the regularized items 

in each dimension, and are used to control the appropriate 

importance of different modes in the tensor decomposition 

method. When its value is larger, it means that the greater the 

calibration of the specified mode is given, and vice versa. For 

example, when in an urban transport network with a large 

difference in segment grades, the segment mode brings a 

weaker calibration impact, while when long-term missing 

information occurs, the data mode brings a stronger calibration 

impact. 

Based on the aforementioned matricization, the 4-way tensor 

could be rearranged into six matrices by flattening it in six 

different directions. We can use regularization terms to 

calibrate interval-wise missing parts by the time-varying 

characteristics of traffic volume from spatiotemporal modes 

(day mode, and segment mode) and similar fluctuation trends 

between CL data and LPR data. The four regularization terms 

of equation (11), represent the calibration for the different 

combinations of modes, e.g.,
(1)

DS
A M−  denotes the 

calibration for time slot mode in all data categories. 

Furthermore, to prevent overfitting of the recovered data, the 

regularization penalty term is set to
2

( )

1

N
n

n

p A
=

 . To obtain the 

solution of this algorithm, the established DFCP function is 

solved using the gradient descent method, which is similar to 

the CP-WOPT approach. A comprehensive discussion on the 

computation of tensor decomposition can be found in the 

reference [37]. 

C. Scheme of Regularization Penalty Terms 

To avoid the effect of the ill-posed problem caused by non-

uniqueness in the process of tensor completion [39], the rule of 

Tikhonov regularization has been applied in our study [40]. The 

effect of regularization is to keep the permutation and scaling 

 
Fig. 4. Representation of the structure of the four-way tensor model. 
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of the factor matrix in tensor decomposition unchanged, and 

then the lack of a unique solution can be corrected by modifying 

the objective function to include a Tikhonov regularization term 

[31]. In our interval-wise missing traffic imputation scenario, 

the regularization penalty terms are set in equation (11). Its 

function is to make the tensor completion result unique. In 

particular, after introducing the factor matrices T as a priori 

information, it can be uniquely used for rectifying the diverse 

disturbances caused by the difference of segment grades in the 

urban transport networks and providing auxiliary in the long-

term missing information with CL data. 

Clearly, the solution of regularization penalty coefficients is 

also crucial in the performance of the regularization term. And 

the solution of regularization value   is the process of hyper-

parameters tunning. It can be divided into priority selection 

rules and posterior selection rules, and the latter is primary. For 

example, Morozov's discrepancy principle, generalized cross-

validation, and the L-curve method [41]. However, these 

methods are empirical. And when multi-dimension 

hyperparameters exist, the function structures are difficult to 

quantify the uncertainty and obtain the optimal hyperparametric 

solution. Note that we set 4 regularization penalty coefficients 

in our studies. As Bayesian optimization can rely on previous 

empirical values and accelerate to obtain hyper-parameter 

values in the fewest iterations. It is an approach to optimizing 

objective functions which are “expensive to evaluate”, even 
lacking known special structures like concavity or linearity, 

which can be seen as optimizing a black-box function [42]. 

Since then, we set Bayesian optimization (BO) as our 

hyperparameter tunning approach which has rarely been 

applied in previous studies on the regularization of tensor 

decomposition.  

Regardless of the complexity of the structure of the tensor 

decomposition function ( )(1) (2) ( )min , , , N

w
f A A AL  and the 

uncertainty of factor matrices 
(1) (2) ( ), , , N

A A AL , our goal is just 

to build a surrogate ( )( )arg min
w

G f


= G   for 

replacement. This is a process that delicately converts the tensor 

decomposition error under each hyperparameter into the 

calculating of the mean and covariance functions. And  

assuming that the hyperparameters obey a Gaussian distribution, 

a Gaussian process is then used as a surrogate function and the 

new hyperparameter values in the posterior can be found based 

on the prior distribution. It could save computational effort by 

reducing the complex tensor decomposition process. 

This process is before the tensor decomposition that the 

hyperparameters are set before each determination of the factor 

matrix, and the imputation error function G  is used to evaluate 

each hyperparameter setting. Among them, the hyperparameter 

here is a vector 
1 2 3 4( , , , )i i i i i    . BO is applied to find a 

solution by making a series of evaluations 
1 2, , , N
L    of 

function G , and it is to solve the global optimization problem. 

We can divide this process into two steps: 1) fit a Gaussian 

process (GP) from the regularization coefficient set 

( 1, )
n

n N= LD and obtain ( )( )arg min
w n

G f
 =  ; 2) apply 

an acquisition function to evaluate ( )( )w n
G f   and 

1 ( , )n n n nG−= D D  , and decide where to sample. The details 

are listed as follows.  

1) Gaussian Process 

In our research, the surrogate function we selected to perform 

Bayesian optimization ( )( )w n
G f  is realized by building a 

Gaussian process. The flexible distribution allows us to 

associate a normally distributed random variable at every point 

in the continuous input space. As the distribution for a new 

observation of the regularization penalty coefficient vector   

is obtained that follows a Gaussian distribution [43, 44]. Since 

then, the joint distribution of G and G  are set as 

( )
,

( ) T

G m

G m



   

      
      

      
: N




K K

K K
, (12) 

where ( , )K k=   , ( , )K k =    and ( , )K k  =   . A 

joint distribution over G and G  is used for modeling 

( , , )p G G   , and then we have the following 

( , , ) ( , )p G G G      = N  , (13) 

1

*( ) ( ( ))T
m K K G m −

 = + −  , (14) 

1T
K K K K −

   = − . (15) 

2) Acquisition Functions 

This process is building an acquisition function, which is to 

replace the surrogate model to determine the next point

( )( )1 arg min
i i w

G f + = H  to evaluate. The acquisition 

function should be carefully designed to trade-off between 

exploration of the search space and exploitation of current 

promising regions. Herein, the expected improvement 

acquisition function is applied in our experiment. We defined 

the expected improvement as 

1 argmin [max( ( ( )) ,0)]
i i w

E G f G
+

+ = − 
L

, (16) 

( )
1

( )
( )

( )
arg min

( )
( )

( )

i

i

i

i

w i

i

i

G
G

f







 



+
+

+  +

  −
−   

  =   − +     














L
, (17) 

where  and   denote cumulative distribution function and 

TABLE II DETAILS OF THE DATA TYPES USED 

Type 

of data 
Data label 

Amount 

of data 
Period 

CL 

data 

Mobile Phone ID, 

Longitude, Latitude, 

Timestamp 

6.8 

million 

data/each 

day 

01/10/2

016~07/

10/2016 

LPR 

data 

The encrypted vehicle plate 

ID, Timestamp, the vehicle 

type (Large vehicle Medium 

vehicle; Small vehicle), The 

segment ID with LPR 

detector installed 

9 million 

data 

01/10/2

016~07/

10/2016 
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probability density function, respectively.  

V. CASE STUDY 

In this section, we conduct comprehensive experiments to 

evaluate the performance of the proposed DFCP tensor model 

on real-world datasets under different missing mechanisms and 

rates. First, we give a brief description of the study area and 

datasets. Then we introduce our experiment setup and three 

state-of-the-art imputation models as baselines. Finally, we give 

some discussions about the corresponding results in detail.  

A. Data Preparation  

1) Study Area  

 We obtain our applied traffic data from the city of Nanjing, 

China. This study area covers the road network around Nanjing 

south train station, located in the center of the city. It comprises 

36 bidirectional road segments, and there are 20 road segments 

for that an LPR detector is to be installed. The location of which 

is shown by the blue thumbtack in Fig. 5 (a). In addition, Fig. 5 

(b) shows a snapshot of the number of CL users on the study 

network. Our research aims to realize interval-wise missing 

data imputation from the LPR detector installed road segment 

with the assistance of CL data. The CL data has the same 

spatiotemporal coverage as the LPR data. It is scattered 

homogeneously and continuously in this area, and there are no 

missing data. In our selected network, there are 7-arterial 

segments, 5-second trunk segments, and 8-branch segments. 

The topology of the research road network is shown in Fig. 6. 

2) Spatiotemporal Traffic Datasets 

 The LPR detector system uses cameras installed along the 

road segment to capture images of vehicle license plate 

numbers and identifies them using image processing 

techniques. In China, the LPR system reportedly achieves over 

95% recognition accuracy during the daytime and no less than 

90% during the nighttime. The volume aggregated from LPR 

data can be viewed as the actual traffic volume as it also detects 

vehicle type. Furthermore, note that LPR detectors are mainly 

used for traffic safety monitoring, and it is generally deployed 

on arterial or second-trunk roads. 

The CL data is extracted by identifying the location 

information of cellphone signal transmissions using the time 

difference of arrival (TDOA) positioning technique [27]. Its 

positioning accuracy is around 50 to 100 meters. The unique 

advantage of CL data is that it has a relatively high coverage 

rate as compared to other flexible detector data such as GPS 

data, floating car data, etc. CL data transmission rate is also 

relatively consistent as it is generated whenever the mobile 

information exchange occurs. Hence, it can be regarded as high-

quality data with whole spatiotemporal coverage. Existing 

studies also have demonstrated that there is a high correlation 

 
Interval-wise missingPoint-wise missing

600 

500

400

300

200

100

Pcu/5 

min 

  
Fig. 7. Visualization of missing LPR data in our study area. 

LPR Detector

 
Fig. 5. (a) Study area with locations of LPR detectors marked as thumbtack. 

 
Fig. 5. (b) Snapshot of the number of CL users on the study network. 

 
Fig. 6. The topology of research road network. 
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between CL data with actual traffic volume extracted by LPR 

data [45]. As such, we utilize this correlation of both types of 

data, and the homogeneity of the CL data to realize the interval-

wise missing LPR volume imputation.  

Table Ⅱ illustrates the details of the two data types used in 

the study. No discussions are presented here regarding the data 

preprocessing technique used. Readers interested in 

understanding the relevant methods in detail could refer to Xing 

et al. [27]. The aggregated traffic volume from cellphone 

location data and LPR data for this paper can be found in the 

Dryad platform.1 

To justify that this interval-wise missing in our used LPR 

data is genuine, we select one day on segments with LPR 

installed to visualize this missing status in Fig. 7. We can find 

that there are both interval-wise and point-wise missing data on 

these detected segments. And most of the interval-wise missing 

data can be found to occur mainly at nighttime. This poor data 

quality is due to the challenges in processing low-light images, 

which is the focus of our study.  

B. Experiment Setup 

1) Research Segment Pre-processing 

This multi-dimension correlation of traffic data is critical in 

enhancing the performance of missing data imputation in the 

process of tensor decomposition. In our study of urban network, 

it includes arterial roads, secondary trunk roads, and branch 

roads, which is shown in Fig.6. Each type of road segment has 

different traffic operation functions, and this variance between 

road grades would lead to the interference of imputation and 

unnecessary computation workload. Hence, following existing 

studies in Ran, et al. [38] and Li, et al. [46], we select pre-

processing and pick a set of similar segments in advance. To 

measure the segment similarity with traffic volume, we adopted 

the Pearson correlation coefficient (PCC) as the standard. The 

formula for PCC can be written as follows 

, 1, 11

, 1
2 2

, 1, 11 1

( )( )

( ) ( )

n

i j i i j ij

i i
n n

i j i i j ij j

S S S S
PCC

S S S S

+ +=
+

+ += =

− −
=

− −


 

,(18) 

where n  denotes the number of samples, ,i j
S and 1,i j

S +  

denotes the traffic volume from any two segments in i th time 

interval respectively, and is is the mean value of 
,i j

S , 

1,2,...,j n=  and 
1i

S +  is the mean value of 1,i j
S + , 1,2,...,j n= . 

The PCC value ranges from +1 to -1, where a positive PCC 

value depicts a positive correlation and vice versa. In practical 

application, the value of PPC can indicate the correlation level.  

As introduced earlier, there are 20 road segments with LPR 

detectors installed in the study area. The Pearson correlation 

between each pair of segments is calculated and displayed in 

Fig. 8. On the one hand, the number of segments selected can 

have an effect on the rank number in the process of tensor 

decomposition that has been mentioned in setction Ⅳ. On the 

other hand, due to the divergence from different grades of 

segments, the selection of too many segments would also affect 

the interpolation, particularly in the complex urban network. 

Herein, limited by the scale of our study area, we set the number 

of research segments of the input model to five in this study. To 

establish the DFCP tensor structure, we select five segments 

with the top 5 highest PCC values as the research segments. For 

example, we select road 11S  as target interval-wise missing 

research segment, based on the value of PCC in Fig. 8, the 

corresponding four correlated segments are selected 

Segment 11

Segment 12

Segment 10

Segment 17

Segment 2

 

Fig. 9. Correlation analysis from traffic volume on road segments, days, 

percentage between CL data and LPR data, respectively. 

 

 
Fig. 8. Value of PCC between each research segment. 

1 From https://doi.org/10.5061/dryad.qz612jmkz. 
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sequentially for 12 10 17 2,  ,  ,  S S S S  in Fig. 6. Note that a larger 

number of road segments in the large-scale network used for 

our proposed model are also feasible. 

In Fig. 9, the time-variation curves in average traffic volume 

on the five selected segments show their fluctuation trends over 

the entire research period. The traffic volume in selected five 

research segments by calculating the average reveals a certain 

correlation during 5 weekdays, while a relative difference is 

observed in average traffic volume between weekdays and 

weekends. Moreover, a similar fluctuation trend between the 

CL data and LPR data in the percentage of average traffic 

volume is shown in Fig. 9. 

2) Missing Patterns Generation 

To evaluate the performance of the DFCP model for missing 

data imputation sufficiently, we consider two missing data 

mechanisms as aforementioned in Fig. 1, which include missing 

at random (MR) and not missing at random (NMR) under 

different interval-wise missing rates. Following these two 

missing mechanisms, we manually mask certain entries of 

observation values as missing data used for our missing cases 

and then compare the imputed values with our masked ones. 

The remaining partial values are regarded as input data for 

learning a well-behaved model. Herein, with equal intervals (set 

at 10% for one interval), from the minimum missing rate of 10% 

to the maximum missing rate of 50%. 

The evaluation metrics we use are mean absolute percentage 

error (MAPE) and the root means squared error (RMSE). 

MAPE measures the average magnitude of the errors by 

percentage absolute error, which is also normally regarded as 

an intuitive evaluation metric. RMSE assigns relatively high 

weights to large errors, and further amplifies and severely 

punishes large errors. Both the evaluation metrics are widely 

used error criteria and are defined as 

-1

m

est

i i

im i

q q
MAPE

q

=
  , (19) 

( )21
-

m

est

i i

im

RMSE q q


=
  , (20) 

where  1 2 3, ,
m

i i i = when 
1 2 3, ,i i i

q is masked and not missing in 

the original tensor is the total number of missing values from 

the segment, days, and time slot dimensions. Note that we only 

calculate imputation error on these masked entries whose 

ground-truth value is available, which is used to measure the 

real performance. Besides, we set the missing unit as 5min. The 

different missing units are viewed as different lengths of 

interval-wise missing data. Four different missing lengths, at 3, 

6, 12, and 18 missing units (i.e. 15min, 30min, 60min, and 

90min) are selected and are defined as type 1, type 2, type 3, 

and type 4 respectively. 

3) Baseline Models  

Existing studies have testified that tensor decomposition 

models have greater superiority over other matrix-based models 

[5] and hybrid approaches [8] in traffic data imputation. 

Meanwhile, our study's purpose is to analyze the performance 

of interval-wise missing data imputation based on a multi-

source dataset, and whether there is improved efficiency in 

optimizing the solution of our regularization scheme. 

Therefore, to assess the accuracy of imputation performance, 

this section performs a comparison with three state-of-the-art 

tensor learning models as follows. For a fair comparison, all of 

them are based on tensor data recovery with precise-designed 

rank approximation and apply the same data types and tensor 

dimensions as input. 

• HaLRTC (Liu, et al. [47]): High-accuracy low-rank tensor 

completion. This is smartly transformed into a non-convex 

problem by low-rank approximation, which minimizes the 

tensor nuclear norm via ADMM. In comparison with 

HaLRTC, we can verify the low rankness of the two datasets 

we selected. 

• CP-ALS-NR (Comon, et al. [48]): CP decomposition-based 

model in alternating least squares method with normal 

regularization case. This is a nonconvex minimization model 

based on the defined tensor nuclear norm, and regularizes 

only the factorization matrix without any other correction 

terms. Compared with CP-ALS-NR, the advantage of 

uniqueness and authenticity of tensor decomposition in our 

proposed modeling is demonstrated. 

• CP-WOPT-CR (Acar, et al. [37]): CP tensor model in 

weighted optimization method with added correction term 

(e.g. the average value in each dimension) regularization 

case. This model aims to compare a new tensor completion 

with our same regularization term, but solving by grid search 

algorithm, which shows competitive performance Bayesian 

optimization in solving for regularized parameters.  

Number of Iterations

R
M

S
E

Training Error 

Testing Error

 
Fig. 11. Error variation in different iterations. 

 
Fig. 10. The iterative process of four hyperparameters. 
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All aforementioned models are learning-based data-driven 

approaches and learn model parameters in an iterative way. 

Both CP-ALS-NR and CP-WOPT-CR apply stochastic gradient 

descent with an adaptive learning rate is applied for taining. 

And the main differences are whether to preserve the unmissing 

values and to use the average value in each dimension to 

calibrate the factorization matrix. Since the structure of traffic 

volume data in time series is relatively simple, referring to the 

imputation result of rank number setting in our proposed tensor 

model, we set the same rank number in each models. The 

number of rank is set to 6. Furthermore, we also carefully tuned 

the hyperparameters in these baseline models. The missing rate 

from 10% to 50% is set for all missing types. The convergence 

criterion for all models is set to 30.5 10− . The maximum 

number of iteration is set to 1200. And we set the regularization 

parameter 1 2 3 4   = = =  with the initial value being 310−  

and updating in each iteration with  5min 1.05 ,10 =   

C. Tensor Structure And Parameter Settings  

Based on the similarity and periodicity from different day-

of-week, segment, time slot, and data type, this study proposes 

a 4-way tensor structure as shown in Fig. 4, and then formulate 

a tensor completion problem.  

To verify the effectiveness of missing data completion, a 

real-world experiment is conducted based on week-long CL 

data and LPR data from the selected 5 similar segments in the 

study area. Furthermore, each time slot is set as a 5-min interval, 

and a day is divided into 288-time slots. A 4-way tensor which 

includes time slots × days × road segments × data category is 

formed, with the final size of 144  7  20 2. 

We applied the hyperparameter tuning method for the 

implementation of the proposed data fusion tensor-based 

decomposition approach. The tensorly toolkit in Python is 

applied for this process, and the experiments are carried out on 

a computer with an Intel(R) Core i7-6500 CPU@2.50GHz and 

8GB of RAM. To ensure the reliability of the experimental 

results, each experiment was run 10 times and the average was 

taken as the final result. All code used during this study is 

available in a repository online on the GitHub platform. 2 

Furthermore, we apply Python software to optimize the 

parameters including the regularization penalty coefficient, 

penalty, and the number of ranks. In this work, we consider this 

problem through the framework of Bayesian optimization, in 

which a learning algorithm’s generalization performance is 

modeled as a sample from a Gaussian process (GP) [49]. And 

the power of the Gaussian process to express a rich distribution 

of functions rests solely on the shoulders of the covariance 

function [50]. Usually, we use some simple kernel functions to 

represent the covariance matrix, such as the Radial Basis 

Function (RBF) kernel function and the Matern kernel function: 
2

2

2
( , ) exp( )

2

i j

RBF i jk
l

−
= −

 
   (21)

1

2 22
( , ) 2 2

( )

v
v

i j i j

Matern i j v
k v H v

v l l

−    
   =
       

 −   − 
   (22) 

where 
2

2
  is the Euclidean distance, l is a fixed length 

parameter, and v is a smoothing factor. As RBF kernel function 

is the general form of the Matern kernel function. Hence, we 

select the RBF function as our covariance function in our 

Gaussian process. We use the recovered data as the original 

input data into the iterative process of parameter optimization 

and set the maximum number of iterations to 1200. The optimal 

result of the parameter setting is listed as follows, 1λ :16.802, 

2 From https://github.com/xingjiping/DFCPtensor. 

Type1

Type2

Type3

Type4

 
Fig. 12. Comparison of the performance when including/excluding CL data. 

 

DFCP HaLRTCCP-ALS-NR CPWOPT-CR
 

Fig.13. MAPE and RMSE of baseline in different missing rates. 
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2λ :9.514, 3λ :6.052, 4λ :8.636,  :0.117, rank:6. Fig. 10 

shows the iterative process of the four hyperparameters. Since 

the four parameters are iterated simultaneously, the optimal 

combination is selected from them. Herein, the iterative plot of 

the four parameters can be viewed as a tangent line from a four-

dimensional curve. Furthermore, while determining the optimal 

value of each hyper-parameter, it is necessary to balance the 

effect of the setting of rank. The improvement effect is most 

significant when the rank is set to 6 and then tends to be flat as 

it increases. The training error and testing error are shown in 

Fig. 11. It can be observed that convergence is reached when 

the number of iterations approaches 400, and the final 

verification error (RMSE) is 0.148.  

D. Imputation Performance 

1) The Performance with/without Fusing CL Data 

To demonstrate the superiority of fusing CL data to improve 

the performance of interval-wise interpolation, we attempt to 

compare the performance of a 3-way tensor model in time slots 

× days × segments with/without adding the data type 

dimensions. Herein, this section presents a comparison by 

establishing our proposed model that uses only LPR data. It is 

a 3-way tensor, with dimensions time slots × days ×segments. 

The number of each dimension of this 3-way tensor is 288×7×5. 

And the same missing length and ratio are set with our proposed 

4-way tensor. 

Comparing with the data model between “LPR data + CL 
data” and “only LPR data”, the imputation performance under 
different missing types are calculated, which are shown in Fig. 

12. For all these missing modes, we can clearly see that both the 

value of MAPE and RMSE are found to increase with the 

increase in the missing length. The performance of MAPE and 

RMSE in the “LPR data + CL data” is significantly superior 

compared to that using LPR data only. Among different missing 

types, there is a significant increase in imputation error in the 

missing type 3. The MAPE from applying two data categories 

changed from 16.7 to 15.7 and showed a downward trend. On 

the contrary, the MAPE from using only LPR data changed 

from 24.7 to 37.5, showing a significant increase. Therefore, the 

imputation performance using data fusion is significantly better 

than those obtained using only a single data, which is because 

the continuity of CL data can further better reflect the real 

traffic state trend [11, 51]. 

2) Performance Comparison with Baseline Models  

The MAPE and RMSE results for baseline experiments are 

displayed in Fig. 13. It is clear to see that the proposed DFCP 

model outperforms the other baseline models on four different 

interval-wise missing lengths and rates. The accuracies of CP-

WOPT-CR, CP-ALS-NR, and HaLRTC are found to gradually 

declining. As HaLRTC is a typical benchmark used in many 

data imputation works, in comparison with it, we can directly 

show the strength of our applied CP tensor-based framework. 

This demonstrates the feasibility of tensor factorization 

methods in the application of low-rankness traffic data [10]. To 

directly presents the effect of a unique regularization scheme in 

our proposed model, we compare sequentially a normal 

regularization scheme in the CP-ALS-NR, a modified 

regularization scheme in the CP-WOPT-CR, and a Bayesian 

optimization-based regularization scheme in the DFCP. 

Moreover, the basic structure of the three models is similar in 

that they all iterate by stochastic gradient descent, and the latter 

two models only improve computational efficiency by 

calculating fewer non-interpolated values.  From the RMSE 

and MAPE in Fig.12, the performance in the CP-WOPT-CR is 

overall better than that in the CP-ALS-NR, which shows the 

advantages of using the average of each dimension to correct 

the factorization matrix in the regularization term. This is 

because the variance disturbances in the urban network can be 

partially offset by weighting each factorization matrix. 

Furthermore, the performance of DFCP outperforms that of the 

CP-WOPT-CR, this indicates that the BO-based regularized 

hyperparametric solution can achieve more reliable 

performance than grid search.  

On the one hand, as the interval-wise missing length 

increases from type 1 to type 4, the errors keep increasing in all 

four models. As such, the values of RMSE in the three baselines 

is ranging from around 25 to 35, and the corresponding values 

in the DFCP varies slightly, which is ranging from around 25 to 

35, this displays that when the interval-wise missing length gets 

longer, the error does not shift as much as the baseline, which 

TABLE Ⅲ IMPUTATION RESULTS UNDER DIFFERENT 

MISSING PATTERNS 

Missing 

length 

Missing 

rates 

MR NMR 

MAPE 

(%) 
RMSE 

MAPE 

(%) 
RMSE 

Type 1 

10% 13.63 15.76 17.86 20.31 

20% 14.42 16.29 19.03 21.24 

30% 14.74 16.81 19.96 21.74 

40% 14.59 17.35 19.98 22.63 

50% 15.16 18.11 20.42 23.67 

Type 2 

10% 15.26 19.84 20.69 22.36 

20% 16.19 20.01 22.54 23.37 

30% 16.74 21.32 24.55 24.17 

40% 17.15 22.06 26.53 25.23 

50% 18.07 24.24 28.61 26.99 

Type 3 

10% 15.02 25.17 24.85 27.64 

20% 15.56 26.16 26.19 28.94 

30% 15.89 27.78 26.67 30.09 

40% 15.93 27.98 27.91 30.74 

50% 16.25 29.11 29.23 31.79 

Type 4 

10% 16.35 24.24 30.58 27.54 

20% 17.12 25.03 32.25 28.57 

30% 17.35 26.16 33.78 29.47 

40% 17.82 27.78 35.11 30.82 

50% 18.94 27.98 36.21 31.42 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

14 

has a stability performance. On the other hand, with the increase 

in missing rate, the change in slope of the linearity in Fig. 13 

shows the extent of the increase in imputation error. Among 

them, the slope of DFCP is greater than that of other baselines, 

this highlights that DFCP is stable even when the missing rate 

is high, and performs satisfactorily and is advantageous. This is 

achieved by taking advantage of the full spatiotemporal 

coverage and continuity of CL data, particularly when long 

interval-wise missing lengths cause continuous missing traffic 

information, and affected by variance disturbance in the road 

network, the multi-internal correlation does not work well. 

Meanwhile, the advantages of BO based regularization scheme 

in our proposed method can also be found by comparison 

among other baselines. 

3) Sensitivity Analysis of DFCP Model 

The MAPE and RMSE of results of random missing patterns 

and non-random missing patterns are compared and shown in 

Table Ⅲ. Furthermore, the performance of RMSE in different 

missing patterns and rates are also visualized in Fig. 14. For all 

interval-wise missing lengths and rates, we can clearly see that 

the accuracy of missing at random (MR) is better than that of 

the not missing at random (NMR). This is because, for example, 

when scenarios with traffic missing data occur simultaneously 

at the same time in all research segments or all days, this blank 

missing correlation information can only be obtained by CL 

data in the dimension of the data types  

VI. CONCLUSIONS 

This paper realized the interval-wise missing data imputation 

from the LPR detector by combining it with the CL data. More 

specifically, this paper explored how to combine multi-source 

data into a tensor-based method to solve long-term missing data 

in the urban area, and also performed a comprehensive analysis 

of the proposed regularization scheme to handle diverse 

disturbances by comparing various kinds of missing types and 

rates with baselines. Model imputation performance was 

evaluated and compared under different scenarios. For different 

classical tensor methods and the proposed DFCP model, we 

applied the result of MAPE and RMSE to compare how 

different kinds of missing types and missing rates influence 

their performance. We also analyzed the accuracy of random 

missing patterns and non-random missing patterns in interval-

wise missing scenarios. Based on the experiments conducted, 

we found that the performance of our proposed method has 

advantages over other methods, especially when the missing 

length is long and there are diverse disturbances in the urban 

network. Overall, both theoretical and empirical evidence 

indicate that our proposed method has robust and efficient 

performance in the internal-wise missing data imputation. 

Despite the promising results the proposed DFCP model has 

shown, there are still some directions worth investigating in our 

future research. Limited by the application of data sources in 

our selected research urban network, the requirements in the 

same spatiotemporal coverage should be satisfied. Future 

efforts are needed to explore the efficiency of this imputation 

model for different traffic scenarios in the large-scale urban 

network. Furthermore, different surrogate function schemes in 

Bayesian optimization and combinations of graph theory and 

tensor could be further attempted to handle the sensitivity 

analysis in our added regularization and automatic selection of 

correlation road, respectively.  

REFERENCES 

 [1]J. Xing, W. Wu, Q. Cheng, and R. Liu, "Traffic state 

estimation of urban road networks by multi-source data 

fusion: Review and new insights," Physica A: Statistical 

Mechanics and its Applications, vol. 595, p. 127079, 2022, 

doi: https://doi.org/10.1016/j.physa.2022.127079. 

[2] Y. Zhang, Q. Cheng, Y. Liu, and Z. Liu, "Full-scale spatio-

temporal traffic flow estimation for city-wide networks: a 

transfer learning based approach," Transportmetrica B-

Transport Dynamics, Article; 2022, doi: 

10.1080/21680566.2022.2143453. 

[3] I. Laña, I. I. Olabarrieta, M. Vélez, and J. Del Ser, "On the 

imputation of missing data for road traffic forecasting: New 

insights and novel techniques," Transportation research 

part C-Emerging Technologies, vol. 90, pp. 18-33, 2018. 

 

RMSE

RMSE

RMSE

RMSE

RMSE

5

0

10

15

20

25

30

35

40

5

0

10

15

20

25

30

35

40

5

0

10

15

20

25

30

35

40

5

0

10

15

20

25

30

35

40

5

0

10

15

20

25

30

35

40

NMRMR
Missing 

Rate

10%

20%

30%

40%

50%

Fig. 14. The performance of RMSE in different missing patterns and rates. 
 

https://doi.org/10.1016/j.physa.2022.127079


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

15 

[4] T. Nie, G. Qin, and J. Sun, "Truncated tensor Schatten p-

norm based approach for spatiotemporal traffic data 

imputation with complicated missing patterns," 

Transportation Research Part C-Emerging Technologies, 

Article vol. 141, 2022, Art no. 103737, doi: 

10.1016/j.trc.2022.103737. 

 

[5] H. Tan, G. Feng, J. Feng, W. Wang, Y.-J. Zhang, and F. Li, 

"A tensor-based method for missing traffic data 

completion," Transportation Research Part C-Emerging 

Technologies, vol. 28, pp. 15-27, 2013. 

[6] M. Zhong, P. Lingras, and S. Sharma, "Estimation of 

missing traffic counts using factor, genetic, neural, and 

regression techniques," Transportation Research Part C-

Emerging Technologies, vol. 12, no. 2, pp. 139-166, Apr 

2004, doi: 10.1016/j.trc.2004.07.006. 

[7] B. Bae, H. Kim, H. Lim, Y. Liu, L. D. Han, and P. B. 

Freeze, "Missing data imputation for traffic flow speed 

using spatio-temporal cokriging," Transportation Research 

Part C-Emerging Technologies, vol. 88, pp. 124-139, 2018. 

[8] J. W. C. Van Lint, S. P. Hoogendoorn, and H. J. van 

Zuylen, "Accurate freeway travel time prediction with 

state-space neural networks under missing data," 

Transportation Research Part C-Emerging Technologies, 

vol. 13, no. 5-6, pp. 347-369, Oct-Dec 2005, doi: 

10.1016/j.trc.2005.03.001. 

[9] L. Qu, L. Li, Y. Zhang, and J. Hu, "PPCA-Based Missing 

Data Imputation for Traffic Flow Volume: A Systematical 

Approach," IEEE Transactions on Intelligent 

Transportation Systems, Article vol. 10, no. 3, pp. 512-522, 

Sep 2009, doi: 10.1109/tits.2009.2026312. 

[10] K. Tang, S. Chen, Z. Liu, and A. J. Khattak, "A tensor-

based Bayesian probabilistic model for citywide 

personalized travel time estimation," Transportation 

Research Part C-Emerging Technologies, vol. 90, pp. 260-

280, May 2018, doi: 10.1016/j.trc.2018.03.004. 

[11] Z. Liu, Y. Liu, Q. Meng, and Q. Cheng, "A tailored 

machine learning approach for urban transport network 

flow estimation," Transportation Research Part C-

Emerging Technologies, vol. 108, pp. 130-150, 2019, doi: 

10.1016/j.trc.2019.09.006. 

[12] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang, "A 

compressive sensing approach to urban traffic estimation 

with probe vehicles," IEEE Transactions on Mobile 

Computing, vol. 12, no. 11, pp. 2289-2302, 2013. 

[13] X. Wu, M. Xu, J. Fang, and X. Wu, "A multi-attention 

tensor completion network for spatiotemporal traffic data 

imputation," IEEE Internet of Things Journal, Article vol. 

9, no. 20, pp. 20203-20213, Oct 15 2022, doi: 

10.1109/jiot.2022.3171780. 

[14] J. Li, L. Xu, R. Li, P. Wu, and Z. Huang, "Deep spatial-

temporal bi-directional residual optimisation based on 

tensor decomposition for traffic data imputation on urban 

road network," Applied Intelligence, Article vol. 52, no. 10, 

pp. 11363-11381, Aug 2022, doi: 10.1007/s10489-021-

03060-4. 

[15] X. Chen, M. Lei, N. Saunier, and L. Sun, "Low-rank 

autoregressive tensor completion for spatiotemporal traffic 

data imputation," IEEE Transactions on Intelligent 

Transportation Systems, Article vol. 23, no. 8, pp. 12301-

12310, Aug 2022, doi: 10.1109/tits.2021.3113608. 

[16] L. Deng, X.-Y. Liu, H. Zheng, X. Feng, and Y. Chen, 

"Graph spectral regularized tensor completion for traffic 

data imputation," IEEE Transactions on Intelligent 

Transportation Systems, Article vol. 23, no. 8, pp. 10996-

11010, Aug 2022, doi: 10.1109/tits.2021.3098637. 

[17] J. Jiang, F. Sanogo, and C. Navasca, "Low-CP-rank tensor 

completion via practical regularization," Journal of 

Scientific Computing, vol. 91, no. 1, Apr 2022, Art no. 18, 

doi: 10.1007/s10915-022-01789-9. 

[18] A. Said and A. Erradi, "Spatiotemporal tensor completion 

for improved urban traffic imputation," IEEE Transactions 

on Intelligent Transportation Systems, 2021, doi: 

10.1109/tits.2021.3062999. 

[19] X. Chen, Y. Chen, N. Saunier, and L. Sun, "Scalable low-

rank tensor learning for spatiotemporal traffic data 

imputation," Transportation Research Part C-Emerging 

Technologies, vol. 129, Aug 2021, Art no. 103226, doi: 

10.1016/j.trc.2021.103226. 

[20] Y. Zhu, J. Wang, J. Wang, and Z. He, "Multitask neural 

tensor factorization for road traffic speed-volume 

correlation pattern learning and joint imputation," IEEE 

Transactions on Intelligent Transportation Systems, pp. 1-

11, 2022, doi: 10.1109/TITS.2022.3205917. 

[21] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, 

"Traffic state estimation on highway: A comprehensive 

survey," Annual Reviews in Control, vol. 43, pp. 128-151, 

2017 2017, doi: 10.1016/j.arcontrol.2017.03.005. 

[22] J. Haworth and T. Cheng, "Non-parametric regression for 

space-time forecasting under missing data," Computers 

Environment and Urban Systems, vol. 36, no. 6, pp. 538-

550, Nov 2012, doi: 

10.1016/j.compenvurbsys.2012.08.005. 

[23]  C. K. Wei, G. R. Jagadeesh, A. Prakash, and T. 

Srikanthan, "A clustering-based approach for data-driven 

imputation of missing traffic data," in Integrated & 

Sustainable Transportation Systems, 2016, vol. 7, pp. 112-

132.  

[24] Z. Long, Y. Liu, L. Chen, and C. Zhu, "Low rank tensor 

completion for multiway visual data," Signal Processing, 

vol. 155, pp. 301-316, Feb 2019, doi: 

10.1016/j.sigpro.2018.09.039. 

[25] X. Chen, Z. He, and L. Sun, "A Bayesian tensor 

decomposition approach for spatiotemporal traffic data 

imputation," Transportation Research Part C-Emerging 

Technologies, vol. 98, pp. 73-84, Jan 2019, doi: 

10.1016/j.trc.2018.11.003. 

[26] A. Said and A. Erradi, "Spatiotemporal tensor completion 

for improved urban traffic imputation," IEEE Transactions 

on Intelligent Transportation Systems, 2021, doi: 

10.1109/tits.2021.3062999. 

[27] J. Xing, Y. Wu, D. Huang, and Xin. Liu, " Transfer 

learning for robust urban network-wide traffic volume 

estimation with uncertain detector deployment scheme," 

Electronic Research Archive, vol. 1, no. 3, pp. 93-104, 

2023, doi: 10.3934/era.2023011. 

[28] J. Xing, R. Liu, Y. Zhang, C. F. Choudhury, X. Fu, and Q. 

Cheng, "Urban network-wide traffic volume estimation 

under sparse deployment of detectors," Transportmetrica 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

16 

A: Transport Science, p. 2197511, 2023, doi: 

10.1080/23249935.2023.2197511. 

[29] Z. Zhang, X. Lin, M. Li, and Y. Wang, "A customized 

deep learning approach to integrate network-scale online 

traffic data imputation and prediction," Transportation 

Research Part C-Emerging Technologies, vol. 132, pp. 67-

80, Nov 2021, Art no. 103372, doi: 

10.1016/j.trc.2021.103372. 

[30] T. Sun, S. Zhu, R. Hao, B. Sun, and J. Xie, "Traffic 

missing data imputation: A selective overview of temporal 

theories and algorithms," Mathematics, Review vol. 10, no. 

14, Jul 2022, Art no. 2544, doi: 10.3390/math10142544. 

[31] E. Acar, D. M. Dunlavy, and T. G. Kolda, "A scalable 

optimization approach for fitting canonical tensor 

decompositions," Journal of Chemometrics, vol. 25, no. 2, 

pp. 67-86, Feb 2011, doi: 10.1002/cem.1335. 

[32] D. F. H. Basu and Srabashi, "Distinguishing “missing at 
random” and “missing completely at random”," The 

American Statistician, vol. 10, pp. 34-56, 1996. 

[33] D. Wang, Z. Cai, Y. Cui, and X. Chen, "Nonnegative 

tensor decomposition for urban mobility analysis and 

applications with mobile phone data," Transportmetrica A-

Transport Science, 2019, 3 123-149. doi: 

10.1080/23249935.2019.1692961. 

[34] T. G. Kolda and B. W. Bader, "Tensor Decompositions 

and Applications," Siam Review, vol. 51, no. 3, pp. 455-

500, 2009. 

[35] J. Carroll and J. J. Chang, "Analysis of individual 

differences in multidimensional scaling via an n-way 

generalization of "Eckart-Young" decomposition," 

Psychometrika, vol. 35, pp. 121-134, 1970. 

[36] L. Tucker, "Some mathematical notes on three-mode 

factor analysis," Psychometrika, vol. 31, no. 3, pp. 279-

311, 1966. 

[37] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Morup, 

"Scalable tensor factorizations for incomplete data," 

Chemometrics and Intelligent Laboratory Systems, vol. 

106, no. 1, pp. 41-56, Mar 15 2011, doi: 

10.1016/j.chemolab.2010.08.004. 

[38] B. Ran, H. Tan, Y. Wu, and P. J. Jin, "Tensor based 

missing traffic data completion with spatial-temporal 

correlation," Physica A, vol. 446, pp. 54-63, Mar 15 2016, 

doi: 10.1016/j.physa.2015.09.105. 

[39] H. Tan, J. Feng, Z. Chen, F. Yang, and W. Wang, "Low 

multilinear rank approximation of tensors and application 

in missing traffic data," Advances in Mechanical 

Engineering, 2014 2014, Art no. 157597, doi: 

10.1155/2014/157597. 

[40] R. C. Aster, B. Borchers, and C. H. Thurber, "Tikhonov 

Regularization," Parameter Estimation and Inverse 

Problems (Second Edition), pp. 93-127, 2013. 

[41] A. N. Tikhonov and V. Y. Arsenin, Solution of Ill-Posed 

Problem, New York: John Wiley ed. New York: John 

Wiley, 1977. 

[42] P. I. Frazier, A tutorial on bayesian optimization, Stanford 

University Press ed. Stanford University Press, 2018. 

[43] C. E. Rasmussen and C. Williams, "Gaussian Process for 

Machine Learning,"International Journal of Neural 

Systems. 2006. 

[44] F. Rodrigues and F. C. Pereira, "Heteroscedastic Gaussian 

processes for uncertainty modeling in large-scale 

crowdsourced traffic data," Transportation Research Part 

C-Emerging Technologies, vol. 95, pp. 636-651, 2018, doi: 

https://doi.org/10.1016/j.trc.2018.08.007. 

[45] Z. Wang, S. Y. He, and Y. Leung, "Applying mobile 

phone data to travel behaviour research: A literature 

review," Travel Behaviour and Society, vol. 11, pp. 141-

155, 2018. 

[46] L. Li, J. Zhang, Y. Wang, and B. Ran, "Missing Value 

Imputation for Traffic-Related Time Series Data Based on 

a Multi-View Learning Method," IEEE Transactions on 

Intelligent Transportation Systems, vol. 20, no. 8, pp. 2933-

2943, 2019, doi: 10.1109/tits.2018.2869768. 

[47] J. Liu, P. Musialski, P. Wonka, and J. Ye, "Tensor 

completion for estimating missing values in visual data," 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 35, pp. 208-220, 2013, doi: 

10.1109/TPAMI.2012.39. 

[48] P. Comon, X. Luciani, and A. de Almeida, "Tensor 

decompositions, alternating least squares and other Tales," 

Journal of Chemometrics, vol. 23, 2009, doi: 

10.1002/cem.1236. 

[49] J. Bergstra, R. Bardenet, B. Kégl, and Y. Bengio, 

"Algorithms for Hyper-Parameter Optimization," 

presented at the Advances in Neural Information 

Processing Systems, 2011. 

[50] J. Snoek, H. Larochelle, and R. Adams, "Practical 

bayesian optimization of machine learning algorithms," 

Advances in Neural Information Processing Systems, vol. 

4, 06/13 2012. 

[51] F. Zhao et al., "Exploratory Analysis of a Smartphone-

Based Travel Survey in Singapore," Transportation 

Research Record, Article no. 2494, pp. 45-56, 2015, doi: 

10.3141/2494-06. 
 

Jiping Xing (Member, IEEE)  received the 

Ph.D. degree in transportation engineering 

from the School of Transportation, Southeast 

University, Nanjing, China, in Jan. 2021, 

where he is currently a Post-Doctoral 

Fellow. During his PhD, he worked as a joint 

student at the University of Leeds for 13 

months. His research interests include traffic state estimation, 

complex urban network and traffic flow theory. In these areas, 

he has published over 10 articles in the peer-reviewed 

international journals. 

 

Ronghui Liu received the B.S. degree from 

Peking University, Beijing, China, and Ph.D. 

degree from Cambridge University, 

Cambridge, UK. She is currently a Professor 

with Institute for Transportation Studies, 

Unviersity of Leeds, Leeds, UK. Her main 

research interest focues on developing traffic 

modelling and data analytics tools to analyze the dynamic and 

complex travel behavior and interactions in transport networks.  

 

https://doi.org/10.1016/j.trc.2018.08.007


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

17 

Anish Khadka received the Master’s degree 
in transportation engineering from the School 

of Transportation, Southeast University, 

Nanjing, China. He is currently pursuing a 

Ph.D. degree with the Department of Civil 

and Environmental Engineering, University 

of Auckland in Auckland, New Zealand. His 

research interests include traffic safety, transport resilience, 

transportation big data analysis and modeling, and intelligent 

transportation systems. 

 

Zhiyuan Liu (Member, IEEE) received the 

Ph.D. degree in transportation engineering 

from National University of Singapore in 

2011. He is currently the Youth Chief 

Professor at Southeast University and the 

awardee of the 1000 Talent Program (Youth 

Program). His research interests include 

transport network modeling, transport data analytics, public 

transport, and intelligent transport systems. In these areas, he 

has published over 70 journal articles. 

 

 


