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SOLUTION OF INVERSE GEOMETRIC PROBLEMS USING A

NON-ITERATIVE MFS

ANDREAS KARAGEORGHIS, DANIEL LESNIC, AND LIVIU MARIN

Abstract. In most of the method of fundamental solutions (MFS) approaches employed so far for
the solution of inverse geometric problems, the MFS implementation typically leads to non–linear
systems which were solved by standard nonlinear iterative least squares software. In the current
approach, we apply a three–step non–iterative MFS technique for identifying a rigid inclusion from
internal data measurements, which consists of: (i) a direct problem to calculate the solution at the
set of measurement points, (ii) the solution of an ill–posed linear problem to determine the solution
on a known virtual boundary and (iii) the solution of a direct problem in the virtual domain which
leads to the identification of the unknown curve using the MATLAB R⃝ functions contour in 2D and
isosurface in 3D. The results of several numerical experiments for steady–state heat conduction
and linear elasticity in two and three dimensions are presented and analyzed.

1. Introduction

The method of fundamental solutions (MFS) has, in recent years, been used extensively for the
solution of inverse geometric problems [7,15]. This is because its main features (meshlessness and
ease of application to problems in complex geometries in 2D and 3D) make it ideally suited for the
solution of such problems in which the main dependent variable along with part of the boundary
are unknown and have to be determined from some extra suitable measurements. The MFS
formulations put forward in the literature typically lead to the solution of systems of nonlinear
equations which require the use of standard nonlinear iterative software such as the MATLABR⃝

routine lsqnonlin, the application of which can be quite costly. For the approach to become less
costly, the Jacobian of the system needs to be calculated and provided which is rather tedious [19].

The objective of this paper is to extend the application of the MFS combined with a non-iterative
level-set method for identifying a rigid inclusion from internal measurements in the fields of steady-
state heat conduction and linear elasticity. Therefore, we shall consider inverse geometric problems
of the type considered in [8,25,26] using the finite difference method, in [28] using the finite element
method and [9,27] using the boundary element method (BEM). In particular, we shall follow closely
the ideas and strategy developed in [27] which are based on the virtual area/volume concept,
and adjust them to the MFS. The proposed method leads to the solution of an ill–conditioned
system of linear equations to calculate the solution on the virtual boundary. This involves the
pseudo–inverse of an ill–conditioned matrix which is calculated and regularized using the truncated
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singular value decomposition (SVD). We assume that the unknown rigid inclusion is star–shaped
and its boundary lies in a known annular domain in between the virtual boundary and a curve
on which the internal measurements are situated. Then, the unknown boundary is subsequently
recovered by searching for a specific iso–curve in two dimensions (2D) or a specific iso–surface in
three dimensions (3D). These searches can be easily carried out utilizing the MATLABR⃝ functions
contour in 2D and isosurface in 3D. We should mention that the proposed method has some
similarities to the Kirsch and Kress method [20, 21] proposed by [1], see also [2], for the solution
of a different type of inverse geometric problems. This leads to another way of determining the
solution on the virtual boundary and Tikhonov regularization [12, Section 4.4] is applied instead
of the truncated SVD.

The type of problems to be solved is presented in Section 2. In Section 3 we describe in detail
the application of the method in the three steps which lead to the determination of the unknown
boundary. The results of several numerical experiments in 2D and 3D steady–state heat conduction
and linear elasticity are analyzed in Sections 4 and 5. Finally, concluding remarks are given in
Section 6.

2. Mathematical formulation

We consider the inverse boundary value problem (BVP) for the Laplace equation in R
2 or R3 [27]

∆u = 0 in Ω := Ω2\Ω1, (2.1a)

subject to the boundary conditions (BCs)

u = uint ≡ constant on ∂Ω1 (2.1b)

and
u = uext ̸≡ uint on ∂Ω2. (2.1c)

In (2.1a), the harmonic function u may represent an electric potential in electrostatics or a tem-
perature in steady–state heat conduction. Also, the Dirichlet BC (2.1c) may be replaced by a
Robin BC to model the heat exchange with the surrounding environment. The domains Ω1 and
Ω2 are bounded with sufficiently smooth boundaries ∂Ω1 and ∂Ω2, the perfectly conducting rigid
inclusion Ω1 is compactly contained in Ω2 and Ω = Ω2\Ω1 is assumed connected. The temperature
uext in (2.1c) along the exposed boundary ∂Ω2 may be experimentally measured with an infrared
scanner. The BC (2.1b) models the presence of the rigid inclusion Ω1 on whose boundary it is
applied, where uint is a constant (usually equal to zero as one can work with u− uint), which may
be known or unknown. In the latter case, we need to also impose an extra condition

∫

∂Ω2

∂u
∂n
ds = 0,

see [10], where n is the outward unit normal to the boundary ∂Ω2. In this paper, we assume for
simplicity, that the constant uint in (2.1b) is known.

As in the inverse problem Ω1 is unknown, to compensate for this missing information, we consider
the additional measured internal data

u(xℓ) = uℓ at the points (xℓ)ℓ=1,L ∈ Ω. (2.1d)
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Alternatively, one could measure the flux ∂nu on a portion of ∂Ω2, where n is the outward unit
normal to the boundary ∂Ω2, as in electrical impedance tomography [6].

The internal measurements in (2.1d) are understood to have been taken with sensors (thermo-
couples) embedded within the material prior to any practical installation and have also been
considered previously in inverse Cauchy steady–state heat conduction problems [14]. Of course,
in order to achieve the uniqueness of solution, the measurement points xℓ ∈ Ω for ℓ = 1, L, (with
L reasonably large) should be spread (preferably uniformly) on a fixed prescribed closed, non–
intersecting curve ∂Ω4 such that the unknown void Ω1 is always a subset of Ω4. This would then
ensure that the direct Dirichlet problem for the Laplace equation in the annulus Ω2\Ω4 can be
solved to provide the Neumann data on the inner boundary ∂Ω4. Then, on the boundary ∂Ω4, we
would have available the Cauchy data which secures the unique identification of the rigid inclusion
Ω1, see e.g., [10, 22]. As for the existence of solution of the inverse problem (2.1a)–(2.1d), it is
assumed that the extra measured data (2.1d) is compatible, i.e. it arises from the solution of the
direct well–posed problem (2.1a)–(2.1c), see [4] for more discussion on the issue of compatibility
of Cauchy data in inverse problems.

3. The method of fundamental solutions (MFS)

In the MFS, we represent a harmonic function satisfying the Laplace equation (2.1a) as a linear
combination of 2N non–singular fundamental solutions

uN(c, ξ;x) =
2N
∑

k=1

ck G(x, ξk), x ∈ Ω, (3.1)

where G is the fundamental solution of the Laplace operator, given by

G(x, ξ) =



















− 1

2π
ln |x− ξ| in 2D,

1

4π

1

|x− ξ| in 3D,

(3.2)

and the source points ξk are situated outside Ω. The justification for the expansion (3.1) is given
by the denseness of the set of single–layer potentials, involving the fundamental solutions (3.2)
with sources located outside Ω, into the set of harmonic functions in Ω, [1, 5].

We shall follow the steps in the approach described in [27]. Note that although the description
provided in the sequel is for inverse geometric problems in 2D, it can be easily extended to
corresponding problems in 3D, as indeed will be later shown in section 5.2 in the context of 3D
linear elasticity.
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3.1. Step 1: Direct problem. The first step is to devise or select a suitable direct problem
solver that is fast and accurate to be used iteratively (or non–iteratively) in a minimization process
required when solving inverse problems. The direct problem solver is also needed to fabricate the
numerically simulated extra data (2.1c) in cases when an analytical solution to the direct problem
(2.1a)–(2.1c) is not available. Moreover, in Step 1, the direct problem methodology yields, through
the linear system of equations (3.10) derived below, an explicit discrete representation of the direct
map connecting the set of MFS unknown coefficients c = (ck)k=1,2N to the finite set of L internal
measurements (2.1c). We therefore consider the direct BVP consisting of (2.1a)–(2.1c) with the
boundary ∂Ω1 known. In this formulation, a total of 2N sources (ξk)k=1,2N are placed outside

the domain Ω, i.e. in Ω1 ∪
(

R
2\Ω2

)

. The first N of these sources, (ξk)k=1,N , are placed in Ω1,

on a pseudo–boundary ∂Ω′
1 similar to ∂Ω1. The remaining N sources (ξk)k=N+1,2N are placed

in R
2\Ω2, on a pseudo–boundary ∂Ω′

2 similar to ∂Ω2. In the current MFS approach the two
pseudo–boundaries ∂Ω′

1 and ∂Ω′
2 are fixed.

We shall take the exterior boundary ∂Ω2 to be a circle of radius R centred at the origin, hence
the sources on ∂Ω′

2 will be

ξN+k = ζext R (cosϑk, sinϑk), ϑk =
2π(k − 1)

N
, k = 1, N, (3.3)

and the known dilation parameter ζext > 1. For simplicity, let us assume that the boundary ∂Ω1

is a smooth, star–like curve with respect to the origin. Then, in polar coordinates the equation of
∂Ω1 is

x = r(ϑ) cosϑ, y = r(ϑ) sinϑ, ϑ ∈ [0, 2π), (3.4)

where r is a smooth 2π−periodic function. The source points on ∂Ω′
1 will be

ξk = ζint r(ϑk) (cosϑk, sinϑk) , k = 1, N, (3.5)

where ζint ∈ (0, 1) is the contraction parameter. In addition to the sources we shall also define 2M
boundary collocation points. The first M of these, (xk)k=1,M will be placed on ∂Ω1, as follows:

xk = r(ϑ̃k)
(

cos ϑ̃k, sin ϑ̃k

)

, k = 1,M, (3.6)

where ϑ̃k = 2π(k−1)/M, k = 1,M . The remaining M points (xM+k)k=1,M will be placed on ∂Ω2,
i.e.

xM+k = R (cos ϑ̃k, sin ϑ̃k), k = 1,M. (3.7)

The pseudo–boundaries on which the sources are placed and the domain of this BVP are presented
in Figure 1(a).

Collocation of the BCs (2.1b)–(2.1c) at the 2M boundary collocation points (3.6)–(3.7), via (3.1),
leads to the linear system of equations

A c = u, (3.8)

where the matrix A ∈ R
2M×2N is defined by

Ai,j = G(xi, ξj), i = 1, 2M, j = 1, 2N,
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u ∈ R
2M×1 is defined by

ui = uint, uM+i = uext(xM+i), i = 1,M,

and c ∈ R
2N×1 is the vector of unknown coefficients. Having determined c by solving the system

of equations (3.8) we calculate the approximation (3.1) at the additional points (2.1d) to yield

uN(c, ξ;xℓ) =
2N
∑

k=1

ck G(xℓ, ξk), ℓ = 1, L. (3.9)

If we define the vector umeas = [uN(c, ξ;x1), uN(c, ξ;x2), . . . , uN(c, ξ;xL)]
T , the system of equa-

tions (3.9) can be written as

umeas = B c, (3.10)

where B ∈ R
L×2N is given by

Bℓ,j = G(xℓ, ξj), ℓ = 1, L, j = 1, 2N.

3.2. Step 2: Inverse problem. In the inverse problem, equations (3.8) and (3.10) can be as-
sembled as a nonlinear system of algebraic equations in the unknowns consisting of the coefficients
c = (ck)k=1,2N and the radii r = (r(θ̃i)i=1,M , which can be solved using a nonlinear least–squares
method penalised with extra regularization to achieve a stable solution. However, if we analyse the
BVP (2.1a)–(2.1c) again, but instead of the boundary ∂Ω1 we consider the known circular virtual
boundary ∂Ω3 with radius r0 centred at the origin, such that 0 < r0 < R, so now Ω := Ω2\Ω3,
see Figure 1(b), it is possible to obtain the vector c of MFS coefficients separately using only
matrix/vector linear algebra manipulations, as follows. We select N sources as in (3.3) given by

ξN+k = ηext R (cosφk, sinφk) , k = 1,N , (3.11)

where φk = 2π(k− 1)/N for k = 1,N , and for the remaining N sources, instead of (3.5), we take

ξk = ηint r0 (cosφk, sinφk) , k = 1,N , (3.12)

where ηint ∈ (0, 1). We also select 2N collocation points as

∂Ω3 ∋ xk = r0 (cosφk, sinφk) , k = 1,N , (3.13)

and

∂Ω2 ∋ xN+k = R (cosφk, sinφk), k = 1,N . (3.14)

A depiction of the features of this BVP is shown in Figure 1(b). Following [27], collocating the
approximation (3.1) at the 2N collocation points (3.13) and (3.14) leads to the system of equations
(3.8), where now the matrix A ∈ R

2N×2N is square and defined by

Ai,j = G(xi, ξj), i, j = 1, 2N , (3.15)

u ∈ R
2N×1 is defined by

ui = uviri , uN+i = uext(xN+i), i = 1,N ,
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and c ∈ R
2N×1 is the vector of unknown coefficients. Note that the values (uviri)i=1,N are also

unknown. Moreover, the matrix B in (3.10) is now defined by

Bℓ,j = G(xℓ, ξj), ℓ = 1, L, j = 1, 2N . (3.16)

From (3.8), with the current definitions of A and u, we may write

c = A−1u = A−1

[

uα

uβ

]

, (3.17)

where uα = [uvir1 , uvir2 , . . . , uvirN ]
T and uβ = [uext(xN+1), uext(xN+2), . . . , uext(x2N )]T . Note that

the vector uα is unknown. Also, from (3.10) and (3.17) we may denote (with the current definitions
of matrices A and B in (3.15) and (3.16), respectively)

ũmeas := B c = BA−1u = [A1|A2]

[

uα

uβ

]

= A1uα + A2uβ = A1uα + g, (3.18)

where [A1|A2] = BA−1 with A1, A2 ∈ R
L×N and g = A2uβ. Note that g ∈ R

L×1 is known.

We seek to minimize the difference between the measurement vector umeas and the estimate of the
measurement vector ũmeas in (3.18) by minimizing the multivariate error function

E(uα) = (ũmeas − umeas)
T (ũmeas − umeas) (3.19)

or, from (3.18),

E(uα) = (uT
αA

T
1 + gT − uT

meas)(A1uα + g − umeas). (3.20)

To obtain the optimal uα for minimizing E we solve

∇uα
E(uα) = 2AT

1A1uα + 2AT
1 (g − umeas) = 0 (3.21)

to result in

uα =
(

AT
1A1

)†
AT

1 (umeas − g) . (3.22)

The solution (3.22) is introduced into (3.17) to obtain the vector of coefficients c = (cj)j=1,2N and
to finally obtain the approximation

uN (c, ξ;x) =
2N
∑

k=1

ck G(x, ξk), x ∈ Ω2\Ω3 (3.23)

to the solution of BVP (2.1a)–(2.1c) in the domain Ω2\Ω3.

Remark. In (3.22), the matrix AT
1A1 ∈ R

N×N is poorly conditioned if L ≥ N or singular if

L < N , and its Moore–Penrose pseudoinverse
(

AT
1A1

)†
is calculated with the MATLABR⃝ function

pinv(AT
1A1,tol). This function is based on the SVD of the matrix AT

1A1. More specifically, the
SVD takes the form

AT
1 A1 = U ΣV T , (3.24)

where Σ = diag (σ1, σ2, . . . , σN ) ∈ R
N×N is a diagonal matrix with its singular values satisfying

σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0.
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In order to deal with the ill–conditioning of the matrix in (3.24), in pinv, singular values which are
smaller than the specified singular value tolerance tol are treated as zero, in which case, instead
of (3.24) we can write

AT
1A1 = [U1 U2]

[

Σ1 0
0 0

]

[V1 V2]
T , (3.25)

where Σ1 = diag (σ1, σ2, . . . , σN1
) is an N1×N1 diagonal matrix and, σℓ < tol, ℓ = N1+1, . . . ,N .

The Moore–Penrose pseudoinverse of AT
1A1 is then

(

AT
1A1

)†
= V1Σ

−1
1 UT

1 . (3.26)

This is the essence of truncated SVD [11], see also [12, Section 4.2], which is a spectral filtering
method removing small singular values and providing regularization if tol is selected appropriately
depending on the amount of noise with which the measured data (2.1d) is contaminated.

3.3. Step 3. Assuming that u can be analytically continued in Ω2\Ω3, [24], we solve the BVP in
the virtual domain Ω2\Ω3 with the known boundary data (2.1c) on ∂Ω2 and the calculated data uα

on ∂Ω3 given by (3.22), and evaluate uN . More specifically, assuming that Ω3 ⊂ Ω1 ⊂ Ω4, we then
seek the level–set iso–curve or iso–surface uN = uint ≡ constant to determine the boundary ∂Ω1 of
the unknown rigid inclusion Ω1. This task is accomplished via the MATLABR⃝ functions contour
in 2D and isosurface in 3D. We can then seek for the boundary ∂Ω1 of the rigid inclusion as the
level-set of a curve/surface satisfying (2.1b), [13].

1

2

(a) Step 1

2
3

(b) Steps 2-3

Figure 1. Problem discretization: (a) Geometry of direct problem in Step 1, (b)
Geometry of inverse problem in Steps 2–3. The pseudo–boundaries are denoted by
dotted red curves (- -) and the measurement points by blue asterisks (*).
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4. Numerical examples

To avoid an inverse crime, we took different numbers of degrees of freedom in the solutions of the
direct (M,N) and inverse (N ) problems. We also choose values for ζint, ζext which are, respectively,
different to ηint, ηext. The calculated measured data (3.10) in Step 1 were contaminated with noise
by replacing (umeas)m by (1+p ϱm)(umeas)m, m = 1, L, where p is the percentage noise added and

[ϱ1, ϱ2, . . . , ϱL]
T is a random noisy variable vector in [-1,1] obtained via the MATLAB R⃝ command

-1+2*rand(1,L). Unless otherwise stated, all shapes considered are centred at the origin of the
Cartesian coordinates system. The boundary values in (2.1b) and (2.1c) are taken as uint = 1 and
uext = 10 in Examples 1–6. In the 2D Examples 1–5, the exterior circle ∂Ω2 has a radius R = 1
and the virtual circle ∂Ω3 has radius 0.3 (in Examples 1–4) and 0.25 (in Example 5). In the 2D
examples we also select L = 10 points for Examples 1–3, L = 15 for Example 4 and L = 20 for
Example 5 on the circle ∂Ω4 with radius 0.85 for the measurement points in (2.1d). In Step 1,
we solved the direct problem in Examples 1–5 with M = N = 20 and in Steps 2 and 3 we took
N = 25. Finally, unless otherwise stated, in Step 3 the solution was evaluated on a 41× 41 polar
grid in the virtual domain Ω2\Ω3 in order to impose (2.1b) and determine the boundary ∂Ω1 of
the inclusion Ω1. In Figures 2–6, the reconstructed curve is in red, the virtual circle ∂Ω3 in blue,
the outer circle ∂Ω2 in black, the true curve ∂Ω1 in black dots and the measurement points on
∂Ω4 in blue asterisks.

4.1. Example 1. We consider Example 1 from [27] where the curve to be reproduced is a circle
of radius 0.5. In Figure 2 we present the reconstructed results obtained with no noise and noise
p = 5% and various values of tol, which are shown to improve the reconstructed curve. In case of
no noise, the use of tol was not found necessary and all singular values were taken into account in
(3.25). However, when the input data (2.1d) is contaminated with noise, since the inverse problem
is ill–posed by violating the continuous dependence on the input data, the use of the regularization
parameter tol is necessary in order to obtain a stable and meaningful recovery of the unknown
rigid inclusion Ω1. For instance, Figure 2(b) shows that if tol is not chosen appropriately then the
recovered contour of ∂Ω1 satisfying uN = uint is not physically meaningful, being clearly unstable.
However, appropriate choices of tol, such as in Figure 2(c) and even better in Figure 2(d), reveal
that a stable and meaningful solution can be achieved with the proposed method. Note that in
the interest of open science and reproducibility the MATLABR⃝ code for this example is available
at [29].

In the next two examples we assess the performance of the method for reconstructing more com-
plicated elliptical– or sinusoidal–shape rigid inclusions.

4.2. Example 2. We consider Example 2 from [27] where the curve to be reproduced is an ellipse
with a semi–major axis of length 0.7 and a semi–minor one of length 0.5. In Figure 3 we present
the reconstructed results obtained with no noise and noise p = 5% and various values of tol,
which are shown to improve the reconstructed curve.
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(c) Noise p = 5%, tol= 10−3
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(d) Noise p = 5%, tol= 5× 10−3

Figure 2. Example 1: Reconstruction of boundary ∂Ω1 with no noise and noise
p = 5% in (2.1d) and various values of tol.

4.3. Example 3. We next consider Example 3 from [27] where the curve to be reproduced has
polar equation r(ϑ) = 0.6 + 0.1 sin(ϑ + π/4). In Figure 4 we present the reconstructed results
obtained with no noise and noise p = 5% and various values of tol, which are shown to improve
the reconstructed curve.

In the next two examples we assess the performance of the method in reconstructing more severe
concave rigid inclusions having peanut or bean shapes.

4.4. Example 4. We next consider a peanut–shaped domain where the curve to be reproduced
has polar equation r(ϑ) = 0.7

√
cos2 ϑ+ 0.25 sin2 ϑ. In Figure 5 we present the reconstructed

results obtained with no noise and noise p = 5%. For this example, due to the more complex
irregular shape, the number of measurements had to be increased from L = 10 to L = 15 for more
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(d) Noise p = 5%, tol= 5× 10−4

Figure 3. Example 2: Reconstruction of boundary with no noise and noise p = 5%
and various values of tol.

accurate retrievals. However, the rather unstable recovery presented in Figure 5(b) highlights
some limitations of the method to deal with a high level of noise and complicated non–convex
rigid inclusions.

4.5. Example 5. We next consider a bean-shaped domain where the curve to be reproduced has
polar equation r(ϑ) = (0.5 + 0.4 cos(ϑ) + 0.1 sin(2ϑ))/(1 + 0.7 cos(ϑ)). In this case the domain is
shifted by (-0.1,0.1). In Figure 6 we present the reconstructed results obtained with no noise and
noise p = 5%. As for Example 4, we have increased the number of measurements to L = 20 due to
the more complex bean–shaped domain Ω1 to be retrieved. As expected, less accurate and stable
reconstructions are obtained compared to the accurate retrievals obtained for the more regular
geometries in Examples 1–3.
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(b) Noise p = 5%, tol= 10−4
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(c) Noise p = 5%, tol= 10−3
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(d) Noise p = 5%, tol= 2× 10−3

Figure 4. Example 3: Reconstruction of boundary with no noise and noise p = 5%
and various values of tol.

The next two examples illustrate the capability of the method to reconstruct 3D rigid inclusions.

4.6. Example 6. We consider Example 5 from [28], which is a 3D example where the surface to
be reproduced is a sphere of radius 0.5. The exterior sphere Ω2 has radius R = 1 and the virtual
sphere Ω3 has radius 0.4. We also select L = 64 points on the sphere Ω4 with radius 0.75 for the
measurement points in (2.1d). In Step 1, we solved the direct problem with M = N = 100 and in
Steps 2 and 3 we took N = 144. Finally, the solution was evaluated in the virtual domain Ω2\Ω3

on a 21×21×21 spherical grid. In Figure 7 we present the reconstructed results obtained with no
noise and noise p = 5% and various values of tol, which are shown to improve the reconstructed
curve.
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(b) Noise p = 5%, tol= 10−3

Figure 5. Example 4: Reconstruction of boundary with no noise and noise p = 5%
and various values of tol.
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(b) Noise p = 5%, tol= 10−4

Figure 6. Example 5: Reconstruction of boundary with no noise and noise p = 5%
and various values of tol.

4.7. Example 7. We consider Example 6 from [28], which is another 3D example. The geometry
of the problem is depicted in Figure 8 and consists of a (0, 0.5) × (0, 0.5) square base and the
unknown surface to be reproduced is given by z = f(x, y) = 0.08 + 0.015 sin(4πx) cos(4πy). The
BCs on the bottom plane are u = ubottom = 10 and on the top surface u = utop = 1, while on
the vertical faces they are ∂u/∂n = 0. The virtual plane is z = 0.1 and we select L = 225 points
on the plane z = 0.05 for the measurement points. Note that in this particular problem the
description presented in Section 3.2 changes slightly, notably the expression for the matrix A in
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(a) No noise (b) Noise p = 5%, tol= 10−4

(c) Noise p = 5%, tol= 10−3 (d) Noise p = 5%, tol= 10−2

Figure 7. Example 6: Reconstruction of spherical surface with no noise and noise
p = 5% and various values of tol.The reproduced surface is in red and the correct
curve in black dots.

(3.15) and equations (3.17) and (3.18). In Step 1, we solved the direct problem with 400 points
on the top and bottom surface and 100 on the side faces yielding a total of 1200 collocation points
and sources. In Steps 2 and 3, we took N = 768. Finally, the solution was evaluated in the virtual
domain in a 21× 21× 21 grid. In Figure 9 we present the reconstructed results obtained with no
noise and noise p = 5% and various values of tol, which are shown to improve the reconstructed
curve.
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Figure 8. Geometry of Example 7.

(a) No noise (b) Noise p = 5%, tol= 10−4

(c) Noise p = 5%, tol= 10−3 (d) Noise p = 5%, tol= 10−2

Figure 9. Example 7: Reconstruction of top surface with no noise and noise
p = 5% and various values of tol. The reproduced surface is in red and the
correct curve in black dots.
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5. Extension to linear elasticity

The analysis of the paper so far has concerned applications to steady–state heat conduction gov-
erned by the simple Laplace scalar equation (2.1a). In this section, we formulate the corresponding
inverse problems for linear elasticity in both 2D and 3D and describe the development of the non–
iterative MFS along with numerical results and discussions.

5.1. 2D problems. We first consider the inverse BVP for the Cauchy–Navier equations of linear
elasticity in R

2 for the displacement vector u = (u1, u2) given by [16]

(

2− 2ν

1− 2ν

)

∂2u1

∂x2
+

(

1

1− 2ν

)

∂2u2

∂x∂y
+

∂2u1

∂y2
= 0, in Ω = Ω2\Ω1,

(5.1a)

∂2u2

∂x2
+

(

1

1− 2ν

)

∂2u1

∂x∂y
+

(

2− 2ν

1− 2ν

)

∂2u2

∂y2
= 0, in Ω,

subject to the Dirichlet BCs

u1 = uint1 ≡ constant, u2 = uint2 ≡ constant on ∂Ω1 (5.2)

and

u1 = uext1 , u2 = uext2 on ∂Ω2, (5.3)

where (uext1 , uext2) ̸≡ (uint1 , uint2). In (5.1) ν ∈ (0, 1/2) is the Poisson’s ratio and the geometry of
the BVP is identical to the one described in Section 2. In the inverse problem, the rigid inclusion
Ω1 is unknown and to compensate for it we consider the additional measured internal data of the
displacements

u1(xℓ) = u1ℓ , u2(xℓ) = u2ℓ at the points (xℓ)ℓ=1,L ∈ Ω. (5.4)

As commented at the end of Section 2, if this data is extrapolated to be defined on a closed
curve ∂Ω4 containing the inclusion Ω1 in its interior, then the uniqueness of the rigid inclusion Ω1

holds, [2].

In the MFS, we approximate the solution (u1, u2) of (5.1) by

u1N (c,d, ξ;x) =
N
∑

k=1

ck G11(x, ξk) +
N
∑

k=1

dk G12(x, ξk), x ∈ Ω, (5.5a)

u2N (c,d, ξ;x) =
N
∑

k=1

ck G21(x, ξk) +
N
∑

k=1

dk G22(x, ξk), x ∈ Ω, (5.5b)
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where, as in Section 3, ξk are the sources located outside Ω and

G11(x, ξ) =
1

8πµ(1− ν)

[

−(3− 4ν) ln r +
(x− ξx)

2

r2

]

, (5.6a)

G12(x, ξ) =
1

8πµ(1− ν)

[

(x− ξx)(y − ξy)

r2

]

, (5.6b)

G21(x, ξ) = G12(x, ξ), (5.6c)

G22(x, ξ) =
1

8πµ(1− ν)

[

−(3− 4ν) ln r +
(y − ξy)

2

r2

]

, (5.6d)

represent the fundamental solution of the Cauchy–Navier system in 2D. In (5.6), x = (x, y),
ξ = (ξx, ξy), r = |x− ξ| and µ is the shear modulus.
The three steps described in Section 3 are now described as follows.

5.1.1. Step 1: Direct problem. We first consider the direct BVP consisting of (5.1)–(5.3) with the
boundary ∂Ω1 known. As in Section 3.1, we take 2N sources and 2M boundary collocation points
and the discretization details are identical.

Collocation of the BCs (5.2)–(5.3) at the 2M boundary collocation points leads to a linear system
of the form

A

(

c

d

)

= u, (5.7)

where the matrix A ∈ R
4M×4N has components

Ai,j = G11(xi, ξj), Ai,2N+j = G12(xi, ξj),

A2M+i,j = G21(xi, ξj), A2M+i,2N+j = G22(xi, ξj), i = 1, 2M, j = 1, 2N,

u ∈ R
4M×1 has components

ui = uint1 , uM+i = uext1(xM+i), u2M+i = uint2 , u3M+i = uext2(xM+i), i = 1,M,

and c,d ∈ R
2N×1 are the vectors of unknown coefficients. Having determined c,d by solving the

system of equations (5.7), we calculate the approximations (5.5) at the additional points (5.4)
from

u1N (c,d, ξ;xℓ) =
N
∑

k=1

ck G11(xℓ, ξk) +
N
∑

k=1

dk G12(xℓ, ξk), ℓ = 1, L, (5.8)

and

u2N (c,d, ξ;xℓ) =
N
∑

k=1

ck G21(xℓ, ξk) +
N
∑

k=1

dk G22(xℓ, ξk), ℓ = 1, L. (5.9)

If we define the vector

umeas = [u1N (c, ξ;x1, u1N (c, ξ;x2), . . . , u1N (c, ξ;xL), u2N (c, ξ;x1), u2N (c, ξ;x2), . . . , u2N (c, ξ;xL)]
T ,
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equations (5.8) and (5.9) can be combined as

umeas = B

(

c

d

)

, (5.10)

where the matrix B ∈ R
2L×4N has the components

Bℓ,j = G11(xℓ, ξj), Bℓ,2N+j = G12(xℓ, ξj),

BL+ℓ,j = G21(xℓ, ξj), BL+ℓ,2N+j = G22(xℓ, ξj), ℓ = 1, L, j = 1, 2N.

5.1.2. Step 2: Inverse problem. As in Section 3.2, we examine the BVP (5.1)–(5.3) again but
instead of the boundary ∂Ω1 we consider the known circular virtual boundary ∂Ω3 with radius
r0 > 0 centred at the origin, see Figure 1(b).
Collocating the approximation (3.1) at the 2N collocation points leads to a system of equations
(5.7), where now the matrix A ∈ R

4N×4N is square and defined by

Ai,j = G11(xi, ξj), Ai,2N+j = G12(xi, ξj),

A2N+i,j = G21(xi, ξj), A2N+i,2N+j = G22(xi, ξj), i, j = 1, 2N , (5.11)

u ∈ R
4N×1 is defined by

ui = uvir1i
, uN+i = uext1(xN+i), u2N+i = uvir2i

, u3N+i = uext2(xN+i), i = 1,N ,

and c,d ∈ R
2N×1 are the vectors of unknown coefficients. Note that the values

(

uvir1i

)

i=1,N
and

(

uvir2i

)

i=1,N
are also unknown. Moreover, the matrix B in (5.10) is now defined by

Bℓ,j = G11(xℓ, ξj), Bℓ,2N+j = G12(xℓ, ξj),

BL+ℓ,j = G21(xℓ, ξj), BL+ℓ,2N+j = G22(xℓ, ξj), ℓ = 1, L, j = 1, 2N . (5.12)

From (5.7), with the current definitions of A and u, we may write

(

c

d

)

= A−1u = A−1









uα

uβ

uγ

uδ









, (5.13)

where

uα =
[

uvir11
, uvir12

, . . . , uvir1N

]T
, uβ = [uext1(xN+1), uext1(xN+2), . . . , uext1(x2N )]T ,

uγ =
[

uvir21
, uvir22

, . . . , uvir2N

]T
, uδ = [uext2(xN+1), uext2(xN+2), . . . , uext2(x2N )]T .

Note that the vectors uα and uγ are unknown.
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Also, from (5.10) and (5.13) we may write (with the current definitions of matrices A and B in
(5.11) and (5.12), respectively)

ũmeas = B c = BA−1u = [A1|A2|A3|A4]









uα

uβ

uγ

uδ









= A1uα+A2uβ+A3uγ+A4uδ = A13v+g, (5.14)

where [A1|A2|A3|A4] = BA−1 with A1, A2, A3, A4 ∈ R
2L×N , A13 = [A1|A3], g = A2uβ +A4uδ, and

v =

(

uα

uγ

)

.

Note that g ∈ R
2L×1 is known.

We seek to minimize the difference between the measurement vector umeas and the estimate of the
measurement vector ũmeas in (5.14) by examining the multivariate error function

E(v) = (ũmeas − umeas)
T (ũmeas − umeas) (5.15)

or, from (3.18),

E(v) = (vTAT
13 + gT − uT

meas)(A13v + g − umeas). (5.16)

To obtain the optimal v for minimizing E we take

∇vE(v) = 2AT
13A13v + 2AT

13 (g − umeas) = 0 (5.17)

or

v =
(

AT
13A13

)†
AT

13 (umeas − g) . (5.18)

As in (3.22), in (5.18), the matrix AT
13A13 ∈ R

2N×2N is poorly conditioned if L ≥ N or singular if
L < N and its Moore–Penrose pseudoinverse is calculated with the MATLAB R⃝ function pinv.

5.1.3. Step 3. We solve the BVP in the virtual domain Ω2\Ω3 with the known boundary data (5.3)
on ∂Ω2 and the calculated data v on ∂Ω3 given by (5.18), and evaluate u1N and u2N . We then
seek to intersect the level–set iso–curves u1N = uint1 and u2N = uint2 to determine the boundary
∂Ω1 of the unknown rigid inclusion Ω1. This task is accomplished via the MATLABR⃝ function
contour.

We finally demonstrate the capability of the proposed technique to reconstruct rigid inclusions in
3D linear elasticity.
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5.1.4. Example 8. We consider an example where the curve to be reproduced is a circle of radius
0.5 and all the details of the geometry are the same as in Example 1. The boundary values in (5.2)
and (5.3) are taken as uint1 = uint2 = 1 and uext1 = uext2 = 10. We took ν = 0.3 and µ = 1. The
exterior circle ∂Ω2 has a radius R = 1 and the virtual circle ∂Ω3 has radius 0.3. We took L = 20
measurement points on the circle ∂Ω4 with radius 0.65 for the measurement points. In Step 1, we
solved the direct problem M = N = 20 and in Steps 2 and 3 we took N = 25 and the solution
was evaluated on a 41 × 41 polar grid in the virtual domain Ω2\Ω3 in order to impose (5.2) and
determine the boundary ∂Ω1 of the rigid inclusion Ω1. In Figure 10, we present the reconstructed
results obtained with no noise and noise p = 5% and various values of tol, which are shown to
improve the reconstructed curve. Both iso–curves u1N = uint1 and u2N = uint2 are presented in
solid and dashed lines, respectively.
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(d) Noise p = 5%, tol= 10−2

Figure 10. Example 8: Reconstruction of boundary with no noise and noise
p = 5% and various values of tol.
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5.2. 3D problems. We now consider the inverse BVP for the Cauchy–Navier equations of linear
elasticity in R

3 for the displacement vector u = (u1, u2, u3) given by

(

2− 2ν

1− 2ν

)

∂2u1

∂x2
+

∂2u1

∂y2
+

∂2u1

∂z2
+

(

1

1− 2ν

)

∂2u2

∂x∂y
+

(

1

1− 2ν

)

∂2u3

∂x∂z
= 0,

∂2u2

∂x2
+

(

2− 2ν

1− 2ν

)

∂2u2

∂y2
+

∂2u2

∂z2
+

(

1

1− 2ν

)

∂2u1

∂x∂y
+

(

1

1− 2ν

)

∂2u3

∂y∂z
= 0, (5.19)

∂2u3

∂x2
+

∂2u3

∂y2
+

(

2− 2ν

1− 2ν

)

∂2u3

∂z2
+

(

1

1− 2ν

)

∂2u1

∂x∂z
+

(

1

1− 2ν

)

∂2u2

∂y∂z
= 0,

subject to the Dirichlet BCs

u1 = uint1 ≡ constant, u2 = uint2 ≡ constant, u3 = uint3 ≡ constant on ∂Ω1 (5.20)

and

u1 = uext1 , u2 = uext2 , u2 = uext3 on ∂Ω2, (5.21)

where (uext1 , uext2 , uext3) ̸≡ (uint1 , uint2 , uint3). In the inverse problem, the domain Ω1 is unknown
and to compensate for it we consider the additional measured internal data

u1(xℓ) = u1ℓ , u2(xℓ) = u2ℓ , u3(xℓ) = u3ℓ at the points (xℓ)ℓ=1,L ∈ Ω. (5.22)

In the MFS, we approximate the solution (u1, u2, u3) of (5.19) by

û1N (c,d, e, ξ;x) =
N
∑

k=1

ck G11(x, ξk) +
N
∑

k=1

dk G12(x, ξk) +
N
∑

k=1

ek G13(x, ξk), (5.23a)

û2N (c,d, e, ξ;x) =
N
∑

k=1

ck G21(x, ξk) +
N
∑

k=1

dk G22(x, ξk) +
N
∑

k=1

ek G23(x, ξk), (5.23b)

û3N (c,d, e, ξ;x) =
N
∑

k=1

ck G31(x, ξk) +
N
∑

k=1

dk G32(x, ξk) +
N
∑

k=1

ek G33(x, ξk), (5.23c)



MFS FOR INVERSE GEOMETRIC PROBLEMS 21

where the fundamental solution of the Cauchy–Navier system in 3D is

G11(x, ξ) =
1

16πµ(1− ν)

1

r

[

(3− 4ν) +
(x− ξx)

2

r2

]

, (5.24a)

G12(x, ξ) =
1

16πµ(1− ν)

(x− ξx)(y − ξy)

r3
, (5.24b)

G13(x, ξ) =
1

16πµ(1− ν)

(x− ξx)(z − ξz)

r3
, (5.24c)

G22(x, ξ) =
1

16πµ(1− ν)

1

r

[

(3− 4ν) +
(y − ξy)

2

r2

]

, (5.24d)

G23(x, ξ) =
1

16πµ(1− ν)

(y − ξy)(z − ξz)

r3
, (5.24e)

G33(x, ξ) =
1

16πµ(1− ν)

1

r

[

(3− 4ν) +
(z − ξz)

2

r2

]

, (5.24f)

and G21 = G12, G31 = G13 and G32 = G23, x = (x, y, z), ξ = (ξx, ξy, ξz) and r = |x− ξ|.

Step 1 is essentially the same as the one described in Section 5.1.1 with the difference that the
matrix A in (5.7) is now 6M × 6N . Also, in (5.10), we now have umeas ∈ R

3L×1 and B ∈ R
3L×6N .

Step 2 is mostly the same as in Section 5.1.2, but in (5.11) we have that A ∈ R
6N×6N and

u ∈ R
6N×1 is defined from

ui = uvir1i
, uN+i = uext1(xN+i), u2N+i = uvir2i

, u3N+i = uext2(xN+i),

u4N+i = uvir3i
, u5N+i = uext3(xN+i), i = 1,N ,

and now the vectors of unknown coefficients are c,d, e ∈ R
2N×1.

Equation (5.13) is replaced by





c

d

e



 = A−1u = A−1

















uα

uβ

uγ

uδ

uϵ

uζ

















, (5.25)

where the vectors uα,uγ and uϵ are unknown.
Equation (5.14) is replaced by

ũmeas = B c = BA−1u = [A1|A2|A3|A4|A5|A6]

















uα

uβ

uγ

uδ

uϵ

uζ

















= A135v + g, (5.26)
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where [A1|A2|A3|A4|A5|A6] = BA−1 with A1, A2, A3, A4, A5, A6 ∈ R
3L×N , A135 = [A1|A3|A5],

g = A2uβ + A4uδ + A6uζ , and

v =





uα

uγ

uϵ



 .

Equation (5.18) becomes

v =
(

AT
135A135

)†
AT

135 (umeas − g) , (5.27)

and the matrix AT
135A135 ∈ R

3N×3N is poorly conditioned if L ≥ N or singular if L < N and its
Moore–Penrose pseudoinverse is calculated with the MATLAB R⃝ function pinv.
In Step 3 we evaluate u1N , u2N and u3N and then seek to intersect the level–set iso–surfaces
u1N = uint1 , u2N = uint2 and u3N = uint3 to determine the boundary ∂Ω1to determine the boundary
∂Ω1 of the unknown rigid inclusion Ω1. This task is accomplished via the MATLABR⃝ function
isosurface.

5.2.1. Example 9. We study a 3D example where the surface to be reproduced is an ellipsoid
with semi–axes lengths of 0.45, 0.45 and 0.6. The exterior sphere Ω2 has radius R = 1 and
the virtual sphere Ω3 has radius 0.35. The boundary values in (5.2) and (5.3) are taken as
uint1 = uint2 = uint3 = 1 and uext1 = uext2 = uext3 = 10. We took ν = 0.3 and µ = 1. We also
select L = 324 points on the sphere Ω4 with radius 0.65 for the measurement points in (2.1d). In
Step 1 we solved the direct problem with M = N = 324 and in Steps 2 and 3 we took N = 400.
Finally, the solution was evaluated in the virtual domain Ω2\Ω3 on a 21× 21× 21 spherical grid
in order to impose (5.20) and determine the boundary ∂Ω1 of the rigid inclusion Ω1. In Figure 11
we present the reconstructed results obtained with no noise and noise p = 5% and various values
of tol, which are shown to improve the reconstructed curve.
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(a) No noise (b) Noise p = 5%, tol= 10−6

(c) Noise p = 5%, tol= 10−5 (d) Noise p = 5%, tol= 10−3

Figure 11. Example 9: Reconstruction of ellipsoidal surface with no noise and
noise p = 5% and various values of tol.

6. Conclusions

We have considered the inverse geometric problem (in both 2D and 3D) that requires reconstruct-
ing a rigid inclusion Ω1 concealed in the annular domain in between a known inner curve/surface
∂Ω3 and an outer curve/surface ∂Ω4 on which the potential u is measured. Dirichlet data are also
supplied through the BC (2.1c). Therefore, in this formulation of the inverse geometric problem
we have that Ω3 ⊂ Ω1 ⊂ Ω4 ⊂ Ω2 and we also assume that the potential u, which is harmonic
in Ω = Ω2\Ω1, can be analytically extended to the domain Ω2\Ω3. For this particular problem,
we have developed a non–iterative MFS. In challenging geometries, the proposed method is not
as accurate as the usual nonlinear iterative approach employed by the authors for solving inverse
geometric problems [16–19]. The latter approach leads to the solution of systems of nonlinear
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equations, see e.g. [19], the solution of which requires the use of sophisticated software. In con-
trast, the current technique is much easier to implement and less costly and, moreover, lends itself
to a simple and effective regularization approach (truncated SVD). The numerical MFS solutions
for the Examples 1-3, 6 and 7 possess comparable accuracy with the numerical solutions obtained
using the boundary or finite element solutions [27, 28]. Extension to 2D and 3D linear elasticity
inverse geometric problems has also been developed. In view of the fact that, for problems in
complex geometries, the proposed technique is not as accurate as the nonlinear iterative approach
usually employed, in such cases, it could serve as a good initial approximation for other meth-
ods such as the ones described in, say, [19]. In the spirit of reproducible research and for the
convenience of interested readers, the MATLABR⃝ code of the proposed method for Example 1 is
provided at [29]. This also demonstrates the relative ease of implementation of the approach.

The MFS described in this paper can be extended to nonlinear and/or functionally graded mate-
rials [23]. Multi–layer composites may also be analysed [3] for identifying anomalies concealed in
one of the components of the compound, but the more challenging case of an unknown tumour
Ω1 developing at the interface between two components of the composite is yet to be addressed
and will form the objective of a future investigation.
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