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Properties and Biological Effects of Curcumin in Food Product Development 
 
Introduction 
Curcuma longa L., commonly known as turmeric, belongs to the family of Zingiberaceae. 
[Citation1,Citation2] Curcuma longa L. has been used as a condiment since Ayurvedic times. 
This plant usually grows in tropical, subtropical, and south-eastern regions[Citation3] and 
contains a large variety of phytochemicals, which display pharmacological properties and have 
been exploited for health-promoting purposes.[Citation4–10] One example of a widely studied 
phytochemical is curcumin, [Citation11;Citation12] which can be obtained from turmeric. This 
phytochemical serves as a coloring agent and spice in food production. Apart from curcumin, 
other phytochemicals present in turmeric include methoxylcurcumin, cyclocurcumin, and 
dimethoxylcurcumin.[Citation11] Compared with studies on curcumin, those on these 
phytochemicals are much less, partly owing to the comparatively less effective health-
promoting function of these compounds compared with curcumin. 
 
Curcumin shows strong dyeing capacity and has an E number of E100.[Citation13] Depending 
on the food type, the maximal usage level of curcumin is in the range of 20–500 mg/kg 
food.[Citation13] In beverages, the maximum usage level can be as high as 
200 mg/L.[Citation13] The accepted daily intake, as allocated by the Joint Food and 
Agriculture Organization/World Health Organization (FAO/WHO) Expert Committee on Food 
Additives, is 0–3 mg/kg body weight/day.[Citation14] In addition to its use as a coloring and 
flavoring agent, it has been widely exploited for use in food preservation.[Citation15] Over the 
years, curcumin has been widely adopted as a condiment to add color and flavor to Persian and 
Thai dishes, and as an important ingredient in curry powder in India. When curcumin is used 
as a coloring agent, it exists in several forms: water-soluble curcumin, water-insoluble 
curcumin powder, and dispersed curcumin oil. Technologies for the production of curcumin 
products are currently mature. Because curcumin can be processed easily, it is widely used in 
confectioneries, cakes, canned foods, beverages, wine, fruit juices, pasta, and cooking dishes. 
It has also been used as a compound seasoning. 
 
In fact, over the years, curcumin has been mainly used as a natural coloring agent during food 
production. However, this phytochemical has the potential to be repositioned as a functional 
agent, where its pharmacological properties could add value to the food product generated. 
This is partially supported by the fact that curcumin has been adopted as a wound-healing agent 
for millennia and has been used to treat diverse diseases in oriental medicine.[Citation16] In 
addition, taking advantage of the health benefits of curcumin in food products is in line with 
the concept of functional food development, in which foods are no longer only an entity of 
nutrients, but also a mediator of health benefits. In addition, curcumin can be developed as a 
nutraceutical in diverse forms, ranging from capsules and pills to tablets. Regarding the 
versatility of its use in the food industry as well as its well-supported health benefits, it is 
anticipated that with further understanding of the physiological and pharmacological activities 
of this phytochemical, curcumin will play an increasingly important role in food product 
development. The objective of this article is to present the latest research on curcumin as a 
functional food additive. We hope that this article will shed light on clearer directions for future 
research and for the more effective use of curcumin in the food industry. 
 
Chemical properties of curcumin 
The molecular weight of curcumin is 368.37 g mol−1, which is relatively low among 
polyphenols. The availability of this agent is especially high in the roots and stems of 
turmeric.[Citation17] Structurally, curcumin consists of two methoxyl groups, two hydroxyl 



groups and two aromatic rings. [Citation18] [Citation19] It is a diferuloyl methane in which 
two o-methoxy phenolic OH groups are attached to the heptadiene-dione moiety. Owing to the 
presence of three ionizable protons, curcumin has three protonation constants.[Citation20] The 
three pKa values of curcumin, viz. 8.54, 9.3, and 10.69, are thought to be linked to the equilibria 
for deprotonation of the enolic proton and the two phenolic protons, respectively.[Citation21] 
Under ambient conditions, curcumin exists as powder with a distinctive smell. It gives a light-
yellow color under acidic conditions and a reddish-brown color under alkaline conditions. It 
can also change color in the presence of Fe ions. Common physical properties of curcumin are 
presented in Table 1.[Citation22–27] 
 
Table 1. Properties of curcumin. 
 
Biochemically, curcumin performs a variety of functions, ranging from ion chelation to 
antioxidation,[Citation28–32] via its metabolic derivatives. The antioxidant capacity of 
curcumin is determined largely by the keto-enol-enolate equilibrium of its heptadiene-dione 
moiety,[Citation33] although the phenolic OH group or the CH2 group of the β-diketone 
moiety of curcumin has also been thought to play a role.[Citation20] However, the evidence 
supporting the latter has been contradictory. While some studies have reported, based on 
observations made via pulse radiolysis and diverse biochemical methods, that the phenolic OH 
group is responsible for the antioxidant activity of curcumin, [Citation34] [Citation35] other 
studies have attributed the antioxidant activity to the methylene CH2 group.[Citation36] Such 
discrepancy was later clarified by Indira Priyadarsini et al.,[Citation20] who compared the 
antioxidant activity of curcumin and dimethoxy curcumin (in which the two phenolic OH 
groups of curcumin were blocked, while the β-diketo structure was kept intact). By examining 
the extent of radiation-induced lipid peroxidation in an N2O-purged microsomal solution (pH 
7.4) in the absence and presence of either curcumin or dimethoxy curcumin, dimethoxy 
curcumin has been found to show less antioxidant capacity. This demonstrates that the locking 
of phenolic OH groups can lead to a reduction in the ability of curcumin to inhibit oxidation 
reactions. This antioxidant property not only enables curcumin to exhibit health-promoting 
effects, but also allows curcumin to serve as an antioxidant to protect food products from 
oxidative deterioration.[Citation37] 
 
Biological effects of curcumin for functional food development 
Curcumin has been reported to display therapeutic effects in various disorders, ranging from 
pain disorders and liver diseases to skin diseases. [Citation2] [Citation38] For example, 
curcumin was shown to influence cell cycle regulation, apoptosis, tumorigenesis, metastasis, 
and gene expression. [Citation39] [Citation40] Administration of curcumin (440–2200 mg 
daily) to human subjects with advanced colorectal cancer for 4 months was confirmed to be 
safe.[Citation41] Concomitant administration of curcumin with luteinizing hormone analogs 
via the intravenous route was also confirmed to inhibit the proliferation of cancer cells and 
reduce the size of the tumors in mice.[Citation42] The ability of curcumin to accelerate 
apoptosis of cancer cells is partially attributed to its ability to inhibit the activity of extracellular 
signal-regulated kinases and downregulate epidermal growth factor receptor 
expression.[Citation43] In addition, curcumin increases the number of IFN-γ-secreting CD8+ 
T cells in the body, leading to a delay in tumor growth and an increase in the survival time of 
mice with lung cancer.[Citation44] In fact, curcumin shows a wide range of physiological 
properties, [Citation4] [Citation45] [Citation46] among them, its antioxidant capacity and anti-
microbial ability are the two properties that have particularly attracted extensive research 
interest in food product development. 
 



Antioxidant properties 
Curcumin inhibits the oxidation of nutrients, such as proteins and lipids. [Citation47] 
[Citation48] It also acts against the oxidation of phenolic substances,[Citation49] and 
scavenges free radicals. Using ethyl linoleate as a model of polyunsaturated lipids, the 
antioxidant mechanism of curcumin in polyunsaturated lipids is thought to involve an oxidative 
coupling reaction at the 3’-position of curcumin with the lipid, followed by a subsequent 
intramolecular Diels-Alder reaction.[Citation50] Oxidation is, in fact, one of the important 
issues to be addressed during food preservation. This is especially true for food products (such 
as fishery products and fish oils) that are rich in polyunsaturated fatty acids 
(PUFAs).[Citation51] Oxidation of PUFAs cannot only deteriorate the sensory attributes of a 
food product by giving off-flavors but can also lead to a loss of nutritional value.[Citation52] 
The oxidation reaction is initiated by removing a hydrogen atom from an unsaturated fatty acid, 
leading to the formation of an alkyl radical.[Citation53] This initiation reaction can be elicited 
in the presence of singlet state oxygen,[Citation54] which can be generated once a food product 
is exposed to temperature changes or UV irradiation.[Citation54] In addition, upon reaction 
with O2, a peroxyl radical can be generated from an alkyl radical. It can then be further 
converted into a new alkyl radical and lipid hydroperoxide.[Citation55] Apart from the free 
radicals mentioned above, lipid oxidation produces a series of volatile compounds (such as 
pentanal, hexanal, 3-hydroxy−2-butanone, 2-hexenal, nonenone, 2-nonenal, dimethyl 
disulfide, dimethyl trisulfide, butanoic acid, and methanethiol) that can produce off-odors. 
[Citation53] [Citation54] Due to the capacity of curcumin to act against the oxidation of lipids 
and other nutrients in food products, it serves as a functional agent in food 
preservation.[Citation56] 
 
Apart from acting against oxidation in food products, curcumin can serve as an antioxidant in 
cells. [Citation57] [Citation58] Reactive oxygen species in the body can cause oxidative 
damage to lipids, proteins, and nucleic acids.[Citation59] An earlier study has found that, 
owing to the presence of the unique phenolic hydroxyl structure, curcumin and its derivatives 
inhibit 2’-azodiazodihydrochloride (AAPH)- and Cu2+-induced peroxidation of low-density 
lipoproteins (LDL).[Citation60] Using fruit flies as a model, curcumin has been shown to 
prolong lifespan and enhance sports performance.[Citation61] Finally, superoxide dismutase 
(SOD) plays an important role in scavenging free radicals in cells to reduce oxidative stress. 
Curcumin increases the expression of SOD−1 and SOD−2 to act against attacks caused by free 
radicals.[Citation62] In addition, curcumin upregulates heme oxygenase−1 expression and 
protects endothelial cells against oxidative stress.[Citation63] While pristine curcumin serves 
as an antioxidant, curcumin forms complexes with transition metals, with the complexes 
generated acting as superoxide dismutase mimics to scavenge free radicals.[Citation64] These 
results confirm the potential use of curcumin as a functional ingredient to promote health 
during food product development. 
 
Besides curcumin per se, derivatives of curcumin have shown strong antioxidant properties. 
This has been reported by an earlier study, in which Sahu and coworkers have developed 
derivatives of curcumin and evaluated their antioxidant properties.[Citation65] The results 
suggest that curcumin derivatives show in vitro antioxidant activity superior to curcumin when 
tested against superoxide and nitric oxide radicals. Moreover, curcumin derivatives have been 
found to show higher anticancer efficacy against cancer cell lines.[Citation65] In addition, Lal 
and colleagues have also synthesized curcumin derivatives (curcumin 3, 4-
dihydropyrimidinones/thiones/imines) and have assessed the antioxidant and anti-
inflammatory properties of the derivatives.[Citation66] The findings suggest that curcumin 
derivatives give a higher level of antioxidant and anti-inflammatory activity than curcumin 



itself.[Citation66] More recently, Zhang and coworkers have discovered that a curcumin 
derivative, namely Cur20, has similar antioxidant properties and significantly higher stability 
than curcumin.[Citation67] In addition, zebrafish screening experiments have revealed that, 
compared to curcumin, Cur20 gives a substantially greater impact on inhibiting 
angiogenesis.[Citation67] Preclinical trials on rats have corroborated the effect of Cur20 on 
angiogenesis, providing further evidence for its usefulness in treating ischemia-related 
disorders (including vascular dementia).[Citation67] All these have indicated the potential of 
not only curcumin but also its derivatives in combating oxidative stress. 
 
Antimicrobial properties 
Curcumin has inhibitory effects on a wide range of microorganisms, from fungi to 
bacteria.[Citation68–73] Its antibacterial effect arises from its ability to interfere with bacterial 
metabolism and inhibit DNA replication to weaken bacterial activity.[Citation72] Owing to its 
amphiphilic nature, curcumin destroys the cell membrane and exhibits broad-spectrum 
antibacterial properties,[Citation74] thereby enabling its potential use in food safety 
applications. The possibility of this can be exemplified in the case of Staphylococcus aureus. 
Curcumin has been found to inhibit this bacterium partly by functioning as a potent inhibitor 
of sortase A, with an IC50 value of 13.8 ± 0.7 μg/mL.[Citation75] Sortase A plays an important 
role in enabling bacterial cells to adhere to host tissues. Inhibiting the activity of sortase A in 
Staphylococcus aureus renders the bacterial cell defective in establishing infections, although 
the viability of the bacterial cells is not significantly affected. [Citation76] [Citation77] As 
Staphylococcus aureus is one of the major bacteria causing gastroenteritis resulting from the 
consumption of contaminated foods,[Citation78] the inhibitory action of curcumin renders it 
applicable for use in preventing food-borne Staphylococcus aureus infection. 
 
Bacillus subtilis, as well as the closely related species Bacillus pumilus and Bacillus 
licheniformis, are other groups of bacteria that play a role in the etiology of food 
poisoning.[Citation79] Curcumin has been found to induce filamentation in Bacillus subtilis 
168.[Citation80] It also inhibits the formation of cytokinetic Z-rings in bacteria.[Citation80] 
This activity is largely attributed to the capacity of curcumin to inhibit the assembly of FtsZ 
protofilaments and increase the GTPase activity of FtsZ.[Citation80] In the in vitro context, 
curcumin has been shown to bind to FtsZ.[Citation80] All these factors allow curcumin to be 
used to inhibit the proliferation of bacteria for food preservation. In addition to its antibacterial 
properties, curcumin exhibits antifungal activity. Fungal diseases are the leading cause of pre-
harvest losses in crop production.[Citation81] Curcumin has been shown to have fungicidal 
activity against Botrytis cineria, Phytophthora infestans, Puccinia recondita, and Rhizoctonia 
solani.[Citation81] Compared with fluconazole, curcumin exhibits a stronger inhibitory effect 
on the growth of Paracoccidioides brasiliensis.[Citation82] Curcumin is thought to mediate 
antifungal action partly by downregulating desaturase activity, causing a reduction in the 
production of ergosterol in fungal cells. This leads to oxidative stress and cell 
death.[Citation83] 
 
Anticancer and anti-inflammatory properties 
Curcumin inhibits carcinogenesis by inhibiting angiogenesis and tumor progression as 
evidenced in vitro and in vivo.[Citation84] An earlier study has reported that the incidence of 
noninvasive adenocarcinomas is considerably reduced by including curcumin in the diet during 
the progression phase.[Citation85] Recently, Kim and coworkers have discovered that 
curcumin displays better cytotoxic activity on A549 and H460 cells (as well as on their 
subtypes that are resistant to paclitaxel and cisplatin).[Citation86] Sueki and colleagues have 
found that curcumin can enhance the anticancer capacity of 5-aminolevulinic acid-mediated 



photodynamic therapy (5-ALA-PDT) in the Caco−2 cancer cell line.[Citation87] Rayane 
Ganassin and coworkers have also observed that curcumin induces immunogenic cell death 
(ICD) in colorectal cancer CT26 cells. The findings have indicated that apoptosis occurs in 
curcumin-treated cells.[Citation88] X-box binding protein 1 (XBP1) expression has been found 
to be upregulated in CT26 cells after treatment with curcumin, indicating the effect of curcumin 
in inducing endoplasmic reticulum stress. This finding confirms that curcumin is an ICD 
inducer and may be adopted to stimulate the immune system to combat tumours. 
 
Curcumin possesses anti-inflammatory capacity, too.[Citation89] Agents possessing such 
capacity usually block or inhibit the action of inflammatory agents, or induce the production 
of anti-inflammatory mediators. Curcumin can modulate inflammatory signalling channels and 
block the synthesis of inflammatory mediators.[Citation90] The ability of curcumin to suppress 
inflammatory gene expression is attributed to its effect in repressing the activities of nuclear 
factor κB (NFκB) and activator protein 1 (AP1).[Citation91] Both NFκB and AP1 are required 
for the lipopolysaccharide (LPS)-induced proinflammatory response. Recently, curcumin has 
been found to show anti-inflammatory effects in lipoteichoic acid (LTA)-stimulated microglial 
cells, possibly via blocking NF-κB and p38 MAPK activation and by inducing the production 
of Nrf1 and HO−1.[Citation92] As far as the immune response of a host is concerned, CD4+ T 
helper (Th) cells are an essential component; however, they may play a role in the development 
of inflammatory and autoimmune illnesses under specific circumstances. Curcumin can make 
T-regulatory cells work better, while inhibiting Th1 and Th17 cells.[Citation93] However, the 
effect of curcumin on Th9 and Th22 remains ill-elucidated, highlighting the need for additional 
research in this area. In addition, microglia become active when the brain is injured and releases 
cytokines and mediators (such as nitric oxide and prostaglandins) to cause 
inflammation.[Citation94] Curcumin inhibits the production of cyclooxygenase 2 and 
inducible nitric oxide synthase, which are enzymes that mediate inflammation.[Citation95] 
Curcumin can also inhibit the production of intercellular adhesion molecule 1 (ICAM−1) and 
monocyte chemoattractant protein 1 (MCP−1).[Citation95] Curcumin has been demonstrated 
to inhibit the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) 
system by stimulating Src homology 2 domain-containing protein tyrosine phosphatase 2, 
which is a specific inhibitor of the JAK function.[Citation95] 
 
Metabolic fate of curcumin 
Curcumin can be metabolized in both enzymatic and non-enzymatic manners. [Citation96] 
[Citation97] After oral ingestion, curcumin is further metabolized by conjugation and reduction 
(Figure 1),[Citation98] generating di-, tetra-, hexa-, and octahydrocurcumin via successive 
reduction of heptadienone. NADPH-dependent curcumin reductase (CurA) is produced by 
intestinal Escherichia coli. It can effectively degrade curcumin in the intestinal environment. 
[Citation99] [Citation100] After entering systemic circulation, curcumin is converted into 
tetra- and hexahydrocurcumin under the action of alcohol dehydrogenase in the liver. 
Microsomal enzymes also convert curcumin into di- and octahydrocurcumin. [Citation101] 
[Citation102] During curcumin metabolism, a large variety of metabolites are formed, 
including tetrahydrocurcumin and hexahydrocurcumin.[Citation103] However, these 
metabolites often exhibit weaker biological functions than curcumin, although exceptions have 
been reported. [Citation104] [Citation105] In plasma, curcumin also exists in the form of β-d-
methylglucoside complexes and sulfates. [Citation103][Citation106] Apart from enzymatic 
degradation, curcumin also undergoes non-enzymatic degradation via 
autooxidation.[Citation96] This process is initiated by O2, which functions as the initial 
electron acceptor.[Citation98] During oxidative transformation, hydrogen abstraction from one 
of the phenolic hydroxyl groups of curcumin occurs, resulting in the formation of a phenoxyl 



radical.[Citation107] This process occurs first as proton loss, followed by electron transfer 
from a phenolate anion to molecular oxygen. [Citation108] The major product of auto-
oxidation is bicyclopentadione, which is formed by oxygenation and double cyclization of the 
heptadienedione chain linking the two methoxyphenol rings of curcumin (Figure 
2).[Citation98] In addition to bicyclopentadione, various other products may be generated. 
These include dihydroxy cyclopentadione, hemiacetal cyclopentadione, ketohydroxy 
cyclopentadione, spiroepoxide cyclopentadione, vinylether cyclopentadione, cyclobutyl 
cyclopentadione, and diguaiacol.[Citation98] 
 
Figure 1. Metabolic and degradation pathways of curcumin: (a) reduction; (b) conjugation; (c) 
oxidation; (d) cleavage. 
 
Figure 2. The process of formation of bicyclopentadione during autoxidation of curcumin. 
Reproduced from Ref. [Citation98] with permission from American Chemical Society. 
 
The chemical stability of curcumin is affected by the pH and composition of the surrounding 
medium.[Citation109] In general, the rate of decomposition of curcumin is higher when the 
surrounding medium is at a neutral pH. In addition, when curcumin is placed in a serum-free 
medium (pH 7.2) for 30 min at 37°C, around 90% of curcumin undergoes 
decomposition.[Citation109] However, if curcumin is added to a serum-containing medium, 
only 50% of curcumin is decomposed even after 8 h of incubation.[Citation109] This shows 
that the presence of serum enhances the stability of curcumin. Trans−6-(4’-
hydroxy−3’−methoxyphenyl)−2,4-dioxo−5-hexenal is a major degradation product of 
curcumin, although compounds such as ferulic acid, feruloyl methane, and vanillin can be 
produced.[Citation110] Moreover, curcumin is sometimes consumed in the form of turmeric 
rhizome extract, in which curcuminoids (such as demethoxycurcumin and 
bisdemethoxycurcumin) are present. These curcuminoids have been found to enhance the 
chemical stability of curcumin in vitro,[Citation110] although their possible role in stabilizing 
curcumin in vivo is yet to be fully confirmed. The rate of curcumin metabolism is also affected 
by the physiological environment, in which albumin can improve the chemical stability of 
curcumin and make it less susceptible to autooxidation.[Citation109] After absorption into the 
body, curcumin undergoes glucuronidation at the phenolic hydroxyl groups.[Citation98] This 
blocks the hydroxyl groups required for the onset of autooxidation, thereby leading to an 
increase in the chemical stability of curcumin. In addition, oxidative transformation of 
curcumin can be stimulated by oxidative stress at inflammatory sites[Citation98] and by 
peroxidases, which use curcumin as a reducing co-substrate.[Citation107] 
 
Strategies to enhance the bioavailability of curcumin in functional food development 
Despite its health-promoting effects and potential use in functional food development as 
depicted in preceding sections, applications of curcumin have limitations. Curcumin generally 
has poor chemical stability and a low absorption rate. These problems partly lead to a reduction 
in oral bioavailability of curcumin. Apart from its poor oral bioavailability, curcumin shows 
poor aqueous solubility, dispersibility, and high susceptibility to degradation (caused by heat, 
light, and oxygen) during food processing.[Citation13] These factors all severely limit the 
application potential of curcumin in food product development. Over the years, various 
strategies have been adopted to formulate curcumin (Table 2).[Citation111–127] For example, 
electrohydrodynamic atomization has previously been adopted to generate curcumin-
encapsulated zein nanoparticles.[Citation128] Compared with unmodified curcumin, those 
nanoparticles have exhibited better dispersibility and coloring ability in semi-skimmed milk, 
thereby exhibiting high potential to be used as a coloring ingredient in beverages.[Citation128] 



Apart from this, curcumin nanoemulsions have been developed by using sodium caseinate as 
an emulsifier.[Citation129] These nanoemulsions have been found to be stable throughout a 
wide range of processing conditions,[Citation129] with ice cream being one of the suitable 
food systems for delivering curcumin nanoemulsions.[Citation129] Further research is needed 
to explore possible applications of these emulsions in food product development. Recently, the 
possible use of different curcumin formulations (including curcumin powder, water-dispersible 
curcumin, and nanoencapsulated curcumin) as yogurt colorants has been tested. Among these 
formulations, curcumin powder has been found to show the highest antioxidant, anti-
inflammatory, and cytotoxic effects.[Citation130] Compared to free curcumin, curcumin in 
curcumin formulations shows high stability.[Citation130] Once it is added into a yogurt, it does 
not change the nutritional value or fatty acid profile of the yogurt, but shows better colour 
homogeneity and dispersibility than free curcumin.[Citation130] 
 
Table 2. Examples of formulated curcumin reported for enhanced bioavailability. 
 
Curcumin has also been formulated as an organogel-based nanoemulsion in which Tween 20 
has been selected as the emulsifier. Compared with unformulated curcumin, the generated 
curcumin-containing nanoemulsion has led to a 9-fold increase in the oral bioavailability of 
curcumin in mice.[Citation131] In addition, using ultrasonication, curcumin-containing 
nanoemulsions consisting of lecithin, Tween 80, and medium-chain triglycerides have been 
generated.[Citation132] Compared with native curcumin whose water dispersibility is around 
0.39 ± 0.05 μg/mL, the water dispersibility of formulated curcumin has been reported to be 
increased by 1,400 times.[Citation132] To further enhance the stability of the nanoemulsion 
droplets, the droplets have been coated with chitosan. After incorporating the coating, rough 
and irregular structures have been observed on the smooth surface of the nanoemulsion droplets 
(Figure 3). Owing to its protective effect, the coating enables formulated curcumin to be more 
resistant to thermal and UV irradiation treatments.[Citation132] A similar observation of the 
effect of nanoemulsions to stabilize curcumin has been made by Wang et al.,[Citation133] who 
have reported the success of incorporating curcumin into oil-in-water emulsions to maintain 
the stability of curcumin at pH 5.0–5.5 for seven days. More recently, upon formulation of 
curcumin into nanoemulsions consisting of Tween 80, lecithin, ethyl oleate, and water, 
degradation of curcumin at pH 5.9 has been prevented during a storage period of two 
months.[Citation134] All these results confirm the possibility of enhancing the practical 
potential of curcumin upon formulation for applications in food product development. 
 
Figure 3. Transmission electron microscopy images of (a) uncoated nanoemulsion droplets, as 
well as those coated with (b) low molecular weight chitosan, (c) medium molecular weight 
chitosan and (d) high molecular weight chitosan. Scale bar = 100 nm. Reproduced from Ref. 
[Citation132] with permission from Elsevier B.V. 
 
Nanoemulsions can be converted from a liquid state into a dried particulate form using various 
techniques to further enhance the ease of handling. A good example of these techniques is 
freeze-drying, which has been applied for microencapsulation of curcumin to enhance the 
resistance of curcumin against acidity and heat and to improve the stability of curcumin in 
carbonated beverages.[Citation135] Another technique is spray drying, which protects 
chemically unstable compounds inside a matrix formed by the wall material.[Citation136] 
Because the wall material can function as a barrier to protect the compounds from external 
environmental influences, this enhances the stability of the compounds.[Citation136] The 
possible use of spray drying in microencapsulation of curcumin has been partially 
demonstrated by an earlier study,[Citation137] in which curcumin-loaded nanocarriers 



clustered into hollow porous microspheres consisting of acacia gum and xanthan gum have 
been generated using the spray drying technique. Using hamsters as a model, the nanocarriers 
have been found to adhere more preferentially to the small intestine (Figure 4), thereby 
promoting intestinal absorption while reducing curcumin degradation in the stomach. In 
another study, curcumin microcapsules have been produced via spray drying from a whey 
protein blend, with maltodextrin and acacia gum serving as wall materials.[Citation138] By 
increasing the inlet air drying temperature, the free radical scavenging activity of curcumin has 
been found to be enhanced, with the bulk density and moisture content of the microcapsules 
having been reduced.[Citation138] 
 
Figure 4. Scanning electron microscopy images of the curcumin-loaded nanocarriers taken at 
different time points [(a, b) 0 h, (c, d) 6 h, (e, f) 24 h, and (g, h) 72 h] in the (a, c, e, g) stomach 
and (b, d, f, h) small intestine. Reproduced from Ref. [Citation137] with permission from 
Elsevier B.V. 
 
In fact, after storage at 37°C and compared with native curcumin, unencapsulated curcumin 
has been found to undergo a more significant color change.[Citation139] This is partly 
attributed to the fact that microencapsulation of curcumin reduces the degradation rate of 
curcumin into vanillin, thereby reducing the extent of the subsequent Maillard reaction and 
color change.[Citation139] The possible application of spray drying to formulate curcumin has 
already been exploited in functional food products. This is exemplified by the case of 
curcumin-enriched milk cream powder.[Citation140] This powder has been generated first by 
microfluidization, followed by spray drying, in which either sodium caseinate or acacia gum 
has been used as the wall material. Compared with the spread made from acacia-gum-based 
curcumin-enriched milk cream powder, the one generated using the powder with sodium 
caseinate as the wall material has been found to give a brighter yellow color and better 
taste.[Citation140] This reveals the role of the design of the process of microencapsulation in 
determining the properties of formulated curcumin and, hence, the quality of the generated 
food product. 
 
Factors to be considered in the application and processing of curcumin 
Encapsulation techniques enhance the bioavailability of curcumin, but various factors play a 
role in influencing its effective use in practice. A good example of this is the route of 
administration. The possible impact of the route of administration on the bioavailability of 
curcumin has been demonstrated in an earlier study,[Citation141] which has shown that even 
after oral administration of curcumin at a dose of 1 g/kg, the serum level of curcumin in 
Sprague-Dawley rats has still been difficult to detect. Another study has also reported that  after 
oral administration of curcumin at a dose of 1 g/kg to mice, the concentration of curcumin in 
the plasma has been found to be only as low as 0.22 µg/mL  .[Citation103] Compared with oral 
administration, intraperitoneal injection can lead to a higher plasma level of curcumin, with the 
detected plasma level being 2.25 μg/mL after administration of curcumin at a 0.1 g/kg 
dose.[Citation103] Intravenous administration also improves the bioavailability of curcumin. 
While oral administration of curcumin at a dose of 500 mg/kg to rats gives the maximum 
concentration (Cmax) of 0.06 ± 0.01 μg/mL,[Citation142] with the time to reach the maximum 
concentration (Tmax) being 41.7 ± 5.4 min,[Citation142] intravenous injection of curcumin at 
a lower dose (10 mg/kg) can give a higher maximum serum level 
(0.36 ± 0.0525 μg/mL).[Citation142] Because the serum level of curcumin may be linked to the 
biological effect brought about by curcumin consumption, it is expected that changing the route 
of administration may help improve the bioavailability and, hence, the health-promoting effect 
of curcumin. This approach may be useful for treatment development. However, it has little 



relevance in the development of curcumin-based functional food products because the oral 
route is the major route of food consumption. 
 
When curcumin undergoes encapsulation, proper selection of encapsulating materials is 
important. This has been demonstrated in a recent study,[Citation143] which has used various 
polymers [including acacia gum, sodium alginate, and a chitosan derivative (generated by 
carboxylation of chitosan, with a deacetylation degree of 96.5%) as wall materials during 
spray-drying-mediated microencapsulation of curcumin. Based on the differential volume 
distribution, the average size of those microparticles generated from sodium alginate, modified 
chitosan and acacia gum is 11.7, 29.8, and 8.6 μm, respectively.[Citation143] This 
demonstrates the impact of the selection of wall materials on the size of the generated 
microparticles. In addition, different wall materials produce microparticles with different 
surface morphologies (Figure 5). Compared with the rough-surface microparticles produced 
using sodium alginate and acacia gum, those generated from modified chitosan have a smooth 
surface.[Citation143] These variations may partly explain the remarkable difference in the 
release sustainability of the generated curcumin-containing microparticles, with the time 
needed to achieve total release of curcumin from microparticles produced from modified 
chitosan, acacia gum, and sodium alginate being 35 min, 4 h, and 2 h, 
respectively.[Citation143] More recently, curcumin-containing emulsions stabilized with 
gWPI-COS nanoparticles have been reported to exhibit higher stability (and viscoelasticity) 
when compared with those stabilized with whey protein isolate (WPI), glycosylated whey 
protein isolate (gWPI), and WPI-chitooligosaccharide (COS) nanoparticles (Figure 
6).[Citation144] These results demonstrate the important role played by the encapsulating 
material in determining the physical properties of formulated curcumin. 
 
Figure 5. Scanning electron microscopy images of the microparticles, (a, c, e) without or (b, d, 
f) with being loaded with curcumin, generated from (a-b) sodium alginate, (c-d) modified 
chitosan, and (e-f) acacia gum. Scale bar = 3 µm. Reproduced from Ref. [Citation143] with 
permission from Elsevier B.V. 
 
Figure 6. Confocal laser scanning microscopy images of emulsions stabilized by (a) WPI, (b) 
gWPI, (c) WPI-COS nanoparticles, and (d) gWPI-COS nanoparticles. Reproduced from Ref. 
[Citation144] with permission from Elsevier B.V. 
 
In addition to the encapsulating material, the encapsulation method should be considered. This 
has been demonstrated in an earlier study,[Citation135] which has examined the effect of 
spray-drying and freeze-drying methods on the microencapsulation efficiency, stability, and 
various physicochemical properties of curcumin in a model beverage. Compared with spray 
drying, freeze-drying has been found to generally yield a higher microencapsulation efficiency 
and to more effectively retain the activity of curcumin.[Citation135] This is partly attributed to 
the fact that the processing conditions involved in freeze drying are much milder than those in 
spray drying.[Citation135] However, curcumin-containing microparticles generated by spray 
drying are smaller than those generated by freeze drying.[Citation135] In addition, spray-dried 
microparticles are more spherical in shape and have a smoother surface, whereas those 
produced by freeze-drying have a rougher surface on which more cracks can be observed. 
Importantly, while spray drying provides microparticles that exhibit a unimodal size 
distribution, freeze-drying enables the generation of microparticles with a bimodal distribution 
pattern.[Citation135] The comparatively small and uniform size of the spray-dried sample is 
due to the process of atomization. This process is absent in freeze-drying, in which the size of 
the generated microparticles relies largely on the grinding procedure and hence is more 



polydisperse.[Citation135] Because variations in the microencapsulation efficiency, stability, 
and physicochemical properties (including size, size distribution, and surface morphology) 
may affect the functioning of formulated curcumin, proper selection of an encapsulation 
method is crucial to success in functional food development. 
 
Concluding remarks and future outlook 
Curcumin is a polyphenol with multiple biological effects (including antioxidant and 
antimicrobial activities). It has therefore been exploited not only in health 
promotion[Citation145–149] but also in food product development.[Citation150–152] Since 
the turn of the last century, advances in microencapsulation technologies have enhanced the 
oral bioavailability and stability of curcumin. This significantly improves the practical potential 
of curcumin for food product development. Despite the advances discussed above, some areas 
still require research to further enhance the effective use of curcumin in food applications. One 
of these areas is the adverse effects and long-term safety of curcumin. Although curcumin has 
been approved for use as a food additive,[Citation13] various adverse effects have been 
reported in both preclinical and clinical trials. For example, topical administration of a 
medicament containing curcumin has been found to cause allergic contact 
dermatitis[Citation153] and contact urticaria.[Citation154] Incubation of human sperms with 
curcumin at a dose of 30–300 µg/mL has also led to a loss of sperm mobility.[Citation155] 
Recently, the effects of turmeric supplements on healthy individuals, aged 21–38 years, have 
been examined.[Citation156] These individuals have been administered turmeric at a dose of 
2.8 g for 4 weeks. Results have shown that turmeric intake increases urine oxalate excretion, 
raising the concern that consuming turmeric improperly can increase the urinary oxalate level 
and hence the risk of kidney stone formation.[Citation156] In another study, 15 individuals 
have been administered with curcumin at a dose of 0.45–3.6 g per day for 1–
4 months.[Citation157] Some of them have experienced nausea and diarrhoea.[Citation157] 
The serum levels of alkaline phosphatase and lactate dehydrogenase have also been found to 
be increased.[Citation157] More recently, a 55-year-old female with a history of turmeric usage 
has been diagnosed with acute autoimmune hepatitis. After she has discontinued her long-term 
use of turmeric, her liver function has, however, become normal. All cases reported above have 
raised safety concerns regarding the use of curcumin in routine food product 
development.[Citation158] Other adverse effects caused by the use of curcumin are presented 
in Table 3.[Citation159–168] Further studies on the safety of enriching or fortifying food 
products with curcumin are needed. Moreover, current investigations of the toxicity of 
curcumin are confined to short-term studies. The long-term tolerance of human subjects with 
different physiological conditions (e.g., elderly people, adolescents, children, and those with 
chronic diseases) to different doses of curcumin is yet to be fully elucidated. Clarifying the 
safety profile of curcumin will help develop safer curcumin-based functional foods for different 
populations of consumers. 
 
Table 3. Side effects caused by administration of different curcumin-based formulations. 
 
Another area worth further study is the development of more effective strategies to predict the 
interactions between curcumin and food components. Food matrices are highly complex and 
heterogeneous.[Citation169] This situation is compounded by the fact that some of the food 
components may even change chemically during different life stages (ranging from food 
processing and storage to transportation) of a food product.[Citation170] These components 
may also potentially interact with curcumin, leading to changes in its bioactivity and stability. 
To date, elucidation of the possible chemical reactions between curcumin and the food 
components relies largely on experimental observations.[Citation171–173] Regarding the high 



complexity of food matrices and the variations in compositions from product to product, 
studying possible interactions between curcumin and each of the food components is 
sometimes not practical. Further understanding of the structure-activity relationship and 
chemical properties of curcumin may facilitate the prediction of possible interactions between 
curcumin and food ingredients, streamlining the composition of food products, and enabling 
the development of more effective curcumin-based functional foods. Although there is still 
much to do to enhance the effectiveness and safety of curcumin-based food products, regarding 
its diverse health-promoting effects, along with the increasing sophistication in bioactive agent 
encapsulation[Citation174–177] and food technologies,[Citation178–181] this phytochemical 
will have great potential for applications in functional food development in the coming 
decades. 
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