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We consider stochastic models of individual infected cells. The reproduction
number, R, is understood as a random variable representing the number of
new cells infected by one initial infected cell in an otherwise susceptible
(target cell) population. Variability in R results partly from heterogeneity
in the viral burst size (the number of viral progeny generated from an
infected cell during its lifetime), which depends on the distribution of cellu-
lar lifetimes and on the mechanism of virion release. We analyse viral
dynamics models with an eclipse phase: the period of time after a cell is
infected but before it is capable of releasing virions. The duration of the
eclipse, or the subsequent infectious, phase is non-exponential, but com-
posed of stages. We derive the probability distribution of the reproduction
number for these viral dynamics models, and show it is a negative binomial
distribution in the case of constant viral release from infectious cells,
and under the assumption of an excess of target cells. In a deterministic
model, the ultimate in-host establishment or extinction of the viral infection
depends entirely on whether the mean reproduction number is greater than,
or less than, one, respectively. Here, the probability of extinction is deter-
mined by the probability distribution of R, not simply its mean value.
In particular, we show that in some cases the probability of infection is
not an increasing function of the mean reproduction number.
1. Introduction
Viruses, and some types of bacteria, infect host cells. When a viral particle is
taken up by a host cell, the genome is replicated and used to produce viral pro-
teins. New viral particles are then assembled inside the infected cell. For some
viruses, progeny virions accumulate inside the host cell and eventually numer-
ous viral particles exit at once in a burst, killing the cell. On the other hand, for
most enveloped viruses, new viral particles are released throughout the lifetime
of the infected cell via a process called budding. The total number of virions
released by an infected cell during its lifetime is usually referred to as the
‘burst size’, even if the virus is released continuously by budding [1–4].

Stochasticity of the intracellular viral life cycle, coupled with heterogeneity
in the lifetime of infected cells, can lead to variability in the number of virions
released by individual cells. For instance, Hataye et al. [5] measured burst sizes
from HIV-1-infected cells, and Bacsik et al. [6] measured production from indi-
vidual influenza A virus-infected cells, with both references encountering high
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variability. The progeny virions released by an infected cell
may infect further host target cells, or may be degraded or
cleared before they manage to do so. Hence, the number of
secondary infected cells caused by a single infected cell will
depend on its burst size and on the fraction of these progeny
virions that are able to infect other cells.

The basic reproduction number was originally introduced
in an epidemiological context to characterize the mean
number of secondary infections caused by an initial infected
individual in an otherwise susceptible population. Here we
consider the cell-level equivalent in the context of within-host
and in vitro viral dynamics, where the cell-level basic reproduc-
tion number will be understood as a random variable, R,
representing the number of target cells infected by one initial
infected cell in an otherwise susceptible (target) cell population
[1,7–10]. The mean value of the basic reproduction number
will be denoted by �R.

In deterministic models, the mean value of the basic repro-
duction number determines the outcome of infection: if �R , 1,
then the virus-free steady state is stable and the infection will
die out. In stochastic models, if the mean number of secondary
infections caused by a single infected cell is smaller than one,
the infection can grow, but will certainly die out eventually.
Conversely, when �R . 1, deterministic models predict that
an infection will be established, but in stochastic models
there can be a non-zero probability that all virions and infected
cells will be eliminated before the infection can become estab-
lished [1,11]. This probability depends both on �R [12], and on
the probability distribution of the reproduction number [1,11].
By exclusively focusing on the mean value of the reproduction
number, one may fail to capture important dynamics of early
infection events, which are inherently stochastic, particularly if
an individual is exposed to a low infecting viral dose.

We study two Markov chain viral infection models, with
non-exponential infectious period distributions. The models
are based on one of the simplest deterministic models of
viral infection, consisting of a system of ODEs for the popu-
lations of target cells, infected cells and virions [13]. One
model considers viral release by budding and the other by
bursting. In the model of viral release by budding, produc-
tively infected (i.e. infectious) cells are assumed to release
virions at a constant rate. In themodel of viral release by burst-
ing, viral particles are produced intracellularly at a constant
rate, and are eventually released in a burst when the infected
cell dies. Pearson et al. [1] studied stochastic models similar
to these, with a single infected cell compartment. We split
the infected cell state into multiple compartments, leading to
an Erlang-distributed, instead of an exponentially distributed,
infectious period [2,7,14,15]. An Erlang distribution may be a
more suitable characterization of the infectious period than an
exponential one, and can lead to different estimates of model
parameters [16]. The exponential case can still be recovered
by setting the shape parameter of the Erlang distribution
(given by the number of infected cell compartments) to one.

The deterministic model, and the starting point for our
stochastic models, is successful in describing viral infections
when the populations of infected cells and virions are large,
and has been used to estimate viral kinetic parameters in
the literature. On the other hand, the reproduction number
probability distribution is particularly important to character-
ize the early stages of viral infection, when there may only be
a few extracellular virions or infected cells. Even if the mean
reproduction number is fairly large, the initial infection may
die out by chance, due to a non-zero probability that an
infected cell will cause no secondary infections. This high-
lights the importance of looking beyond the mean of the
reproduction number, and of considering other summary
statistics from the probability distribution of this random
variable. Previous studies that have focused on calculating
the probability of viral extinction during the early stages of
infection include Pearson et al. [1], who calculated the prob-
ability of extinction in models with either a geometric or
Poisson distribution of the reproduction number. In this
paper, we aim to show that deriving and quantifying the
burst size and reproduction number distributions for differ-
ent models and viruses can help to better understand how
these distributions are affected by modelling choices and
parameters, and how these distributions, in turn, affect the
probability that the virus and infected cells will be eliminated
before an infection becomes established.

Section 2 contains model descriptions, and derivations of
the probability distributions of the burst size and reproduc-
tion number for these models. In §3, we obtain numerical
results for the reproduction number probability distribution
and the probability of viral extinction, in order to investigate
the effects of various model assumptions and parameter
values on these quantities of interest. In the electronic sup-
plementary material, we show that similar results can be
obtained for models with an age-dependent viral release rate.
2. Mathematical methods
We beginwithmodels of viral dynamics described byordinary
differential equations (ODEs) in §2.1. We introduce a model in
which infectious cells produce and release virions via budding
at a constant rate, and we also consider a model in which
virions are instead released in a burst. We then describe the
Markov chain versions of these models in §2.2. For each
model, we derive the average burst size and reproduction
number (§2.3), the probability distributions of the burst size
and reproduction number (§2.4 and §2.5) and the probability
of viral extinction (§2.6). In the electronic supplementary
material, we consider a model developed by Guedj et al. [17]
for hepatitis C virus (HCV) infection. This model considers
viral release by budding, but includes intracellular dynamics,
resulting in a viral release rate from infected cells that is not
constant but depends on the intracellular viral genome
counts. We derive the probability distributions of the burst
size and reproduction number for a stochastic version of this
model, and make use of the parameter estimates from Guedj
et al. [17] to obtain numerical results.
2.1. Deterministic models
2.1.1. Viral release by budding
Our ODE model of viral release by budding is based on those
of Liao et al. [2] and Yan et al. [7], with a modification to rep-
resent removal of infected cells by the immune system [11,18].
Uninfected target cells are infected by viral particles with
(per virion) rate βc, then pass through an eclipse phase and
an infectious phase. Thus, the eclipse phase is the period
after viral entry but before the release of virions. The popu-
lation of infected cells is partitioned into nE + nI subsets: nE
subsets Ei, one for each eclipse-phase stage, and nI subsets
Ii, one for each infectious-phase stage. A cell in any of the
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Figure 1. Model with constant viral release rate. Upon infection by a free (i.e. extracellular) infectious virion V, a target cell, T, enters the eclipse phase E followed by
the infectious phase I. The arrows show the possible transitions and their corresponding rates, or the distribution of times, in the case of non-exponentially (Erlang)
distributed transition times. Free virions are cleared with rate c, and eclipse-phase cells with rate νE. Infectious cells are cleared by the immune system with rate νI,
or undergo virus-induced cell death. In (2.1), the eclipse and infectious phases consist of nE and nI stages, respectively.
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infectious-phase stages releases virions at constant rate p.
It dies upon exiting the last infectious stage. A diagram is
provided in figure 1. The system of 2 + nE + nI ODEs is

dT
dt

¼ �bcTV,

dE1

dt
¼ bcTV � nE

tE
þ nE

� �
E1,

dEi

dt
¼ nE

tE
ðEi�1 � EiÞ � nEEi, i ¼ 2, . . . , nE,

dI1
dt

¼ nE
tE

EnE �
nI
tI

þ nI

� �
I1,

dIi
dt

¼ nI
tI
ðIi�1 � IiÞ � nI Ii, i ¼ 2, . . . , nI ,

dV
dt

¼ p
XnI
i¼1

Ii � cV � bvTV:

ð2:1Þ

The variables T and V denote the number of uninfected (or
susceptible) target cells, and the number of free (i.e. extra-
cellular) infectious virions. In the first ODE, some models
also include production and death of uninfected target
cells. However in many circumstances, these events are
neglected when considering a short timescale [1]. Examples
are found in models describing in vitro viral dynamics [2,7]
or in vivo acute infection dynamics, where the viral load
increases to a maximum, and then declines due to the
depletion of target cells. Thus, we do not consider the gener-
ation of new target cells or death of uninfected target cells in
our model.

The multi-stage representation of the eclipse and infec-
tious phases in (2.1) is equivalent to the assumption that
the time a cell spends in either phase follows an Erlang distri-
bution. The Erlang distribution results from a sum of
exponential random variables, and is a special case of the
gamma distribution, with an integer-valued shape par-
ameter. Here, the mean time spent in the eclipse phase
(with nE stages) is τE, so the mean time spent in each
eclipse-phase stage is 1/δE = τE/nE. The mean time spent in
the infectious phase (with nI stages) is τI, so the mean time
spent in each infectious-phase stage is 1/δI = τI/nI.
An additional mechanism of infected cell death due to the
immune response, even before they release virions, has been
included in the model by specifying that eclipse-phase cells
are cleared with rate νE, and infectious-phase cells with rate
νI [18]. Eclipse-phase cells have been found to express viral
peptides, so CD8+ T cells can recognize and kill them
[19,20]. If eclipse-phase cells are killed at a slower rate
than infectious-phase ones then νE < νI. The model without
immune response can be recovered by setting νE = νI = 0, for
instance, in order to represent in vitro dynamics [2,7]. When
νE = νI = 0, the duration of the eclipse and infectious phases
follow Erlang distributions. However, when νE > 0 and νI > 0,
the distributions are altered by the possibility of cell death
due to the immune response; that is, the contingency that
the eclipse or infectious phase ‘completes early’ due to the
cell being killed by the immune response.

Some of the virions released by infectious cells are non-
infectious and cannot, therefore, infect new target cells. Here
we assume that p denotes the release rate of infectious virions,
and that the variableV represents the number of infectious viral
particles. Free viral particles are cleared with rate c, which can
be thought of as the sum of the rates of viral degradation and
of loss due to antibody binding. In the last ODE, the term βv TV
corresponding to loss of virions due to infection is explicitly
included, although it is often neglected in the literature
based on being small comparedwith the term cV [21]. Further-
more, if the number of target cells is assumed to remain
constant, T0, both viral loss terms can be incorporated into
one parameter, c0 = c + βv T0 [22].

The parameters βc and βv in (2.1) have different dimen-
sions: βc has dimensions of per virion per time, whereas βv
has dimensions of per cell per time. Let us introduce β, the
rate at which infection events occur, with units of per cell per
virion per time. If nc and nv are the number of cells and virions
involved in a general infection event, respectively, then βc = ncβ
and βv = nvβ. Here, since an infection event in the model
consists of one virion infecting one target cell, we have nc =
nv = 1. Therefore, numerically we have βc = βv = β, and from
now on we will simply denote both rates by β.

An important quantity that can be calculated from (2.1),
sometimes called the basic reproduction number, is the
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mean number of infected cells produced by a single infected
cell. When νE = νI = 0, the mean number of virions released by
a single infected cell is pτI. If the number of target cells pres-
ent is T0, then each of the released virions infects a target cell
with probability βT0/(c + βT0). Provided T0 is large, the mean
number of cells infected by virions released from a single
infected cell is

�R ¼ ptIbT0

cþ bT0
: ð2:2Þ

For �R as defined in (2.2), in the limit T0→ +∞, we have
�R ! ptI , which is the mean number of virions released
from an infected cell. However, for models that neglect the
ODE term corresponding to loss of virions due to infection
[2], the mean reproduction number is

�R ¼ ptIbT0

c
,

which becomes infinite as T0→ +∞. This implies that there is
no finite bound on the mean number of secondary infections
produced by an infected cell, so that as the initial target cell
population becomes larger, the mean number of secondary
infections will eventually become larger than the mean
number of virions released from a single infected cell. This is
not reasonable since each virion can only infect atmost one cell.
2.1.2. Viral release by bursting
In the model (2.1), viral particles are released from infectious
cells by budding. However, for some viruses, progeny virions
accumulate inside an infected host cell and are released in a
burst upon cell lysis. Yuan and Allen considered a model
of viral dynamics with bursting and included a mechanism
to represent the immune response [11]. They made the
assumption that if the death of an infected cell is virus-
induced, then virions will be released in a burst, but if the
infected cell is killed due to the action of an immune
response, no virions will be released. Yuan and Allen [11]
also assumed that each burst event leads to the same burst
size. That is, if an infected cell bursts, its burst size would
always be N = pτI and would not depend on the time when
the cell bursts. This might be the case if the accumulation
of virions inside the cell and the burst of the cell are coupled
in such a way that the burst of the cell takes place when the
number of intracellular virions reaches a given threshold. By
contrast, here we consider a case in which the accumulation
of virions and the burst of the cell are independent processes.
In this case, cells which burst earlier may not produce as
many viral particles as those that survive longer. This intro-
duces variability in the burst size, related to the times of
the burst events. We assume that intracellular virions are pro-
duced at a constant rate, p, during the ‘infectious’ phase, but
are not released unless the cell bursts. We note that under this
assumption, the eclipse phase represents a period in which
the cell begins to synthesize viral proteins and to replicate
the viral genome, but progeny virions have not yet started
to be assembled.

In order to describe these events with an ODE model, we
require additional variables to represent the total number of
intracellular virions in the population of infectious cells.
We let the variable Ii denote the number of infected cells in
stage i, and the variable Pi denote the total number of intra-
cellular infectious virions in all infected cells of stage i. In a
given infected cell, intracellular virions are assumed to
be produced at a constant rate, p. Each Pi increases due
to virion production at a rate proportional to the number of
cells in infectious stage i and due to cells entering stage i. Pi

decreases when cells exit stage i. The rate at which a cell in
stage i will exit this stage (either by transitioning to stage i + 1
or due to immune clearance) is (δI + νI)Ii. In the deterministic
model, the Pi virions are equally shared between all cells of
stage i. Therefore, the number of virions that will be cleared
or will transition to the next stagewhen such an event happens
will be Pi/Ii. Thus, the overall rate at which virions transition
from compartment Pi to Pi+1 (or get released in a burst for
i = nI) is dI Ii Pi

Ii
¼ dIPi. The system of 2 + nE + 2nI ODEs is

dT
dt

¼ �bcTV,

dE1

dt
¼ bcTV � (dE þ nE)E1,

dEi

dt
¼ dEðEi�1 � EiÞ � nEEi, i ¼ 2, . . . , nE,

dI1
dt

¼ dEEnE � (dI þ nI) I1,

dIi
dt

¼ dIðIi�1 � IiÞ � nI Ii, i ¼ 2, . . . , nI ,

dP1

dt
¼ pI1 � ðdI þ nIÞP1,

dPi

dt
¼ pIi þ dIðPi�1 � PiÞ � nIPi, i ¼ 2, . . . , nI ,

dV
dt

¼ dIPnI � cV � bvTV:

ð2:3Þ

2.2. Stochastic models
We will consider stochastic versions of the models in (2.1)
and (2.3), to then compute the associated probability
distributions of the burst size and reproduction number.
2.2.1. Viral release by budding
The model in (2.1) can be formulated as a continuous-time
Markov chain (CTMC), X ¼ fXðtÞ : t [ ½0, þ1Þg, where

XðtÞ ¼ ðVðtÞ, TðtÞ, E1ðtÞ, . . . , EnEðtÞ, I1ðtÞ, . . . , InI ðtÞÞ:
V(t), T(t), Ei(t) and Ij(t) (for i∈ {1,…, nE} and j∈ {1,…, nI}) are
discrete random variables with values in the set of non-
negative integers, for t∈ [0, +∞). The possible transitions
allowed in the stochastic model are shown in table 1.
2.2.2. Viral release by bursting
The model in (2.3) can be considered as a Markov process
in which each infected cell is independent, with its own
number of intracellular virions, which increases at a constant
rate until the cell dies. If the cell reaches stage nI and the
death of the cell is virus-induced (with rate δI), then the intra-
cellular virions at the time of death will be released in a burst
into the extracellular environment. On the other hand, if the
infected cell is killed by the immune system (with rate νE
during the eclipse phase, or rate νI during the infectious
phase), it is assumed that no infectious virions will be released
[11]. This can represent granzymes delivered into the infected
cell which can damage the intracellular virions [23,24].



Table 1. Transitions and their corresponding rates in the Markov chain version of the model in (2.1). We abuse notation and denote by ðVðtÞ, TðtÞ,
E1ðtÞ, . . . , EnE ðtÞ, I1ðtÞ, . . . , InI ðtÞÞ the random variables of the stochastic process, while ðV , T , E1, . . . , EnE , I1, . . . , InI Þ represents a state of the
process at any given time. Only the variables that change in a given transition are included in the middle column.

event state transition rate

infection (V, T, E1) �! (V− 1, T− 1, E1 + 1) βTV

eclipse stage progression (Ei, Ei+1) �! (Ei− 1, Ei+1 + 1) δEEi
immune system killing Ei �! Ei− 1 νEEi
eclipse to infectious phase ðEnE , I1Þ �! ðEnE � 1, I1 þ 1Þ dEEnE
infectious stage progression (Ii, Ii+1) �! (Ii− 1, Ii+1 + 1) δIIi
immune system killing Ii �! Ii− 1 νIIi
death of infectious cell InI �! InI � 1 ðdI þ nIÞInI
viral release by budding V �! V + 1 p

PnI
i¼1 Ii

loss of extracellular virions V �! V− 1 cV
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2.3. Average burst size and reproduction number
2.3.1. Viral release by budding
Here we compute the mean burst size and reproduction
number for the stochastic model of viral release by budding.
The burst size is defined as the total number of virions released
by an infected cell during its lifetime. We note that a cell
becomes infected at the moment of viral entry, so that a cell
in either the eclipse or infectious phase will be an infected cell.
There is no viral release during the eclipse phase and the rate
of viral release during the infectious phase is p. Thus, the
mean burst size is given by

0� E½tE� þ pE½tI � ¼ pE½tI �,

where tE and tI are the random variables for the length of time
that an infected cell spends in the eclipse and infectious phases,
respectively (i.e. tI is the infectious period).When νE = νI = 0,we
have E½tI � ¼ tI .

We will now consider the case when the killing of infected
cells due to the immune response is included (νE > 0, νI > 0). In
this case, it is possible for cells to be killed by the immune
system, either in the eclipse phase (before becoming infec-
tious), or in the infectious phase before passing through all
nI stages. If a cell is killed during the eclipse phase, then it
will never become infectious (i.e. tI = 0) and therefore the
burst sizewill be zero. Let K be the random variable represent-
ing the number of infectious stages that an infected cell passes
through before it dies; that is, the state space ofK is k∈ {0, 1,…,
nI}, where k = 0 implies the cell dies in the eclipse phase, and
k∈ {1,…, nI} implies the cell dies in the infectious stage k. At
each infectious stage, the rate of death is νI, and the rate of pro-
gression to the next stage is δI = nI/τI. Thus, the time taken to
exit each stage will be the minimum of two competing expo-
nential random variables with rates νI and δI, respectively.
This minimum is an exponential random variable with rate
δI + νI, and is independent of whether the cell is killed by the
immune response or progresses to the next stage. That is,
the time spent in a given infectious stage will always be expo-
nentially distributed with rate δI + νI, even if we condition on
progression to the next stage. Thus, the infectious period, tI,
is equivalent to the sum of K exponential random variables,
each with rate δI + νI, where K is itself a random variable.
Therefore, if K∈ {1,…, nI}, tI follows an Erlang (K, δI + νI) dis-
tribution. If K = 0, then we have tI = 0. The overall distribution
of tI will be a weighted sum of these distributions, with the
weights given by the distribution of K, so that the infectious
period, tI, has the following probability density:

d
dt

PðtI � tÞ ¼
XnI
k¼1

PðK ¼ kÞ ðdI þ nIÞktk�1 e�ðdIþnI Þt

ðk � 1Þ! :

The probabilities PðK ¼ kÞ giving the distribution of K can be
found as follows. For a cell in any given eclipse stage, the exit
rate of the cell out of this stage is δE + νE, and when the cell
exits this stage it will either die with probability νE/(δE +
νE), or move to the next stage with probability δE/(δE + νE).
Hence the probability that the cell will survive all nE eclipse
stages and progress to the infectious phase
is ðdE=ðdE þ nEÞÞnE . Similarly, for a cell in infectious stage
i∈ {1,…, nI− 1}, the exit rate of the cell out of this stage is
δI + νI, and when the cell exits this stage it will either die
with probability νI/(δI + νI), or move to the next infectious
stage with probability δI/(δI + νI). Note that for the final infec-
tious stage, nI, the cell will always die when exiting this stage.
Therefore, the probability that an infected cell passes through
k infectious stages before it dies is given by

PðK ¼ kÞ ¼
1� rnEE , k ¼ 0,

rnEE rk�1
I ð1� rIÞ, k ¼ 1, . . . , nI � 1,

rnEE rnI�1
I , k ¼ nI ,

8><
>: ð2:4Þ

where rE = δE/(δE + νE), rI = δI/(δI + νI). We note that when
νE = νI = 0, one has rE = rI = 1, so that K = nI with probability
one. The mean infectious period can then be calculated as

E½tI � ¼
XnI
k¼0

PðK ¼ kÞ k
dI þ nI

¼ rnEE
nI

(1� rI)
2
XnI�1

k¼1

[krk�1
I ]þ nIrnI�1ð1� rIÞ

 !

¼ 1
nI
rnEE (1� rnII ), for nI . 0:

To obtain the mean reproduction number, we multiply the
mean burst size, pE½tI �, by the mean fraction of these virions
that will go on to infect new target cells,

�R ¼ pE½tI � bT0

cþ bT0
¼ rnEE (1� rnII )

pbT0

nIðcþ bT0Þ : ð2:5Þ
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In the limit νE→ 0 and νI→ 0, we have E½tI � ! tI and we
regain (2.2).

2.3.2. Viral release by bursting
For themodel of viral release by bursting, the rate of intracellu-
lar virion production during the infectious phase is p, but
virions will only be released in a burst if the cell is not killed
by the immune system in any of the eclipse or infectious
stages. The probability for a given infected cell to burst is
rnEE rnII , and given that the cell bursts, its mean infectious
period will be nI/(δI + νI). Thus, the mean burst size is

rnEE rnII
pnI

dI þ nI
,

and the mean reproduction number is

�R ¼ rnEE rnIþ1
I

ptIbT0

cþ bT0
: ð2:6Þ

In the limit νE→ 0 and νI→ 0, we have rE = rI = 1, and we
regain (2.2).

2.4. Burst size probability distribution
2.4.1. Viral release by budding
Let B be the random variable representing the viral burst size,
i.e. the total number of virions released by an infected cell
during its lifetime. To find the distribution of B, we consider
the dynamics of viral release from a single infected cell. As
explained in the previous section, an infected cell will pro-
gress through a (random) number of infectious stages,
K∈ {0, 1,…, nI}, before it dies. The probability distribution
of K is given in (2.4). We will first consider the burst size dis-
tribution conditioned on the value of K, and then compute a
weighted sum over the possible values of K. If K = 0, then the
cell dies before entering the infectious phase and the burst
size is zero. If K = kwith k > 0, then there are k− 1 progression
events (from one infectious stage to the next) and b virion
release events before the cell dies in the kth infectious stage.
During the infectious phase, a cell is assumed to release vir-
ions at a constant rate, p, with an exponentially distributed
time between the release of each new virion. Hence, each
virion release event has probability p/( p + δI + νI). We thus
conclude that the total number of virions released by the
cell before it dies is a negative binomial random variable
describing the number of ‘successes’ before the kth ‘failure’,
where a ‘success’ is the release of a virion and a ‘failure’ is
leaving the stage. Therefore, given that the cell progresses
through exactly K = k > 0 infectious stages, the burst size B
follows a negative binomial distribution, with shape par-
ameter k and success probability p/( p + δI + νI). Once we
sum over the possible values of K, the probability mass func-
tion (p.m.f.) for the number of virions released from an
infected cell is

PðB ¼ bÞ ¼
XnI
k¼0

PðB ¼ b j K ¼ kÞ PðK ¼ kÞ

¼ (1� rnEE )db,0 þ rnEE
XnI�1

k¼1

f ðb, kÞ dk�1
I nI

ðpþ dI þ nIÞk
 

þ f ðb, nIÞ d
nI�1
I ðdI þ nIÞ

ðpþ dI þ nIÞnI
!
,

ð2:7Þ
for b∈ {0, 1, 2,…}, where δb,0 represents the Kronecker
delta, and

f ðb, kÞ ¼ ðk þ b� 1Þ!
ðk � 1Þ!b!

p
pþ dI þ nI

� �b

: ð2:8Þ

If νE = νI = 0, the burst size distribution becomes a negative
binomial with shape parameter nI and success probability
p/( p + δI), so that we can write

PðB ¼ bÞ ¼ nI þ b� 1
b

� �
p

pþ dI

� �b dI
pþ dI

� �nI

, ð2:9Þ

for b∈ {0, 1, 2,…}. The expectation and variance of this
negative binomial distribution are given by

E½B� ¼ pnI
dI

¼ ptI ,

and

Var½B� ¼ E½B� 1þ E½B�
nI

� �
¼ pnI

dI
þ p2nI

d2I
:

We note that if the infectious period is assumed to be expo-
nentially distributed (nI = 1), then the distribution in (2.9)
becomes geometric.

2.4.2. Viral release by bursting
When νI = 0, the probability distribution of the burst size is
equal for the two models of budding and bursting, since
the number of virions produced by an infected cell has the
same distribution in both instances, but they are either
released from the cell gradually in the case of budding, or
remain in the cell until it dies in the case of bursting. How-
ever, when infectious cells can be killed by the immune
system, the two strategies produce different burst size distri-
butions. In the budding strategy, some virions may be
released from an infectious cell before the cell is killed by
the immune system, but in the bursting strategy, if an infec-
tious cell is killed by the immune system before it bursts,
then all intracellular virions are assumed to be eliminated
in the process and the corresponding burst size is zero.
Hence, in the case of bursting, virions will only be released
from the infected cell if the cell is not killed by the immune
system, and it exits the final infectious stage by bursting.
Given that a burst does occur, the burst size will be negative
binomially distributed with shape parameter nI and success
probability p/( p + δI + νI). Thus, the burst size probability dis-
tribution is given by

PðB ¼ bÞ ¼ (1� rnEE rnII )db,0

þ rnEE f ðb, nIÞ dI
pþ dI þ nI

� �nI

, ð2:10Þ

for b∈ {0, 1, 2,…}, where δb,0 represents the Kronecker delta,
and f (b, k) is defined in (2.8).

The burst size p.m.f.s and means for the budding and
bursting models are summarized in table 2.

2.5. Reproduction number probability distribution
We now return to R, the random variable representing
the cell-level reproduction number; that is, the number of
secondary infections produced by a single infected cell in
an otherwise susceptible cell population. Our aim in this



Table 2. Summary of the burst size and reproduction number distributions and means for the different model assumptions of viral release by budding and
bursting, defined for b, r∈ {0, 1, 2,…}. δb,0 represents the Kronecker delta and we define rE = δE/(δE + νE), rI = δI/(δI + νI). f (b, k) is defined in (2.8). Note
that these reproduction number distributions were calculated for the case of a constant number of uninfected target cells (i.e. Case 1), where each virion has
probability θ to infect a new cell. For Case 2, in which the depletion of uninfected target cells is considered, the approach in (2.12) should be followed, using
the recursively defined probabilities, pr[b].

burst size distribution

budding PðB ¼ bÞ ¼ ð1� rnEE Þdb,0 þ rnEE
PnI�1

k¼1 f ðb, kÞ dk�1
I nI

ðpþdIþnIÞk þ f ðb, nIÞ d
nI�1
I ðdIþnIÞ
ðpþdIþnIÞnI

� �

bursting PðB ¼ bÞ ¼ ð1� rnEE r
nI
I Þdb,0 þ rnEE f ðb, nIÞ dI

pþdIþnI

� �nI
mean burst size

budding �B ¼ rnEE ð1� rnII Þ p
nI

bursting �B ¼ rnEE r
nI
I

pnI
dIþnI

reproduction number distribution

budding PðR ¼ rÞ ¼ ð1� rnEE Þdr,0 þ rnEE
PnI�1

k¼1
k þ r � 1

r

� �
ðupÞrdk�1

I nI

ðupþdIþnIÞrþk þ nI þ r � 1
r

� �
ðupÞrdnI�1

I ðdIþnIÞ
ðupþdIþnIÞrþnI

� �

bursting PðR ¼ rÞ ¼ ð1� rnEE r
nI
I Þdr,0 þ rnEE

nI þ r � 1
r

� �
ðupÞrdnII

ðupþdIþnIÞrþnI

mean reproduction number

budding �R ¼ rnEE ð1� rnII Þ pu
nI

bursting �R ¼ rnEE r
nIþ1
I ptIu
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section is to find the p.m.f. of R, which may be written in
terms of the burst size probabilities as

PðR ¼ rÞ ¼
Xþ1

b¼0

PðR ¼ r j B ¼ bÞPðB ¼ bÞ,

with r a non-negative integer. Hence, we will find the prob-
abilities PðR ¼ r j B ¼ bÞ (number of secondary infections
produced, given that the initial infected cell releases B = b vir-
ions during its lifetime), so that together with the probability
distribution of B ((2.7) for budding and (2.10) for bursting),
we can compute the probability distribution of R.

The only possible outcomes for a released virion are (i)
that it is lost or (ii) that it infects a target cell. Free virions
are cleared with rate c, and infect new cells with rate βT,
which depends on the number of available target cells, T.
Usually, calculations of the reproduction number assume
that the number of infectious viral particles is small enough
so that the number of (uninfected) target cells is not signifi-
cantly altered by infection events. Thus, the number of
target cells is usually assumed constant [25], as in §2.5.1.
However, if the number of target cells at the start of infection
is small and the infection rate, β, is large, it will be important
to consider the transition of target cells to infected cells, since
the depletion of uninfected target cells will affect the ability of
extracellular viral particles (released from infected cells) to
infect new cells. The number of secondary infections caused
by a single infected cell will depend on: (i) competition
between virions produced by the initial infected cell for avail-
able target cells and (ii) competition for target cells from
virions being produced during secondary infections. Here,
in §2.5.2, we will address the former source of competition,
while ignoring the second; that is, we consider depletion of
target cells due to secondary infections caused by viral par-
ticles released from the initially infected cell, but do not
consider depletion of target cells due to viral particles
released from subsequently infected cells.

2.5.1. Target cell number is constant (Case 1)
If the number of uninfected target cells is sufficiently large,
their loss due to infection can be neglected, and their
number assumed to be constant. In this case, extracellular
virions are independent of each other, in the sense that they
will have the same probability of successfully infecting a
target cell, independently of the fate of other such virions.
For each infectious virion released from an initially infected
cell, the probability that it will infect a target cell is

u ¼ bT0

cþ bT0
,

where β is the rate at which extracellular virions infect target
cells, T0 is the constant number of target cells, and c is the rate
of loss of extracellular virions. Therefore, the number of sec-
ondary infections will be the sum of b independent and
identical Bernoulli random variables, and R|B = b, follows a
binomial distribution with parameters (b, θ). We then have,
for r a non-negative integer,

P
�
R ¼ r

� ¼Xþ1

b¼r

b
r

� �
ur ð1� uÞb�r

PðB ¼ bÞ:

Substituting in the p.m.f of the burst size distribution from (2.7)
(budding model) or (2.10) (bursting model), we find that the
p.m.f of the reproduction number has the same form as the
burst size p.m.f., but with the parameter p replaced by θp,
which is equivalent to assuming that secondary infections
are produced at rate θp. This makes sense since each virion
released from an infected cell is expected to infect a new cell
with probability θ, and when considering only the number of
secondary infections produced, we ignore the timescale of



0

ξ
0

ξ
1

ξ
2

ξ
M – 1

1

1

2 M

1 – ξ
0

1 – ξ
1

1 – ξ
2

Figure 2. Counting secondary infections using a Markov chain. At each of b steps, one for each released virion, the process either moves one state to the right,
corresponding to infection of a target cell, or stays put, corresponding to loss of a virion. ξi = β(T0− i)/(β(T0− i) + c) is the probability of moving from state i to
i + 1, where T0 is the initial number of uninfected target cells available. The position after b steps is the number of secondary infections generated by b extracellular
virions.
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these events. The reproduction number p.m.f.s and means for
the budding and bursting models are provided in table 2.

If νE = νI = 0, since the burst size follows a negative bino-
mial distribution (see (2.9)), then the number of secondary
infections also follows a negative binomial distribution,
with shape parameter nI and success probability θp/(θp +
δI). The p.m.f. of the reproduction number is

PðR ¼ rÞ ¼ nI þ r� 1
r

� �
up

upþ dI

� �r dI
upþ dI

� �nI

: ð2:11Þ
2.5.2. Target cell number is limiting (Case 2)
The probability of a given virion successfully infecting a cell
before it is lost depends on the number of available target
cells. Therefore, if the number of target cells is small, it is
essential to take into account their reduction as they
become infected. In this case, the virions cannot be treated
as independent, but their probability of infecting a cell will
depend on how many target cells are still available after
previous infection events.

Let us assume that there are T0 target cells in the popu-
lation to begin with, and B = b infectious virions have been
released by one infected cell during its infectious phase.
Since we are only interested in the number of secondary
infections generated by a single infected cell, and not the
times of those infection events, one can assume that at dis-
crete time steps, a virion is chosen uniformly at random out
of the B = b virions, to either be lost or infect a target cell.
In this way, we can then set up a Markov chain to calculate
the probability distribution of the number of secondary infec-
tions generated by B = b extracellular virions produced by a
single infected cell.

Let us define the discrete-time Markov chain, Y ¼
fYn : n [ f0, 1, 2, . . . , bgg, where Yn denotes the number of
secondary infections that have occurred after n of the infec-
tious extracellular virions have either been lost or infected
an available target cell. The initial state of the process will
be Y0 = 0 and the state space of Y will be given by
SY ¼ f0, 1, 2, . . . , Mg, where M =min{b, T0} is the maximum
number of secondary infections that can take place. The
Markov chain Y, shown in figure 2, can be defined by the fol-
lowing one-step transition probabilities, for states i, j [ SY .
For i <M,

pi,j ¼ PðYnþ1 ¼ j j Yn ¼ iÞ ¼
ji, if j ¼ iþ 1,
1� ji, if j ¼ i,
0, otherwise,

8<
:

where ξi = β(T0− i)/(β(T0− i) + c). If the number of secondary
infections reaches M, we have

pM,j ¼ 1, if j ¼ M,
0, otherwise:

�

The probability that r secondary infections will occur (with r a
non-negative integer), given that the cell released b infectious
virions, is given by PðR ¼ r j B ¼ bÞ ¼ PðYb ¼ r j Y0 ¼ 0Þ,
which is the probability that the process Y is in state r after
the b infectious extracellular virions have either been lost
or infected target cells. For ease of notation, we write
pr½b� ¼ PðYb ¼ r j Y0 ¼ 0Þ. Making use of first-step arguments,
these probabilities can be calculated recursively, as follows.We
have p0[0] = 1. Then for b≥ 1,

pr½b� ¼
p0½b� 1�p0,0, if r ¼ 0,

pr�1½b� 1�pr�1,r þ pr½b� 1�pr,r, if 0 , r � M:

�

Thus, substituting the one-step transition probabilities from
above, we have

pr½b� ¼
(1�j0)

b, if r¼ 0,

pr�1½b�1�jr�1þpr½b�1�ð1�jrÞ, if 0, r�minðb,T0Þ,
0, if r.minðb,T0Þ:

8><
>:

We can solve the previous system sequentially to obtain pr[b]
for all required values of r and b. We get

P
�
R¼ r

�¼Xþ1

b¼0

pr½b�PðB¼ bÞ: ð2:12Þ

If the initial number of target cells, T0, is large enough so that
only a small fraction is going to become infected by the vir-
ions produced by a single infected cell, then it is reasonable
to approximate ξi = θ for all i. This approximation leads to
Case 1, where

pr½b� ¼ b
r

� �
u r ð1�uÞb�r, 0� r� b:

2.6. Probability of viral extinction
It is useful to also calculate the probability of viral extinction
during the early stages of infection. When the number of
target cells is assumed constant, the initial dynamics of the
models considered can be described by branching processes,
in which each infected cell produces a number of new
infected cells according to the reproduction number distri-
bution. In such a branching process, the probability of
extinction starting with one infected cell is equal to the
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smallest fixed point of the probability generating function
(p.g.f.) of the offspring distribution (see ch. 4 of Allen [26]).
If the branching process is counting the number of infected
cells at each generation, then the offspring distribution will
be the reproduction number distribution.

In the case of budding, the p.g.f. of the reproduction number
(when the number of target cells is constant) is given by

pbudðsÞ ¼ 1� rnEE

"
1�

XnI
k¼1

tInInk�1
I

ðnI þ tInI þ ð1� sÞtIupÞk

� nI
nI þ tInI þ ð1� sÞtIup
� �nI

#
: ð2:13Þ

Further details to show how this p.g.f. was obtained can be
found in Williams [27, p. 170].

In the case of bursting, the p.g.f. of the reproduction number
(when the number of target cells is constant) is given by

pburstðsÞ ¼ 1� rnEE rnII 1� nI þ tInI
nI þ tInI þ ð1� sÞtIup
� �nI	 


:

ð2:14Þ
We note that when νI = 0, πbud and πburst are identical, since the
reproduction number distribution is the same for the budding
and bursting cases.

When nI = 1, corresponding to an exponentially distribu-
ted infectious period, the fixed points of the functions πbud
and πburst can be found explicitly. For budding and nI = 1,
the solutions of πbud(s) = s are sbud1 ¼ 1 and

sbud2 ¼ 1� rnEE 1� 1
�Rbud

� �
,

where �Rbud ¼ rnEE ðup=dI þ nIÞ is the mean reproduction
number in the budding case (nI = 1). Similarly, for bursting
and nI = 1, the solutions to πburst(s) = s are sburst1 ¼ 1 and

sburst2 ¼ 1� rnEE rI 1� 1
�Rburst

� �
,

where �Rburst ¼ rnEE rIðup=dI þ nIÞ ¼ rI �Rbud. The smallest fixed
point of the p.g.f. gives the probability of viral extinction
starting with one infected cell, so that in each case extinction
will be certain if s2≥ 1 (corresponding to �R � 1) and will
occur with probability s2 if s2 < 1 (corresponding to �R . 1).
Since �Rburst � �Rbud and sburst2 � sbud2 , extinction will always
be equally or more likely to occur in the bursting case than
the budding one. In particular, when 1 , �Rbud � 1=rI , extinc-
tion is certain in the bursting case, but not in the budding
one. For nI > 1, the smallest fixed points of the p.g.f.s can be
found numerically, giving the probability of viral extinction
starting with one infected cell. Since each initial infected
cell is independent, the probability of extinction starting
with one infected cell can easily be used to find the prob-
ability of extinction starting with multiple infected cells [26].
3. Numerical results
In this section, we present the sensitivity of the reproduction
number distribution and probability of viral extinction
computed in §2 to different models of viral release and par-
ameter values. We ignore any immune killing of eclipse-
phase cells, so that νE = 0 and every infected cell is assumed
to survive the eclipse phase and enter the infectious phase.
3.1. Infection rate
We first consider the model without immune killing of
infectious cells, corresponding to νI = 0. In this case, the prob-
ability distribution of the number of virions released by an
infected cell during its lifetime is the same for either model of
viral release (budding or bursting). For both models, the
burst size follows a negative binomial distribution with mean
pτI and shape parameter nI (see (2.9)). Once virions are released
from an infected cell, the rate at which they infect new cells
depends on β and on the number of target cells available
to be infected, T. Section 2.5 described two cases to consider
when calculating the distribution of the reproduction
number, R. When the number of target cells is not limiting,
since the population is very large or is constantly replenished
(Case 1), the reproduction number follows the negative
binomial distribution in (2.11) (for νE = νI = 0). The shape par-
ameter of this distribution is nI, and the mean number of
secondary infections produced is �R ¼ uptI , where θ = βT0/
(c + βT0) is the probability for a given released virion to infect
a target cell. Alternatively, if the number of target cells is limit-
ing (Case 2), the reproduction number distribution can be
calculated using (2.12), in which the depletion of target cells
due to infection is taken into account.

When the value of �R is much smaller than T0, and only a
small fraction of the target cells are likely to become infected,
the probability distributions of R for Case 1 and Case 2 are
similar. The smaller the difference between the number of
target cells and the expected number to become infected
(i.e. T0 � �R), the greater the difference of the distributions
obtained from the two methods become.

Figure 3 shows the different probability distributions of R
calculated with Case 1 and Case 2 methods, for some key
values of the infection rate, β, and number of target cells,
T0. All other parameters are fixed to the values in table 3,
with νI = 0. The Case 1 method assumes that there is a con-
stant population of T0 target cells which does not decrease
as cells become infected. On the other hand, Case 2 assumes
that there is a population of T0 target cells to begin with, but
each secondary infection reduces this number by one, so that
it is not possible for more than T0 secondary infections to
occur. The two plots in the top row of figure 3 have par-
ameter values of β and T0, such that θ = 0.014 and the mean
reproduction number is �R ¼ 17:6 (for Case 1, from (2.2)).
However for the plot on the top left, T0 ¼ 10 , �R, making
the distribution of R very different, depending on whether
it is calculated using the method for Case 1 or Case
2. When T0 ¼ 103 � �R, the two distributions become very
similar. For the plots on the bottom row of figure 3, the
values of β and T0 give θ = 0.59 and �R ¼ 735. For the plot
on the bottom left, where T0 = 103 is only slightly larger
than �R, there is a clear difference between the two distri-
butions. When T0 is increased to 105 in the plot on the
bottom right, this difference becomes much smaller.

The heatmap in figure 4 illustrates the difference between the
two distributions of Case 1 and Case 2 across a wider range of
values of β and T0. The difference between the distributions is
quantified by the Hellinger distance, defined by

HðP, QÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ð ffiffiffiffiffi
pi

p � ffiffiffiffi
qi

p Þ2
r

,

for two discrete probability distributions, P = {p0, p1, p2,…}
and Q = {q0, q1, q2,…}. H(P, Q) gives a value between 0
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Figure 3. Histograms for the probability distribution of the reproduction number, R, for different values of β and T0. For each pair of parameter values, the
distributions obtained from methods of Case 1 using (2.11) (number of target cells is constant) and Case 2 using (2.12) (number of target cells decreases as
they become infected) are shown. All other parameter values are fixed to the values in table 3, with νI = 0 (so the reproduction number distribution is equivalent
under budding or bursting assumptions).

Table 3. Model parameters with their descriptions and units. We define δE = nE/τE, δI = nI/τI, and θ = βT0/(c + βT0). Values are given for some parameters,
which have been used to obtain numerical results in §3. In all numerical results, we set νE = 0, which means that the values of τE and nE (determining the
distribution of the eclipse phase) do not affect the burst size or reproduction number distribution.

parameter description units value

p viral release rate (budding) or intracellular production rate (bursting) virions · (cell · day)−1 1000

τE mean of Erlang-distributed eclipse phase in the absence of immune killing days n.a.

nE number of stages of the Erlang-distributed eclipse phase — n.a.

νE immune clearance rate of eclipse-phase cells (cell · day)−1 0

τI mean of Erlang-distributed infectious period in the absence of immune killing days 1.25

nI number of stages of the Erlang-distributed infectious period — 10

νI immune clearance rate of infectious cells (cell · day)−1 varied

β infection rate (cell · virion · day)−1 10−4

c rate of loss of extracellular virions (virion · day)−1 7

T0 initial number of target cells cells 105
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and 1, where 0 indicates that the two distributions are
identical. In general, for larger values of the infection rate, β,
and smaller values of T0, the distributions become more
different, since these parameter values will mean that the
virus is likely to infect a greater fraction of the available
target cells.
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Figure 4. Heatmap showing the Hellinger distance between the two distri-
butions of the reproduction number, R, calculated using Case 1 (2.11) and
Case 2 (2.12), for different values of β and T0. All other parameter values
are fixed to the values in table 3, with νI = 0 (so the reproduction
number distribution is equivalent under budding or bursting assumptions).
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Figure 5. Reproduction number probability distributions calculated using the
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values of the immune killing rate of infectious cells, νI. Other parameters are
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For the value of β = 10−4 (cell · virion · day)−1 in table 3, the
mean reproduction number will be much smaller than T0, for
any T0 [ N. Therefore the distribution of R will be very simi-
lar using either method, and we will assume a constant
number of target cells (Case 1) to calculate the reproduction
number distributions in the following sections.
3.2. Immune killing
In vitro experiments have previously been used to obtain esti-
mates for viral dynamics parameters. For example, Liao et al.
[2] fitted a mathematical model similar to (2.1) with νE = νI = 0
to data of in vitro Ebola virus infection. In another recent
study, Yan et al. [7] fitted a similar model to in vitro data
and compared estimates of growth rate, reproduction
number and generation time, for six influenza A strains.
Studies like these are very useful for determining many key
model parameters; however, they do not allow parameters
that represent in vivo processes, such as immune system clear-
ance of infected cells, to be estimated. Here we show that the
reproduction number distribution is very sensitive to the rate
at which the immune system is assumed to clear infected
cells in vivo. Figures 5 and 6 illustrate the reproduction
number distribution for different rates of immune killing of
infectious cells, for the models of viral release by budding
and bursting, respectively. In the model of budding, infec-
tious cells are assumed to produce new infections at a
constant rate, θp, until they die. An increased rate of
immune clearance means that the infectious period distri-
bution is changed, with more cells dying earlier. Therefore,
it becomes more likely for low numbers of secondary
infections to be produced.

In the bursting model, the reproduction number prob-
ability distribution is given by a zero-inflated negative
binomial distribution; if an infected cell bursts and releases
virions, then the number of secondary infections caused by
the cell follows a negative binomial distribution with shape
parameter nI and probability θp/(θp + δI + νI). The probability
of zero secondary infections is inflated, since if the initial
infected cell is killed by the immune system before it
bursts, then it is assumed that zero virions will be released
and zero secondary infections can be produced. Thus, for
larger rates of immune clearance, the probability of zero
secondary infections increases. Given that a cell does burst
and release virions, the distribution of time until the cell
bursts is also affected by the rate of immune clearance. The
reason for this is that the immune response introduces a
competition between the two mechanisms of death for
infected cells. This has the effect of reducing the mean time
to cell burst, since cells that would have taken longer to
burst are more likely to be cleared by the immune response
before they do so. Hence the mean number of virions released
from bursting cells and the mean number of secondary
infections is also reduced.

These results for the reproduction number distribution can
be translated into the probability of viral extinction, using the
p.g.f.s presented in §2.6. Figure 7 shows the effect of immune
killing on the probability of viral extinction for the bursting
model. When νI = 0, corresponding to an in vitro situation
without the immune clearance of infected cells, the model pre-
dicts almost zero chance of viral extinction starting from one
infected cell, for the parameters used here. As the immune
clearance rate increases, viral extinction becomes much more
likely. These results highlight how processes in vivo, such as
the immune system clearance of infected cells, may alter
the expected probability of extinction obtained from models
of in vitro experiments. There are also many other in vivo
biological mechanisms to consider, other than the rate at
which the immune system clears infected cells, which are not
studied here but may also impact the reproduction number
distribution. Some of these are discussed in §4.

3.3. Number of infectious stages
We now study the impact of the number of infectious phase
stages, given by the parameter nI, on the reproduction
number distribution and probability of viral extinction for
themodel with bursting.We note that the number of infectious
stages, nI, is varied, butwith themean of the Erlang-distributed
time to cell burst, τI, kept constant. Thus, as nI is varied, δI =
nI/τI also changes, since it depends on nI. Other parameters
are set to their values in table 3 and we use an immune clear-
ance rate of νI = 1.6 per cell per day. This implies that the
immune system killing of infectious cells occurs on average
two times faster than virus-induced cell death, which is
assumed to take τI = 1.25 days on average.
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Figure 6. Reproduction number probability distributions calculated using the expression in table 2 for the model of viral release by bursting, for different values of
the immune killing rate of infectious cells, νI. Other parameters are set to the values in table 3. The values of νI used are 0, 0.25, 0.5, 1 and 1.6, per cell per day,
corresponding to values of �R of 735, 524, 377, 201 and 99, respectively. (a) Probability of zero secondary infections for each value of νI. (b) Probability distribution
of R conditioned on positive values of the reproduction number.
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Figure 8 shows the bursting model reproduction number
distribution for different values of nI. As the number of infec-
tious stages increases, the variance of the Erlang burst time
distribution decreases and the distribution becomes more
tightly centred around the mean. On the other hand, the
exponential killing time distribution is not changed. Since
the exponential distribution allows times very close to zero,
the killing time is likely to be smaller than the burst time,
leading to a higher chance that killing by the immune
system will occur first. Therefore, there is a higher probability
of zero secondary infections for larger values of nI (figure 8a).
However, if the infected cell does burst, it will release a larger
number of virions on average when the value of nI is higher.
Therefore, when conditioned on positive numbers of second-
ary infections, the reproduction number distribution moves
to the right with increasing nI (figure 8b). For the parameter
values in table 3 and the values of nI considered, the overall
mean reproduction number, given in (2.6), increases with the
value of nI.

Figure 9 presents some interesting results about the prob-
ability of viral extinction, which is found by numerically
calculating the smallest fixed point of the p.g.f. in (2.14).
Figure 9a shows how the probability of extinction starting
from one infected cell changes as a function of θ, for different
values of nI, where θ is the probability that a given extracellu-
lar virion goes on to infect a new cell rather than be cleared.
When θ is very small, extinction is certain because the mean
reproduction number is below 1. When θ grows large enough
to increase the mean reproduction number above 1 (i.e.
u . 1=E½B�), then the probability of extinction becomes less
than 1. As seen in the legend of the plot, the mean burst
size increases with nI. Thus, as nI increases, the minimum
value of θ needed to satisfy the condition u . 1=E½B� becomes
smaller. However, once this threshold value of θ is exceeded,
larger values of nI cause the probability of extinction to
decay more slowly as a function of θ, compared with smaller
values of nI. As a result, we see that for small values of θ,
there is a larger probability of extinction for smaller nI, but
as θ grows, the ordering changes. Eventually, for large
enough values of θ, the probability of extinction is an increas-
ing function of nI. This is surprising, considering that the
mean reproduction number also increases with nI. The
reason for this counterintuitive result is that the probability
of eventual extinction depends strongly on the probabi-
lity that a cell produces zero secondary infections. This
probability, PðR ¼ 0Þ, is more sensitive to θ for smaller
values of nI, which explains why the probability of extinction
decays faster as a function of θ for smaller values of nI.
Figure 9b shows how the probability of extinction starting
with one infected cell depends on the number of infectious
stages (and �R), for the fixed value of θ≈ 0.59 which comes
from the parameter values in table 3. For this value of θ, it
can be seen that the probability of extinction is an increasing
function of nI, even though the mean reproduction number �R
grows with nI. These results provide further evidence that
focusing only on the mean reproduction number can be
very misleading.



  P
(R

 =
 0

)

 P
(R

 =
 r

|R
 �

 0
)

r (secondary infections)

nI = 1
nI = 2
nI = 5
nI = 10
nI = 20

nI

0.0040

0.0035
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0

0 200201021 5 600400 800 1000 1200

(a) (b)
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4. Discussion
The mean value of the cellular reproduction number has been
computed making use of deterministic mathematical models
for a number of viruses [28–31]. In some instances, these
values have been compared between different viral strains as
a measure of relative viral fitness [32]. Although the value of
�R is often used to compare viruses and predict the outcome
of infection, this number alone might not be enough to do so.
For example, in the early stages of viral infection, stochastic
effects are important. In fact, data on the probability of recovery
after acute HCV infection suggest that about 30% of infected
people spontaneously clear infection and do not develop
chronic infection [33]. When stochastic effects are considered,
there is heterogeneity in the viral burst size, which is the
number of viral progeny generated from an infected cell
during its lifetime, as well as heterogeneity in the reproduction
number, which is the number of secondary infections that a
single infected cell produces. One can capture this hetero-
geneity by investigating the probability distributions of these
two variables. Indeed, two viruses may have the same �R, but
different reproduction number probability distributions, for
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instance, owing to differences in the lifespans of infected cells
or the mechanism of virion release.

Herewehave shownhow to calculate the probability distri-
butions of the random variables for the burst size and the
reproduction number, for two stochastic viral dynamics
models. We considered a model in which virions are released
from infectious cells by budding at a constant rate. This
model, shown in (2.1) and figure 1, includes an eclipse phase
to represent the period after a virion infects a target cell,
during which the viral genome is replicated but no virions
are released. The duration of the eclipse phase follows an
Erlang distribution, as does the time spent in the infectious
phase until virus-induced cell death. The time until infected
cells are killed by the immune system is assumed to follow
an exponential distribution. Thus, the time to the death of an
infected cell is the minimum of these two competing mechan-
isms. In addition to the model of viral release by budding, we
also considered a model of viral release by bursting. This
model assumes that viral particles are generated intracellularly
at a constant rate and are eventually released in a burst event,
but only if the infected cell is not killed by the immune system.

Given the burst size distribution, we have presented two
methods to calculate the reproduction number distribution.
The simpler method assumes that the target cell population
remains constant (i.e. it is not depleted as these cells
become infected). This assumption is valid if the system is
well mixed and there is a large number of target cells,
which could be the case early in infection. However, for
some routes of infection, or for particular viruses, the avail-
ability of target cells may be limited. Thus, we introduced a
different method that can be used in this instance, in which
the number of target cells decreases due to infection events.

For in vitro scenarios, the effect of the immune system can
be removed by setting νE = νI = 0 in the model, as in the
models by Liao et al. [2] and Yan et al. [7], which were param-
etrized using in vitro experimental data. In the case where
νE = νI = 0, we showed that the burst size and reproduc-
tion numbers follow negative binomial distributions. We
can draw a comparison with the epidemic reproduction
number, where gamma-distributed individual heterogeneity
in the infection process results in a negative binomial
distribution of secondary infections from each case [34]. The
shape parameter of the negative binomial reproduction
number distribution is sometimes called the dispersion
parameter of the distribution, and it represents the degree of
transmission heterogeneity, which arises from a broad range
of biological and social factors that influence transmission.
A low value of the dispersion parameter corresponds to a
high level of dispersion in the distribution and suggests
that a small number of infected individuals, known as ‘super-
spreaders’, may contribute to many secondary infections. The
value of the dispersion parameter is particularly important
for the early dynamics of an epidemic when there are only
a few infected individuals. For example, Lloyd-Smith et al.
[34] investigated the probability of stochastic extinction
for an outbreak beginning with one infected individual, for
different values of the dispersion parameter. Smaller values
of the dispersion parameter were shown to increase the
probability of stochastic extinction, but a small dispersion
parameter also means that an epidemic can quickly take off
due to the possibility of superspreading events, leading to
infrequent but explosive epidemics. In the model studied
here, the dispersion parameter of the negative binomial
distribution in (2.11), given by nI, is an integer greater than or
equal to 1, since it corresponds to the number of stages in the
Erlang-distributed infectious period. However, heterogeneity
in the within-host reproduction number can arise from a
broad suite of factors other than the infectious period of the
cell. Including other sources of variation into the model
would impact the distribution of virions released from an
infected cell. This could have consequences such as decreasing
the predicted chance of successful infection establishment, or
introducing the potential for superspreader cells.

For stochastic models of within-host viral dynamics, the
distribution of the reproduction number can be used to calcu-
late the probability that infection will become established in
an individual, given an initial viral dose. We have shown
how to calculate the probability of viral extinction for the
budding and bursting models, and that the shape of the
reproduction number distribution can have a significant
impact on this probability. Previous studies of the probability
of within-host viral extinction have focused on reproduction
number distributions for which the means are the same in
each case, but the shape of the distributions differ. This is
similar to the case of epidemic models discussed above,
where increased variability in individual infectiousness has
been shown to increase the probability of stochastic extinction
in an outbreak beginning with one infected individual [34].
For example, Pearson et al. [1] studied differences between
continuous viral release and bursting, with the reproduction
number being geometrically distributed in the continuous
release case and assumed to either be a fixed value or
Poisson distributed in the bursting case. By comparing the
geometric reproduction number distribution and the Poisson
distribution (with the same mean), Pearson et al. [1] showed
that, with the greater variability of the geometric distribution,
there was a larger chance of viral extinction and a lower
probability of successful infection. Yuan and Allen [11] also
considered a similar model to (2.1) but without an eclipse
phase and with only one infectious stage. They studied the
difference in the probability of viral extinction when compar-
ing a model of the budding strategy with a geometrically
distributed burst size, and the bursting strategy with a
fixed burst size. They showed that the bursting strategy
was more successful for viral invasion when a model without
immune response was considered, but that the more success-
ful strategy switched to budding when the immune response
was included in the model. The results of both Pearson et al.
and Yuan and Allen indicate that the distributions of the
burst size and reproduction number are important in deter-
mining the probability of viral extinction; the mean alone is
not enough. We have further shown that an increase in the
expected reproduction number does not automatically
imply a decrease in the probability of extinction, since the
outcome depends on the distribution of the random variable.

In the electronic supplementary material, we studied a
stochastic version of a previously published deterministic
model of HCV infection in which the rate of virion release
by budding is not constant, but depends on the intracellular
viral dynamics [17]. The deterministic model by Guedj et al.,
presented in equation (1) of the electronic supplementary
material, is equivalent to a model in which the rate of viral
release varies continuously over an infected cell’s lifespan.
For the parameter values estimated by Guedj et al., the release
rate approaches a constant steady state fairly quickly, making
the burst size and reproduction number distributions similar
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to the negative binomial distributions derived for the model
of constant viral release by budding in the absence of
immune response. However, the age-dependent viral release
rate has a more noticeable impact when the infectious period
follows an exponential distribution (nI = 1), since cells that die
very soon after infection release rather fewer virions than they
would in the case of a constant release rate. The model
for HCV considered here only includes simple intracellular
dynamics; the model has a single equation for the intracellu-
lar viral genome, which increases by viral replication and is
lost due to decay or release from the cell by budding. How-
ever, the method shown to calculate the burst size
distribution for this particular model of HCV dynamics can
be directly generalized to other models in which the release
of virions from infected cells is a Poisson process and a func-
tional form of the age-dependent viral release rate can be
found. Furthermore, the method could be extended and
implemented for models with more complex intracellular
viral kinetics, such as those to describe co-infection and
reassortment of segmented viruses.

A shortcoming of our approach is that we have focused
onlyon stochasticmodels that have been derived fromdetermi-
nistic equations. In vitro experimental techniques that enable
visualization of viral replication and virion release from
single cells provide the opportunity for future work to focus
on developing and parametrizing a much wider variety of sto-
chasticmodels [35]. However, it will also be necessary tomodel
the impact of in vivo processes thatmay not be observed in vitro,
such as immune system clearance of infected cells. In §3.2, we
showed that this can have important biological implications in
terms of the likelihood of infection establishment. While it is
challenging to directly measure immune system clearance
experimentally, calibrating models with in vivo data can allow
parameters that are not measurable in vitro to be estimated.
For example, during treatment of chronic HCV infection,
there is strong evidence of an exponential decay of infected
cells [36,37], where this rapid death of infected cells is thought
to be due to immune responses.

While the theory and examples presented here emphasize
the importance of understanding reproduction number
variation and modelling processes that contribute to this
heterogeneity, there are important mechanisms that are not cap-
tured by the simple models presented here. For some viruses,
such as HCV and respiratory syncytial virus, infected cells
can directly infect target cells via cell–cell contacts [38–41].
Including this infection mechanism into the model may alter
the predicted within-host reproduction number distribution.
Furthermore, for the models presented here, variation in the
reproduction number mainly results from variation in the infec-
tious period of cells. However, there are many other aspects of
host-cell biology that can make important contributions to het-
erogeneity of the within-host reproduction number. For
example, cell-to-cell variation in the innate immune response
(e.g. the response to type I interferons (IFN)) can lead to cell
differences in the efficiency of viral transcription [42]. While
in the models presented here, each cell is assumed to be infected
with only one virion, cellular co-infection is common for many
viral diseases. Thus, another source of variation across a hetero-
geneous infected cell population is the multiplicity of infection
of individual cells, which can lead to heterogeneity in cell death
rates and viral production rates [43]. Finally, cells that are in a
certain phase of the cell cycle when they become infected
may enable more efficient replication for some viruses [44].

In conclusion, computing the burst size and reproduction
number probability distributions for stochastic viral dynamics
models is a first step to compare these distributions for a range
of viruses (or strains) and model structures. Furthermore, the
reproduction number distribution can have surprising conse-
quences for the probability of viral extinction. We have
demonstrated this through an example inwhich the probability
of viral extinction actually increases as the mean reproduction
number increases.
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