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Abstract.

In this paper, the identification of immersed obstacles in a steady incompressible Navier-Stokes
viscous fluid flow from fluid traction measurements is investigated. The solution of the direct
problem is computed using the finite element method (FEM) implemented in the Freefem++
commercial software package. The solution of the inverse geometric obstacle problem (param-
eterized by a small set of unknown constants) is accomplished iteratively by minimizing the
nonlinear least-squares functional using an adaptive moment estimation algorithm. The numer-
ical results for the identification of an obstacle in a viscous fluid flowing in a channel with open
ends, show that when the fluid traction is measured on the top, bottom and inlet boundaries,
then the algorithm provides accurate and robust reconstructions of an obstacle parameterized
by a small number of parameters in a Fourier trigonometric finite expansion. Stable reconstruc-
tions with respect to noise in the measured fluid traction data are also achieved, although for
complicated shapes parameterized by larger degrees of freedom nonlinear Tikhonov regulariza-
tion of the least-squares functional may need to be employed. Multiple-component obstacles
may also be identified provided that a good initial guess is provided. In case of limited data
being available only at the inlet boundary the pressure gradient provides more information for
inversion than the fluid traction.

Keywords: Inverse geometry problems; Navier-Stokes equations; Finite element method; Fluid
flows.

1 Introduction

The identification of obstacles immersed in fluids has significant implications in various domains,
including environmental monitoring, medical imaging, submersed vehicles or aquatic mine de-
tection. And just as a timely application, the very recent dam destruction in Ukraine resulted in
initially buried landmines becoming underwater floating and needed to be detected. Neverthe-
less, direct observation or measurement of submerged objects is often challenging or impossible.
In such a situation, inverse modeling offers a valuable approach to overcome these challenges
by utilizing observed effects or indirect measurements to infer the properties, shapes, sizes and
locations of submerged obstacles. There are several papers about the identification of obstacles
immersed in some different types of fluids such as, potential [5], Stokes [18, 3, 2], Oseen [15, 11],
Brinkman [12, 13] or Navier-Stokes [1, 7]. The studies in [1, 7] were mainly theoretical and they
dealt with the simpler Dirichlet boundary conditions for which the existence and uniqueness of
solution theory is available [23]. However, in our study, we consider a more physical scenario in
which the unknown obstacle is placed in an open end channel containing a viscous fluid. For this
situation, mixed boundary conditions are appropriate, and this distinguishes from the previous
studies [1, 7] in which only Dirichlet boundary conditions were investigated. As for the extra
measurement required to compensate for the missing information on the concealed obstacle we
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consider the partial knowledge of the fluid traction on a sub-portion of the boundary where
Dirichlet conditions are prescribed (no-slip or inlet fluid velocity). For one example, we also
investigate the possibility of measuring the pressure gradient at the inlet boundary, as proposed
in [7].

The plan of the paper is as follows. First, the mathematical formulation and FEM numerical
results for the direct problem are presented in Section 2. Next, in Section 3, the inverse geometric
obstacle problem is introduced and the numerical method based on minimizing the gap between
the computed and measured data using the adaptive moment estimation algorithm of [14] is
described. In Section 4, several numerical results on obstacle identification are presented and
discussed with respect to the initial guess, noise in the measured data, limited data and multiple
component obstacles. Furthermore, boundary pressure gradient measurements at the inlet are
also inverted. Finally, Section 5 highlights the conclusions of the paper.

2 Mathematical formulation of the direct problem

Consider a bounded and connected domain Ω ⊂ R
d, (d = 2, 3), containing an unknown fixed

object/obstacleD (such that Ω\D =: Ω0 is connected) in between which a steady incompressible
viscous fluid flows. We assume that the boundary ∂(Ω\D) = ∂Ω ∪ ∂D is sufficiently smooth.
If the obstacle D is known, then the direct problem associated with this fluid flow situation, in
non-dimensionless variables, is given by [6]:

−ν△u+ (u · ∇)u+∇p = 0 in Ω0, (1)

∇ · u = 0 in Ω0, (2)

u = uin on Γin, (3)

u = 0 on Γtop ∪ Γbottom ∪ ∂D, (4)

t = 0 on Γout, (5)

where u is the fluid velocity, p is the fluid pressure, ν is the kinematic viscosity of the Newtonian
viscous fluid,

t = σ(u, p)n (6)

is the fluid traction, n is the outward unit normal to the boundary ∂Ω0,

σ(u, p) = 2νe(u)− pI (7)

is the stress tensor, I is the identity,

e(u) =
1

2
(∇u+ (∇u)T) (8)

is the strain tensor, uin is the fluid velocity at the inlet boundary Γin and the boundary ∂Ω0 =
Γin∪Γtop∪Γbottom∪Γout∪∂D, see Figure 1. In equation (5), the so-called, ’do-nothing’ artificial
boundary condition expresses that the outlet boundary Γout is traction-free. In equation (1),
the coefficient ν is proportional with the inverse of the Reynolds number Re, which indicates
the regime type of flow, e.g., laminar at low Re (i.e., high ν) where viscous effects are prevailing;
or turbulent at high Re (i.e., low ν) where convective effects are dominant [19].

Based on (2), (7) and (8), equation (1) can be re-written in the equivalent form:

−∇ · σ(u, p) + (u · ∇)u = 0 in Ω0, (9)
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which is more suitable for formulating the weak form of the problem (1)-(5). The weak form
of the direct problem (1)-(5) is formulated as follows. Given uin ∈ H1/2(Γin), the pair (u, p) ∈
(H1(Ω0))

d × L2(Ω0) is called a weak solution for the direct problem (1)-(5) if u satisfies the
Dirichlet boundary conditions (3) and (4) and

a(u,v) + b(v, p) = 0
b(u, q) = 0

}

∀(v, q) ∈ (H1(Ω0))
d × L2(Ω0) with v|∂Ω0\Γout

= 0, (10)

where

a(u,v) = 2ν

∫

Ω

e(u) : e(v)dx+

∫

Ω

(u · ∇)u · vdx,

b(v, p) = −
∫

Ω

p∇ · vdx, b(u, q) = −
∫

Ω

q∇ · udx

and : denotes the Frobenius inner product of two matrices e(u) : e(v) =
∑d

i,j=1 eij(u)eij(v), [16].
Results on the existence and uniqueness of the solution to the direct mixed problem (1)-(5),
understood in the weak sense (10), are unknown at present, but they are expected to hold if the
viscosity ν is large enough, i.e., for sufficiently low Re number, by combining the arguments in
[7, 6, 23, 4, 8, 10].

Based on the weak formulation (10), the solution of the direct problem (1)-(5) is computed
numerically using the finite element method (FEM) implemented in the Freefem++ package [9].

2.1 Numerical results and discussion for the direct problem

For numerical illustration and discussion, let us consider Ω = (−L,L)× (−H,H) with L = 7.5
and H = 2.5 (modelling a channel of width 2H with open ends) and a circle-shaped obstacle D
of radius r = 0.5 centred at (x0, y0) = (−3, 0) in this domain. The kinematic viscosity is taken
ν = 1

10
so, Re = 1

ν
= 10. This situation models the laminar viscous flow past a circular cylinder

in the domain Ω. The input fluid velocity at the inlet Γin in (3) is taken as the Poiseuille-type
parabolic profile uin =

(

1− ( y
H
)2, 0

)

for y ∈ (−H,H).

First, in order to show that the independence of the FEM mesh size was achieved, the com-
ponents of the traction vector t = (t1, t2) on the sub-boundary Γ := Γbottom ∪ Γtop ∪ Γin are
compared for m ∈ {5, 10, 20} in Figure 2, where the boundaries Γtop, Γbottom and ∂D are uni-
formly discretised into 3m elements each, whilst the boundaries Γtop and Γbottom are uniformly
discretised into 2m elements each. This boundary discretisation with 13m elements generates a
FreeFem++ domain discretisation with {421, 1622, 6648} triangles and {243, 876, 3454} vertices
for m ∈ {5, 10, 20}, respectively. From Figure 2 it can be seen that all curves overlap showing
that the independence of the mesh has been achieved.

Next for the mesh size m = 20, the numerically obtained pressure and velocity fields in the
fluid domain are illustrated in Figures 3b and 3c, respectively, along with the finite element
mesh shown in Figure 3a. These viscous flow fields are typical to a laminar fluid regime at a
relatively low Reynolds number [22].
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3 Inverse geometric problem

In the inverse problem, the obstacle D concealed in the channel Ω is unknown and has to be
detected from measurements of the fluid traction on a subset Γ0 of the boundary ∂Ω0\Γout,
namely,

t = texp on Γ0. (11)

Alternatively, one could measure the fluid velocity uout at the outlet boundary Γout, [6]. The
measurement (11) was also considered in [2] for the simpler linear case of slow viscous Stokes
fluid flow. The uniqueness of solution (u, p,D) of the inverse problem (1)-(5) and (11) under
the assumptions that Ω0 is connected, uin ̸≡ 0 and ν is sufficiently large could follow along
the lines of the proof of Theorem 1.2 of [7] for the Dirichlet problem (in which the Neumann
boundary condition (5) is replaced by the homogeneous Dirichlet boundary condition u = 0 on
Γout).

In the remaining of the paper, we consider the two-dimensional case d = 2. Also assume
that the unknown obstacle D is star-shaped with respect to an unknown center c0 := (x0, y0),
whose boundary is parametrized by

∂D = {c0+r(θ)(cos(θ), sin(θ))|θ ∈ [0, 2π)}, where r(θ) = a0+
J
∑

k=1

{ak cos(θ)+bk sin(θ)}. (12)

For solving the inverse problem (1)-(5) and (11) to detect the obstacle (12), we minimize the
least-squares functional

f(Θ) := ||t(Θ)− texp||2, (13)

where (Θk)k=1,(2J+3) = Θ = (x0, y0, (ai)i=0,J , (bi)i=1,J) is a vector containing the (2J + 3) un-

knowns and t(Θ) is the numerical solution for the fluid traction on Γ0 of the direct problem
(1)-(5) for a given Θ. The minimization of (13), subjected to the constraint that the obstacle
D stays within the domain Ω throughout the iteration process, was initially attempted using
a classical gradient descent method but the results were found strongly dependent on the ini-
tial guess and time-consuming. In order to achieve higher performance, the adaptive moment
estimation algorithm of [14], summarised below, was employed, at the price of increasing the
number of hyperparameters to be selected.

Iterative algorithm [14]:
• Input the hyperparameters β1, β2 ∈ [0, 1), ϵ > 0 and the learning rate α. The hyperparameters
β1 and β2 represent the exponential decay rates for the first and second-moment estimates,
respectively, whilst the (machine) learning rate α is nothing else than the usual stepsize in a
gradient descent method.
• Start the iterative process with an initial guess Θn = ((Θk)n)k=1,(2J+3) at iteration n = 0.
• Initialize the first moment vector m0 = 0 and the second moment vector v0 = 0.
• While f(Θn) > δ do
n← n+ 1
gn = ∇f(Θn)
mn = β1mn−1 + (1− β1)gn, m̂n = mn/(1− βn

1 )
vn = β2mn−1 + (1− β2)g

2
n, v̂n = vn/(1− βn

2 )
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Θn = Θn−1 −αm̂n/(
√
v̂n + ϵ)

enddo;
The iterations are stopped once

f(Θnf
) ≤ δ := ||texact − texp||2, (14)

where nf denotes the final iteration number.

In the above, all the operations involving vectors are understood element-wise, e.g., g2
n =

(

[

∂f
∂Θk

(Θn)
]2
)

k=1,(2J+3)

and
√
v̂n =

(

√

(v̂k)n

)

k=1,(2J+3)
. The objective functional (14) is

stochastic in case the experimental data (11) is contaminated by random noise (see section
3.2 below). The gradient of the objective function (13) is calculated using forward finite dif-
ference with step size h > 0. Although never published in an internationally refereed journal,
the above optimization algorithm (also known as adaptive first- and -second-order moment es-
timation (’adam’)) has shown some success in terms of fast convergence and escape from local
minima, and it can be used as an alternative or combined with the stochastic gradient descent
method. Other algorithms reviewed in [21] may also be employed.

3.1 Parameter selection

We usually take the number of terms J in the expansion (12) small, e.g., J = 0 or 1, such
that the number of unknowns in the vector Θ is 3 or 5, respectively. Since the number of
unknowns is small, common practice [20] suggests that this model reduction assists in aleviating
the instability of the inverse problem with respect to errors in the measured data (11), and
therefore no regularization is usually needed to penalize the least-squares functional (13). The
mesh size is m = 20 for the solution of the direct problem that is employed first to numerically
simulate the fluid traction data (11) necessary for solving the inverse problem. In order to avoid
committing an inverse crime, for solving the inverse problem we employ a different mesh size
with m = 10 as an iterative direct FEM solver. The maximum number of iterations is taken
as 5000. The hyper-parameters are taken as β1 = 0.9, β2 = 0.99 and ϵ = 10−8, as suggested
by [14]. The learning rate α and the finite-difference step size h employed in calculating the
gradient of the objective function are selected by trial and error.

3.2 Noisy data

In order to simulate that the practical measurement (11) of the fluid traction on Γ0 is inherently
inexact, we add noise to the traction values on Γ0 as t

exp = (1+ζρ)t, where ζ are pseudo-random
numbers generated from a uniform distribution in [−1, 1] and ρ represents the percentage of
noise with which the data (11) is contaminated. Note that the threshold δ in (14) will depend
on ρ.
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4 Numerical results and discussion for the inverse prob-

lems

Corresponding to the geometry and input data of the example discussed in subsection 2.1, in this
section, we present several examples to identify unknown star-shaped obstacles D concealed in
the domain Ω. In the Examples 4.1-4.3, traction vector values are measured on Γ0 = Γ, whilst in
Example 4.4, we consider limited traction vector data measured on Γ0 = Γin only. In Example
4.4, we also consider the case when the fluid traction data (11) on Γ0 = Γin is replaced by the
pressure gradient measurement [7],

∇p = qexp on Γin. (15)

Example 4.1. First, we consider an example to identify a simple target D consisting of a
circle of radius a0 = 0.5 centered at (x0, y0) = (−3, 0). The fluid traction (11), numerically
simulated and illustrated in Figure 2, as described in subsection 3.1, is considered measured
over the sub-boundary Γ0 = Γ = Γtop ∪ Γbottom ∪ Γin. We consider two different initial guesses;
one of them is at the center (0, 0) and the other one is at the top-right-hand side (5, 1) of the
domain Ω. The forward finite difference step size h for calculating the gradient of (13) is taken
as 0.01, which was found sufficiently small to ensure that any further decrease in this parameter
did not significantly affect the accuracy of the numerical results. Also, the learning rate vector
α = (lrx0, lry0, lra0) is prescribed (by trial and error) as (0.01, 0.001, 0.001). The values of the
noise threshold are

δ(ρ) ∈ {0.024, 0.068, 0.130} for ρ ∈ {0, 5, 10}%, (16)

respectively. Note that in case ρ = 0, although there is no random noise added to the data,
because of the way the fluid traction data has been fabricated to avoid committing an inverse
crime, as described in subsection 3.1, there still exists some numerical noise that is present.

(a) The initial guess for the parameter of unknowns is first (x0
0, y

0
0, a

0
0) = (0, 0, 0.3). With this

initial guess, the stopping iteration numbers based on the criterion (14) with δ given by
(16) are

nf (ρ) ∈ {324, 612, 403} for ρ ∈ {0, 5, 10}%, (17)

respectively. In case of no noise, the convergences of the objective function (13) and of
the parameters Θ = (x0, y0, a0) with the number of iterations n = 1, nf are illustrated in
Figure 4. The history of the target obstacle as it moves through the iteration process is
illustrated in Figure 5. The target parameters recovered after nf (ρ) final iterations given
by (17) for ρ ∈ {0, 5, 10}% noise are included in Table 1. Overall, from Figures 4 and 5
and Table 1 it can be seen that accurate and stable recoveries of the circular obstacle have
been achieved.

(b) Next, we consider a farther initial guess of the center of the circular obstacle located at
(x0

0, y
0
0) = (5, 1) and we keep the same initial guess a00 = 0.3 for the radius. With this

initial guess, the stopping iteration numbers are obtained as

nf (ρ) ∈ {1162, 1349, 1112} for ρ ∈ {0, 5, 10}%, (18)
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respectively. In case of no noise, the convergences of the objective function (13) and of
the parameters Θ = (x0, y0, a0) with the number of iterations n = 1, nf are illustrated in
Figure 6. The targets and parameters recovered after nf (ρ) final iterations given by (18)
for ρ ∈ {0, 5, 10}% noise are included in Figure 7 and Table 2. As in case (a), accurate
and stable results can be observed.

The numerical results investigated in cases (a) and (b) for two different initial guesses (and
also for many others not presented) conclude that the numerical method of section 3 is robust
by being independent of the initial guess in case of searching for a circular obstacle of unknown
centre and size (radius).

Example 4.2. In the second example, we consider a cardioid shape as the target obstacle given
by

r(θ) = 0.5− 0.4 cos(θ) + 0.3 sin(θ), θ ∈ [0, 2π), (19)

with centre (x0, y0) = (−3, 0). We approximate the radius r(θ) in (12) with J = 1. The traction
vector values on Γ0 = Γ are assumed measured in (11). In this example, the center of the
initial guessed obstacle is chosen close to the right-bottom part of the domain Ω, namely, at
(x0

0, y
0
0) = (5,−1), while the initial guess for (a0, a1, b1) is taken as (a00, a

0
1, b

0
1) = (0.3, 0, 0). Also,

the learning rates embedded in the vector α and the step size h involved in calculating the
gradient of the objective function f(Θ) are taken as 0.01 for x0 and y0, and 0.001 for a0, a1 and
b1. The values of the noise thresholds are

δ(ρ) ∈ {0.006, 0.081, 0.161} for ρ ∈ {0, 5, 10}%, (20)

respectively. With the above initial guess, the stopping iteration numbers, based on the criterion
(14) with δ given by (20), are

nf (ρ) ∈ {1180, 1052, 626} for ρ ∈ {0, 5, 10}%, (21)

respectively. Although the center of the initial obstacle is quite far from the exact location at
(−3, 0) and, compared to Example 4.1, there are two additional parameters a1 and b1 to be
optimized for the polar radius, the method converges. The targets and parameters retrieved
after nf (ρ) final iterations given by (21) for ρ ∈ {0, 5, 10}% noise are illustrated and presented in
Figure 8 and Table 3. Compared to Example 4.1 where only 3 parameters had to be identified, in
Example 4.2 containing 5 unknown parameters, less accurate retrieval can be observed in Table
3. In addition, for the higher amount of noise ρ = 10% instabilities set in showing that the
ill-posedness of the problem starts to manifest and regularization is needed to restore stability.

Example 4.3. In this example, we consider an obstacle composed of two circles for identifica-
tion. The first circle is centered at (x0, y0) = (−4, 1) of radius a0 = 0.5 and the second circle
is centered at (x̃0, ỹ0) = (3,−1) of radius ã0 = 0.4. Each of the circles are approximated by
(12) with J = 0. We start the iterations from the initial guess (x0

0, y
0
0, a

0
0) = (−1, 0, 0.3) and

(x̃0
0, ỹ

0
0, ã

0
0) = (1, 0, 0.3), and learning rates α and step size h all equal to 0.01. We present

only the results with no noise, ρ = 0, which yields ρ(0) = 0.057 and nf (0) = 871. The re-
trieved values at nf (0) = 871 final iterations are (x871

0 , y8710 , a8710 ) = (−3.9795, 0.9128, 0.4557)
and (x̃871

0 , ỹ8710 , ã8710 ) = (2.8319,−0.9141, 0.3576), which are in reasonable agreement with the
exact solution (x0, y0, a0) = (−4, 1, 0.5) and (x̃0, ỹ0, ã0) = (3,−1, 0.4), respectively. The history
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of the double-component identified obstacle as it moves through the iteration process is illus-
trated in Figure 9. Reasonably accurate retrievals of the two original circles can be observed,
although it is worth mentioning that the dependence on a good initial guess is more stringent
for the complex two-circle multiple obstacle identification for this example than for the single
obstacles investigated in the previous Examples 4.1 and 4.2.

Example 4.4. In the last example, we investigate inverting limited traction data on the inlet
only, i.e. Γ0 = Γin in (11), for the geometrical configuration and data of Example 4.1. The
initial guess is a00 = 0.3 for the radius of the circle, whilst for the center we investigate three
initial guesses given by: (x0

0, y
0
0) = (0, 0), (x0

0, y
0
0) = (−2, 0) and (x0

0, y
0
0) = (−2.5, 0). In this

limited data case, the exact target could not be identified within the 5000 maximum number
of iterations allowed. A possible reason for this may be that the values of fluid traction on Γin

are very close to zero (see the last five points in Figure 2 and Table 4). A possible alternative
in this case may be to measure the pressure gradient ∇p on Γin, namely,

∇p = qexp on Γ0 = Γin (22)

instead of fluid traction, which has also larger component values than traction, see Table 4. In
case of Dirichlet boundary conditions

u = ζ on ∂Ω, u = 0 on ∂D, (23)

under certain assumptions, the uniqueness of the inverse problem given by equations (1), (2),
(22) and (23) holds [7, Section 4].

In case of (22), instead of (13), we minimize

f(Θ) := ||∇p(Θ)− qexp||2. (24)

With the learning rates α = (0.01, 0.001, 0.01) and h = 0.01 for (x0, y0, a0), δ(0) = 0.0002 the
method converged, see Figure 10, from the initial guess (x0

0, y
0
0) = (−2.5, 0) in nf (0) = 293 final

iterations to (−2.9027,−0.012, 0.5067), which is close to the exact target of (−3, 0, 0.5). For the
other two initial guesses (x0

0, y
0
0) = (0, 0) and (x0

0, y
0
0) = (−2, 0), which are farther away from

(−3, 0, 0.5), convergence to the desired exact target could not be achieved.

5 Conclusions

In this paper, the inverse geometry problem concerning for the identification of immersed ob-
stacles in Navier-Stokes fluid flows has been investigated. First, the direct problem has been
solved using the FEM to provide fluid traction on the boundary, which has then been inverted
in a nonlinear least-squares sense of minimization to retrieve the desired star-shaped target
obstacle of unknown centre and variable polar radius (dependent on the polar angle). The
numerical results presented and discussed for Example 4.1 and 4.2 show that when the fluid
traction is measured on Γ0 = Γ = Γtop ∪Γbottom ∪Γin, then the iterative FEM adaptive moment
estimation algorithm described in section 3 provides accurate and robust reconstructions of a
circular or cardioid obstacle parameterized by a small number of parameters (e.g., J = 0 or 1
in (12)). Stable reconstructions with respect to noise in the measured fluid traction data have
also been achieved, although for complicated shapes parameterized by larger values of J nonlin-
ear Tikhonov regularization of the least-squares functional (13) may need to be employed [17].
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Multiple-component obstacles may also be identified, as illustrated in Example 4.3, provided
that a good initial guess is provided. Finally, the case of limited data being available only at
the inlet boundary Γin has been investigated in Example 4.4. For this restricted case of inverse
geometric problem formulation, it was found that the pressure gradient provides more informa-
tion for inversion than the fluid traction on Γin. Future work will investigate the identification
of obstacles immersed in an unsteady incompressible viscous fluid [1].
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Table 1: Target recoveries after nf (ρ) final iterations given by (17) for Example 4.1, with initial
guess (x0

0, y
0
0, a

0
0) = (0, 0, 0.3).

target prediction prediction prediction
for no noise for 5% noise for 10% noise

x0 = −3 x0 = −3.0116 x0 = −2.9953 x0 = −2.9685
y0 = 0 y0 = 0.0081 y0 = 0.0127 y0 = 0.0029
a0 = 0.5 a0 = 0.4961 a0 = 0.5057 a0 = 0.5151

Table 2: Target recoveries after nf (ρ) final iterations given by (18) for Example 4.1, with initial
guess (x0

0, y
0
0, a

0
0) = (5,−1, 0.3).

target prediction prediction prediction
for no noise for 5% noise for 10% noise

x0 = −3 x0 = −3.0045 x0 = −2.9943 x0 = −2.9665
y0 = 0 y0 = 0.0098 y0 = 0.0492 y0 = 0.1310
a0 = 0.5 a0 = 0.5058 a0 = 0.5062 a0 = 0.5197

Table 3: Target recoveries after nf (ρ) final iterations given by (21) for Example 4.2, with initial
guess (x0

0, y
0
0, a

0
0, a

0
1, b

0
1) = (5,−1, 0.3, 0, 0).
target prediction prediction prediction

for no noise for 5% noise for 10% noise
x0 = −3 x0 = −2.9909 x0 = −2.9904 x0 = −2.9758
y0 = 0 y0 = 0.0099 y0 = 0.0868 y0 = 0.1641
a0 = 0.5 a0 = 0.4991 a0 = 0.5497 a0 = 0.5805
a1 = −0.4 a1 = −0.4166 a1 = −0.3665 a1 = −0.3350
b1 = 0.3 b1 = 0.2763 b1 = 0.1787 b1 = 0.0989
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Table 4: Comparison of fluid traction t and ∇p components at a few points on Γin, for Example
4.4.

(x, y) t1 t2 ∂p/∂x ∂p/∂y

(−7.5, 1.5) -5.0e-07 -1.6e-06 -4.5e-04 3.5e-04
(−7.5, 0.5) -3.6e-08 9.2e-08 4.0e-04 -3.5e-04
(−7.5,−0.5) -1.3e-07 -1.3e-07 4.0e-04 3.5e-04
(−7.5,−1.5) -1.6e-06 1.2e-06 -4.6e-04 -3.8e-04
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Figure 1: Schematics of the fluid domain and boundary conditions.
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Figure 2: Illustration of mesh independency for the direct problem. (a) The comparison for
the first component t1 and (b) the second component t2 of the fluid traction vector t = (t1, t2)
on Γ = Γbottom ∪ Γtop ∪ Γin for m ∈ {5, 10, 20}. On the abscissa, the first fifteen points are on
Γbottom, the next fifteen points are on Γtop and the last five points are on Γin.
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Figure 3: (a) The finite element mesh field, (b) the pressure and (c) the velocity fields for the
direct problem.
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Figure 4: The objective function f(Θ) given by (13) and the obstacle’s parameters x0, y0 and
a0 at each iteration, for Example 4.1, with initial guess (x0

0, y
0
0, a

0
0) = (0, 0, 0.3), without noise.
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Figure 5: (a) Target obstacle, (b) initially guessed obstacle, (c) obstacle retrieved after 160
iterations and (d) obstacle retrieved after 324 final iterations, for Example 4.1, with initial
guess (x0

0, y
0
0, a

0
0) = (0, 0, 0.3), without noise.
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Figure 6: The objective function f(Θ) given by (13) and the obstacle’s parameters x0, y0 and
a0 at each iteration, for Example 4.1, with initial guess (x0

0, y
0
0, a

0
0) = (5, 1, 0.3), without noise.
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Figure 7: (a) Target obstacle, (b) initially guessed obstacle, (c) obstacle retrieved after 500
iterations for no noise, (d) obstacle retrieved after 1162 final iterations for no noise, (e) obstacle
retrieved after 1349 final iterations for 5% noise, and (f) obstacle retrieved after 1112 final
iterations for 10% noise, for Example 4.1, with initial guess (x0

0, y
0
0, a

0
0) = (5, 1, 0.3)
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Figure 8: (a) Target obstacle, (b) initially guessed obstacle, (c) obstacle retrieved after 500
iterations for no noise, (d) obstacle retrieved after 1180 final iterations for no noise, (e) obstacle
retrieved after 1052 final iterations for 5% noise and (f) obstacle retrieved after 626 final itera-
tions for 10% noise, for Example 4.2.
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Figure 9: (a) Double-component target obstacle, (b) initially guessed obstacle, (c) obstacle
retrieved after 200 iterations, (d) obstacle retrieved after 400 iterations, (e) obstacle retrieved
after 600 iterations and (f) obstacle retrieved after 871 final iterations, for Example 4.3, without
noise.
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Figure 10: The objective function f(Θ) given by (13) and the obstacle’s parameters x0, y0 and
a0 at each iteration, for Example 4.4, with initial guess (x0

0, y
0
0, a

0
0) = (−2.5, 0, 0.3), without

noise.
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