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A B S T R A C T   

Bus Rapid Transit (BRT) has been widely recognised as an affordable and effective mass transport system that can 
solve various mobility issues in countries that are unable to afford rail-based mass transit options. However, it is 
extremely challenging to predict the demand for the first BRT service in a city of a developing country with a 
weak public transport system using aggregate models, given the radical difference in the level of service between 
the BRT and the existing modes. Further, there can be substantial changes in the activity and travel patterns in a 
city after the introduction of the BRT which simpler disaggregate level analysis tools are unable to predict. Agent- 
based simulation tools, which are the state-of-the-art tools for simulating complex travel behaviour, are hence 
more appropriate for predicting the network conditions after the introduction of a new BRT system. But the 
application of such simulation tools has been primarily limited to developed countries where the transport 
landscape and the travel behaviour are very different from the developing countries. To address this gap, this 
paper presents a demand forecasting model for BRT and integrates it into an activity-based micro-simulation tool 
in the context of Dhaka, the capital of Bangladesh and one of the fastest growing megacities in the world. The 
model was developed based on an existing multi-agent, activity-based, travel demand simulator (MATSim). The 
MATSim implementation in the context of Dhaka focused on two aspects: (1) implementing behaviour models in 
MATSim to reflect the mode choice in the presence of the proposed BRT (2) integrating multiple data sources 
(including stated-preference data) for calibrating the mode choice and other components of MATSim to realis-
tically mimic the travel behaviour in the city. Once calibrated, different access scenarios for BRT were simulated 
using MATSim, and the sensitivity of the outputs to different modelling assumptions is tested. Results from the 
simulation showed that the marginal utility of travel time, travel cost, and pricing structure of BRT significantly 
influenced BRT travel demands. Also, BRT demand was found to be the highest (25% of the total trips) in the 
scenario with multi-modal access/egress connections. While such direct model outputs presented in this paper 
will be useful for the planners to maximise the ridership of the proposed BRT, the calibrated simulator will be 
also useful for the evaluation of other innovative transport modes in the context of Dhaka in the future.   

1. Introduction 

Rapid urbanisation and the associated increase in urban population 
in developing countries create significant pressure on transportation 
infrastructure (Makinde et al., 2018), causing various urban mobility 
challenges such as rising travel demand (Madlener and Sunak, 2011; 
Melo et al., 2012; Rahman et al., 2012), congestion (Han et al., 2019), 

safety issues (Cabrera-Arnau et al., 2020), increasing vehicle ownership 
(Cervero, 1996), and unreliable public transport (PT) services (Poku--
Boansi and Marsden, 2018). To address such challenges, the government 
and policymakers of many countries have sought to prioritise PT in their 
transport policies (Mavi et al., 2018). In recent years, Bus Rapid Transit 
(BRT) has been widely recognised as an affordable and effective mass 
transport system that can solve various mobility issues in countries 
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which are unable to afford rail-based mass transit options (Joseph et al., 
2021; Paget-Seekins, 2015; Schalekamp and Behrens, 2010; Venter 
et al., 2018). 

Although the BRT systems are in operation in many cities, issues 
related to the planning and implementation of this mode of transport can 
lead to less successful outcomes (Deng and Nelson, 2013; Poku-Boansi 
and Marsden, 2018). A lack of knowledge of local settings (e.g., 
social-spatial system) could limit the success of BRT implementation in 
attracting people to this mode of transport (Joseph et al., 2021). 
Achieving a high modal shift to BRT is in fact a challenging process in 
developing countries due to the increasing income and affordability of 
private vehicles (e.g., cars and motorcycle) (Satiennam et al., 2016). 
Besides, predicting the demand for the first BRT service in a city with a 
weak public transport system proves exceptionally complex, given the 
radical difference between the BRT and the existing modes. It requires 
collecting stated preference (SP) data which is rarely done in developing 
countries (Rastogi, 2000). Further, the spatial transferability perfor-
mance of the models is typically not good in developing countries 
(Bwambale et al., 2015, Sanko, 2014). Therefore, to ensure a substantial 
modal shift and achieve the environmental and mobility benefits 
resulting from BRT (Cervero, 2013, Hidalgo & Graftieaux, 2008), a 
city-specific empirical investigation of BRT operation is necessary (Jo-
seph et al., 2021). 

The existing studies conducted in the context of developing countries 
for planning BRT systems primarily adopted classical four-step models. 
However, the four-step models disregard the constellation of decisions 
of when, why, and where to travel (Hafezi et al., 2019; Västberg et al., 
2020). Predicting the demands of a new transport system such as BRT 
using simple models is difficult, as the design and operation of BRT are 
complex, and require a wide range of control measures that are linked to 
the existing PT services and transportation infrastructure (e.g., rolling 
stock, right of way, pricing strategy, land use measures) (McCormack 
et al., 2021; Paget-Seekins, 2015). The agent-based travel demand 
model has emerged as a new generation of transport modelling and 
forecasting tools that provides an alternative to the traditional aggregate 
demand modelling. This modelling approach is flexible, comprehensive, 
and capable of modelling individual decision-making processes. 

Agent based modelling framework (ABM) provides the flexibility to 
incorporate multiple attributes of agent and their environment in 
different layer/module formats, and simulate the model to understand 
urban traffic flows (Grether et al., 2008; Małecki, 2018; Manley et al., 
2014), activity behaviours (Arentze et al., 2010; Čertický et al., 2015; 
Gkiotsalitis and Stathopoulos, 2015; Märki et al., 2014; Shabanpour 
et al., 2017), changes in land use and effects on environment (Zhang and 
Zhao, 2018), performance assessment of service (Gao et al., 2016; Ji 
et al., 2018; Levine et al., 2018), accessibility of location (Huang, 2019), 
location decision of housing (Ding et al., 2018), joint travel mode and 
departure time choice (Jing et al., 2018; McDonnell and Zellner, 2011; 
Zou et al., 2016), joint route choice and departure time choice (Li et al., 
2018) and many more. While there have been several attempts to adopt 
agent-based models for understanding modern complex 
transport-related issues, those were primarily limited to larger metro-
politan planning organisations (MPOs) in developed countries. The 
application of an agent-based model in fast-growing cities of developing 
countries poses considerable difficulties due to the required input data 
(e.g., travel information, census data, and infrastructure-related data), 
and computational challenges (Kagho et al., 2020). 

To address issues regarding travel demand prediction in developing 
countries, this paper presents a demand forecasting model for BRT and 
integrates it into an agent-based micro-simulation tool. The model was 
established in the context of Dhaka, the capital of Bangladesh and one of 
the fastest-growing megacities in South Asia and the world. An existing 
multi-agent, activity-based, travel demand simulator (MATSim) has 
been utilised in this regard. The MATSim implementation in the context 
of Dhaka focuses on two aspects: (1) implementing behaviour models in 
MATSim to reflect the mode choice in the presence of the proposed BRT 

and (2) integrating multiple data sources (including stated-preference 
data) for calibrating the mode choice and other components of MAT-
Sim to realistically mimic the travel behaviour in the city. Finally, the 
impacts of the two different accessibility scenarios (with and without 
multimodal feeder service) and two different pricing structures 
(monthly flat fare and distance-based fare system) were quantified using 
the calibrated and validated simulator. 

The remaining article is organised as follows: first, we provide a short 
description of the RP and SP data used in this study, followed by a 
description of the modelling framework. The results from the simulation 
are then presented with a critical discussion of this study and future 
research direction. 

2. Data 

2.1. Study area 

This study focused on the Dhaka Metropolitan Region (hereinafter 
RAJUK area) (Fig. 1). Dhaka, the capital of Bangladesh, is home to more 
than 15 million people. The population of the city is likely to increase to 
26.3 million by 2035, predominantly due to rural-urban migration 
(DTCA, 2015). To meet the growing mobility demands in this city, the 
rate of car ownership, as well as the growth of motorised vehicles, have 
been increasing at an alarming rate. According to the Bangladesh Road 
Transport Authority (BRTA), 918,233 private motorised vehicles (cars, 
jeeps, microbuses, and motorcycles) were newly registered in Dhaka 
between 2011 and 21, while the corresponding number for buses and 
minibuses was 23,887 (BRTA 2022). Furthermore, there is a particularly 
inefficient use of road space due to the low occupancy rate of private 
vehicles. The escalating growth in motorised vehicles, low road capac-
ity, and a lack of traffic management resulted in significant traffic 
congestion, causing a loss of 3.2 million business hours per day in Dhaka 
(Siddique et al., 2017). The city’s administration does not, however, 
maintain or organise them efficiently (Sajib, 2021). In Dhaka, public 
transport service can be characterised by no regular schedule and fixed 
vehicle stops, overcrowded services, frequent service suspension, and 
limited traffic service monitoring (Quddus et al., 2019; Rahman, 2022; 
Satu and Chiu, 2019). The lack of adequate public transportation facil-
ities to fulfil passengers’ mobility demands is now a serious concern in 
this mega city. The World Bank reported that during the morning and 
evening peak hours, the average vehicle speed is approximately 8.75 
km/h in the road network (World Bank, 2015). The mean travel time in 
peak hours is almost three times higher than the travel time in off-peak 
hours. 

To reduce the level of congestion, the government invested heavily in 
new infrastructure (e.g., flyovers, BRT, and MRT services) in the last two 
decades. However, most of the structural interventions have failed to 
minimise traffic congestion, primarily due to a lack of system-level an-
alyses and the absence of robust transport models (Enam, 2010; Habib, 
2002). The Strategic Transport Plan of 2005 (DTCB, 2005) recom-
mended implementing three BRT lines. Among those, line 3 is currently 
under construction and is expected to be in full operation by the end of 
2025. The BRT lines will be operating in parallel to the existing PT 
services (Fig. 2). The mode choice demand for BRT was estimated only 
by calibrating PT demand using conventional four-stage modelling 
while ignoring its potential impact on the existing transport services (e. 
g., auto-rickshaw, motorcycle, human-hauler), infrastructure, and land 
use (ADB, 2022). 

Considering Dhaka city as a case study area and the under- 
construction BRT (Line 3 in the Strategic Transport Plan, 2005) as a 
new transport option, this study focused on developing a simulation 
environment to assess mode choice behaviour and the impact of BRT in 
the existing setting. The proposed model aimed to predict the mode 
choice at an individual scale, over different periods subject to spatial and 
temporal constraints. 

This study utilised both Revealed Preference (RP) and Stated 
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Preference (SP) data for generating the MATSim inputs and develop-
ment of the mode choice models. The datasets are described below. 

2.2. Revealed Preference (RP) data 

This study utilised RP data collected from the Dhaka Transport Co-
ordination Authority (DTCA), which commissioned a consulting firm 
TYPSA (www.typsa.com) to develop the database by carrying out a 
travel diary survey across the RAJUK area as part of an ongoing Dhaka 
Subway Project. The survey was conducted from Monday to Saturday 
between February 28, 2019 to May 4, 2019. The survey form included 
two main sections. The first part was related to general household 
characteristics (e.g., age, gender, education, occupation, income, car 
ownership). The second section included trip-related information (e.g., 
departure time, travel mode, travel time, trip purpose) of each member 
of all sample households, who made trips on the previous working day. 
Information on commuting, education, leisure, personal and other pur-
pose travel was collected. A total of 35,000 households were surveyed in 
the RAJUK Area, which constitutes approximately 1% of the total 
households in Dhaka. The details related to the survey, data, and sum-
mary can be found in the “Feasibility study and preliminary design for 
construction of Dhaka subway” report (TYPSA, 2019). The data sum-
mary of RP data is presented in Table 1. 

2.3. Stated preference (SP) data 

Since BRT is an ongoing project, solely the RP data is unable to 
determine the sensitivity toward attributes (e.g., travel time, travel cost) 
of this new transport mode. Many studies combined RP and SP data 
either to analyse the impact or to evaluate the consumer preference for 
multi-attributed products or services (Ben-Akiva and Morikawa, 1990; 
Bhat and Castelar, 2002; Brownstone et al., 2000; Rashedi et al., 2017). 
This is due to the fact that context effects are limited in realistically 

designed SP choice experiments since SP data are not based on actual 
market behaviour (Ben-Akiva et al., 1994). Therefore, we also used SP 
data of 1016 individuals, collected by a roadside questionnaire survey 
(conducted between December 2009 and January 2010). In the survey, 
people were presented with hypothetical scenarios - some including BRT 
and some including Metro Rail (MRT) with different level of service and 
pictorial representations. They were asked if they would continue the 
current mode or shift to BRT or MRT in each scenario. Further details on 
survey design, data collection, and summary findings can be found in 
Enam (2010). The SP data was used to develop a coupled RP-SP model to 
understand the preference for BRT and MRT and to improve the accu-
racy of the parameter estimates. Given the scope of the current work 
being limited to BRT, only the components of the joint model related to 
the choice among the existing modes (walk, bike, rickshaw, bus, human 
hauler, motorcycle, auto-rickshaw) and BRT have been used for the 
simulation of the future scenarios. 

3. MATSim framework 

MATSim is an open-source multi-agent traffic simulation platform 
that consists of several modules, which have been used as a standalone 
system to implement a large-scale agent-based transport model in 
several studies (Balmer et al., 2006, 2009; Raney et al., 2003; Vosooghi 
et al., 2017). This queue-based network simulation platform is the most 
widely used agent-based simulator in the field of transportation (Balmer 
et al., 2006; Bouman et al., 2012). 

Fig. 3 represents an adaptation of the framework of the MATSim 
simulator for this study. The simulation sets off with each agent’s initial 
day plan encoded from the daily activity chains of the population of the 
study area. The virtual world represents the transport infrastructure 
(road network, service facilities) and land use. Each agent within the 
simulator can perform their daily activity plan in the corresponding 
virtual world. With iteration-by-iteration, the initial demand is 

Fig. 1. Location of the study area with the existing road network.  
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optimised in mobsim1 based on its associated score (equivalent to ‘the 
utility function’ used in a random utility based econometric framework). 
This iteration process is repeated until the average score reaches the 
stable condition. For scoring agents’ plans, several parameters can be 
used for the (dis)utility associated with travelling, waiting, performing 
an activity, etc. After each iteration, agents’ plans are scored to elimi-
nate bad plans (i.e., plans with lower utility) so that only viable day 
plans can evolve to further iteration steps in the simulation. Further, 
during the iteration agents are allowed to modify their plan, known as 
replanning.2 At this stage, a certain share of agents can change their 
departure time, route, mode, and location of some activities. 

To predict the BRT demand, the overall simulation process was 
organized into four major steps — simulation inputs preparation, 
scoring parameter estimation for mode assignment, scoring of agent’s 
activity plan, and running the simulation scenario. 

3.1. Simulation inputs 

MATSIM, in its simplest form, requires three types of inputs: 1) an 
activity plan of the population of the area (or a representative fraction of 
the population), 2) a transport network with the description of the road, 
and 3) configuration (which dictates the specific demand modelling 
process). 

3.1.1. Activity profile 
Activity demand can be generated either by translating the total 

population census or by generating a synthetic population using a 
sample (Axhausen et al., 2016). Since the latest census data available for 
Dhaka was collected in 2011, we opted for the option to generate ac-
tivity plans using microdata from a representative sample of the popu-
lation. The household-level trip diary data from the TYPSA survey (see 
2.2 for details) was used in this regard. However, the trip diary only 
included the detailed geo-location of each participant’s household, and 
the locations of the different activities were only available at the TAZ 
level. The locations of various activities were randomly assigned within 
the TAZ boundary using the Geographic Information System (GIS) in a 
manner that matched the users’ stated travel time (Bekhor et al., 2010). 
After determining location information, an activity profile was gener-
ated based on information extracted from travel diary survey data. Each 
activity plan included information about the activity location (x-y co-
ordinate), end time of the first activity, ‘leg’ mode, and maximum 
duration allocated for that activity. 

3.1.2. Infrastructure 
To represent a virtual urban transport landscape of Dhaka, this study 

utilised a road network and available transport services. The road 

Fig. 2. Population distribution and Transit network.  

1 Mobsim is the mobility simulation module in MATSim. Two internal mob-
sims — QSim and JDEQSim, are available in the MATSim default library. 
External mobility simulations can also be plugged into MATSim (W Axhausen 
et al., 2016).  

2 At the replanning stage, each agent can select a strategy for plan selection 
(best score/logit model/random etc.) and/or an innovation strategy (mode 
choice, route choice, departure time choice), where a certain plan of an agent is 
updated. Each strategy is given a weight determining the probability, by which 
the course of action represented by that strategy is taken. For multiple strate-
gies, weights are normalized. More details about each strategy can be found in 
Axhausen et al. (2016). 
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network for the study area was obtained from the Open Street Map 
(OSM) service. In MATSim, the available modes are car, public transport 
(PT), bike, and walking. Other modes such as auto-rickshaws and mo-
torcycles, which exist in Dhaka city, are not in-built alternatives in 
MATSim. They were modelled utilising special vehicular specifications 
within the existing framework in MATSim. These vehicular specifica-
tions are presented in Table 2. Since the data represents 1% of the total 

households in Dhaka City, the supply side adjustment was done in 
MATSim by considering flow capacity and storage capacity factor of 
0.015 (Mehlstäubler, 2019). The outflow capacity of a link — the 
number of travellers leaving the respective link per time step — is 
defined by the ‘flow capacity’. The number of cars fitting onto a network 
link per time step (Axhausen et al., 2016) is defined by the ‘storage 
capacity’. 

In the latest OSM map, BRT line 3 was not part of the existing road 
network. Since BRT is an ongoing project, in this study, we developed an 
artificial network of BRT line 3 and added it to the existing OSM road 
network. To artificially replicate the BRT operation with the existing 
network, the following criteria were considered for BRT scheduling and 
vehicle definition:  

• BRT line 3 stations were introduced at the proposed locations.  
• BRT route was coded to have a dedicated right-of-way (grade- 

separated). 
• The service frequency of BRT was defined from the standard avail-

able in the BRT feasibility report (3-min intervals from 8:00 to 10:00 
and 16:00 to 17:00 and 10-min intervals for the remaining time of 
the day) (ADB, 2022).  

• BRT was assumed to be available for all residents of the city. 

3.1.3. Configuration 
The default configuration settings of the MATSim simulation were 

used as the starting point in this study. However, in the default module, 
access/egress mode for PT is only limited to walking. However, in 
Dhaka, rickshaws are the most widely used access/egress modes. Be-
sides, a considerable number of people use walking and cycling for 
short-distance trips. Hence, in the multimodal access/egress scenario for 

Table 1 
RP and SP data summary.  

Socio-demographic variables SP (%) RP (%) 

Age 
<18 1.73 12.87 
18–25 42.44 17 
25–40 42.44 38.48 
40–60 12.95 26.68 
≥60 0.44 4.97 
Gender 
Male 76.41 73.71 
Female 23.59 26.29 
Household size 
≤5 78.55 88.44 
>5 21.45 11.56 
Car Ownership 
No car 71.01 93.82 
1+ car 28.99 6.18 
Occupation 
Student 32.94 24.55 
Office-employee 46.33 36.64 
Self-employed personnel 12.2 24.31 
Housewife 5.72 9.47 
Retired 0.65 1.66 
Unemployed 1.3 0.75 
Other 0.86 2.61 
Education 
Below SSC 4.22 36.25 
SSC 4.88 15.34 
HSC 18.83 19.41 
BSC 45.24 13.47 
MSC or above 24.89 13.42 
Other 1.94 2.11 
Income (in BDT) 
<10,000 6.04 1.89 
10,000–20,000 15.4 15.16 
20,000–30,000 25 24.97 
30,000–40,000 16.38 23.47 
≥60,000 37.18 34.51  

Fig. 3. MATSim simulation framework used in this study.  

Table 2 
Vehicular specification for MATSim implementation.  

Mode of transport Length 
(meter) 

Width 
(meter) 

Maximum velocity 
(m/s) 

PCE 

Auto-rickshaw 
(CNG) 

2.7 1 16 1 

Motorcycle 2.2 1 22.22 0.5 
BRT 18 2.5 25 3 

Source: (Kadiyali, 2010), the PCE value of BRT was assumed to be the same as a 
Tram of similar dimensions 

K.E. Zannat et al.                                                                                                                                                                                                                               



Transport Policy 148 (2024) 92–106

97

this study, walking, rickshaw, and bike were considered. Additional 
search radius parameters were specified for rickshaws and bikes: if no PT 
stops were found within the initial radius (4 km), the search radius 
expanded until a stop was found (up to the maximum search radius of 6 
km). 

3.2. Mode assignment 

To estimate the scoring parameters for mode assignment, mode 
choice models were developed following the random utility framework. 
The developed mode choice models predicted the choice between 
existing modes (e.g., car, bus, rickshaw, human hauler, auto-rickshaw, 
motorcycle, walk, bike) and BRT. The random utility theory suggests 
that individual decision is followed by rationality and complete infor-
mation (McFadden, 1973). Agents choose each alternative transport 
mode with the highest utility, where the utility of an alternative i to a 
person n has the following form: 

un(i)= u(xin, sn) (1)  

where xin is the vector of the attribute of alternative i for individual n and 
sn is the vector of characteristics of the person n. 

McFadden (1973) proposed that this utility has the 
linear-in-parameters separable form presented below: 

u(xin, sn)=V(xin, sn) + εin (2)  

where V is the observed component of utility. The unobserved variable 
εin represents the random error term. (McFadden, 1973). The choice 
probabilities for each alternative i in MNL can be expressed as follows 
(for detail see (Train, 2009)): 

Pn(i)=
eVin

∑J

j∈Cn

eVjn

(3) 

Cn is the choice set of individual n. In evaluating the existing sce-
nario, none of the available modes showed correlations in the error 
term. Therefore, we developed a multinomial logit model to estimate the 
mode-specific constant and analyse travel time sensitivity, where the 
error term εin is independently and identically distributed (IID). 

Furthermore, as BRT information was not available in the RP data 
and using a model-based only on SP data may be prone to hypothetical 
bias, we developed a joint RP-SP model. As proposed by Ben-Akiva and 
Morikawa (1990), the difference between the error terms in RP and SP 
can be modelled as a function of the variances of each type of error and 
can be presented as follows: 

σ2
RP = μ2σ2

SP (4)  

where μ is the scale coefficient. 
After adopting the formulation for RP and SP data the utility equa-

tion can be written as follows: 

uRP( xin
RP, sn

)
=VRP( xin

RP, sn
)
+ εin

RP (5)  

μ*uSP( xin
SP, sn

)
= μ*

(
VSP( xin

SP, sn
)
+ εin

SP) (6) 

Probability of choosing alternative i among the available alternative j 
in the RP data: 

PRP
n (i)=

eVRP
in

∑J

j=1
eVRP

jn

(7) 

Probability of choosing alternative i among the available alternative j 
in the SP data: 

PSP
n (i)=

eμVSP
in

∑J

j=1
eμVSP

jn

(8) 

Joint log-likelihood function: 

LL(β)=

(
∑N

n=1

∑

i
yRP

ni ln
(
PRP

ni

)
)

*

(
∑N

n=1

∑

i
ySP

ni ln
(
PSP

ni

)
)

(9) 

The coefficients of the joint model were estimated using the 
maximum likelihood technique using the package Apollo in the R pro-
gramming language (Hess and Palma, 2019). In the combined model, we 
used SP and RP specific alternative specific constants. Car travel time for 
RP data was measured using Google map direction API. Using the same 
tool, time specific congestion factors were calculated for different 
origin-destination pairs. Obtained congestion factors and mode specific 
travel time at free flow speed were used to estimate the travel time of 
other alternative motorised modes (Bwambale et al., 2019). Travel cost 
for RP data was measured using distance cost multiplier. We estimated 
the unknown utility function parameters using the combined model 
where the common parameter was the travel time and travel cost in our 
model. Estimates of the common parameters as well as any RP- and 
SP-specific model parameters were available through joint estimation of 
the two models. A “scale" parameter was used to equalise the scale of the 
coefficients of the two models because the variances of the random 
components of the RP and SP utility functions were likely to differ. The 
joint model was used for simulating the existing and future mode choice 
scenarios. The estimated model parameters were used as the scoring 
parameters (e.g., generic marginal utility of travel time, marginal utility 
of money) for the simulation. Since using a bike or walking involves 
kinetic energy rather than a direct monetary cost, we calculated how 
sensitive walking and cycling are to distance. In order to investigate the 
effects of the inaugural BRT on different market shares, we also esti-
mated the time sensitivity of different socio-demographic groups (e.g., 
male vs female, employed vs unemployed, working aged group vs other 
age group, having a car at the household’s vs no car). The model sum-
mary used for the simulation is presented in Table 3. 

3.3. Scoring of agent’s activity plan 

In this study, one virtual day was iteratively simulated for a 1% 
sample of Dhaka city. During the iteration process, a predefined number 
of agents were allowed to change some of their daily decisions to search 
for a plan with a higher utility. All agents tried to adapt their plans in 
such a way that their utility is improved by keeping track of each activity 
chain. The model was run until the population reached an equilibrium 
condition (Balmer et al., 2006; Bouman et al., 2012). The plan of each 
agent at the equilibrium condition was a plausible approximation of the 
real-world behaviour of an individual. 

The optimisation process described above was based on the evalua-
tion of the plans using a specific scoring function. The MATSim scoring 
function used in this research was formulated by Charypar and Nagel 
(2005), loosely based on the Vickrey model for road congestion (Vick-
rey, 1969). The utility of a plan Uplan was estimated as the sum of all 
activity utilities Uact,q plus the sum of all travel (dis)utilities Utrav,mode(q)

as presented below: 

Uplan =
∑N− 1

q=0
Uact,q +

∑N− 1

q=0
Utrav,mode(q) (13)  

where N is the number of activities and trip q is the trip that follows 
activity q. 

Following the scoring function, the utility of an activity q is calcu-
lated as follows: 

Uact,q =Udur,q + Uwait,q + Ulate,q + Uearly,q + Us.dur,q (14) 
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where Udur,q, is the utility of performing activity q, Uwait,q denotes 
waiting time spent in front of the closed activity location, Ulate,q specifies 
the late arrival penalty, Uearly,q defines the penalty for not staying long 
enough and Us.dur,q is the penalty for a ’too short’ activity. This study 
hypothesised that marginal utility of activity duration will be decreasing 
logarithmically (the detail will be found in Axhausen et al. (2016)). 

The disutility associated with the travel for a leg q is given as: 

Strav,q =ASCmode (q) + βtrav,mode(q)* ttrav,q

+
(
βdistnace,mode(q) + βcost,mode(q)*Cmode (q)

)
dtrav (q) (15)  

where ASCmode (q) is the mode specific constant, βtrav,mode(q) is marginal 
utility of time spent travelling by mode, ttrav,q is the travel time between 
activity locations q and q + 1. βdistnace,mode(q) is the marginal utility of 
distance included in a direct manner for walking and bike use (as these 
mode requires physical effort). ASCmode (q), βtrav,mode(q), βcost,mode(q), and 
βdistnace,mode(q) were derived from MNL model (Table 3). 

3.4. Other simulation settings 

The available modes to the agents at the base scenario were car, bus, 
rickshaw, human hauler, auto-rickshaw, motorcycle, walk, and bike 
(Fig. S4 in appendix shows photographs of different transport modes 
available in the study area). For the future BRT scenario, BRT was added 
as an additional alternative to the existing modes. The ‘real’ travel times 
of car, motorcycle, auto-rickshaw, and BRT were obtained through the 
traffic simulation component. Due to the exclusion of the narrow roads 
in the available network files (which are applicable for walking, cycling, 
and rickshaw), the non-motorised modes were simulated using ‘adjusted 
beeline distances’ with the following specifications through the ‘tele-
portation module’ within MATSim. Due to the absence of reliable in-
formation about the bus and human-hauler routes, they were also 
simulated using the ‘teleportation’3 feature, but with network-derived 
travel distances. 

For the simulation, two different fare scenarios have been tested: a 

Table 3 
Discrete choice model.  

Parameters MNL 1 MNL 2 

Estimate Robust t-stat Sig. Estimate Robust t-stat Sig. 

Alternative Specific Constants (ASCs) 

RP specific parameters 
Walking 2.094 35.990 *** 2.050 35.608 *** 
Bike − 0.794 − 9.685 *** − 0.836 − 10.182 *** 
Rickshaw 1.677 40.000 *** 1.648 39.280 *** 
Bus 2.170 45.400 *** 2.128 44.451 *** 
Human hauler − 0.102 − 1.923 ** − 0.144 − 2.721 *** 
Motorcycle 0.153 2.967 *** 0.113 2.188 *** 
Auto-rickshaw 0.261 5.872 *** 0.212 4.717 *** 
Car 0 – – 0 – – 
SP specific parameters 
Rickshaw − 0.439 − 1.736 ** − 0.762 − 2.963 *** 
Bus − 1.822 − 8.468 *** − 2.161 − 9.929 *** 
Auto-rickshaw 0.081 0.274  − 0.311 − 1.091 *** 
Car 0 – – 0 –  
BRT − 0.728 − 3.786 *** − 0.781 − 3.891 *** 
MRT − 1.064 − 5.252 *** − 1.106 − 5.308 *** 

Level of Service Attributes 

Generic travel time (per hour) − 0.802 − 20.753 ***    
Generic travel cost (BDT) − 0.002 − 7.093 *** − 0.003 − 8.137 *** 
Distance sensitivity for walking (m) − 0.125 − 15.619 *** − 0.128 − 16.229 *** 
Distance sensitivity for cycling (m) − 0.076 − 8.834 *** − 0.077 − 8.941 *** 
Market specific travel time 
Travel time (base)    − 0.309 − 5.712 *** 
Employed    − 0.103 − 1.729 *** 
Having car at household    − 1.358 − 10.670 *** 
Male    − 0.288 − 4.709 *** 
Age between 24 and 40 years old    − 0.389 − 7.703 *** 

Scale variables 

mu_RP 1   1   
mu_SP 1.694 3.748 *** 1.274 4.355 *** 

LL(0, whole model) − 209245.3   − 209245.3   
LL(final, whole model) − 157093.1   − 156657.1   
LL(final RP only model) − 156173.8   − 155734.9   
LL(final SP only model) − 919.3   − 922.17   
Rho-square (0) 0.2492   0.2513   
Adj.Rho-square (0) 0.2492   0.2512   
AIC 314220   313356.2   
BIC 314382   313556   
Estimated parameters 17   21   

*** Estimates are significant at 95% level of confidence. 
** Estimates are significant at 90% level of confidence. 
* Estimates are significant at 80% level of confidence. 

3 Teleportation is a method of moving vehicles from origin to destination, at a 
predefined speed, without considering interactions in the network. 
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monthly flat fare and a distance-based cost scenario (cost/km). For the 
monthly flat fare, the ticket price was assumed to be 900 BDT per month 
(as it is estimated that about 50% of the commuters spend less than 900 
BDT in a month) (ADB, 2022). For the distance-based cost, the distance 
travelled between activity locations q and q + 1 was derived from the 
activity profiles, and the travel cost per kilometre 1.52 BDT/km was 
derived from the feasibility report of BRT. All the additional simulation 
settings are specified in Table 4. 

3.5. Simulation scenario 

Three different scenarios were simulated for comparison — 1) Base 
scenario without BRT, 2) Scenario with BRT without multi-modal ac-
cess, and 3) Scenario with BRT with multimodal access. 

A summary of various scenarios used to simulate traffic is presented 
in Table 5. 

4. Results 

4.1. Scenario 1: base scenario 

The base scenario of the proposed mode choice model reflects the 
existing conditions (pre-BRT scenario) of modal share, trip purpose, and 
departure time choice. In this scenario, agents were allowed to change 
the route to obtain the shortest path. To start with a more stable base 
model, we also allowed our agents to change one single trip mode 
(randomly picked) till agents reached their equilibrium. We compared 
the simulated modal share and departure time choice with the observed 
data obtained from the travel diary survey conducted in 2019. For the 
validation, the simulated modal share was also compared with the 
modal share of the passenger trips collected using an inner cordon line 
survey, in 2014 by the JICA study team. The results indicated that public 
transport and non-motorised transport constituted the highest share of 
trips in Dhaka City. As Table 6 exhibits, the simulated proportion of 
modal share had a good agreement with the observed and JICA data. 
However, a difference between the observed and simulated proportion 
of the modal share of the agents was discernible for existing NMT and 
Auto-rickshaw, which is approximately 19% and 10%, respectively. We 
accepted these differences due to the validation of these differences in 
the external sources. Also, it should be worth mentioning the fact that 
rickshaws and bikes are not legally permitted along the major roads in 
Dhaka. We attempted to restrict those vehicles along the major road 
while routing without network simulation. However, due to a lack of law 
enforcement, people can use those prohibited vehicles along the major 
road while violating the law. 

The base model also showed the agents’ choice of departure time and 
trip purpose in existing situation. During a weekday, for both home- 
based outbound and return trips, the number of mandatory trips (i.e., 
work and education) (more than 80% trips) was the highest in Dhaka 
city. However, the proportion of trips for personal reasons, leisure ac-
tivities, shopping, and other purposes was substantially low during the 
weekday. In comparison to home-based travels, the proportion of non- 
home-based trips was extremely small, accounting for less than 5% of 
all observed trips. In the case of departure time choice, most of the 

agents started their trips before 9:00 for work and educational purposes. 
However, departure times for other activities peaked at 10:00. (Fig. 4). 

The distribution of simulated travel time was further compared 
against the user-stated travel time. Fig. 5 shows that in both the obser-
vation and simulation, the majority of agents’ travel duration ranges 
from 20 to 40 minutes. Such a validation process yielded a very good 
agreement between the observed and modelled travel time distributions 
(Fig. 5). 

4.2. Future mode choice scenarios 

This study analysed sensitivity to travel time, travel cost, and 
multimodal access-egress modes in post-BRT implementation scenarios. 
Each of these three variables was included in the model stepwise. 

4.2.1. Scenario 2: future scenario with BRT and without multi-modal 
accessibility 

In scenario 2, we intended to see how travel time and travel cost will 
influence agents’ mode choice behaviour after the implementation of 
BRT. Here, to avail of BRT, agents could only use walking as an access/ 
egress mode. We tested the influence of travel time independently, as 
well as in combination with travel cost as a function of distance. For 
scoring in the simulation, the mode choice model provided the marginal 
utility of travel time and travel cost and distance disutility for a mode 
which required physical effort of the agent (e.g., walking and biking). 

The optimisation results of travel time showed that if all else being 
equal, agents chose the mode of transport that yielded the minimum 
travel time. In this case, motorcycle resulted in the highest modal share 
(approximately 65%) at the equilibrium point (scenario 2A, Fig. 6 (a)). 
Since, results from the discrete choice model highlighted the signifi-
cance of both time and cost sensitivity in predicting agents’ mode choice 
preference, in this study, we also investigated the trade-off between 
travel time and travel cost. Results showed that agents chose the mode of 

Table 4 
Simulation settings.  

Mode Speed Distance Cost 

Bus 16 km/h Network-derived 1.52 BDT/km 
Rickshaw 10 km/h 2* bee-line distance 10 BDT/km 
Human-hauler 13 km/h Network-derived 2 BDT/km 
Auto-rickshaw Network derived Network-derived 8 BDT/km 
Car Network derived Network-derived 6 BDT/km 
Motorcycle Network derived Network-derived 6 BDT/km 
Walk 3 km/h 1.4* bee-line distance  
Bike 8 km/h 1.3* bee-line distance   

Table 5 
Summary of different scenarios.   

Scenarios Input Scoring 

1 Base scenario 
(without BRT)  

- Existing road network of Dhaka 
city  

- One day activity profile  
- Configuration 

MNL 1 model 

2 Future scenario 
with BRT  

- Existing road network of Dhaka 
city with BRT line 3 and 
stoppages  

- One day activity profile  
- Configuration without 

multimodal accessibility 

MNL 1 model 
MNL 2 model (for 
different market 
share) 

3 Future scenario 
with BRT  

- Existing road network of Dhaka 
city with BRT line 3 and 
stoppages  

- One day activity profile  
- Configuration with multimodal 

accessibility 

MNL 1 model 
MNL 2 model (for 
different market 
share)  

Table 6 
Observed vs simulated modal share.   

Observed 
passenger modal 
share (%) 

Simulated 
passenger modal 
share (%) 

JICA survey (2014) 
passenger modal 
share (%) 

Bus and Human- 
hauler 

49.2 53.0 68.4 

NMT (walking/ 
rickshaw/ 
bike) 

34.8 16.0 13.4 

Car 3.7 11.0 8.2 
Auto-rickshaw 7.0 17.0 8.4 
Motorcycle 5.3 3.0 1.6  
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transport that required the least travel cost and travel time. The highest 
modal share was obtained in the bus at the equilibrium point (Fig. 7 (a) 
and Supplementary Fig. S1). The implementation of BRT with walk as an 
access mode would attract 1.2% of the total users from other modes, 

particularly buses, rickshaws, and motorcycles (scenario 2B). A decrease 
in the link flow of network simulated motorised modes (car, motorcycle, 
and auto-rickshaw) was noticeable along the road parallel to the BRT 
network (Dhaka-Mymensingh highway) at various times of the day, 
however, there was also an increase in link flow at various times in 
different links (Supplementary Fig. S3). 

From the simulation of this scenario, it can be found that a significant 
proportion of trips (64.2%) could still take place on buses, followed by 
auto-rickshaws (15.2%) (Fig. 7 (b)). The average travel distance of BRT 
users would be 10 km (sd ± 6.9 km). We have also examined the impact 
of a BRT service’s flat monthly fare on demand (scenario 2C). The de-
mand for BRT would marginally increase to 1.4% with this fare struc-
ture. The simulation result, however, indicated a considerable increase 
in the average journey distance of potential BRT users (11 km, sd ± 7.8 
km). On the contrary, in the distance-based cost simulation, agents 
would avail each BRT stoppage on an average by walking approximately 
650m (sd ± 500m), whereas, for the flat fare cost simulation agents 
avail each stoppage by travelling 550m (sd ± 420m). 

When the simulation considered travel cost as a function of distance, 
the proportions of home-based and non-home-based trips of the poten-
tial BRT users were 91.5% and 8.5%, respectively (scenario 2B). Among 
the home-based trips, 65.3% were work-related. In this case, non-home- 
based work trips were 77.9% (Supplementary Table S1). Similarly, at 
the simulation of the monthly flat fare of BRT service, about 67.5% of 
trips were home-based work trips, while 80.0% were non-home-based 

Fig. 4. Observed vs Simulated departure time density at the base scenario for different trip purposes.  

Fig. 5. Comparsion of travel time in simulation and user stated travel time.  

Fig. 6. a) Optimisation of travel time across various modes; b) modal shift based on travel time preference.  
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work trips (scenario 2C). In both cost scenarios, the BRT users would 
prefer to depart either during the morning (7:00–9:00) or afternoon 
(16:00–18:00) (Fig. 7 (c)). Considering departure time, multiple peaks 
were observed in a working day (Fig. 7 (c)). 

In this study, we also simulated the potential demand for BRT while 
taking into account the varying temporal sensitivity of various market 
shares. According to the simulation results, the potential demand for 
BRT varies between 0.6% and 0.7% for different market shares. The 
majority of potential BRT users would be those who were younger than 

25 or older than 40 (40% of 0.6% were aged between 25 and 40 years 
old), employed (73.5% of 0.7% BRT users were employed), male (80.3% 
of 0.7% BRT users were male), and did not have a private car in the 
household (91.7% of 0.6% BRT users did not have a car) (Supplementary 
Table S3). 

4.2.2. Scenario 3: future scenario with BRT and multi-modal accessibility 
The third scenario considered the travel time and travel cost of users, 

as well as the presence of multimodal access-egress modes. The 

Fig. 7. a) Optimisation of travel time and travel cost (function of distance) across various modes; b) modal shift based on travel cost (function of distance) preference; 
c) Departure time choice of potential BRT users under different pricing structure of BRT. 

Fig. 8. a) Distribution of modal share at multi-modal accessibility scenario; b) modal shift based on the presence of multimodal access-egress modes.  
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distribution of modal share at equilibrium points (Fig. 8 and Supple-
mentary Fig. S2) under this scenario indicated that users would still use 
the bus as their preferred mode of transport. The implementation of BRT 
with multimodal accessibility could attract approximately 23% of the 
total users from other modes (e.g., bus, rickshaws, and motorcycles) in 
both fare systems. This scenario also noted a significant reduction in the 
link flow along the existing road parallel to the BRT line (Supplementary 
Fig. S3). In this scenario (3A), about 60.5% of the total potential BRT 
users would be the existing bus users (Fig. 8 (b)), followed by rickshaws 
(11.8%) and motorcycles (7.3%). The approximately similar result was 
obtained from the simulation of a monthly flat fare system with multi- 
modal transport accessibility (Supplementary Fig. S2). 

In both fare systems with multi-modal transport accessibility, the 
proportion of home-based trips was approximately 93% whereas the 
highest proportion of BRT trips were work (63%) and education (21%) 
related (Supplementary Table S1). Among the non-home-based trips, the 
majority of the trips were work related trips (73%) which was followed 
by personal activities (15%), and shopping (5%). It is noteworthy that 
the BRT users could travel approximately 12 km (sd ± 6 km), on 
average, in different fare systems. In both fare systems, most of them 
would prefer to depart between 7:00 to 10:00 (Supplementary Table S2). 
Furthermore, the proportions of the walk, bike, and rickshaw usage, as 
access modes, for any of the trip legs of BRT users, were found to be 
1.3%, 7.6%, and 91.1%, respectively. In different multi-modal simula-
tion scenarios, agents were availing of BRT service by travelling 
approximately 1.7 km (sd ± 1.3 km) using different non-motorised 
transport allowed as access/egress mode. While considering the 
different travel time sensitivity of different market share in the multi- 
modal accessibility scenario, BRT service would attract approximately 
24–25% of the total users from other modes. Like scenario 2, among 
these potential BRT users majority of them were employed, younger 
than 25 or older than 40, male, and did not have a private car in the 
household (Supplementary Table S3). 

5. Discussion of results and policy implications 

Transportation demand prediction is essential to evaluate the in-
vestment in future transport infrastructure. This is particularly impor-
tant for a mega project like BRT since investment in such a project has 
both success and failure records in history. Agent-based microsimulation 
approach has received wider attention recently, to forecast travel 
behaviour (Makinde et al., 2018). While the application of this approach 
in evaluating transport service/infrastructure is common in developed 
countries (Manser et al., 2020; Moreno et al., 2018), there is a lack of 
attempt to adopt such a method in developing countries, potentially 
limiting the effectiveness of new transport infrastructure and service 
(Yagi and Mohammadian, 2010). This research gap led to this study 
where we developed an agent-based model to predict future travel de-
mands of an ongoing Bus Rapid Transit (BRT) project in Dhaka city of 
Bangladesh. 

In this study, a base scenario was developed to artificially represent 
the existing travel pattern in Dhaka city, combining an estimated 
discrete choice model with a MATSim interface that combines the de-
mand and supply sides. Results from the base model showed that public 
transport services (bus, human-hauler) and non-motorised transport 
(walking and rickshaw) constituted the highest share of trips. This 
simulated result complied with the observation and survey results from 
the most recently available cordon line survey data collected by the JICA 
study team (DTCA, 2015). 

The calibrated agent-based-microsimulation tool was then applied to 
simulate and compare the future travel demand of BRT in three sce-
narios: (1) existing scenario, (2) future scenario with BRT and without 
multimodal accessibility, and (3) future scenario with BRT and with 
multimodal accessibility. The results indicated that agents, sensitive to 
travel time, chose the quickest mode for their daily trips. After the 
implementation of BRT line 3, the share of trips by motorcycle increased 

by 65% when agents were only time-sensitive (scenario 2A). In Dhaka 
city, the number of yearly registered motorcycles increased from 34,707 
in 2011 to 99,810 in 2021 (BRTA, 2022), primarily due to its flexible 
route, door-to-door access, and relatively lower travel time than other 
alternatives (Wadud, 2020). Besides, the expected total journey time by 
BRT was greater than the motorcycles, despite the higher average travel 
speed of BRT as a journey by BRT involved access and egress time (Mavi 
et al., 2018; Shi et al., 2021; Zgheib et al., 2020) making it less attractive 
than motorcycles which can provide seamless door-to-door trip. There-
fore, in order to shift people to BRT, the transport policy should include 
measures to make motorcycles less attractive — by increasing the import 
duties of motorcycles or by restricting them on the routes competing with BRT 
for instance. Given that motorcycles currently have significant detri-
mental effects on air quality (Chiou et al., 2009) and road safety 
(Wadud, 2020), such policies can have a significant contribution to 
improving transport sustainability. 

The simulation results further showed that after the implementation 
of BRT, a substantial proportion of passenger trips would still be based 
on buses when agents are both travel time and travel cost sensitive 
(scenario 2B and scenario 2C). While BRT intends to optimise both travel 
time and travel cost, this study only considered BRT line 3, which con-
nects the north and south parts of Dhaka. Hence, dwellers in the rest of 
the city area would still be partially dependent on the existing PT ser-
vices to fulfil their mobility demands. Therefore, to increase the PT 
ridership, revitalising the existing PT and enhancing inter-modal con-
nectivity with BRT are imperative along with the construction of new 
BRT lines (Duarte and Rojas, 2012). The importance of intermodal 
connectivity is also supported by the result from scenario 3. The outputs 
of scenario 3 indicated that the presence of rickshaws or bikes as 
access/egress modes would substantially increase BRT service areas 
(from 0.7% to 25%), increasing the number of long-distance trips (Fig. 9 
shows the potential trip distribution of BRT users). These findings may 
have two important policy implications: 1) There is a strong likelihood 
that BRT would be appealing to city dwellers as an efficient and effective 
mode of public transportation to meet the current passenger travel demand if 
BRT has an efficient and reliable operation, intermodal connectivity, and 
service frequency. The efficient operation may reduce the demand for other 
motorised mode of transport (Supplementary Fig. S3). It may increase travel 
demand along the access/egress connection street to accommodate first and 
last mile trips, potentially shifting congestion from major streets to the con-
necting streets. BRT demand could decrease to 0.7% if link street is unable to 
meet the anticipated access/egress demand. The significance of connection 
and level of service features in meeting passenger transport demand by 
BRT was also highlighted in the empirical research by Joseph et al. 
(2021). Additionally, it was noticed from the simulation of scenario 2 
that there was a possibility of an increase in link flow along the parallel 
road of the BRT network at various times of the day (Supplementary Fig. 
S3). This is because switching to BRT would relieve traffic on the parallel 
road, which might then make it the quickest path for passengers trav-
elling between other origin-destinations. A further increase in link flow 
may result in jam density instead of relieving congestion. 

This study also found the sensitivity of the fare structure on the BRT 
travel demands. Though consideration of walking as an access mode 
with a monthly flat fare of BRT had induced a slight increase in BRT 
demand (1.2%–1.4%), however, significance of different fare structures 
was discernible while evaluating the average journey distances of BRT 
users. This is because monthly flat fares induced more long-distance 
trips (average journey distance increased from 10 km to 11 km with 
sd ± 7.8 km). Similarly, the result showed that multi-modal accessibility 
further increased the average journey distance (scenario 3). Therefore, 
the availability of different fare schemes would be effective in increasing BRT 
ridership (particularly long-distance traveller) and reducing congestion along 
the busy corridor. It may be noted that Yagi and Mohammadian (2008) 
also highlighted the significance of different fare scheme in increasing 
BRT ridership in Jakarta, Indonesia, using an opinion survey. 

In terms of trip purposes, home-based work trips during the 
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weekdays would constitute the majority of the BRT trips. This indicates 
the need for taking special policy interventions to make BRT similarly 
attractive for discretionary trips. Potential measures may include an 
introduction of group tickets, integrated fare systems, and periodical (weekly 
or monthly passes) and multi-trip tickets could encourage people to use BRT 
(Currie and Delbosc, 2013, 2014). Furthermore, results from this study 
highlighted that demand for BRT would vary across different 
socio-demographic groups due to their different sensitivity to different 
levels of service attributes. For example: due to different time sensitivity 
the demand for BRT would be dominated by the employment status, 
gender, and car ownership at the household level. Therefore, BRT 
ridership enhancement policies should include customised services (e.g., 
commuters’ trip tickets, workplace incentives) or targeted marketing ap-
proaches (e.g., gender-sensitive planning), to better align with the preferences 
and sensitivities of distinct socio-demographic groups. 

6. Conclusion 

This study predicted the BRT demand of Dhaka city, using an agent- 
based micro-simulation approach. A mode choice model was developed 
using both RP and SP data which was implemented in MATSim. The 
developed models worked reasonably well among all the dimensions 
(travel time, travel cost and access/egress mode) considered in this 
study. In terms of practical application, the model developed in this 
study may help to understand the activity patterns and travel behaviour 
of the traveller after the initiation of a new BRT service. The Strategic 
Transport Plan (STP) (2005–2025) and DTCA (2015) predicted that the 

expected modal share of BRT in Dhaka city would be 3% for the pro-
posed three BRT lines (Ahmed et al., 2018). But the predicted BRT de-
mand in this study ranged between 0.7% and 25% while taking into 
account the marginal utility of travel time, various combinations of fare 
structures, and multi-modal access/egress connection. In the STP, only 
public transport simulation was conducted, considering walking as an 
access mode. Such a demand prediction model ignored the potential 
shifts from other modes (e.g., rickshaw, motorcycle, human hauler), 
which have been considered in this study. The findings of this study are 
expected to provide more reliable results. The key ridership enhance-
ment policies inferred from the findings of this study are listed below:  

1. Successful implementation of large mega-projects like BRT should 
consider the competitive advantages of other transportation modes, 
motorcycles in particular. Policy measures to make motorcycles less 
attractive, by increasing the import duties of motorcycles or by 
restricting them on the routes competing with BRT for instance, are 
hence crucial for shifting people to BRT.  

2. Integration with current transportation services and intermodal 
connectivity is a prerequisite for increasing the BRT system. In 
particular, taking policy measures to promote the use of rickshaws 
and bikes as access/egress modes will substantially increase BRT 
service areas and help to increase the number of long-distance trips. 
It is crucial to take measures to ensure the link streets to the BRT line 
are capable of meeting the access/egress demand of the feeder modes 
(rickshaws and bikes). 

Fig. 9. Potential BRT users’ trip distribution pattern (a) BRT network, b) trip density without multi-modal connectivity, c) trip density with multi-modal 
connectivity). 
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3. Given the heterogeneous sensitivity to the level-of-service variables, 
policies aimed at increasing BRT ridership should incorporate 
tailored services (like workplace incentives and commuter trip 
tickets) and focused planning and marketing strategies (like gender- 
sensitive planning and promotion). These will ensure that BRT is able 
to better cater to the sensitivities of various socio-demographic 
groups and improve ridership. 

Future research directions 

While the direct model outputs presented in this paper will be useful 
for the planners to maximise the ridership of the proposed BRT, the 
calibrated simulator will be useful for evaluating strategies related to 
BRT ridership and innovative transport modes in the context of Dhaka. 
Some of the potential future research directions are outlined here: 

The agent-based multimodal simulation only tested a limited number 
of level-of-service attributes (e.g., fare values already proposed by the 
consultants, no consideration for special fare types to attract discre-
tionary travel, integrated ticket system with regular PT, etc.). Testing 
wider ranges of values and different combinations of level of service 
attributes can help to identify further strategies for improving BRT 
ridership. Also, other choice behaviour such as departure time choice 
and destination choice behaviour would be worthwhile to explore 
because ignoring the full range of behavioural changes may lead to 
over/underestimation of the potential benefits of the mega project. 

Once the BRT is operational, it will potentially change the current 
interaction pattern of different types of travellers (such as new transit 
users, conventional transit users, users of other modes of transportation) 
and service providers, law enforcement authorities, policymakers, etc. 
involved in the existing system (Joseph et al., 2021; Palacios et al., 
2020). Due to the chaining and feedback effect, such interactions be-
tween agents and the transport system can have an impact on other 
system components (such as land use, economic conditions, etc.) while 
agents will be making decisions about their daily activities and mobility 
(e.g., what activity, when, where, what mode of transport) (Venter et al., 
2018; Zgheib et al., 2020). In parallel, it will change the landscape of the 
city by enhancing connectivity, sprawling, gentrification, densification, 
land use change, and many more. Such a feedback loop might result in 
nonlinear causality within the adapted or evolved system bringing 
radical change in how agents act and how travellers behave (Ettema 
et al., 2014). Therefore, in future research, our current model can be 
elevated to a more dynamic model by incorporating the emerging 
interaction of individual agents with other agents and the environment. 

It is expected that after the implementation of policy intervention (e. 
g., BRT, MRT, expressway, etc.), the current or preferred choice will be 
also affected by their habits, awareness, evolving attitude, culture, social 
norms and values (Shafi et al., 2022; Wee and Kroesen, 2022; Zmud and 
Sener, 2017). If a new BRT line is introduced and users find the service to 
be convenient and easy to use, this may transform their perception of 
public transportation and encourage them to utilise the service more 
regularly (Ramos et al., 2019). Similarly, adaptation to this new service 
may change their current social belief and perspective (Forward, 2019). 
However, it is extremely challenging to capture detailed behavioural 
nuances like exploration, habit formation, inertia, etc. using stated 
preference data. Extending the current model to capture these behav-
ioural nuances using revealed data collected after opening of the BRT 
will be an interesting direction for future research. Such a model will 
also be useful for ex-post evaluation of the BRT system. 

However, the way MATSim was adapted for use in the multi-modal 
context of a developing country is likely to be useful for other coun-
tries interested in transitioning to transport policy evaluations using 
agent-based microsimulation. It may be noted that the developed model 
is available as open-source software for ease of application in other cities 
and countries. 
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Čertický, M., Drchal, J., Cuchý, M., Jakob, M., 2015. Fully agent-based simulation model 
of multimodal mobility in European cities. Proceedings of 2015 International 
Conference on Models and Technologies for Intelligent Transportation Systems (MT- 
ITS), pp. 229–236. 

Cervero, R., 1996. Mixed land-uses and commuting: evidence from the American housing 
survey. Transport. Res. Pol. Pract. 30, 361–377. 

Cervero, Robert, 2013. Bus Rapid Transit (BRT): An efficient and competitive mode of 
public transport, Working Paper, No. 2013-01. University of California, Institute of 
Urban and Regional Development (IURD, Berkeley, CA.  

Charypar, D., Nagel, K., 2005. Generating complete all-day activity plans with genetic 
algorithms. Transportation 32, 369–397. 

Chiou, Y.-C., Wen, C.-H., Tsai, S.-H., Wang, W.-Y., 2009. Integrated modeling of car/ 
motorcycle ownership, type and usage for estimating energy consumption and 
emissions. Transport. Res. Pol. Pract. 43, 665–684. 

Currie, G., Delbosc, A., 2013. Exploring comparative ridership drivers of bus rapid transit 
and light rail transit routes. Journal of Public Transportation 16, 3. 

Currie, G., Delbosc, A., 2014. Assessing bus rapid transit system performance in 
Australasia. Res. Transport. Econ. 48, 142–151. 

Deng, T., Nelson, J.D., 2013. Bus Rapid Transit implementation in Beijing: an evaluation 
of performance and impacts. Res. Transport. Econ. 39, 108–113. 

Ding, H., Yang, M., Wang, W., Xu, C., 2018. Simulating and analyzing the effect on travel 
behavior of residential relocation and corresponding traffic demand management 
strategies. KSCE J. Civ. Eng. 22, 837–849. 

DTCA, 2015. Revised Strategic Transport Plan (RSTP), Dhaka Transport Coordination 
Authority. (DTCA), Dhaka, Bangladesh.  

DTCA, 2015. The Project on the Revision and Updating of the Strategic Transport Plan 
for Dhaka. Ministry of Communications (MoC), Dhaka, Bangladesh.  

DTCB, 2005. Strategic Transport Plan (STP) for Dhaka, Dhaka Transport Coordination 
Board (DTCB), Final Report. Dhaka, Bangladesh. 

Duarte, F., Rojas, F., 2012. Intermodal connectivity to BRT: a comparative analysis of 
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