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Polymerised emulsion templating is a common method for the fabrication of biomaterials with interconnected
porous structures. Here, we present the fabrication of poly(glycerol sebacate)-methacrylate (PGSM) porous
structures via emulsion templating. The mixing speed and photoinitiator concentration for emulsions were
optimised (350 rpm, 16 wt%, respectively). The resulting emulsion separation before/after mixing and pore
morphology of PGSM emulsions was then assessed by altering the emulsion formulation using four different

types of diluting solvent (chloroform, dichloromethane, dichloroethane, toluene) for the first time. By altering
the type and volume of solvents, the overall pore morphology of polymerised emulsions was tuned.

1. Introduction

In 2002, a thermoset elastomer, poly(glycerol sebacate) (PGS), was
developed via a two-step condensation reaction between glycerol and
sebacic acid [1]. PGS is a promising material as it has attractive
biomaterial properties and can be easily functionalised. In this study we
functionalised 50% of the hydroxyl groups with methacrylates, to render
the pre-polymer photocurable (PGSM) [1]; the produced resin was set
rapidly via UV-illumination [2].

Porous materials are used for tissue engineering because they mimic
the extracellular matrix to promote three-dimensional (3D) cell orga-
nisation, cell migration, and nutrient perfusion [7]. Porous structures
produced by emulsions are formed by the involuntary interaction of two
phases; a continuous ‘oil phase’ and an internal ‘water phase’. Mixing
both phases disperses droplets of internal phase within the continuous
phase (‘water-in-oil” emulsion), resulting in a porous structure following
polymerisation of the external phase. Phase interaction is usually facil-
itated by a surfactant. Additionally, solvents and/or mineral particles
are used to alter the phase interactions, stabilising the mixture, facili-
tating emulsification. The interaction of individual polar solvents used
in emulsion fabrication has been reported [3]; this is the first study
investigating the effect of various solvents on creating PGSM emulsions.
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2. Experimental section

PGS was synthesised by a two-step polycondensation, then meth-
acrylated (PGSM) (S1), and emulsions were created by stirring a
continuous oil phase (PGSM, Hypermer B246 surfactant, solvent, pho-
toinitiator (diphenyl (2,4,6-trimethylbenzoyl)) in a glass vial at room
temperature at 350 or 850 rpm, using a magnetic stirrer (Fig. 3). Once
homogeneous, water was added dropwise, the emulsion was mixed until
of a foam-like viscosity, and photopolymerised under UV light for 10
min (100 W, OmniCure Series 1000 curing lamp). Cured emulsions were
washed in methanol for three days and stored in water, prior to char-
acterisation by SEM, lightsheet and confocal microscopy (S2).

3. Results and discussion
3.1. Chemical characterisation

GPC analysis revealed the molecular weight, molecular number, and
polydispersity of PGS and PGSM-50% were within the range of previous

studies [1,5]. 'H* NMR spectra show peaks related to glycerol and se-
bacic acid [1] and the incorporation of methacrylate groups [4] (Fig. 1).
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3.2. Effect of photoinitiator concentration and mixing speed on PGSM
emulsion fabrication and crosslinking

The relationship between mixing speed and water intake in PGS
emulsions was tested (S3). The oil phase consists of polymer, solvent,
and photoinitiator [6]. Two mixing speeds (350, 850 rpm) and three
photoinitiator volumes (11, 16, 25% wt) were investigated. Both pa-
rameters showed an effect on emulsion photocrosslinking. At 850 rpm,
reagents were homogeneously mixed, but not all emulsions mixed at
350 rpm crosslinked successfully, as the photoinitiator must be homo-
geneously distributed to ensure proper crosslinking [3,6]. The presence
of photoinitiator in the continuous phase affects viscosity and density,
impacting the morphology of the pores. Smaller pores were created at
higher mixing speeds [7]; the higher shear rate breaks up the internal
water phase into smaller droplets and produces more viscous emulsions
[6]. 350 rpm was chosen as optimal mixing speed because the pore sizes
were larger (>50 um), both pore and windows were distinguishable, and
pore morphologies were more rounded, which has shown to be desirable
for cell migration and integration in tissue engineering applications [7].

The extent of photo-polymerisation can be affected by the photo-
initiator’s availability; a minimum volume is required [9]. Emulsions
with 11% wt photoinitiator struggled to crosslink; and emulsions with
25% exhibited skin formation, preventing complete curing in the centre;
an optimum balance was found at 16% for both mixing speeds. Skin
formation has been previously reported, as high photoinitiator amounts
can decrease the photocuring efficiency [9] by increasing photo-
absorption, reducing light penetration depth [6]. The effect of the
mixing speed and photoinitiator on pore geometries of photocured
PGSM emulsions is shown in Fig. 2.

Despite all images showing pore interconnectivity, their morphology
is mostly heterogeneous; whilst some structures showed large defined
pores (>250 um) and significantly smaller windows (<50 um) (B,E) [3],
others showed irregular cavities; no pores nor windows can be fully
distinguished (C,D).

3.3. Effect of solvent type on emulsion formation and crosslinking

Four different solvents commonly used in polymeric emulsions
(toluene, chloroform, dichloroethane (DCE), dichloromethane (DCM))
were studied at different constituent volumes (25-48% wt). Separation
during and after mixing was recorded (Fig. 3). The densities and the
polarities of the solvents are determining factors for emulsion stability
[8]. It should be noted that for all emulsions fabricated, the PGSM
polymer solution contained 10% residual DCM following the meth-
acrylation process.

Solvent-free emulsions presented low-viscosity with no apparent
difference between phases, inverting into a particulate (water-in-oil-in-
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water emulsion) [3]. Solvents decreased the viscosity of the organic
phase, allowing more droplet travel and increased mixing efficiency of
the emulsion [3]. Porous structures were found in 70% of the experi-
ments, reinforcing the suitability of selected solvents to create functional
emulsions. At higher DCM and chloroform concentrations, structures
lost their porosity and collapsed (due to coalescence of droplets within
the prior emulsion). Emulsion separation during mixing was infrequent
but most common in chloroform experiments. Separation after mixing
occurred more frequently in chloroform, DCM and DCE, but not with
toluene. Finally, higher solvent volumes produced separation of the
emulsion, mainly after mixing, specifically on DCM and DCE. Results
using 70:30 and 80:20 polymer:solvent* solutions are shown in S4-5.

Some emulsions reached a water absorption limit under 3 ml. As
emulsions are thermodynamically unstable, emulsion destabilisation is
inhibited by the surfactant which decreases the interfacial energy of the
emulsion and allows the creation of more and/or smaller droplets. When
the polymer layers between droplets thin to a limit coalescence occurs
[2]. Additionally, solvents with low interfacial tension have a low ‘sol-
vent power’ that supports aggregation rather than dispersion [10]. This
could be the case for emulsions that separated during mixing (DCM and
DCE with water intake limits of 1.5 and 2.5 ml, respectively). Water
absorption was mostly optimal at 42% wt solvent (S4).

Chloroform appears to produce emulsions with large pores indi-
cating an unstable emulsion prior to curing (Fig. 4) [3], breaking down
via Ostwald ripening [6]. At higher viscosities, droplet transportation is
limited (Stoke’s Law), hence the formation of larger pores [3]. DCM is
also poor in stabilising the emulsion on its own, limiting the water
absorbed. As a result, the emulsions inverted above 2 ml of internal
phase [3]. DCE had more consistent results; emulsion viscosity and
water absorption was optimal for most emulsions with 2.5 ml. DCE
emulsions showed round pores with large interconnecting windows
(Fig. 4); DCE’s density is close to PGSM’s (1.32 g/ml), with no impact on
the overall oil phase density. PGSM emulsions fabricated with toluene as
solvent were the only ones that could incorporate 3 ml of water during
mixing without separation. Toluene has the highest interfacial tension
with water (35 mN/m), increasing emulsion stability and reducing the
risk of coalescence [6,10]. Interestingly, although the toluene-based
PGSM emulsion showed the least separation, the structure of the
emulsion did not have a typical spherical appearance [7], with well-
defined droplets incorporated within the polymer. The structure is still
highly porous, with ~ 10-50 um interconnected pores incorporated
within the polymer, making it potentially suitable as tissue engineering
scaffolds.

Three imaging techniques were used in this work (SEM, lightsheet
and confocal microscopy). Lightsheet and confocal were more suitable
for PGSM, as these techniques do not require drying of the samples.
PGSM methacrylated to a degree of 50% is a soft polymer that is

B
Sample Avg. M, | Avg.M, | PD
50% PGSM | 7394 2200 3.36 T T T T T T
7 3 5 4 3 2 ppm]

Fig. 1. A) Representation of PGSM synthesis. B) GPC values show polymers’ average molecular weight, number and polydispersity. C) '"H* NMR spectra of PGS and
PGSM-50%. Peaks at 3.7, 4.2 and 5.2 ppm represent glycerol composition (a—c); at 1.2, 1.6 and 2.3 ppm, sebacic acid (d-f); at 1.9, 5.6 and 6.2 ppm, methacrylate

groups (g-j).
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Photoinitiator (wt%)

350 rpm

Mixing speed

Fig. 2. SEM images for PGSM emulsions: 350 rpm (A, B), 850 rpm (C, D, E), with different amounts of photoinitiator (wt%) and toluene as solvent. Top corners:
mimicked pore geometries.
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Fig. 3. Lightsheet images: PGSM-50% emulsions with different solvents for emulsification: Chloroform, toluene, DCM, DCE. *: 90:10 solvent ratio refers to the 10%
residual DCM in the polymer solution following the methacrylation process (S3). Emulsion parameters: 350 rpm, 3 ml internal phase. P/N: porous/non-porous
structure, N/Y: no/yes, NDP: non-defined pores, X: unsuccessful emulsions, N*: watery continuous phase, N’: maximum 2.5 ml internal phase. (Scale bars: 500 pm.)
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Fig. 4. Confocal microscopy images detailing pore morphology of photo-
crosslinked PGSM emulsions fabricated using 0.55 ml of chloroform, toluene,
dichloromethane or dichloroethane. Scale: 200 um.

propense to collapse during the drying process. Furthermore, confocal
allowed the creation of high-resolution 3D images through z-stacks.

4. Conclusion

PGS was successfully synthesised and methacrylated to obtain PGSM.
Emulsion fabrication parameters were individually assessed to under-
stand their role in the emulsification of PGSM. The relationship between
the external variables (mixing speed) and internal variables (photo-
initiator, water and solvent absorption) was explored. PGSM templated
emulsions with four different formulations (toluene, chloroform, DCM
and DCE) resulted in porous, interconnected structures with a range of
pore sizes. SEM, lightsheet and confocal microscopy were used to
characterise and analyse pore sizes and morphologies. Chloroform
resulted in less stable PGSM emulsions with large pores, while toluene
created more stable emulsions with smaller pores. This study can help
for a better understanding of PGSM emulsions, and these porous tem-
plated emulsions have potential applications in tissue engineering.
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