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Abstract. We introduce a numerical method speciĄcally designed for investigating generic
multiĄeld models of inĆation where a number of scalar Ąelds ϕK are minimally coupled to
gravity and live in a Ąeld space with a non-trivial metric GIJ(ϕK). Our algorithm consists of
three main parts. Firstly, we solve the Ąeld equations through the entire inĆationary period,
deriving predictions for observable quantities such as the spectrum of scalar perturbations,
primordial gravitational waves, and isocurvature modes. We also incorporate the transfer
matrix formalism to track the behavior of adiabatic and isocurvature modes on super-horizon
scales and the transfer of entropy to scalar modes after the horizon crossing. Secondly, we
interface our algorithm with Boltzmann integrator codes to compute the subsequent full
cosmology, including the cosmic microwave background anisotropies and polarization angular
power spectra. Finally, we develop a novel sampling algorithm able to efficiently explore a
large volume of the parameter space and identify a sub-region where theoretical predictions
agree with observations. In this way, sampling over the initial conditions of the Ąelds and the
free parameters of the models, we enable Monte Carlo analysis of multiĄeld scenarios. We
test all the features of our approach by analyzing a speciĄc model and deriving constraints
on its free parameters. Our methodology provides a robust framework for studying multiĄeld
inĆation, opening new avenues for future research in the Ąeld.
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1 Introduction

InĆation is a period of rapid expansion in the early Universe initially proposed to account
for various observational phenomena, including spatial Ćatness, the horizon and entropy
problems, and the apparent lack of topological defects [1Ű3]. However, it became quickly
clear that inĆation also offers an elegant mechanism to explain the physical origins of the
Ąrst Ćuctuations in the Universe, which eventually gave rise to the observed structures such
as galaxies and clusters of galaxies [4Ű7]. According to the theory of inĆation, the initial seeds
are generated by quantum Ćuctuations in the inĆaton Ąeld (or Ąelds, if inĆation is driven by
multiple Ąelds) that are stretched to superhorizon scales during inĆation, eventually sourcing
density Ćuctuations in other matter species.

Due to its ability to account for the origin of the structures observed in the present-
day Universe, inĆation is widely accepted as the leading theory of the very early Universe.
However, despite its remarkable success, inĆation is not free from limitations. From an ob-
servational perspective, the absence of a deĄnitive detection of B-mode polarization [8, 9]
and the emerging discrepancies among different Cosmic Microwave Background (CMB) ex-
periments [10Ű18] pose new challenges in determining precise predictions for the inĆationary
models/mechanisms that best explain observational data [19], and various studies suggest
that modiĄcations to the inĆationary sector of the cosmological model might play a relevant
role in addressing (part of) the tension between the value of the expansion rate of the Uni-
verse H0 [20Ű24] measured through direct local distance ladder measurements and the value
inferred from CMB observations, see e.g., [25Ű34]. On the other hand, from a theoretical
standpoint, despite a plethora of proposed models and mechanisms [35], the nature of the in-
Ćation Ąeld (or Ąelds) remains still unknown and embedding inĆation in a more fundamental
theory remains an open problem [36Ű38].

Ű 1 Ű
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The simplest dynamical models of inĆation involve a single scalar Ąeld minimally cou-
pled to gravity whose evolution should be governed by a potential enough Ćat to induce
a phase of slow-roll evolution. However, several non-standard realizations of inĆation have
been proposed both in the context of extensions to the Standard Model of particle physics
and in modiĄed gravity theories and tested against a wide range of available data, including
CMB, Big Bang Nucleosynthesis, and Gravitational Wave measurement.1 Although a large
portion of inĆation models or theories is predominantly shaped by a single scalar Ąeld, low-
energy effective Ąeld theories inspired by theories of particle physics beyond the Standard
Model or quantum gravity, often incorporate multiple scalar degrees of freedom and sug-
gest that inĆation could be driven by multiple Ąelds [108], potentially featuring non-minimal
couplings [109Ű124]. When inĆation is driven by multiple scalar Ąelds, after the inĆation-
ary period, they have to decay into various standard model particles such as dark matter,
baryons, neutrinos, and other species. Furthermore, in multiĄeld models, both adiabatic per-
turbations and isocurvature modes play crucial roles during inĆation [125]. These modes can
persist immediately after the end of inĆation and have a signiĄcant impact on the evolution
of perturbations during the radiation-dominated epoch, giving rise to a rich phenomenology
that can be tested and constrained with cosmological and astrophysical data. Therefore, it
is important to extract clues about the period of inĆation from cosmological observations to
determine at least some of the properties of the Ąeld(s) driving inĆation in the very early
Universe [121, 124Ű136, 136Ű163]. In this regard, it is worth noting that both the amount of
isocurvature and adiabatic modes can be accurately constrained by recent measurements of
the anisotropies and polarization in the cosmic microwave background radiation [164Ű170],
offering a valuable opportunity for experimental validation of multiĄeld inĆation. However,
obtaining precise predictions from generic multiĄeld models/theories is not always easy be-
cause observational quantities often depend on various factors. For instance, it is widely
known that different initial conditions for the Ąelds lead to different trajectories in Ąeld space
which can produce slightly different results for observables such as the amplitude of the scalar
and tensor perturbations and the spectral index for scalar perturbations, or isocurvature
modes [171]. This makes a comparison between theory and observations more challenging
than in single-Ąeld inĆation, and most tools employed in cosmological data analyses, such
as typical Boltzmann integrator codes and samplers, are either unaware of the physics of
inĆation or assume single-Ąeld potentials.2 As a result, constraining the multiĄeld landscape
in light of current observational data represents an ongoing challenge in the Ąeld.

In this paper, we take a Ąrst step to tackle down this difficulty and introduce a numerical
method to precisely calculate the predictions resulting from generic multiĄeld models of
inĆation where Ąelds are minimally coupled to gravity and the Ąeld space metric is allowed
to be non-trivial. To this end, our method is made of three key components. First, we
numerically solve the complete Ąeld equations throughout the entire inĆationary period.
Once we have ensured that the Ąelds undergo a phase of slow-roll evolution, we numerically
solve the background dynamics by adopting a Ąrst-order slow-roll approximation and derive
predictions for observable quantities such as the spectrum of scalar perturbations, primordial
gravitational waves, and isocurvature modes. We also track the behavior of adiabatic and
isocurvature modes on super-horizon scales and the transfer of entropy to scalar modes after
crossing the horizon using transfer matrix formalism. Secondly, we interface our algorithm
with well-known Boltzmann integrator codes and use the inĆationary predictions as initial

1See, e.g., refs. [11, 35, 39–52, 52–56, 56–58, 58–69, 69–72, 72–107] and references therein.
2A few numerical tools for multifield inflation have been developed, as well. See, e.g., ref. [172].
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conditions to compute the subsequent full cosmology, including the CMB anisotropies and
polarization angular power spectra. Finally, we narrow down the viable parameter space
of the model and derive constraints on its free parameters by introducing a novel sampling
algorithm designed to efficiently explore a large parameter volume and identify regions where
predictions agree with observations.

The paper is organized as follows. In section 2, we give an overview of the method,
starting with a description of the theoretical parameterization (subsection 2.1), discussing the
numerical integration scheme adopted for tracking the multiĄeld dynamics (subsection 2.2),
and introducing the sampling algorithm and its interfacing with Boltzmann integrator codes
such as CAMB [173, 174] or CLASS [175] (subsection 2.3). In section 3, we apply this method to
an example inĆationary model, obtaining constraints on the parameters of the theory. Our
conclusions are presented in section 4.

2 Probing the multifield landscape

In this section, we provide a comprehensive overview of the methodology developed for prob-
ing the multiĄeld landscape of inĆation. In subsection 2.1 we describe the theoretical pa-
rameterization adopted for the background equations and the formalism used to track the
super-horizon evolution of perturbations. In subsection 2.2 we introduce our integration al-
gorithm, explaining the various analyses performed to reconstruct the multiĄeld dynamics
throughout the full inĆationary epoch, and the methodology used for calculating observables
such as the spectra of primordial scalar and tensor perturbations, and the entropy transfer
after horizon crossing. Finally, in subsection 2.3, we explain how our algorithm can be inter-
faced with standard Boltzmann integrator codes to calculate the subsequent full cosmology of
the model and describe the sampling algorithm we designed to explore the parameter-space
of generic multiĄeld models and compare theoretical predictions with observations.

2.1 Parametrizing the multifield dynamics

We start by describing generic multiĄeld models where a number of scalar Ąelds ϕK are
minimally coupled to gravity and live in a Ąeld space with a non-trivial metric GIJ(ϕK).
This geometry is reĆected in the kinetic part of the Lagrangian

Lkin = −1

2
GIJ∇µϕ

I ∇µϕJ . (2.1)

Note that in this paper we always work in units 8πG = 1. Considering a spatially Ćat
Friedmann-Lemaître-Robertson-Walker metric, the inĆationary dynamics can be described
by the generalized Klein-Gordon equations obtained from the variation of the action with
respect to the Ąelds ϕK :

1√−g∇µ(
√−g GIJ∇µϕJ) =

1

2
(∇µϕ

L)(∇µϕM )∂I GLM − V,I , (2.2)

where g is the determinant of the metric tensor, V ≡ V (ϕK), and the notation ,K indicates
the derivative with respect to the Ąelds. On the other hand, the evolution of the scale factor
a(t) is governed by the Friedmann equations:

H2 =
1

3
(−Lkin + V (ϕK)),

Ḣ = Lkin.
(2.3)

Ű 3 Ű
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To facilitate the interpretation of the evolution of linear cosmological perturbations, we
adopt the formalism of refs. [176, 177] and perform a rotation in the Ąeld space. To do so,
we deĄne an orthonormal basis in the Ąeld space ¶eIn♢ (with n = 1, 2) as

eKn =
ϕ̇K√
2Lkin

, (2.4)

(where ♣ϕ̇K ♣ ≡ √
2Lkin denotes the length of the velocity vector ϕ̇K containing the Ąelds as

components) and the decomposition of their perturbations [178] as

EK = EneKn . (2.5)

In this way, we can introduce the comoving curvature perturbation [176, 178]

ζ =
H√
2Lkin

E1, (2.6)

which encodes the adiabatic perturbations, as those along the background trajectory eK1 .
It is also worth noting that the whole dynamics of the background Ąelds is encapsulated
only in eK1 and ėK1 as EK ≡ E2eK2 vanishes by construction. In this scenario, the rate of
equation (2.6) clearly depends on the entropy perturbations resulting from the presence of
the orthogonal Ąelds to the homogeneous trajectory:

ζ̇ =
H

Ḣ

k2

a2
Ψ +

H

Lkin



L,2E2


, (2.7)

where L,2 ≡ eK2 L,K is the projection of L,K (i.e., of the derivative of total Lagrangian L
with respect to the Ąelds) on eK2 (i.e., on the direction of the entropic projection of the Ąeld
acceleration). Clearly, with the presence of the entropy perturbations, the change of ζ̇ could
be signiĄcant in addition to the general geometry of the Ąeld space.

As previously said, we aim to precisely reconstruct the whole inĆationary dynamics
and compute the cosmological observables. Therefore, we start by requesting the slow-roll
conditions

GIJ ϕ̇I ϕ̇J ≪ V (ϕK),

2ϕ̇IDt(ϕ̇
I) ≪ H GIJ ϕ̇I ϕ̇J .

(2.8)

In this regime, we can calculate the primordial scalar spectrum predicted by inĆation, eval-
uated at Hubble radius exit, as

Pζ(k) ≃ H2

8π2cs ϵ

∣

∣

∣

∣

k=k∗

, (2.9)

where cs is the sound speed of the adiabatic perturbation, and

ϵ ≡ −Ḣ/H2 (2.10)

is the usual slow-roll parameter. Since during the slow-roll phase the expansion rate H is
almost constant, we expect the spectrum of primordial perturbations to be almost scale-
invariant. Therefore one can expand in terms of the small scale-dependence as

Pζ (k/k∗) = As



k

k∗

(ns−1)+ αs
2

ln(k/k∗)+ βs
6

ln2(k/k∗)

, (2.11)
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where As ≡ Pζ(k∗) is the amplitude of the scalar spectrum at the pivot scale k⋆, which we
Ąx to k⋆ = 0.05 Mpc−1 throughout this work. In the simplest parameterization any residual
scale dependence of the spectrum is parameterized solely in terms of the scalar spectral index
ns deĄned as:

ns ≡ d ln Pζ
d ln k

∣

∣

∣

∣

k=k∗

=
d ln Pζ
Hdt

∣

∣

∣

∣

k=k∗

. (2.12)

However, in equation (2.11) we also consider higher-order terms, including the running of the
spectral index αs and its running of running βs, deĄned respectively as:

αs ≡ dns

d ln k

∣

∣

∣

∣

k=k∗

=
dns
Hdt

∣

∣

∣

∣

k=k∗

,

βs ≡ dαs

d ln k

∣

∣

∣

∣

k=k∗

=
dαs
Hdt

∣

∣

∣

∣

k=k∗

.

(2.13)

The very same procedure can be repeated for the power spectrum of primordial tensor
modes, eventually achieving another useful quantity to constraint general models of inĆation,
namely the so-called tensor-to-scalar-ratio

r ≡ AT /As, (2.14)

which quantiĄes the fraction of primordial gravitational waves produced by the super-adiaba-
tic ampliĄcations of zero-point quantum Ćuctuations.

Turning our attention to super-Horizon scales, as seen from equation (2.7), once k2/a2 →
0, we eventually get

ζ̇ = A(t)H(t)S(t),

Ṡ = B(t)H(t)S(t),
(2.15)

with A and B model-dependent functions of time, whose expressions will be explicated in
subsection 3.1 for a speciĄc model, and

S =
H√

2 Lkin
E2, (2.16)

a dimensionless gauge-invariant quantity. In order to account for the correlation between
curvature and isocurvature modes, as well as to estimate the transfer of entropy from the
latter to the former during the time from soon after the Hubble exit to the end of inĆation,
we make use of the transfer matrix formalism [179]



ζ
S



=



1 TζS

0 TSS



ζ
S



∗

,

where the transfer functions

TζS(t∗, t) =
∫ t

t∗
A(t′)H(t′)TSS(t∗, t

′)dt′,

TSS(t∗, t
′) = exp


∫ t′

t∗
B(t′′)H(t′′)dt′′



,

(2.17)

relate the power spectrum at the end of inĆation with the power spectrum at the Hubble
exit:

Pζ = (1 + T 2
ζS)P∗

ζ ≡
P∗
ζ

cos2 Θ
, (2.18)

with Θ being deĄned as the transfer angle.

Ű 5 Ű
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2.2 Integration scheme

After specifying the initial conditions for the Ąelds ϕK , their velocities, and the metric
GIJ(ϕK) of the Ąeld space, we can integrate the equations of motion, equation (2.2). The inte-
gration process is carried out for a maximum number of e-folds, which is set to Nmax = 10000.
During the integration, we dynamically calculate the slow-roll parameter ϵ by equation (2.10)
and continue until the condition ϵ = 1 is satisĄed. If this condition is not met within Nmax

efolds, the model is rejected as inĆation does not end. On the other hand, if the condition
is satisĄed during integration, the point ϵ = 1 in the parameter trajectory is considered as a
possible end of inĆation.

To conĄrm that it represents the actual end of inĆation, we check whether the Ąelds
are still active enough to begin a second stage of expansion. SpeciĄcally, we test whether
the normalized Ąeld values with respect to their initial conditions do not exceed a threshold
value.3 If the Ąeld values satisfy the condition, the multiĄeld dynamics can be considered
effectively complete, and the point ϵ = 1 reached during integration is regarded as the actual
end of inĆation. Instead, if the Ąeld values do not meet this condition, the integration
continues until they fall below the speciĄed threshold. During this stage, we monitor the
value of ϵ to test whether inĆation restarts (i.e., if we get back to ϵ < 1). If inĆation does not
restart, then the original point ϵ = 1 is set as the end of inĆation. If inĆation does restart,
the new end of inĆation is determined by the joint conditions of ϵ = 1 and the Ąeld values,
which must satisfy the selected threshold.4

After identifying the end of inĆation, we proceed to calculate the total interval of e-
fold ∆N between the start of integration and the end of inĆation. We make sure that this
interval is greater than a threshold value, which we set at ∆N ≥ 100. This threshold is
crucial to ensure that inĆation lasts long enough to account for the observed homogeneity
and isotropy of the Universe, and to establish the appropriate initial conditions for the sub-
sequent Hot Big Bang Theory evolution. When the total number of e-folds between the
start and end of integration is less than this threshold value, we perform a diagnostic test
aimed at determining whether the smaller number of e-folds is due to the initial conditions
being chosen too close to the end of inĆation or if the model, for that speciĄc combination
of parameters, is unable to sustain slow-roll dynamics for an adequate duration. To conduct
this test, starting from the same original initial point of integration with the very same initial
conditions, we integrate backwards in time from the remaining missing e-folds. During this
additional integration, we check the inĆationary Ąelds and parameters for any problematic
behavior, such as exponentially divergent trajectories, and verify that the model can indeed
smoothly support the desired number of e-folds of expansion. If the model fails to meet
these requirements, it is deemed unsuitable for explaining the observations and rejected.
Note that this test is primarily included to maintain a conservative approach and save a
limited number of conĄgurations where models do not respect the threshold value due to the
slight shift caused by the random choice of initial conditions while not showing pathological

3For the model studied in section 3, we choose ψ/ψini ≤ 10−3 and χ/χini ≤ 10−2.
4Note that the check detailed in this paragraph is introduced to account for models that exhibit a double

inflation behavior, see e.g., refs. [180–190]. Despite in the prototype model studied in section 3 this event
appears to be very challenging to realize (i.e., the end of inflation typically corresponds to the conclusion of
the field dynamics and does not restart), our code can successfully handle this event, as explicitly discussed
in appendix A.
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behavior of the backward-in-time trajectory. This also reduces the impact on the results from
the initial conditions themselves, as argued in section 3.5

After ensuring that the model supports a satisfactory number of e-folds of expansion,
and having carefully reconstructed the Ąeld dynamics during the entire inĆationary phase,
we can accurately calculate the entire evolutionary history. This includes how the slow-roll
parameters and observables evolve as a function of N . By doing so, we can obtain the value
of all the slow-roll parameters at horizon crossing, which we choose to be N⋆ = 55 e-folds
before the end of inĆation. Additionally, we take into account the evolution on super-Horizon
scales and the transfer of entropy to between isocurvature and scalar perturbations. In this
way, we can accurately calculate the spectrum of primordial scalar modes (and all the relative
observables) at the end of inĆation, by means of the transfer matrix formalism detailed in
subsection 2.1.

2.3 Sampling method

Once the integration process successfully ends, we can access all the observable predictions
of the model, including the amplitude of the scalar perturbation spectrum (As), its spectral
index (ns), the scalar running (αs), the scalar running of running (βs), and the amplitude
of the tensor perturbations (r). To calculate the subsequent cosmology, we interface our
algorithm with standard Boltzmann integrator codes. SpeciĄcally, we use the ŞCode for
Anisotropies in the Microwave BackgroundŤ CAMB [173, 174].6 We input the observable
predictions of the multiĄeld inĆation as initial conditions for CAMB, along with any other
relevant cosmological parameters, such as the other standard ΛCDM parameters: Ωbh

2,
Ωch

2, θMC, and τ . This allows us to relate the predictions of the multiĄeld model to the usual
observable quantities such as the angular power spectra of cosmic microwave background
anisotropies and polarization and the matter power spectrum, in both standard and non-
standard cosmological backgrounds.

The next crucial step is to explore the parameter space of generic multiĄeld models by
sampling over the initial conditions and the free parameters using Monte Carlo techniques.
This enables us to compare the theoretical predictions with observational data and derive
observational constraints. To accomplish this goal, we have developed a novel sampling
algorithm able to explore a sufficiently large volume of the parameter space and identify a
sub-region where the modelŠs predictions agree with observations. Our sampling algorithm
works as follows. We input a large number of Monte Carlo steps (∼ 106 steps). At each
step, we randomly select the values of the initial conditions and model parameters within
some prior ranges for all sampled parameters. Subsequently, we integrate the model for
these initial values, performing all the consistency tests detailed in the previous subsection
and keeping only models in which the end of inĆation is clearly identiĄed and inĆation lasts
for a sufficiently long number of e-folds able to explain homogeneity and isotropy. If the
model satisĄes these initial prerequisites, we calculate the observable predictions for all the
inĆationary parameters, such as the predicted values of As, ns, αs, βs, and r. We then test

5In the example studied in section 3, most models are ruled out due to their inability to fit observations
for the spectral index and the scalar & tensor amplitudes. The models ruled out because of their inability to
sustain a large enough number of e-folds of expansion are the minority, and this is due to the fact that we
test from the onset that the fields are settled, so we can safely use the slow-roll approximation when solving
the background dynamics.

6Note that the very same procedure can be used to interface our algorithm with the ‘Cosmic Linear
Anisotropy Solving System code’, CLASS [175].
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whether these values fall in reasonable ranges, retaining only models that simultaneously
satisĄes the following conditions:

• As ∈ [1.5 , 2.5] × 10−9

• ns ∈ [0.94 , 0.99]

• αs ∈ [−0.2 , 0.2]

• βs ∈ [−0.2 , 0.2]

• r < 0.1

where we have conservatively chosen the previous ranges around the values measured by
the most recent cosmic microwave background experiments.7 If the model falls within these
ranges, we calculate its full cosmology by means of CAMB. In this case, we save as output
all the relevant information, including the initial conditions, the values parameters, and all
observables. If instead the model fails to satisfy any of these conditions, it is rejected.

By following this procedure, we generate a chain of models that are equivalent to those
produced by typical Markov Chains Monte Carlo (MCMC) techniques. During the sampling
process, each saved model is assigned a likelihood based on how well it agrees with the most
recent observations of the Cosmic Microwave Background (CMB). SpeciĄcally, our reference
datasets include:

• The Planck 2018 temperature and polarization (TT TE EE) data, which also includes
low multipole data (ℓ < 30) [191Ű193].

• The Planck 2018 lensing data, derived from measurements of the power spectrum of
the lensing potential [194].

• The latest CMB B-modes power spectrum likelihood cleaned from the foreground con-
tamination as released by Bicep/Keck Array X Collaboration [9].

To extract a likelihood for each model, starting from these observations we develop an
analytical likelihood based on a multi-dimensional normal distribution:

Like ∝ exp


−1

2
(x − µ)T Σ−1 (x − µ)



(2.19)

where µ and Σ represent the mean values and covariance matrix of parameters obtained by a
joint analysis of the aforementioned experiments. We validate our methodology by verifying
that both our analytical likelihood and sampler produce consistent results compared to those
obtained by using the original experiment likelihoods and publicly available samplers. We
refer to appendix B for further details. Consequently, we can obtain informative posterior
distributions for the most relevant parameters to be inferred from observations.

7Note that this step is not mandatory, as we could include all models and assign them a likelihood even if
they fall outside these ranges. In practice, models following outside these ranges would have a log likelihood
of negative infinity and would not contribute to the observational constraints, resulting in identical results.
However, when considering large prior volumes, multifield models can exhibit unpredictable outcomes and
we may have several models falling outside this range. Therefore, to prevent the evaluation of the likelihood
for models known to be disfavored by data, (which would simply slow down the sampling process without
changing anything), we introduce this precautionary measure.
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3 A case study

In this section, we provide a working example of the potentiality of our method. As a
case study, we analyze a speciĄc model detailed in subsection 3.1. In subsection 3.2 we
demonstrate how our algorithm enables us to track the entire Ąelds dynamics and how we
can access all the corresponding observables. Finally, in subsection 3.3, we explore the
parameter space of the model by sampling over its free parameters and the initial conditions
of the Ąelds, deriving observational constraints.

3.1 Model

We focus on the simple case where two scalar Ąelds ϕK = (ψ, χ) are coupled through the
Ąeld metric

GIJ = diag¶1, e2b(ψ,χ)♢, (3.1)

and the action reads as

S =
∫

d4x
√−g



M2
Pl

2
R− 1

2
GIJgµν∂µϕI∂νϕJ − V (ϕK)

]

, (3.2)

where I, J ∈ ¶1, 2♢ and g is the determinant of the metric gµν . These models have been
recently studied in ref. [124] where it was argued that a non-trivial Ąeld metric could induce
signiĄcant changes in the effective mass of the entropy perturbations, opening up a rich
phenomenology that we can test for further validations. For the aim of this section, it is
worth noting that the Ąelds dynamics is dictated by equation (2.2) which eventually simpliĄes
to [124]

ψ̈ + 3Hψ̇ + V,ψ = e2b(ψ,χ)b,ψχ̇
2, (3.3)

χ̈+ (3H + 2b,ψψ̇ + b,χχ̇)χ̇ = −e−2b(ψ,χ)V,χ. (3.4)

By performing a rotation in Ąeld space, the evolution of the vector along the homogeneous
trajectory (the so-called adiabatic Ąeld σ) is given by

σ̈ + 3Hσ̇ + V,σ = 0, (3.5)

where σ̇ =
√

2Lkin. Instead, the entropy part of the equations of motion is given by the rate
of change of the angle between the initial Ąeld basis (ϕ, χ) and the adiabatic/entropy one
(σ, s):

θ̇ = −V,s
σ̇

− b,ψσ̇ sin θ. (3.6)

To consistently discuss the perturbations of a given cosmological conĄguration, we take
into account the perturbations of the metric Φ = Φ(t,x) in the longitudinal gauge [195]

ds2 = −(1 + 2Φ)dt2 + a2(t)(1 − 2Φ)dx2, (3.7)

and the corresponding Ćuctuations of the sources such as ψ = ψ(t) + δψk(t,x) and χ =
χ(t) + δχk(t,x). By considering equation (3.7) and the perturbed Einstein equations, we
write the comoving curvature perturbation equation (2.6) in terms of the metric Ćuctuations
as [124]

ζ ≡ Φ − H

Ḣ
(Φ̇ +HΦ) = Φ +H



ψ̇δψ + e2bχ̇δχ

ψ̇2 + e2bχ̇2



, (3.8)
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and its evolution as

ζ̇ =
k2

a2

H

Ḣ
Φ − 2

V,s
σ̇

S, (3.9)

where S = H
σ̇ δs is the so-called isocurvature perturbation, a gauge-invariant quantity. Note

that from equation (2.16) it follows that E2 = δs. Clearly, the quantity labeled as adiabatic
perturbation equation (3.9) on super-Hubble scales (i.e. k2/a2 → 0) is solely fed by the
entropy perturbation δs, namely by the orthogonal Ąeld to the background trajectory in
Ąeld space. Indeed, even if the perturbations in the entropy Ąeld evolve independently from
the perturbation in the adiabatic Ąeld, the large-scale entropy perturbations do impact the
evolution of the adiabatic one when the value of the potential curvature is non-zero, i.e.
η,σs ̸= 0. Furthermore, their coupling (encoded in the term V,s) does not vanish even when
a Ćat Ąeld metric is considered. In other words, θ̇ ≡ 0. For this model, the time-dependent
dimensionless functions A and B in the transfer function, equation (2.17) are [124]

A = −2η,σs + 2
√

2ϵb,ψ sin3 θ − 2
√

2ϵb,χe
−b sin2 θ cos θ,

B = −η,ss + η,σσ − 2ϵ+
√

2ϵb,ψ cos θ(1 + 2 sin2 θ) +
√

2ϵb,χe
−b sin θ(2 sin2 θ − 1)

+
2

3
ϵb2
,ψ +

2

3
ϵb,ψψ,

(3.10)

where η,MN = V,MN/3H2 describes the curvature of the potential in terms of the entropy
and adiabatic Ąelds.

These functions encode the coupling between adiabatic and entropy modes and en-
ter in the expressions for the spectral index and its runnings at the end of inĆation that,
in this general two-Ąeld model, can be derived from equation (2.12), equation (2.13), and
equation (2.18) reading [196]

ns ≃ n∗ − 2 sin Θ(A∗ cos Θ +B∗ sin Θ),

αs ≃ α∗ + 2 cos Θ(A∗ cos Θ +B∗ sin Θ) × (A∗ cos 2Θ +B∗ sin 2Θ),

βs ≃ β∗ − 2 cos Θ(A∗ cos Θ +B∗ sin Θ) × (B∗ cos 2Θ −A∗ sin 2Θ)

× (A∗ + 2A∗ cos 2Θ +B∗ sin 2Θ).

(3.11)

From the expressions above we see that constraints on the spectral parameters can be trans-
lated into constraints on the geometry of the Ąeld metric, namely the curved trajectory in
Ąeld space between Hubble radius exit and the end of inĆation.

3.2 Predictions

To be concrete and maintain control over the results, we test all the features of our method
by analyzing a simple case where the coupling between the two Ąelds is given by

b(ψ, χ) = −c ψχ
M2

Pl

, (3.12)

with a self-coupling potential of the form

V =
1

2
m2
ψψ

2 +
1

2
m2
χχ

2 + g2ψ2χ2, (3.13)

where mψ and mχ are the mass terms of the Ąelds and g the coupling constant.
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Figure 1. Field trajectories (as well as their projections in different 2D-planes in grey) as functions
of the e-folds of expansions between the beginning of the integration and the end of inĆation. The
integration process begins at N = 0 with randomly selected initial conditions, represented by a
black star-like dot in the Ągure. The end of inĆation (marked by another black star-like dot) is
determined using the method explained in subsection 2.2. The color-bar shows the value of the
Hubble parameter along the Ąeld trajectories. For all trajectories, the modelŠs free parameters are
Ąxed to: mψ = 1.58 × 10−6, mχ = 3.86 × 10−6, c = −0.06, and g = 2 × 10−8.

Once the Ąeld metric and the self-coupling potential are speciĄed, the formalism devel-
oped in the previous section can be applied and the multiĄeld dynamics numerically solved
by means of the integration scheme discussed in subsection 2.2. In particular, the integration
of the equations of motion, and therefore the trajectory of the Ąelds, will depend on the
modelŠs free parameters (i.e., mψ, mχ, g and c) and the initial conditions of the Ąelds (i.e.,
ψini, ψ̇ini, χini and χ̇ini). In this subsection, we analyze separately the contribution of these
parameters to both cosmological observables and the inĆationary dynamics, in order to have
a comprehensive understanding of their effect and to better interpret the results of the full
Monte Carlo analysis performed in the subsequent subsection.

We start by examining the robustness of the outcomes of the model when subjected to
variations in the initial conditions of the Ąelds. SpeciĄcally, we evaluate how the trajectories
in the Ąeld space change by randomly varying the starting points ψini and χini, while keeping
the modelŠs free parameters Ąxed and setting ψ̇ini = χ̇ini ≃ 0. The results are depicted
in Ągure 1. Considering different initial conditions for the Ąelds can result in a period
of inĆation that is more or less long, while essentially keeping the modelŠs predictions for
cosmological observables unchanged. Therefore, we do not expect physical observables to
drastically depend on the initial conditions of the Ąelds.

On the other hand, the variation of the free parameters holds greater signiĄcance. For
instance, the effects of c which are encoded in the curved Ąeld manifold play a substantial role
in what concerns the interplay between isocurvature and curvature modes between the horizon
crossing and the end of inĆation. In particular, when c is gradually negatively reduced, the χ
Ąeld velocity remains relatively constant and it becomes stuck for a signiĄcant amount of time
until it reintegrates into the dynamics when the ψ Ąeld reaches the minimum of the potential,
see also Ągure 2. This effect is translated into the amount of isocurvature mode feeding the
curvature one. On the other hand, if c is progressively incremented will lead to a single Ąeld
scenario as the χ Ąeld drops immediately.8 In other words, the combination of curvature and

8Interestingly, models that exhibit this peculiar behavior, where a scalar field immediately drops and
undergoes a phase of fast oscillations, have been the subject of study as they generate features in primordial
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Figure 2. Effects of the Ąeld metric parameter c on the Ąeld evolution in the ψ vs χ plane. The
Ąeld values have been normalized to their initial conditions, so the starting point of the trajectories is
represented by the coordinates (1, 1), while the coordinates (0, 0) ideally represent the end of inĆation.
The red (blue) curves correspond to negative (positive) values of c as indicated in the legends, while
the green curve corresponds to a Ćat Ąled metric GIJ = diag¶1, 1♢, (i.e., c = 0). The other modelŠs
free parameters are Ąxed to: mψ = 1.58 × 10−6, mχ = 3.86 × 10−6, and g = 2 × 10−8.

isocurvature perturbations may lack correlation. However, if the path in Ąeld space exhibits
curvature from the Hubble exit until the end of inĆation, it can introduce an indeĄnite level
of correlation between them impacting the ultimate predictions and potentially causing their
growth or reduction, see Ągure 3.

Shifting our focus to the effects of the masses, from Ągure 3 we can appreciate how
changes in mχ and mψ lead to increase or decrease of power in the spectrum of temperatures
anisotropies. This can be explained by making explicit equation (2.8) as

V,ψ ≃ −3ψ̇H, V,χ ≃ −3χ̇e2b(ψ,χ)H, (3.14)

and taking into account a self-coupling potential of the form equation (3.13), one can easily get

V,χχ = 2b,χV,χ − 3e2b(ψ,χ)Ḣ, (3.15)

by means of dH
dχ = Ḣ

χ̇ . Finally, we achieve the following relation

m2
χ = 2b,χV,χ +

3

2
σ̇2e2b(ψ,χ) − 2g2ψ2. (3.16)

Therefore, on the slow-roll trajectory deĄned by equation (3.15) there is a correlation between
the mass mχ and the coupling b,χ. Such a correlation does not exist for mψ, for which we
obtain

m2
ψ =

3

2
σ̇2 − 2g2χ2, (3.17)

density perturbations that directly record the scale factor evolution a(t) while serving as “standard clocks” in
the primordial Universe, see e.g., refs. [197–200].
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Figure 3. Effects on the CMB angular power spectrum resulting from variations in the modelŠs
parameters as indicated in the different panels/legends of the Ągure. The baseline model (black line)
corresponds to the following parameter combination: mψ = 1.58×10−6, mχ = 3.86×10−6, c = −0.06,
and g = 2 × 10−8.

stating that an increase in mψ leads to a rapid change in the Hubble rate (σ̇2 ≃ −Ḣ) which
translates into a shorter period of inĆation and hence a reduction of the amplitude of the
power spectrum as seen in Ągure 3. The same Ągure shows that increasing either c and mχ

results in a larger amplitude of the initial power spectrum, as expected from equation (3.16).

3.3 Monte Carlo analysis and parameter constraints

We use the sampling algorithm detailed in subsection 2.3 to explore the parameter space of our
multiĄeld model. The sampling involves 4 free parameters (mψ, mχ, g, and c) and the initial
conditions of the Ąelds (ψini, χini), which determine the Ąeld trajectory during inĆation, as
pointed out in subsection 3.2. To ensure that we are able to explore a sufficiently large volume
of the parameter space, we randomly vary the model parameters and initial conditions in the
large uniform priors listed in table 1. This enables us to obtain a number of combinations of
parameters and initial conditions as large as the number of steps in the Monte Carlo analysis.
For each step, we use the integration algorithm described in subsection 2.2 and compute the
full evolution of the Ąelds as well as any observable quantities of the model, including all the
primordial scalar and tensor spectrum parameters such as As, ns, αs, βs and r. We test the
agreement of each combination of parameter and initial conditions against data by using our
likelihood equation (2.19) built on the Planck-2018 [191Ű194] and BK18 [9] observations of
the cosmic microwave background temperature and polarization anisotropies.

Following this methodology, we perform a full Monte Carlo analysis, repeating the
process for ≳ 5 × 106 steps and collecting about 2 × 104 sampled models, each of one with
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Initial Conditions Constraints Unifrom Prior Ranges

ψini/Mp − ψini/Mp ∈ [14 , 17]

χini/Mp − χini/Mp ∈ [10 , 4]

ModelŠs Parameters Constraints Unifrom Prior Ranges

mψ < 2.30 · 10−6 log10(mψ) ∈ [−8 , −4]

mχ < 1.01 · 10−5 log10(mχ) ∈ [−8 , −4]

c < −0.0211 c ∈ [−1 , 1]

g < 9.72 · 10−7 log10(g) ∈ [−8 , −5]

Primordial spectra Constraints

As ( 2.109 ± 0.033 ) · 10−9

ns 0.9621+0.0053
−0.0047

αs


−0.74+0.37
−0.32



× 10−3

βs


−0.103+0.088
−0.0040



× 10−3

r < 0.04

Entropy Transfer Constraints

Θ < −0.686

A⋆ > −1.71

B⋆ > −0.341

Table 1. External priors and observational constraints at 1σ (68% C.L.) or upper bounds are at 2σ
(95% C.L.) on parameters.

its own likelihood. In this way, we derive informative posterior distributions for all the
parameters involved in the sampling, as well as for any derived quantities of interest, including
those associated with entropy transfer on super-horizon scales. The results are summarized
in table 1, while Ągure 4 depicts the distribution of the sampled models in the 4D parameter
space, represented by a box with dimensions corresponding to the size of the prior volume.
Figure 5 shows instead the 68% and 95% CL contour plots for all the quantities of interest
in the model.

The Ąrst important test we can perform is to study the constraints on the inĆation-
ary observables, such as the amplitude of the primordial scalar spectrum As, the spectral
index ns, its runnings αs and βs, and the amplitude of primordial tensor modes r. Notice
that when dealing with multiĄeld inĆation, Ąxing a model does not necessarily establish
consistency relations between these parameters as it usually happens in single-Ąeld inĆation.
Consequently, the speciĄc values of these observables depend on the interplay between the
free parameters of the model and the initial conditions of the Ąelds. Additionally, it is impor-
tant to account for corrections that arise due to the super-horizon evolution of adiabatic and
isocurvature perturbations, as discussed in previous sections. Regarding the amplitude of
the scalar spectrum, we obtain As = ( 2.109 ± 0.033 ) · 10−9 at 68% CL, in perfect agreement
with the model-independent analysis performed with the full Planck and BK18 likelihoods
(see also appendix B). Similarly, for the spectral index we get ns = 0.9621+0.0053

−0.0047 at 68%
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Figure 4. How the models distribute in the 4-dimensional parameter space. The box has the size
of the prior volume.

CL, while the for the amplitude of primordial gravitational waves we obtain an upped bound
r < 0.04 at 95% CL. All these results are consistent with the most recent joint analyses of
Planck and BK18 data, as well. Regarding the higher-order runnings of the primordial scalar

spectrum, we obtain at 68 % CL αs =


−0.74+0.37
−0.32



× 10−3 and βs =


−0.103+0.088
−0.004



× 10−3,

respectively. Therefore, assuming this particular multiĄeld model, smaller negative values
are favored for both the running and the running of the running, although both of them
remain consistent with null values at 95% CL.

One signiĄcant aspect of our approach is the ability to obtain observational constraints
on the model parameters. For instance, within this particular model, we are able to place
a 95% CL upper bound on the mass values of the Ąelds that (in Planck units) read mψ <
2.30 · 10−6 and mχ < 1.01 · 10−5, respectively. Similarly, for the coupling parameter g we
obtain g < 9.72 · 10−7 at 95% CL, while for the parameter c controlling the curvature of
the Ąled space we obtain c < −0.0211 always at 95% CL. It is worth noting that these
upper bounds assume values signiĄcantly far from the limits of the priors adopted for these
parameters. In this regard, we have veriĄed that the priors chosen for parameter exploration
are sufficiently large to provide uninformative ranges, without introducing any unwanted
bias in the parameter constraints. In order to study the correlation between the different
parameters, we can refer to Ągure 3 for the effects on the angular spectra, Ągure 4 for the
correlation in the 4-D parameter space of the model, and Ągure 5 for the contour plot with
all sampled and derived parameters. From Ągure 3, one would expect a correlation between
the effects of the parameters g and c on the spectrum of CMB temperature anisotropies
as considering more negative values of c leads to a power ampliĄcation, while increasing g
reduces the amplitude of the spectrum. Therefore, we expect that more negative values of
c can be allowed only for larger values of g, and this is clearly conĄrmed by both Ągure 4
and Ągure 5. Notice also that this model strongly prefers highly negative values of c. The
reason behind this preference is that when c becomes positive, the curvature of the Ąeld space
GIJ(ϕK) is exponentially suppressed, and one of the two Ąelds essentially becomes a spectator
Ąeld. As a result, the model reduces to a single-Ąeld model with a quadratic potential, which
is well-known to predict a signiĄcantly large amount of primordial gravitational waves, higher
than the current observational limit. Therefore, the parameter space with positive values of
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Figure 5. Marginalized 2D and 1D posteriors distributions for all the modelŠs parameters and the
quantities of interests in this study.

c is severely constrained by the B-mode polarization measurements by BK18, in combination
with the Planck temperature and polarization measurements.

Finally, our algorithm allows us to derive constraints on any relevant physical quantities
in the model, including parameters and functions that govern the transfer of entropy between
adiabatic and isocurvature perturbations. For example, we derive a 95% CL upper bound
on the angle Θ < −0.686 appearing in equation (3.11) that weights the corrections acquired
by the inĆationary parameters between the Hubble exit and the end of inĆation. Similarly,
we can constrain the time-dependent functions A(t) and B(t) involved in the transfer matrix
formalism used to account for the correlation between curvature and isocurvature modes,
as well as to estimate the transfer of entropy from the latter to the former during the time
from soon after the Hubble exit to the end of inĆation. We evaluate these functions at the
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Hubble exit, Ąnding at 95%CL the following limits A⋆ > −1.71 and B⋆ > −0.341. Our
results conĄrm that in multi-Ąeld models with non-Ćat Ąeld metric, the interplay between
isocurvature and adiabatic modes plays a crucial role in the Ąnal observable predictions, as
already argued in ref. [124].

4 Conclusion

Embedding inĆation within a more fundamental framework still remains an open problem,
and numerous models and mechanisms have been proposed. The simplest dynamical mod-
els of inĆation involve a single scalar Ąeld minimally coupled to gravity whose evolution is
governed by a potential that should be enough Ćat to induce a phase of slow-roll evolution.
However, in certain low-energy effective Ąeld theories inspired by string theory, the scalar Ąeld
sector often comprises multiple scalar Ąelds with non-standard kinetic terms or dynamical
couplings. When inĆation is driven by multiple scalar Ąelds with non-standard kinetic terms,
the interplay between adiabatic perturbations and isocurvature modes becomes signiĄcant,
inĆuencing the observable predictions and giving rise to a rich phenomenology that can be
tested using current cosmological and astrophysical data. In principle, precise measurements
of the cosmic microwave background radiation can be used, providing stringent constraints
on the abundance of both adiabatic and isocurvature modes and offering a valuable oppor-
tunity for experimental validation of these models/theories. However, in practice, obtaining
precise predictions from multiĄeld inĆation is not always easy as observational quantities
often depend on various factors such as the initial conditions of the Ąelds and the speciĄc
model assumed. Different trajectories in Ąeld space can lead to different results, changing
the amplitude of scalar and tensor primordial perturbations. For this reason, most tools
employed in cosmological data analyses, such as typical Boltzmann integrator codes and
samplers, are either unaware of the physics of inĆation or assume single-Ąeld potentials. As
a result, constraining the multiĄeld landscape with current CMB data represents an ongoing
challenge.

In this work, we take a Ąrst step to bridge this gap and introduce an algorithm speciĄ-
cally designed to investigate generic multiĄeld models of inĆation where a number of scalar
Ąelds ϕK are minimally coupled to gravity and live in a Ąeld space with a non-trivial metric
GIJ(ϕK). In section 2, we describe both our theoretical parameterization and our numerical
method. In particular, after specifying the initial conditions for the Ąelds ϕK , their velocities,
the metric GIJ(ϕK) of the Ąeld space, and the self-coupling potential, our algorithm is able to
reconstruct the dynamics of the Ąelds throughout the entire inĆationary period precisely de-
termining the end of inĆation and performing several consistency tests to ensure the stability
of the model. This comprehensive analysis includes more intricate scenarios where distinct
Ąeld dynamics govern various stages of expansion at different times, such as double inĆation
or punctuated inĆation. An illustrative example can be found in appendix A. By numerically
solving the full Ąeld dynamics, we can calculate precise predictions for observable quantities
in the slow-roll limit, such as the spectrum of scalar perturbations, primordial gravitational
waves, and isocurvature modes. We can also track the super-horizon dynamics of adiabatic
and isocurvature modes, determining the transfer of entropy to scalar modes after horizon
crossing using the transfer matrix formalism described in subsection 2.1. Once the integration
process successfully concludes, we can access all the observable predictions of the model and
set the initial conditions to compute the subsequent cosmology. This is done by interfacing
our algorithm with standard Boltzmann integrator codes such as CAMB or CLASS that allow
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us to directly translate the modelŠs predictions in terms of the cosmic microwave background
anisotropies and polarization angular power spectra.

Based on this algorithm, we also introduce a novel sampler which is speciĄcally designed
to explore a sufficiently large volume of the parameter space of a generic multiĄeld models
and identify a sub-region where the modelŠs predictions are in agreement with observations.
This allows us to efficiently sample over the initial conditions of the Ąelds and the free
parameters of the model, enabling Monte Carlo analysis to compare theoretical predictions
with observations. In this work, we make use of the most recent CMB data provided by the
Planck collaboration, as well as the latest B-modes power spectrum likelihood released by the
Bicep/Keck Array X Collaboration and extract a likelihood for each sampled combinations
of parameters. To do so, we develop an analytical likelihood based on these observations
that has been extensively tested and proven to reproduce the results obtained from the real
likelihoods of different experiments for inĆationary parameters, see appendix B.

In section 3, we provide a detailed illustration of our approach by analyzing a speciĄc
case study model where two scalar Ąelds are coupled through the Ąeld metric by equa-
tion (3.12), with a self-coupling potential given by equation (3.13). Focusing on this model,
in subsection 3.2 we use our integration scheme to investigate how the observable predic-
tions change with its parameters and initial conditions. We refer to Ągure 1 and Ągure 2
for the impact of the Ąeld trajectories and the coupling function, respectively. Instead Ąg-
ure 3 illustrates the impact of the different parameters on the CMB angular power spectra
of temperature anisotropies. Finally, in subsection 3.3, we employ our sampler to perform a
comprehensive Monte Carlo analysis, deriving observational constraints on the free parame-
ters. The results of our analysis are summarized in table 1, while Ągure 4 and Ągure 5 show
the distribution of sampled models in the parameter space and the correlation among the
different parameters, respectively. We are able to derive compelling and precise constraints
on both the modelŠs parameters and the inĆationary observables such as the primordial power
spectra of scalar and tensor perturbations. In addition, we can place constraints on the in-
terplay between curvature and isocurvature modes by accurately accounting for the entropy
transfer from isocurvature to curvature perturbations on superhorizon scales. For sake of
completeness, in appendix A, we also discuss the limit where the model reduces to the case
of a double quadratic potential with a canonical kinetic term, discussing our ability to recover
results already documented in the literature.

Our work provides a robust framework for exploring multiĄeld inĆation and opens up
exciting opportunities for future research focused on the rich phenomenology expected in
both standard and non-standard multiĄeld models of inĆation and gravity.
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A Double quadratic potential & double inflation

In this appendix, we make use of our code to brieĆy examine a simpliĄed two-Ąeld model
compared to the one analyzed in section 3. SpeciĄcally, we investigate the case of a double-
Ąeld quadratic potential with a canonical kinetic term

V =
1

2
m2
ψψ

2 +
1

2
m2
χχ

2 (A.1)

which falls within the parameterization adopted in section 3 once we Ąx c = 0 and g = 0.

Notice that this model has been already discussed in the literature and a comprehensive
systematic review of its properties is beyond the goal of our work. That being said, this
appendix serves a dual purpose: on one side, we aim to use this simpliĄed case as a safety
check to demonstrate our ability to recover many of the results already documented in the
literature. On the other hand, we take this opportunity to provide a working example of
some features of our algorithm, such as its ability to correctly identify the end of inĆation
and effectively handle scenarios of double inĆation where two stages of expansions are driven
by distinct Ąelds at distinct times.9

Regarding the topic of interest for our discussion, an analysis similar to the one we carry
on here is given in ref. [201] where, using a parameterization for the inĆationary dynamics very
close to the one we have developed in this paper, the authors point out the characteristics of
this two-Ąeld model, deriving predictions for observables such as the amplitude of primordial
spectra. As highlighted in section III.C of ref. [201], a distinctive feature of this potential
is the prediction of a tensor-to-scalar-ratio r ≳ 0.13, regardless of the initial conditions
for the Ąelds and the values of the mass ratio. Given that a similar value for the tensor
amplitude does not appear to be in agreement with the most recent measurements of CMB
B-mode polarization released by the Keck Array collaboration, we do not perform a data
analysis (which would be inconclusive given the modelŠs inability to reconcile with the latest
observations). However, we perform a model sampling as a cross-validation of the predictions
for r. As seen in Ągure 6, collecting approximately 104 models where the amplitude of the
scalar spectrum As and its tilt ns fall within ranges consistent with our observational data, we
Ąnd that the tensor amplitude r remains consistently above the 95% limit resulting from the
joint Planck+BK18 analysis. Furthermore, the value of r predicted by this potential remains
largely unchanged both with respect to the mass ratio (across multiple orders of magnitude)
and with respect to the initial conditions (which are randomly chosen from model to model)
as well as in excellent agreement with Ągure 8 of ref. [201].

A closer analysis of the Ągure reveals the presence of a minor dispersion of patterns that
deviate from the degeneration line between the mass ratio and the value of r. A detailed anal-
ysis of these models has revealed that this small dispersion is due to double inĆation. While
theoretically investigated, in ref. [201] these models were not given thorough consideration
and the inĆationary dynamics were computed by treating double inĆation as if it consists
of only one inĆationary phase. However, as explained in subsection 2.2, our algorithm has
been designed to accurately identify all inĆationary phases and comprehensively reconstruct
their dynamics. As a result, we can provide precise predictions for scenarios involving double
inĆation, as well.

9It is worth noting that these scenarios are more commonly realized in models of double quadratic potential
with canonical kinetic terms than in the models detailed in section 3.
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Figure 6. Predictions for the tensor amplitude r in terms of the mass ratio log10(mχ/mψ) for ∼ 104

models where the amplitude of the scalar spectrum As and its tilt ns fall within ranges consistent
with our observational data.

To put it more quantitatively and clarify our treatment of double inĆation, we focus on
one speciĄc model among those depicted in Ągure 6. Namely, we consider the one which shows
the smallest tensor amplitude (r ∼ 0.05, yet outside the Planck-BK18 range) and provide
full details of the dynamics of the Ąeld and the background evolution in Ągure 7. As evident
from the top panel of the Ągure, in this model, the parameter ϵ reaches the critical value
ϵ = 1 for the Ąrst time after about 55 e-folds (grey dashed line). During this initial phase, the
expansion of the Universe is driven by the Ąeld ψ, whose evolution is depicted in the second
panel of the same Ągure. As one can observe, when ϵ = 1, the dynamics of ψ is mostly
completed, while the second Ąeld χ (whose evolution is shown in the third panel) remains
mostly inactive during this phase. Once the inĆationary stage guided by ψ terminates, our
algorithm monitors the dynamics of the Ąelds and, since χ is still very active, the integration
of the equation of motion continues until the second Ąeld also completes its dynamics. This
allows us to identify a second inĆationary phase, this time guided by χ. In both of these
stages, the background dynamics, represented by the evolution of the Hubble parameter H
(bottom panel), is accurately computed together with all observational predictions, including
the tensor amplitude.

B Sampling and likelihood validation

In this appendix, we provide a step by step explanation of the methodology used to build
our likelihood based on the joint analysis of B-Modes polarization data from BK18 and the
Planck-2018 measurements of temperature and polarization anisotropies. Most importantly,
we prove that our method/likelihood is able to reproduce the same results obtained by the
most commonly Markov Chain Monte Carlo (MCMC) analyses performed in the literature.
To do this, through all this appendix, we do not consider any explicit inĆationary models,
and remain completely agnostic about the physics of inĆation, as customary in the literature.

1) As a Ąrst step, we consider an extension to the standard cosmological model which
includes three additional parameters: the tensor amplitude r, the running of the
spectral index αs, and the running of the running βs. We refer to this model as
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Figure 7. Evolution of the parameter ϵ (top panel), the scalar Ąelds ψ and χ (second and third
panel, respectively), and the Hubble parameter H (bottom panel) in a model of double inĆation
characterized by two stages of expansion.

ΛCDM+αs+βs+r and perform a full Monte Carlo Markov Chain (MCMC) analy-
sis using the publicly available sampler Cobaya [202], and Boltzmann integrator code
CAMB [173, 174]. Cobaya explores the posterior distributions of the parameter space
using the MCMC sampler developed for CosmoMC[203], which has been speciĄcally
adapted for parameter spaces with a hierarchy of speeds by implementing the Şfast
draggingŤ procedure introduced in ref. [204]. The baseline datasets involved in our
MCMC analysis consist of the Planck 2018 temperature and polarization (TT TE EE)
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Parameter Real likelihoods This work

log(1010AS) 3.049 ± 0.016 3.051 ± 0.015

ns 0.9624 ± 0.0044 0.9621 ± 0.0046

αs 0.002 ± 0.010 0.002 ± 0.010

βs 0.012 ± 0.012 0.013 ± 0.013

r < 0.0354 < 0.0357

Table 2. Results for the ΛCDM+αs+βs+r model obtained using the publicly available sampler
Cobaya [202] in combination with the full Planck 2018 [191Ű194] and BK18 [9] likelihoods (referred
to as ŚReal likelihoodsŠ), and the results for the same model derived using our sampling algorithm in
combination with our analytical likelihood (equation (2.19)) (referred to as ŚThis workŠ).

likelihood, which includes low multipole data (ℓ < 30) [191Ű193], as well as the lensing
likelihood obtained from measurements of the power spectrum of the lensing poten-
tial [194]. Additionally, we include the most recent CMB B-modes power spectrum
likelihood cleaned from foreground contamination, as released by the Bicep/Keck Ar-
ray X Collaboration [9]. The resulting constraints are presented in table 2, and we also
take this opportunity to update the current bounds on this cosmological extension with
the latest data.

2) As a second step, using the results from our MCMC analyses, we construct our analyt-
ical likelihood based on equation (2.19). In particular, we adopt the generalized covari-
ance matrix Σ and the mean values µ of parameters obtained for the ΛCDM+αs+βs+r
model.

3) Finally, we test that our likelihood is able to reproduce the same constraints as real
likelihoods from experiments. This is a crucial step needed to validate the results
obtained when our likelihood is applied to the study of physical models of multiĄeld
inĆation. To prove the equivalence of our method and the MCMC analysis, we perform
a consistency check for the same ΛCDM+αs+βs+r cosmological model. SpeciĄcally,
we perform a new run varying the inĆationary parameters {As, ns, αs, βs} using our
sampling algorithm. In this case, the sampling is performed directly in the parameter
space of inĆationary observables and using the same prior ranges used for the MCMC
analyses. Since sampling on the inĆationary parameters requires signiĄcantly fewer
computational resources, avoiding also some non-physical behaviors that may arise
when exploring non-standard inĆationary models or solving the inĆationary dynamics,
we are able to accumulate ∼ 105 models, each of them evaluated using our analytical
likelihood equation (2.19). In Ągure 8, we directly compare the results obtained using
our approach (labeled as Śthis workŠ) to the results obtained using the real likelihoods
from experiments and the sampler Cobaya (labeled as ŚReal likelihoodsŠ). The two
methods yield the same constraints for all inĆationary parameters, see also table 2.
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Figure 8. Marginalized 2D and 1D posteriors distributions for the ΛCDM+αs+βs+r model obtained
using the publicly available sampler Cobaya [202] in combination with the full Planck 2018 [191Ű194]
and BK18 [9] likelihoods (grey), and our sampling algorithm in combination with our analytical
likelihood (red).
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