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Uncommon building blocks in liquid crystals
R. J. Mandlea,b, C. J. Gibbb and J. L. Hobbsa

aSchool of Physics and Astronomy, University of Leeds, Leeds, UK; bSchool of Chemistry, University of Leeds, Leeds, UK

ABSTRACT
Just as nematic liquid crystals are widespread in display technology, a small number of building 
blocks find widespread use in the design and synthesis of liquid crystalline materials. This review 
explores the intricate relationship between the molecular structure of thermotropic liquid crystals 
(LCs) and their phase behaviour, emphasising the role of specific structural fragments in determin-
ing LC properties. We also detail into the impact of non-conventional building blocks on LC 
properties by comparing families of materials differentiated by only a single structural variation, 
allowing us to probe the extent to which deviations from traditional structures can maintain liquid 
crystallinity. This comprehensive overview not only underscores the importance of specific mole-
cular fragments in LC design but also opens avenues for the innovative use of non-traditional 
building blocks in the development of new LC materials. Just as the ubiquity of 1,4-disubstituted 
benzene rings has its genesis (partly) in the extremely robust and predictable synthesis of such 
systems through cross-coupling chemistry; we consider that, the rapid progress in coupling sp3 

fragments, coupled with the growing availability of suitable building blocks, makes the inclusion of 
said fragments ever more practical and attractive for use in liquid crystalline systems.
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Introduction

Thermotropic liquid crystalline phases are intimately 
related to molecular structure [1] Broadly speaking, the 
structure of thermotropic liquid crystals can be divided 
into four principal sub-groupings as shown in 
Figure 1(a): terminal chain(s) (i), rigid core unit (ii), linking 
units (iii), lateral groups (iv) and terminal groups (v). We 
briefly consider some elementary variations to the nemato-
gen 5CB; increasing the terminal chain leads to an increase 
in melting and clearing points, as well as a smectic A rather 
than nematic mesophase. In this system, extending the core 
unit by addition of a single 1,4-disubstituted benzene leads 
to dramatic increases in both melt and isotropisation 

temperatures (Figure 1(a), compound 1b). Inclusion of 
conjugated linking groups such as esters (compound 1c) 
increases the clearing point, while non-conjugated links 
typically lead to depression (compound 1d); this is 
a consequence of both electronic and steric effects, with 
non-conjugated links (such as methyleneoxy in 
Figure 1(a)) also endowing rather different conformational 
profiles than their conjugated equivalents. Replacement of 
1,4-disubstituted benzene(s) with 1,4-disubstituted 
cyclohexane(s) gives increased clearing points along with 
higher melting points and reduced dielectric anisotropies. 
Although these behaviours for 5CB and its modifications 
can be applied broadly to thermotropic materials, any 
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structural modification must be considered in the context 
of the entire molecular structure. While not shown in 
Figure 1(a), typically lateral fluorination leads to 
a depression of 30–40 K in TNI [9]; it is therefore unsur-
prising that fluorinated 5CB variants are non-mesogenic 
[10–14]. The molecular structures of thermotropic liquid 
crystalline materials is typically constructed from a rather 
limited set of fragments, a point we will now illustrate. We 
constructed a database of materials which are reported as 
exhibiting one or more liquid-crystalline phases. Data were 
taken from two commercial databases (Reaxys, Scifinder). 
After removing duplicate entries, we obtained the most 
common core fragments (Figure 1(b)), lateral/terminal 
groups (Figure 1(c); excluding alkyl/alkoxy groups which 
are ubiquitous, being found in >98% of materials) and 
linking units (Figure 1(d)). The well-known material 5CB 
is constructed from some of the most common fragments; 
two directly bonded 1,4-disubstituted benzene rings, 
a terminal nitrile, and an alkyl chain.

Our primary aim with this database was to use the 
fragments for generative design of new liquid crystal-
line materials [15], but we realised that we could also 
examine this for to find which fragments occur most 
often, and which could be considered unappreciated. 
As shown in Figure 1(a), benzene rings are found in 
the vast majority of thermotropic liquid crystalline 
materials. The prevalence of substituted benzenes 
reflects their utility, and also the typically mild chem-
istry employed (and predictable reactivity) in the con-
struction of complex molecular architectures. Other 
cyclic groups, such as those in Figure 1(a), are equally 
adept at generating mesomorphic states and ever- 
advancing progress in sp2-sp3 and sp3-sp3 cross cou-
plings makes the synthesis of such systems increas-
ingly routine [16–19]. We consider that the increasing 
ease of synthesis of such units, coupled with the 
rapidly growing commercial availability of suitable 
building blocks, makes these increasingly attractive 
for use in liquid crystalline materials. However, are 
these any good? What prior art exists for the use of 
non-conventional building blocks in liquid crystals? 
How far can we deviate from ‘conventional’ building 
blocks and still retain liquid crystallinity? These ques-
tions prompt us to review the use of non-conven-
tional building blocks in thermotropic liquid crystals. 
Throughout this review, we introduce families of 
materials, typically grouped together from multiple 
sources; the grouping is based on materials being 
related by a single structural change (e.g. swapping 
1,4-disubstituted benzene for a disubstituted acety-
lene) so as to enable us to make a meaningful com-
parison between materials.

Variations in terminal-chain length are common-
place and dictate, among other things, the melting 
point and tendency for nematic/smectic phase forma-
tion, as exemplified by the 4-alkyl-4′-cyanobiphenyl 
family shown in Figure 2.

The role of terminal groups is also typically well 
explored, as illustrated by the family of 4-pentylbiphenyl 
materials with various polar termini given in Table 1. 
The ability of the parent of this series (5CB, 1) and other 
nitrile terminated materials to form transient antipar-
allel pairs is well established [35,36]; this affords a higher 
clearing point than would be anticipated based on mole-
cular length alone, as the ‘effective’ molecular length is 
far larger – a point well illustrated by comparing other 
popular terminal groups (e.g. F, 3; NO2, 7). Polar groups 
which further extend the molecular length give large 
increases in clearing point (e.g. cyanoacetylene 8, cya-
nostilbene 9), whereas the corresponding non-polar 
equivalents do not (acetylene 4, stilbene 5). 
Isothiocyanates are generally competent at generating 
mesophases (e.g. 10), while the equivalent isocyanates 
(11) are not. Typically carboxylic acids spontaneously 
dimerise through hydrogen bonding, this effectively 
doubles the molecular length and hence compounds 
such as 12 can have seemingly extremely high melting/ 
clearing points. Conversely, amides (such as 13) typi-
cally do not show liquid crystallinity in calamitic sys-
tems owing to extensive hydrogen bonding between 
N-H and C=O groups on adjacent molecules; curiously, 
N-methylation offers a means to circumvent this [37]. 
Polar ring systems such as N-pyrrole (15) can also be 
utilised as a means to both extend the rigid core and 
introduce additional polarity, leading to impressive 
increases in clearing points. Compact fluorinated ter-
mini (16-20) do not lead to anti-parallel dimerisation in 
the same manner as nitriles and so they typically require 
a larger rigid core unit in order to exhibit liquid crystal-
line phases.

This point is well illustrated by the extended core 
system in Table 2. Here, we see that the terminal fluoro 
substituent is competent at generating liquid crystalline 
phases and generates a modest positive dielectric aniso-
tropy (22), in contrast to compound 3 encountered ear-
lier. Increasing the polarity of the terminal group 
generally increases dielectric anisotropy, however as the 
physical dimensions of the unit increase and the mole-
cular shape deviates from rod-like there is a tendency to 
depress clearing points significantly (e.g. 30). Attention 
must be paid to the geometry of the polar unit, for 
example the N(CH3)(CF3) group (31) has a relatively 
low dielectric anisotropy as the dipole associated with 
the N-CF3 group is far off axis. Further to this, the 
geometry of the gem difluorocyclopropylcarboxylate 
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terminal group (32) is such that the resulting material 
yields a negative dielectric anisotropy [49]. 

Next, we consider a set of materials which derive 
from 8CB in which the alkyl-bearing benzene ring is 
replaced with various other ring systems (Table 3). 
Replacement of one benzene ring with pyridine (34) or 
pyrimidine (35) yields marginally higher clearing 
points, along with modest increases in dielectric aniso-
tropy [50–52]. Conversely, replacement of the same 
benzene ring with thiophene (36) depresses the meso-
morphic state(s) of 8CB due to its non-linear exit vec-
tors. Similarly, fluorene (37) is somewhat non-linear, 
however the increased aspect ratio offsets the unfavour-
able geometric constraints of this unit and results in 
a large increase in the clearing point. The non-linearity 
of thiophene can be compensated for through use of 

5,6-dihydro-4H-cyclopenta[b]thiophene [64–66] or 
thieno[3,2-b]thiophene [67]. 

The use of 1,3-dioxanes (39) is relatively common-
place in liquid crystals; the equivalent 1,2,3-dioxaboro-
lanes (38), 1,3-thiopyrans (40), and 1,3-dithiane (41) are 
much less common and typically present with fairly 
significant depression of clearing points. The 1,2,3-diox-
aborolanes are conveniently prepared from the corre-
sponding boronic acid and diol and are generally 
competent at generating mesophases [55]. Liquid crys-
talline materials containing trans 1,4-cyclohexane (42) 
are commonplace, and when this unit is introduced in 
place of a 1,4-benzene ring typically there is a modest 
increase in melting and clearing point. This effect is 
even more pronounced with bicyclo[2.2.2]octane (43), 
itself relatively commonplace in liquid crystals. Other 

Figure 1. (Colour online) (a) subdivisions of liquid crystalline structure used in this work: (i) terminal chain; (ii) core-unit; (iii) linking 
unit; (iv) lateral group; (v) terminal group. Some more common structural variations of 5CB are given, along with their transition 
temperatures (°C): 1a [2]; 1b [3]; 1c [4]; 1d [5]; 1e [6]; 1f [7]; 1g [8]. Common fragments used in the construction of thermotropic LCs: 
ring/cyclic fragments (b), lateral/terminal functionality (c) and linking units (d).
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polycyclic alkanes are essentially absent save for bicyclo 
[1.1.1]pentane (BCP, 45), with a few bicyclo[3.1.0]hex-
anes (44) [62], bicyclo[3.3.0]octanes [68], bicyclo[2.2.1] 

heptanes [69], tricycle[4.4.0.03.8]decane [70]. The bicy-
clo[1.1.1]pentane unit is so compact that the direct 
benzene-for-BCP swap generally gives non-mesogenic 

Figure 2. (Colour online) Transition temperatures (°C) of the first few members of the 4-alkyl-4’-cyanobiphenyl series. Hashed areas 
correspond to those below the melting point (monotropic regions).

Table 1. Transition temperatures (T,°C) of 4-pentylbiphenyl derivatives with various polar groups in the 4’ position. #Compound is 
reported to be ‘photochemical very unstable’ [25]. $virtual transition temperature extrapolated from mixtures. ##SmE.

No. R = TMelt TSmA-N TN-Iso

1 5CB 22.5 – 35.0
2 [20] 34 – 30
3 [11] 40.6 – –
4 [21] 81.0 – –
5 [21] 107
6 [21,22] 21.5 – 23.5
7 [23] 46 – –

8 [24] 51 – 120.2
9 [24,25] 80 99.1 147.1#

10 [21,26,27] 53 74.5##

11 [21] 132 – –
12 [28] 177 243 269

13 [29] 231

14 [30] 80 – –

15 [31] 200 213 –

16 [32] 67 – –

17 [33] 107 – −30$

18 [33] 31 – −80$

19 [33] 13 −40$

20 [34] 25 – –
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materials owing to the significant reduction in molecu-
lar length. However, BCP is useful for extending the 
rigid core unit resulting in a significant increase in 
transition temperatures, demonstrated by com-
pound 46.

In fact, materials whose rigid units are entirely of 
BCP units – so-called [n]staffanes – can exhibit 
liquid crystalline phases (Table 4) [71]. This is due 
to compact nature of the BCP unit, a minimum of 
three rings is required to exhibit liquid crystallinity, 

Table 2. Transition temperatures (°C) of trans trans 1-(4-propylcyclohexyl)cyclohexyl)benzenes with various polar groups in the 
4-position. n/r not reported.

No. X = TMelt TSmB-N TN-Iso Δε Δn

21 [38,39] 62 108 177.1 n/r n/r
22 [40,41] 90 – 158.3 3.0 0.094
23 [40,42] 52 59 173.6 5.2 0.086

24 [40,43] 39 70 154.7 6.9 0.087

25 [44] 82 – 133 7.5 0.100

26 [33] 51 – 109.5 8.6 0.100

27 [40,45] 119 152 168.6 6.5 0.088

28 [40,46] 178 – – 3.9 0.074

29 [38,40] 133 – – 9.5 0.091

30 [40,47] 121 – – 11.6 0.093

31 [48] <20 173 – 5.9 0.091

32 [49] 68.2 176.6 – −1.58 n/r

Table 3. Transition temperatures (T,°C) of analogues of 4-octyl-4′-cyanobiphenyl incorporating various 1,4-disubstituted benzene 
isosteres.

No. χ = TMelt TSmA-N TN-Iso

33 8CB 21.5 33.5 40.5

34 [50,51] 39.5 – 43.0

35 [50,52] 66 47 –

36 [53] 49.9 20.8 22.2

37 [54] 114.5 117.9 193.9

38 [55] 103 – 132.7

39 [56,57] 60 – 51

40 [56,58,59] 70 – 26

41 [56] 93 – –

42 [60] 35 54.7

43 [61] 52 – 90

44 [62] 34.4 – 42.2

45 [63] 40 – –

46 [63] 97.2 108.5 120.5
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with the resulting materials various exhibiting 
nematic and highly ordered smectic phases. Further 
examples of BCP containing liquid crystals are 
known (for example see [63,72,73])

We now consider further ring variations in a series of 
4’-cyanobiphenyl 4-pentylcarboxylates (53-66, Table 5). 
Again, compared to the parent compound the swap of 
the 1,4-disubstituted benzene ring for trans 1,4-cyclo-
hexane or bicyclo[2.2.2]octane yields the expected 
changes in mesomorphism. The trans 1,3-dioxane 
gives a slight reduction in melting and clearing point 
relative to the parent system; when the dioxane is aug-
mented with either a 5-methyl (59) or 5-cyano (60) 
group significant depressions in the melting and clear-

ing points are observed. The trans 1,3-cyclopentane (61) 
exhibits significantly lower transition temperatures than 
the equivalent cyclohexane due to its non-linearity and 
non-planarity. Contrast this with the aromatic thio-
phene derivative (62) which, although non-linear is 
planar, and while this has somewhat reduced transition 
temperatures than the parent. However, this change 
effect is less pronounced than seen earlier for compound 
36 (Table 3) owing to the increased molecular length of 
the present compound. Although radically different in 
structure to the present thiophene materials, other 
liquid crystalline materials with chalcogenophenes bear-
ing a chalogen are known. For example, furans are 
ubiquitous and so are beyond the scope of this discourse 

Table 4. Transition temperatures (°C) and phase assignments of [n]-staffanes [71]. $SmG phase. £SmB phase. #decomposes.

No. R = n = TMelt TSmX-N TN-Iso

47 [71] SC(=O)CH3 2 99 – –
48 [71] SC(=O)CH3 3 137 167$ 198
49 [71] SC(=O)CH3 4 107 277 >280#

50 [71] SC4H9 2 8 – –
51 [71] SC4H9 3 54.5 95£ –
52 [71] SC4H9 4 81 233 –

Table 5. Transition temperatures (T/°C) for 4′-cyano[1,1′-biphenyl]4-yl benzoates/carboxylates including various ring systems with 
a pentyl terminal chain; #chiral nematic phase.

No. χ = TMelt TSmA-N TN-Iso

53 [74] 109.0 – 237.5

55 [75] 85.0 – 240.8

56 [76] 143.0 – 282.5

57 [77] 42.5 63.0 76.0
58 [78] 113 – 204

59 [79] 106 – 128

60 [80] 130 – 74

61 [81] 36.9 71.4 80.8

62 [82] 84 – 190

63 [83] 104 – 218

64 [83] 64 – 165

65 [84] 66.7 – 167.9#

66 [85] 87 162 178
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[86–88]. A handful of liquid crystalline 2,5-seleno-
phenes are known [89,90], which is impressive as the 
olfactory challenges of working with low molecular 
weight organoselenium compounds are well appreciated 
[91]. Despite the relentlessly foul nature of organotel-
lurium chemistry [92], the liquid-crystallinity of some 
2,5-disubstituted tellurophene derivatives has been 
(very impressively) explored; they display modestly 
high birefringence which is comparable to the analo-
gous selenophenes [93]. Examples of benzochalcogen-
ophenes are also known within this context [94–100]. 
The spirobicyclo[5.5]undecane is one of the number of 
other materials which have been reported that include 
this functionality [101], as have additional related spiro- 
systems such as dispirotetradecanes [102], dispiro 
[5.1.5.2]pentadecan-7-ones [103], dispiro[5.2.5.2]hexa-
decanes [104], dispiro[3.2.5.2]tetradecanes [105], and 
dispiro[2.0.2.1]heptanes [106].

We now focus on a family of 4’-cyanobiphenyl esters 
containing various ring structures with a propyl term-
inal chain (Table 6). 2-Alkylcyclobutane carboxylic 
acids are readily synthetically accessible in both cis and 
trans configurations via alkylation/decarboxylation of 
diethylmalonate with 2-alkyl-1,3-dibromopropane 
[109], and these can be used as drop-in replacements 
for the benzene ring, albeit with reduced (significantly 
in the case of cis, 67) clearing points. Trans cyclopentane 
is a less effective isostere as it deviates significantly from 
linearity (70). Spiro[3.3]heptane (71) and dispiro 
[3.1.3.1]decane (72) preserve the linear exit vectors 
and are trivially prepared via the same alkylation/dec-
arboxylation of malonate esters and make competent 
1,4-benzene isosteres. Perhydroazulene has a more 
complex synthesis [108], yet offers a higher clearing 
point (and lower melting point) than the corresponding 
1,4-benzene (73).

We shift focus now to a closely related set 4’-propyl-
biphenyl esters containing various ring structures with 
a second propyl terminal chain (Table 7). The behaviour 
of the trans 1,4-cyclohexane (75) and bicyclo[2.2.2] 
octane (76) derivatives mirrors that discussed elsewhere 
(e.g. compounds 55, 56). The cubane containing mate-
rial 77 displays a markedly reduced melting point rela-
tive to the parent system. Whereas a modest number of 
cubane-containing liquid crystals are known [110–113], 
derivatives of cubane such as the tetracyclo 
[4.2.0.02,5.03,8]octane system (78, obtained by partial 
hydrogenolysis of the parent cubane) are extremely 
uncommon and appear to be limited to ref [107] only.

Regrettably, the parent material (compound 79) of 
the series presented in Table 8 has no reported clearing 
point but, given the high-reported melt, it may be non- 
mesogenic. The 2,6-disubstituted cunenane (pentacyclo 
[3.3.0.02,4.03,7.06,8]octane (80) is readily prepared via 
isomerisation of the parent cubane over palladium or 
silver salts [118], and in this system it exhibits nematic 
and smectic A phase with significantly reduced melting 
points relative to the parent owing to its non-coplanar 
exit vectors. Recent improved synthetic routes promise 
to enable the synthesis of asymmetrically substituted 
1,4-cunenanes which are of some relevance to liquid 
crystalline materials [119,120]. Further examples of 
liquid crystalline cubanes and cunanes are known 
within the context of liquid crystalline dimers [113]. 
The analogous piperazine (81) exhibits a smectic 
B phase. The 1,n-diethenylcycloalkanones (83-85) var-
iously exhibit nematic and SmA phases; as the cycloalk-
anone unit increases in size the system becomes less 
linear, and so the melting and clearing points decrease.

In the next family of materials (Table 9) we focus on 
heterocyclic rings within the same core structure intro-
duced in Table 8. Incorporating pyrazole changes the 

Table 6. Transition temperatures (°C) for 4′-cyano[1,1′-biphenyl]4-yl benzoates/carboxylates including various ring systems with 
a propy terminal chain.

No. χ = TMelt TSmA-N TN-Iso

67 [107] 126 – 245

68 [74] 55.5 – 63.0

69 [74] 47.5 – 141.5

70 [81] 52.2 – 66.5

71 [74] 82.0 – 154.7

72 [74] 74.0 – 161.1

73 [108] 95 – 267
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mesomorphic behaviour of the materials now exhibiting 
a smectic A rather than nematic phase and 
a significantly higher clearing point (87). 
Complexation of this compound with RhCl(CO)2 yields 
a non-mesogenic complex (88). Compared to pyrazole, 
the isoxazole (89) leads to generally lower transition 
temperatures. The analogous 1,3,4-oxadiazole (90) has 
rather non-linear exit vectors (~130°) and so is non- 
mesogenic, whereas the more linear 1,3,4-thiaxiazole 
(91) exhibits the same phase sequence as the isoxazole. 
The thiazole 93 is non-mesogenic, and whilst the bis 
thiazole (94) behaves comparably to the bis oxadiazole 
(92), the bis thiadiazole (95) exhibits dramatically 
higher transition temperatures. While the majority of 
heterocyclic materials in Table 9 exhibits nematic 
phases, the N-amino 1,2,4-triazole (96) and pyrimidine 
(97) materials do not exhibit a nematic phase but rather 
smectic C and A phases. The closely related pyrazine 
compound exhibits a rather different phase sequence 

(Cr 94 SmG 139 SmF 165 SmI 258 Iso) [130] and is 
left out of Table 9 for brevity.

Finally, remaining with the same core system, we 
now consider some examples of fused and non-conven-
tional ring systems (Table 10). The diamantane (98, 
elsewhere referred to as [9]diamondoid and congres-
sane) exhibits a dramatic increase in clearing point 
owing to the highly rigid structure of this elongated 
fused ring system. The αα’-substituted succinic acid 
bis-(enol-lactone) 99 is non mesogenic. The ‘trioxane’ 
(100, 1,3,5-trioxadecalin) is chiral, and the resulting 
material exhibits cholesteric and smectic A phases. 
Conversely, the ‘tetraoxane’ (101, 1,3,5,7-tetraoxadeca-
lin) unit exhibits only a SmA phase with a modest 
increase in clearing point. The para substituted [2.2] 
paracyclophane (102) was prepared in its (R) form via 
chiral resolution techniques of the (S)-phenylethyla-
mine diastereomeric salt [135]; the material exhibits 
a wide temperature range chiral nematic phase; with 

Table 7. Transition temperatures (°C) for 4′-propyl[1,1′-biphenyl]4-yl benzoates/carboxylates including various ring systems with 
a propy terminal chain.

No. χ = TMelt TSmA-N TN-Iso

74 [107] 109 – 195

75 [107] 108.5 – 199

76 [107] 131 – 232

77 [107,110] 110 – 118

78 [107] 84 – 142

Table 8. Transition temperatures (°C) for rod-like liquid crystals with various central units flanked by 4-hexyloxybenzene. n/r = not 
reported.

No. χ = TMelt TSmB-SmA TSmA-N/Iso TN-Iso

79 [102] 231 – – n/r

80 [114] 101.1 – 74.8 145.5

81 [115] 172 218 – –

82 [116] 120 – 160 –

83 [117] 153 – 174 176

84 [117] 117 – – 141

85 [117] 92 – – 104
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other mesogenic units appended to the same planar 
chiral core variously exhibit chiral nematic and smectic 
A mesophases.

We now consider further non-conventional ring sys-
tems in a similar core system, this time with two ester 
linkages (Table 11). Compared to the parent system 
derived from hydroquinone (103), the 1,4-dioxane 
(104) and 1,4-dithiane (105) systems offer inferior 

clearing points and comparable melting points. The 
tropolone (106) displays an impressively high clearing 
point considering its non-linearity which is possibly 
related to [1,9]-sigmatropic rearrangement of the ester 
and the oxygen atom bound to the C-2 carbon (vide 
infra). The isorbides (107 and 108) are both non meso-
genic yet are often employed as chiral additives [146]. 
The biphenylene containing 109 exhibits an 

Table 9. Transition temperatures (°C) of . . . . #identified as a B2 phase. $Identified as a SmB phase. *Unidentified smectic phase (SmX) 
on cooling to 164.7°C.

No. χ = TMelt TSmC-SmA TSmA-N/Iso TN-Iso

86 [121] 124 – – 130
87 [122,123] 158.5 – 198 

SmC
–

88 [122] 68.3 – – –

89 [123] 110.8 – 134.6 161.0

90 [124] 121 – – –

91 [124] 109 – 184 204

92 [125] 181.2 177.7* – 190.0

93 [126] 130 – – –

94 [126] 107 – 180 197

95 [124,127] 223.6 [127] 
215 [124]

301.5 [127] 
305 [124]

– - [127] 
350 [124]

96 [128] 147.0 203.4# 261.0 –

97 [129] 120 189 215.5 –

Table 10. Transition temperatures (°C) of some uncommon ring systems. #chiral nematic phase.

No. χ = TMelt TSmC-SmA TSmA-N/Iso TN-Iso

86 [121] 124 – – 130
98 [131] 160.5 – 239.6 276.0

99 [132] 242 – – –

100 [133] 158 – 161 162#

101 [134] 158.5 – 189.4 –

102 [135] 159 – – 229#
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impressively high clearing point, with a modest increase 
in melt compared to the parent system, with other 
examples of this system being known [147]. The 2,5-dis-
ubstituted-3,6-dichloroquinone (110) has a notably 
lower clearing point than the parent system. Lastly, the 
dimeric-type material 111 exhibits nematic, twist-bend 
nematic and smectic phases.

We conclude our focus on ring-systems by consider-
ing the same basic structure outlined in Table 12, but 
utilising alkynyl linking groups. Thiophene (113), thia-
zole (114) mirror behaviour seen elsewhere (e.g. com-
pounds 36, 62, 93) and are generally inferior to the 
parent 1,4-disubstituted benzene (112). The quinoxaline 
(115) retains the nematic phase of the parent, despite its 
protrusion away from the molecular long axis. A similar 

effect is observed for the triptycenyl compound 116 
(albeit monotropically).

Linking groups

We now focus on various linking groups and their 
effects on transition temperatures (see Table 13). 
Arguably the most common linking unit is a direct 
bond, however esters and imines are commonplace 
due to their ease of synthesis and favourable interactions 
which support liquid crystalline order. Here, we define 
a linking group as a non-cyclic group which adjoins one 
or more ring systems. Mono-, di- and tri-acetylenes 
(117–119), extend the length of the rigid core unit and 
increase TNI and give very large birefringence values, 

Table 11. Transition temperatures (°C) of some uncommon ring systems.

No. χ = TMelt TSm-NTB TNTB-N TN-Iso

103 [136,137] 121 – – 215

104 [138] 112 – – 83

105 [138] 129 – – 122

106 [139] 125 – – 188

107 [140,141] 104 [140] 
89 [141]

– – –

108 [141] 69 – – –

109 [142] 154 – – 272

110 [143,144] 100.8 – – 142.5

111 [145] 78.2 78.4 85.2 97.1

Table 12. Transition temperatures (°C) of some uncommon ring systems.

No. χ = TMelt TSmC-SmA TSmA-N/Iso TN-Iso

112 [148] 179.5 – – 239.4

113 [82] 81 – – 137

114 [149] 85.5 – – 141.5

115 [150] 154 – – 172

116 [151] 181.8 – – 158.5
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albeit the chemo- and photo-stability of the materials is 
expected to be not that high. The cyanoethylene (123) 
exhibits nematic and smectic A phases, with the cyano 
moiety generating a large electric dipole moment. The 
analogous 1,2-substituted prop-1-ene linking unit (124) 
also sustains liquid crystalline order, whereas the 
3,4-substituted hex-3-ene does not, on account of the 
large steric bulk of the two protruding – C2H5 groups. 
Azo-linkages are commonplace (e.g. 122); and the less 
common but the closely related azine (127) and ethane- 
1,2-diimine (129) groups are also shown to be able to 
generate liquid crystalline phases. Longer homologues 
of the propan-1,3-dione linked material (130) show 

various smectic mesophases [162]. The analogous (Z)- 
aminopropenone material is also known and displays 
a number of unidentified mesophases [170]. Oxime- 
esters (131, 132) and hydrazides (134, 135) are capable 
of generating liquid crystalline phases yet are not fre-
quently encountered as linking groups. Homologues of 
the tetraketonate (138) [169] with longer terminal-chain 
lengths exhibit columnar mesophases, however, the 
resultant complexes with boron trifluoride are non- 
mesogenic irrespective of terminal-chain length how-
ever. Other miscellaneous uncommon linking groups 
capable of supporting liquid crystalline order include 
selenoesters [171], and trans tetrafluorosulfanyl [172].

Table 13. Transition temperatures (T,°C) of various linking groups employed between the two 1,4-benzene rings of the 4,4′- 
hexyloxybiphenyl system. #SmB phase. $SmC phase. *not reported.

No. γ = TMelt TSmA-N/Iso TN-Iso

86 [121] 124 – 130
117 [152] 94.8 – 98.8
118 [152] 115.3 – 147.5
119 [152] 133.1 – 174.0
120 [153] 36 71 –

121 [154] 104.4 – 113.0
122 [155] 86 98 110

123 [156] 48.5 44.5 79.8

124 [157] 90 – 80

125 [157] 67 –

126 [158] 187 – 194
127 [159] 128 157
128 [160] 150.8 – –

129 [161] 112 122# 

#SmB
130 [162] 72.8 – –

131 [163] 70 66$ 

$SmC
120

132 [164] 80 – 124

133 [165] n/r* – 107.5

134 [166] 160 – n/r*

135 [167] 118 105 113

136 [168] 109.8 – –

137 [168] 149.7 – 128.5

138 [169] 159.3 – –
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Terminal groups

We now focus on groups appended at the terminus of 
an alkyl chain in a 5-decyloxy-2-phenylpyrimidine 
liquid crystal (Table 14). Replacement of the terminal – 
C2H5 of the parent compound with tbutyl (140), tri-
methylsilyl (141) or trimethylgermyl (142) retains the 
smectic C phase with a slight reduction in clearing point 
accompanying a more pronounced drop in melting 
point. Using the bulkier triethylsilyl (143) or triethyl-
germyl (144) groups gives an even more pronounced 
depression. The heptamethyltrisiloxane terminated 145 
experiences less of a depression in melting point and 

clearing point, while the cyclopentyl terminated 146 
actually has a higher melt than the parent. Other cyclic 
units employed in pyrimidine containing liquid crystals, 
such as dispiro[2.0.2.1]heptane derivatives [106], or var-
ious cyclic hydrocarbons in the 4-cyanobiphenyl sys-
tem [177].

The nCB and nOCB liquid crystals remain argu-
ably the most widely used core-type, and so unsur-
prisingly there are many known structures in which 
various terminal groups have been installed at the 
end of the alkoxy chain (Table 15). Generally, sub-
stituents which promote nanophase segregation (e.g. 
siloxanes, silanes etc., 154–160) retain the SmA 

Table 14. Transition temperatures (T,°C) of various groups appended at the terminus of one alkyl chain in a series of 5-decyloxy- 
2-phenylpyrimidine liquid crystals.

No. X= TMelt TSmC- Iso

139 [173] 58 104
140 [174] 48.3 95.1
141 [174] 41.7 97.0
142 [174] 57.1 97.8
143 [174] 39.0 81.4
144 [174] 24.5 80.6
145 [175] 44.0 93.0

146 [176] 64.1 94.5

Table 15. Transition temperatures (T,°C) of various groups appended at the terminus of the alkyl chain in 4-cyano-4′- 
undecyloxybiphenyl.

No. R= Tmelt TSm-N/Iso TN-Iso

147 11OCB 71.5 87.5 –
148 [178–180] 89.8 – 92
149 [181] 68 – 56
150 [180,182] 78.7 – 96.4
151 [180,182,183] 77.4 – 69.1
152 [180] 87.5 – 67.2
153 [184] 121.4 – 104.0

154 [180] 54.9 83.3 –

155 [180] 55.1 81.7 –

156 [180] 37.7 73.7 –

157 [180] 31.7 70.1 –

158 [180] 22.4 73.1 –

159 [185] 27.3 50.6 –

160 [186] 135 190 –

161 [178] 75.8 95.7

162 [187] 94.5 – 87.2

163 [187] 141.8 – 192.9

164 [188] 47.7 31.2 36.9

165 [180] 57.1 – 32.9
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phase of the parent system while other groups 
instead form a nematic phase (148-153). Generally, 
the larger the bulk of the terminal group the bigger 
the depression in clearing point (e.g. the halogen 
series, 150 – 152). Groups capable of hydrogen 
bonding typically display higher clearing points 
than the parent (148, 153, 163). The effect of hydro-
gen bonding is well demonstrated by comparing the 
aldehyde 162 to the equivalent carboxylic acid 163. 
Lastly, the 2,5-dimethylbenzene terminal group (164) 
can be considered to be ‘half ’ of the [2.2]paracyclo-
phanyl group (in 164); both exhibit comparable 
clearing points, but the steric bulk of the cyclophane 
prevents the formation of smectic phases in the 
latter.

Fluorination

Fluorination of the rigid core aromatic unit is common-
place in liquid crystals with ~17% of materials bearing at 
least one fluoro substituent on an aromatic ring, and so 
falls outside our focus of ‘uncommon’ structural motifs 
and the reader is referred elsewhere [189]. Likewise, 
a significant number of materials with perfluorinated 
(or semi-fluorinated) alkyl chains are relatively 

commonplace [190]. Fluorination of the non-aromatic 
portions of the core is far less common, and this is our 
initial focus here (Table 16).

While the cyclohexan-2-one motif is non mesogenic 
(166), replacement with gem difluorocyclohexane (167) 
or 2-fluorocyclohex-2-ene (168) afforded relatively wide 
temperature nematic phases [191]. The 5,5,6,6-tetra-
fluorocyclohexa-1,3-diene derived 169 has an impress-
ively large negative dielectric anisotropy of −7.3 
(extrapolated from mixtures with MLC-6608) [192]. 
Further examples of liquid crystalline gem difluorocy-
clohexanes are known, both with the fluorines acting as 
a lateral group (as above) [193,194] or as a terminal 
group [195]. In a similar vein, liquid crystalline gem 
difluorobicyclo[2.2.2]octanes are known [196], while 
the monofluoro bicyclo[2.2.2]octanes are known out-
side of the context of liquid crystals [197].

Axial fluorination on cyclohexanes is generally detri-
mental to the liquid crystalline phase, although it can be 
used to generate impressively large values of dielectric 
anisotropy (e.g. 171 and 173 in Table 17). Facially 
fluorinated cyclohexane derivatives such as 174-177 
were found to be non-mesogenic, with fairly small 
values of dielectric anisotropy (Table 18). Other axially 
fluorinated cyclohexanes, such as 178, while attractive 

Table 16. Transition temperatures (°C) of various polar non-aromatic ring systems.

No. χ = R = TMelt TN-Iso

166 [191] F 105 –

167 [191] F 98 110

168 [191] F 32 122

169 [192] C2H5 65 77

Table 17. Transition temperatures (°C) and extrapolated dielectric anisotropies of CG-3-N and CU-3-N, with and without axial 
fluorination.

No. X = Y = TMelt TN-Iso Δε

170 [198] H H 39 −11 26.0
171 [198] H F 57 – 32.6
172 [198] F H 50 – 27.1
173 [198] F F 64 – 34.7
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in terms of wide nematic-phase range and low rotational 
viscosity [198], have the unfortunate propensity to 
spontaneously and autocatalytically eliminate HF. The 
tri- and tetrafluoroindanes (178, 179) have impressive 
negative dielectric anisotropies, but also suffer the same 
issue of HF elimination [198,200]. The propensity for 
elimination is not seen in the analogous cyclohexanes 
bearing an axial cyano group [8].

Fluorinated links

Turning now to explore the role that the linking group 
has not only on transition temperatures but also dielec-
tric anisotropy (Table 19). The parent material 181 has 
a direct link between the ‘central’ trans 1,4-cyclohexane 
and the 3,4,5-trifluorobenzene motif. A dimethylene 
space (CH2CH2, 182) reduces transition temperatures 
and also dielectric anisotropy relative to the parent 

owing to the increased conformational freedom. The 
carboxylate ester 183 has a comparable clearing point 
to the methyleneoxy 184, and a notably larger dielectric 
anisotropy. The monofluoromethyleneoxy bridged 185 
suffers a modest reduction in clearing point, whereas the 
difluoromethyleneoxy bridge (186) has a beneficial 
effect on transition temperatures as well as making 
a significant contribution to dielectric anisotropy 
which is of a similar magnitude to that of the ester 
bridged 183.

Unconventional chiral systems

Further to the chiral systems already discussed, we now 
focus on more ‘exocit’ chiral moieties which have been 
shown to promote, or at least tolerate liquid crystallinity 
(Figure 3). The C3-symmetric (S,S,S) tricyclo[2.2.1.02,6] 
heptane-3,5,7-triol, functionalised with trans 

Table 18. Melting points (°C) of facially fluorinated cyclohexane (174-177), axially monofluorinated cyclohexane (178), and 
difluoroindane (178-179) derivatives. * has the phase sequence cr 75 SmB 94 iso, Δn of 0.054.

No. χ = TMelt Δε

174 [199] 214 n/r

175 [199] 175 n/r

176 [199] 128 n/r

177 [199] 95 −1.19

178 [40,198] 75* −2.2

179 [200] 99 −7.1

180 [200] 85 −8.6

Table 19. Transition temperatures (T,°C) of trans trans 4-(4-propylcyclohexyl)cyclohexyl liquid crystals with various (fluorinated) linking 
groups.

No. L = TMelt TSmB-N TN-Iso Δε

181 [40,199,201,202] 64.7 – 93.7 8.3
182 [40,201,202] 49.5 – 83.4 7.3
183 [9,203] 56 – 117.2 11.1

184 [40,204] 74 102 114.9 8.1

185 [40] 43 – 88.0 8.0

186 [40,205,205] 44 – 105.3 10.5
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4-(4-pentylcyclohexyl)benzoic acid (187), showed 
a helical twisting power of up to 25 um−1 [206]. Chiral 
cyclohexylideneethanones (188) were prepared via 
asymmetric coupling via a chiral sulphoxide and are 
one of the earliest examples of axial chirality in an 
optically active liquid crystal [207]. Axially chiral 
allenes, appended to a thiadiazole bent-core system 
(189, 190), were shown to generate SmC*, N* and blue 
phases [208].

Biphenyls substituted with bulky nitro/methyl 
groups to block rotation about the central bond and 
are atropisomeric [209,210], such as 191 in Figure 3. 
Related axially chiral biphenyls with a – CH2OCH2- 
bridge have been reported and exhibit a cholesteric 
phase [211]; the helical twisting power of such com-
pounds depends strongly upon substituents present, 
but values as high as 20.3 um−1 were reported for 192 
shown in Figure 3 [212]. A variety of alternate bridging 
groups have been reported, including amides, fused ring 
systems, 2,3-diaminobutyl [213,214]. Another notable 
demonstration of axially chirality is the 2,2’-spirobiin-
dan-1,1’-dones [215,216]. These materials show large 

ferroelectric polarisations in the SmC* phase, for exam-
ple 193 displays a PS of circa 1 uC cm2 in NCB76 [216]. 
As mentioned briefly in the discussion around the para-
cyclophanyl compound in Table 10, systems with dis-
symetrically substituted rings which are non-coplanar 
can exhibit so-called planar chirality. One prominent 
example is [2.2]paracyclophane; however, other systems 
have been shown within the context of liquid crystals 
(e.g. ferrocenes [217] and azobenzenophanes [218]). 
When the paracyclophane unit is in the centre of the 
rigid portion of the mesogen then the HTP values are 
modest (194) [135], however when relegated to the 
periphery via flexible chains or via appending to one 
side of a dimer the resulting HTP values are rather low 
(195, 196) [219]. Helicenes are polycyclic aromatic 
compounds in which the regular annulation of aromatic 
rings gives rise to a helical structure. Beyond molecular 
aesthetics, the helicene derivative 197 has been shown to 
exhibit a columnar phase at ambient temperature [220– 
222]. Heptalenes are dissymmetric molecules with 
highly twisted symmetric C2 structure and lack 
a stereogenic centre. It was shown that for a series of 

Figure 3. (Colour online) Transition temperatures (°C, where available) and helical twisting powers (HTP, where available) for 
a selection of point, axial, planar, and helically chiral liquid crystalline materials.
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chiral heptalene derivatives the position of the substitu-
ent groups on the heptalene core dictates the chiral 
sense of the helical twist (e.g. 198) [223].

One (or less) ring systems

The vast majority of thermotropic liquid crystalline 
materials have two or more rigid cyclic groups. 
Typically, multiple cyclic groups (either directly 
bonded, fused, or with linking groups) are required to 
retain the requisite molecular shape for liquid crystal-
linity. As such, it is very uncommon to find mesogenic 
material with one, or even no, rings. That is not to say 
that there are no reported examples (Figure 4) Perhaps 
the most well-known examples of ‘single ring’ mesogens 
are the alkylbenzoic acids [224,225]. Of course, these 
benzoic acid derivatives readily dimerise through 
hydrogen bonding can we consider them true single- 
ring systems? Typically multiple cyclic groups (either 
directly bonded, fused, or with linking groups) are 
required to retain the requisite molecular shape for 
liquid crystallinity.

Despite having only a single ring, nitrobenzoates 
with fluorocarbon tails exhibit smectic phases (199, 
200), as the steric clash between fluorine atoms doubles 
the energy difference between trans and gauche confor-
mers relative to the parent hydrocarbon system [226– 
229]. 2,5-Disubstituted tropones were shown to be able 
to generate smectic A mesophases (201, 202) [230–232], 
a perfluorocarbon chain gives higher transition 

temperatures than the analogous hydrocarbon in this 
system. The liquid crystallinity of the 2,5-disubstituted 
tropone results from a [1,3]-sigmatropic rearrangement 
of the acyl group and the oxygen atom bound to the C-2 
carbon gives a transient ring system which gives a time- 
averaged linear molecular structure. Synthesis of non- 
[1,3]sigmatropic systems supports this conclusion 
[233]. Poly dialkylstannanes (e.g. 204) were shown to 
be liquid crystalline, variously exhibiting nematic, 
lamellar and rectangular columnar phases depending 
on the length of the pendant alkyl chains [234]. 
Diisobutylsilane-diol [235] forms a columnar structure 
through hydrogen bonding between adjacent silanol 
groups (206). A family of 1-alkyl-2,3,5,6,7,8-hexasilabi-
cyclo[2.2.2]octanes were found to exhibit columnar 
mesophases despite having only a single rigid unit 
(207-209) [236], with the steric bulk of the (many) 
dimethylsilyl motifs driving the formation of 
a hexagonal columnar structure via shape segregation. 
Fluorocarbons can also confer ‘rigidity’ and generate 
liquid crystalline mesophases in systems that lack any 
ring systems, for example 210 in Figure 4 [40,237–240].

Conclusions and outlook

In this review, we have explored the use of non-tradi-
tional building blocks in liquid crystals and although 
these units are rarely encountered (and sometimes 
entirely novel), in many cases these follow expected 
patterns of behaviour. However, the context of the 

Figure 4. (Colour online) Further examples of non-conventional structures exhibiting liquid crystalline behaviour.
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entire molecule is important when considering the 
impact of such changes. In the most general terms, the 
more anisotropic (i.e. longer) the rigid core unit the 
more forgiving it tends to be in terms of generating 
liquid crystalline phases with ‘unfavourable’ groups. 
We suspect that any ring system (or even relatively 
rigid group of bonded atoms) that reasonably approx-
imates the linear exit vectors of 1,4-disubstituted ben-
zene will probably have some capacity for generating 
liquid crystalline order, and this is supported by exam-
ples herein.

When encountering bulky groups appended at the 
end of a terminal chain (Table 15) it is tempting to 
conclude that it is simply the size of the group that 
dictates the mesogenic behaviour (e.g. compounds 
147-159), however this overlooks subtle effects that 
can result from hydrogen bonding (e.g. 147, 160, 163), 
to give one example. Ultimately, these subtle interac-
tions between many molecules are responsible for the 
genesis of liquid crystalline order; to consider only 
shape or polarity in isolation is not typically sufficient 
(e.g. Table 1; various entries). Again, the context of the 
entire molecule is again relevant – several of the polar 
terminal units in Table 1 that yield non-mesogenic 
materials are shown to be competent at generating 
nematic phases in Table 2 (e.g. SCF3) when utilising 
a different core system.

Metal catalysed cross-coupling reactions are as essen-
tial to the synthetic chemist as a hammer and nails and 
a saw are to a carpenter. With the advent of new syn-
thetic methodology that greatly simplifies sp3-sp3 

couplings, these reactions can reliably be used in the 
design of liquid crystalline materials; specifically, com-
plex ring systems can be installed as entire fragments 
rather than assembled step-by-step as in the past. For 
example, a large number of bicyclo[x.y.z]alkanes are 
available as the mono methyl esters of their dicarboxylic 
acids; through decarboxylative couplings these could be 
expanded into fully fledged rod-like liquid crystals. We 
performed basic geometric analysis on a selection of 
bicyclo[x.y.z]alkanes (Figure 5). This demonstrates 
that some (e.g. bicyclo[3.3.2]nonane) are probably suf-
ficiently close to linear that they would suffice as a drop- 
in replacement for 1,4-benzene.

Just as sp2-sp3 and sp3-sp3 couplings are becoming 
routine, mild fluorination of sp3 carbon is a rapidly 
growing area. We suspect that direct and targeted fluor-
ination of such 3D benzene isosteres is not only possi-
ble, but may be advantageous over ‘2D’ isosteres such as 
axially fluorinated cyclohexanes. Several examples of 
cubane-based liquid crystal have been discussed here, 
with more examples in the literature. Cubane is one of 
the platonic hydrocarbons, and of the other possible 
platonic hydrocarbons it seems probable dodecahe-
drane could be incorporated into a linear motif and 
coaxed into exhibiting liquid crystalline phases, 
although the 23-step synthesis presents a rather high 
barrier to this undertaking [241]

Lastly, so far we have largely restricted ourselves to 
discussion of materials evaluated experimentally after 
synthesis. Separate to this, computer hardware and soft-
ware offer ever increasing performance, which allows us 

Figure 5. (Colour online) Geometrical properties of some 1,4-benzene isosteres, computed for geometry optimised at the B3LYP/ 
6-31G(d) level of DFT shown in order of decreasing linearity.
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the luxury of probing molecular interactions in atomis-
tic detail through a computational lens. One especially 
attractive area for the future is in building molecules not 
by targeting properties by study of prior art, but through 
specific design of intermolecular molecular interactions. 
For example, four-centre heteroleptic dipole–dipole 
interactions between nitriles and sulphoxides [242].
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