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Abstract

A cohesive interface model is proposed in the framework of the phase-field

approach. The discrete interface is transformed into a smeared interface by a

regularisation strategy. Nevertheless, the fracture energy is made dependent on

the displacement jump, which is approximated by a first-order Taylor expan-

sion of the displacement at the interface. Its value relies on a proper choice

of the distance parameter from the interface. We have derived an optimal dis-

tance parameter from the analytical solution of a uniaxial tension problem.

The accuracy of the approach for cohesive interface modelling is validated in a

one-dimensional numerical test and is demonstrated by two examples, including

a ‘H’-shaped plate and a fibre embedded in an epoxy matrix, featuring straight

and curved interfaces.
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1 INTRODUCTION

The design of structural materials like concrete or composites typically involves several components at the material level

or at the structural level, such as fibres, grains andmatrix material. In suchmaterials, interface damagemay occur, which

influences the structural properties of materials and structures. For example, the strength of concrete largely relies on the

properties of the mortar-aggregate interface.1

Many numerical methods have been developed to investigate interface damage. Starting from the early works in

1960s ,2,3 two different approaches have been developed for modelling of interfacial failure, namely discrete and smeared

models.4 The discrete approach treats the interface as geometric discontinuities, with tractions on the interface bound-

aries.5–10 The smeared method avoids topological changes of the computational domain, distributes the discontinuities

over a finite band, for example, References 11–13. After the early works, the smeared approach has been cast in a damage

format, while more recently, the phase-fieldmethod has been proposed to regularise the interface in a smeared sense.14–16

The phase-field approach to fracture finds its origins in the so-called variational approach to fracture.17 Herein, crack

initiation and quasi-static propagation were considered as a minimisation problem of a Griffith-like energy functional.

To make the problem amenable to large-scale computations a regularisation strategy was developed subsequently, which

transforms the sharp crack into a distributed crack, which is governed by a phase-field variable d. The width of the

distributed crack is set by an internal length scale 𝓁.15

The vast majority of phase-fieldmodels have been applied to the analysis of brittle fracture, for example, References 15

and 18. Nevertheless, many natural and man-made materials hold a cohesive property owing to their internal structure,

for instance fibre-reinforced composite materials. The phase-field modelling of cohesive fractures in those materials is
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not yet well developed. Verhoosel and de Borst19 regularised the phase-field model20 to cast the cohesive interface in

a smeared format. They employed an auxiliary field to model the displacement jump, which is an essential input of

the cohesive-zone model.21–23 However, the auxiliary field needs to be prescribed in the whole domain, reducing the

computational efficiency.24

To avoid the introduction of an auxiliary field, Nguyen et al.25 have computed the displacement jump at two points

near the interface.However, the choice of the location of these points suffers froma certain arbitrariness. In the framework

of brittle fracture modelling, one can also change the degradation function and the homogeneous energy dissipation

function.18,26–28 As a result, the cohesive relation is reproduced in a one-dimensional setting. Another approach to obtain

the displacement jump in brittle phase-field models is to use a line integral to compute the value in the direction normal

to the crack.29,30 Chukwudozie et al.,31 Yoshioka et al.32 and Chen et al.30 have theoretically proven this integral formula,

and have detailed the implementation of the integral form. In the brittle fracture model the cohesive interface debonding

and the cracking in the bulk can also be considered separately. Then, the cracking in the bulk is described by a brittle

model, while the interface behaviour is modelled by the cohesive model.33–38

The cohesive phase-field model of Verhoosel and de Borst19 and Nguyen et al.25 uses the phase-field regularisation

technology to transform a discrete interface into a smeared one. The cohesive law is incorporated in a displacement

jump-dependent fracture energy function. This model is elegant, and in general, a powerful approach to implement the

cohesive interface within the context of phase-field modelling. It combines the discrete interface model with the smeared

approach. The regularisation technology from the phase-field model treats the discrete interface in a smeared sense. The

cohesive-zone law from the discrete model is however directly used to describe the interface behaviour. Due to the use of

the smeared interface, there is no need to introduce geometric discontinuities in the domain, and it is, for instance, not

necessary to introduce enrichment functions like in the extended finite element method (XFEM). The incorporation of

the cohesive law in the model is straightforward and directly incorporates the correct physics, which is different from the

modification of the degradation function.18 Moreover, we can consider any form of the cohesive relation, while with the

modification of the degradation function only a specific form of the cohesive relation seems to be possible.18 While so far

only an exponential degradation function has been considered by Verhoosel and de Borst19 and Nguyen et al.,25 any other

degradation function can be incorporated.

This study will address the general case of a phase-field regularised interface cohesive-zone model. We will focus on

the elaboration of the localised property of the model, the smeared displacement jump computation, and the derivation

of the optimal distance parameter. We will start this contribution with a concise description of regularised cohesive-zone

models and phase-field representations of cohesive interfaces. Subsequently, we will elaborate on the smeared represen-

tation of discontinuities and the localised property of the smeared interface. Section 4 will focus on the introduction of

smeared displacement jump and the derivation of the optimal distance parameter for the jump computation. The finite

element implementation is discussed in Section 5. Finally, numerical examples are presented to validate the approach

and conclusions are drawn.

2 PHASE-FIELD MODEL FOR COHESIVE FRACTURE

Weconsider a domainΩwith an internal interfaceΓi between phases (matrix and inclusions), see Figure 1A. The interface

behaviour is described by a cohesive-zonemodel.39,40 In the current study, we assume the interface Γi to be zero-thickness

and pre-defined, as is the case, for instance, for the delamination of composite structures.

2.1 Energy functional

Introduced in References 39 and 40, cohesive-zone model is now widely used to model interface failure.41 Cohesive trac-

tions t on a crack interface are linked to the displacement jump at the interface. The interface Γi is placed in the physical

domain Ω with positive and negative sides, Γ+
i
and Γ−

i respectively, as illustrated in Figure 1A. The cohesive-zone model

was originally conceived as a discrete fracture model,42 with the crack interface being a geometric discontinuity. The

fracture energy is then given as:

i(Γi) = ∫Γi

([[u]], 𝜿)dA (1)
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with𝜿 being a history parameter, and obeying theKuhn–Tucker conditions to distinguish between loading andunloading.

([[u]], 𝜿) is the fracture energy function, defining the energy dissipation upon the creation of a unit crack surface. It is
released gradually, and depends on the displacement jump [[u]] and the history parameter 𝜿. The displacement jump [[u]]

across Γi is expressed as

[[u]] = u+ − u− on Γi (2)

with u+ and u− being the displacement on the positive and negative sides, Γ+
i
and Γ−

i in Figure 1A, respectively.

The cohesive interface Γi can be regularised by the phase-field method,19,25 and represented as a smeared interfaces,

see Figure 1B. In Equation (1), the infinitesimal surface area dA, at a point xi on the interface Γi is then rewritten in an

integral form

dA(xc) = ∫
∞

xn=−∞

𝛿(xn)dxn

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=1

dA = ∫
∞

xn=−∞

𝛿(xn)dV ≈ ∫
∞

xn=−∞

𝛿c(xn)dV (3)

in which xn = (x − xi) ⋅ n(xi) and n(xi) the unit vector normal to the interface Γi. 𝛿(xn) represents the Dirac-delta function,

being zero everywhere except at xn. In the numerical implementation one cannot directly use 𝛿(xn) to regularise the

interface. An approximated form, 𝛿c(xn), must be used instead, that is, the last term in Equation (3). Herein, we will use

the phase-field model to obtain 𝛿c(xn). The basic idea is to approximate the discrete interface Γi by a smeared interface Γ
𝜉

i
,

as shown in Figure 1B. The explicit form of 𝛿c(xn) will be detailed in Section 3.

Substituting Equation (3) into Equation (1) leads to a phase-field regularised energy function for cohesive

fracture19:

i = ∫Γi

([[u]], 𝜿)∫
∞

xn=−∞

𝛿(xn)dV ≈ ∫Ω

([[u]], 𝜿)𝛿c(xn)dV . (4)

In the course of the loading process cracks can initiate in the solid and propagate into the bulk material, see

Figure 1A. The crack initiation and propagation is governed by brittle fracture models.25,33,43–46 In such a scenario, the

cracking in the bulk should be considered in the modelling. In the current study, the focus is on the phase-field rep-

resentation of the interface, the smeared form of the displacement jump, and the derivation of the optimal distance

parameter.

(A) (B)

F IGURE 1 (A) A solid body𝛺 with a discrete interface Γi. The latter is represented as overlapping positive and negative sides, Γ
+
i
and

Γ−
i , respectively. Boundary Γu is prescribed with a displacement ū; Γt with a prescribed traction t̂. (B) Smeared representation of Γi as a

smeared interface Γ𝜉

i
(red area).
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The potential energy of the solid is given as25:

Ψpot = ∫Ω

𝜓 e(𝜺(u))dV + ∫Γi

([[u]], 𝜿)dA (5)

with Γi being the interface. In above equation the fracture energy for the interface in Equation (1) is used. 𝜓 e represents

the elastic energy density. 𝜺 is the infinitesimal strain tensor, with components:

𝜀ij = u(i,j) =
1

2

(
𝜕ui
𝜕xj

+
𝜕uj

𝜕xi

)
(6)

Substituting Equation (4) into (5) yields the regularised energy functional for the solid:

Ψpot = ∫Ω

𝜓 e
(
𝜺
e(u), 𝛽

)
dV + ∫Ω

(𝝊, 𝜿)𝛿c(xn)dV (7)

with the displacement jump [[u]] being replaced by 𝝊. In addition, the infinitesimal strain 𝜺 has been substituted by

the ‘elastic’ strain 𝜺
e. This is due to the smeared representation of the discrete interface Γi, where the clear boundary

between the bulk and the interface vanishes. There is no difference between the bulk and interface kinematics, that is,

the infinitesimal strain, Equation (6), in the velocity of the interface Γi.

The displacement u(x) is then obtained from the variational principle for minimising Ψpot:

u(x) = Arg

{
inf
u∈u

(
Ψpot −Wext

)}
= Arg

{
inf
u∈u

(
Ψpot − ∫Γt

t̂ ⋅ udΓ

)}
(8)

in which u =
{
u

||| u(x) = ū ∀x ∈ Γu

}
. t̂ and ū are prescribed tractions and displacements.

2.2 Elastic strain in a smeared sense

The weak form for u ∈ u can be derived as:

∫Ω

𝜕𝜓 e

𝜕𝜺e
∶ 𝜺

e(𝛿u)dV + ∫Ω

𝜕(𝝊, 𝜿)
𝜕𝝊

⋅ 𝛿𝝊𝛿c(xn)dV = 𝛿Wext (9)

and we define the Cauchy stress and cohesive traction as

𝜎ij =
𝜕𝜓 e

𝜕𝜀e
ij

and ti =
𝜕
𝜕𝜐i

. (10)

In cohesive-zone models, tractions t = [t1, t2] are explicitly linked to the displacement jump 𝝊. In this study, the

Xu–Needleman law is used,41 defining the traction in the normal and shear direction as:

tn =
c
𝛿n

[[vn]]

𝛿n
exp

(
−
[[vn]]

𝛿n

)
exp

(
−
[[vs]]

2

𝛿2s

)

ts =
2c
𝛿s

[[vs]]

𝛿s

(
1 +

[[vn]]

𝛿n

)
exp

(
−
[[vn]]

𝛿n

)
exp

(
−
[[vs]]

2

𝛿2s

)
, (11)

which relates to the tractions t in Equation (10) and the displacement jump 𝝊 via a standard transformation:

t = RTtd = RT[ts, tn]
T, [[v]] = [[[vs]], [[vn]]]

T = R𝝊 = R[𝜐1, 𝜐2]
T (12)
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in which 𝛿n and 𝛿s are parameters defined by 𝛿n = c∕(tue) and 𝛿s = c∕
(
tu

√
1

2
e

)
with e = exp(1). tu and c represent

the fracture strength and fracture toughness, respectively. [[vn]] and [[vs]] are the displacement jump in the normal and

shear direction, separately;R denotes the rotation matrix.42 To prevent interpenetration, a penalty stiffness kp is specified

in the normal direction of the interface Γi. Other forms of the cohesive law can be considered in the analysis, including

mode-mixity, but in the current study the focus is on the phase-field modelling of the cohesive interface.

Applying the divergence theorem to Equation (9) yields the elastic strain 𝜺
e19,25:

𝜀eij = u(i,j) − sym
(
𝜐inj

)
𝛿c (13)

with nj being the component of the unit vector normal to the interface Γi. Obviously, the ‘elastic’ strain 𝜺
e is composed of

the displacement gradient and the term related to the displacement jump. Chen and de Borst24 have proven that Equation

(13) has an identical form as the regularised extended finite element method (XFEM).

2.3 Governing equations for the displacement

Substituting Equation (13) into (9) leads to

∫Ω

(
𝜎ij𝛿u(i,j) − 𝛿c𝜎ijsym

(
𝛿𝜐inj

)
+ ti(𝝊, 𝜿)𝛿c𝛿𝜐i+

)
dV = ∫Γt

t̂i𝛿uidA. (14)

Applying the integration by parts, we reformulate Equation (14) as:

∫Ω

(
−
𝜎ij

𝜕xj
𝛿ui −

[
𝛿c
(
𝜎ijnj − ti(𝝊, 𝜿)

)]
𝛿𝜐i

)
dV = ∫Γt

(
t̂i − 𝜎ijnj

)
𝛿uidA. (15)

Considering a variation in the displacement field yields the strong form of the cohesive interface problem in the

framework of the phase field method:

⎧
⎪⎪⎨⎪⎪⎩

𝜕𝜎ij

𝜕xj
= 0 x ∈ Ω,

𝜎ijnj = t̂i x ∈ Γt,

𝛿c
(
ti (𝝊, 𝜿) − 𝜎ijnj

)
= 0 x ∈ Ω.

(16a)

(16b)

(16c)

Equation (16a) is standard, and is supplemented by the constitutive relation, Equation (10). Equation (16c) is an addi-

tional equation for the smeared interface problem and represents the force equilibrium over the smeared interface. We

have the traction balance relation ti(𝝊, 𝜿) = 𝜎ijnj in the smeared interface Γ
𝜉

i
. In the limiting case, when 𝓁 → 0, the dis-

crete cohesive traction balance equation is recovered: ti([[u]], 𝜿) = 𝜎ijnj. Outside the smeared interface Γ
𝜉

i
, the Dirac-delta

function is 𝛿c = 0. The traction balance relation ti(𝝊, 𝜿) = 𝜎ijnjmay not be satisfied, but the Dirac-delta function 𝛿c equals

zero, guaranteeing the balance equation (16c).

3 SMEARED REPRESENTATION OF THE DISCONTINUITY

The (discrete) interface Γi is now approximated by a smeared one Γ𝜉

i
, see Figure 1. The smeared interface Γ𝜉

i
is associated

with a fixed phase field d(x) around the interface Γ𝜉

i
. d(x) equals 1 at the centre of Γ𝜉

i
, and vanishes from Γi. The width

of the smeared interface is governed by a regularisation parameter 𝓁. The phase field d(x) is obtained by solving the

variational problem:

d(x) = Arg

{
inf
d∈d

Γ𝓁(d)

}
(17)

 1
0
9
7
0
2
0
7
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/n

m
e.7

4
1
2
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

0
/1

2
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



6 of 18 DE BORST and CHEN

in which d =
{
d
||| d(x) = 1 ∀x ∈ Γc

}
and

Γ𝓁(d) = ∫Ω

𝛾d(d)dV , (18)

where Γ𝓁(d) denotes the crack length, that is, the length of crack interface per unit area. 𝛾d(d) represents the crack density

function per unit volume. Herein, the following crack density function is employed18:

𝛾d(d) =
1

𝜋𝓁

(
2d(x) − d(x)2

)
+

𝓁

𝜋
∇d(x) ⋅ ∇d(x), (19)

The Euler–Lagrange equation associated with the variational equation (17) is given as

1 − d(xn) − 𝓁
2 d

2d(xn)

dx2n
= 0 xn ∈ R

d = 1 xn = 0

d = 0 xn = (−∞, −𝜋𝓁∕2
]⋃[

𝜋𝓁∕2,+∞) (20)

with the solution:

d(xn) =

⎧⎪⎨⎪⎩

1 − sin

(|xn|
𝓁

)
− 𝜋𝓁∕2 ≤ xn ≤ 𝜋𝓁∕2

0 otherwise

(21)

with xn = (x − xi) ⋅ n(xi), point xi on the interface Γi and n(xi) the unit vector normal to Γi.

For the cohesive fracture model, the Dirac-delta function, 𝛿c(xn) in Equation (3), can be approximated by the

crack-density function in Equation (18).24 To further simplify 𝛿c(xn) we propose following form as an approximation:

𝛿c(xn) =
1

2

||||
dd(xn)

dxn

|||| =
1

2

⎧⎪⎪⎨⎪⎪⎩

−
dd(xn)

dxn
0 < xn ≤ 𝜋𝓁∕2

dd(xn)

dxn
− 𝜋𝓁∕2 ≤ xn ≤ 0

0 otherwise

=
1

2

⎧
⎪⎨⎪⎩

1

𝓁
cos

(xn
𝓁

)
− 𝜋𝓁∕2 ≤ xn ≤ 𝜋𝓁∕2

0 otherwise
(22)

in which the fraction
1

2
stems from the identity constraint of the Dirac-delta function, that is, ∫ ∞

−∞
𝛿c(xn)dxn = 1.

In Reference 19 the phase field d(xn) was prescribed numerically in the domain by solving the Euler–Lagrange

equation (20). However, solving the Euler–Lagrange equation numerically is not favourable for the analysis due to the

imposition of Dirichlet boundary conditions on the phase-field variable.24 In addition, even with an exact imposition

of the boundary conditions, the numerical results will still be slightly different from the analytical solutions.24 Since

analytical solutions of the Euler–Lagrange equation are available, that is, Equation (21), we can directly use them in

the analysis. In a pre-processing step, we only need to store the distance between the interface and Gauss points once.

Then, in the nonlinear solution scheme, we utilise the stored distance and Equation (22) to compute the Dirac-delta

function.

In Figure 2 we have plotted the phase field d(xn), the crack density function 𝛾d(d) and the Dirac-delta function 𝛿c(xn).

The distribution of d(xn), 𝛾d(d) and 𝛿c(xn)narrows around the interfaceΓi, confining the influence of the smeared interface

Γ
𝜉

i
locally. In References 19 and 25, the support of d(xn) is spread over the entire domain, that is, it covers the range

[−∞, ∞]. This is due to the use of a particular variant of the phase-field model, now known as AT2, in simulations of
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F IGURE 2 One-dimensional analytical phase field d(x), crack density function 𝛾d, and Dirac-delta function 𝛿c for a uniaxial bar

(length 1) with an interface Γi in the middle. The regularization length is 𝓁 = 0.1.

inclusionsmeared interface

interface

inclusionsmeared interface

interface

F IGURE 3 Traction test of a micro-structure containing inclusions. Red areas denote the smeared interface. Black circles represent the

interface between inclusions and matrix.

Verhoosel and de Borst19 and of Nguyen et al.25 This is a superior aspect of the current model compared to the AT2

phase-field model.

Another deficiency of the use of theAT2model is that a situation can arise inwhich a point in the domain, for example,

point A in Figure 3, has the same distance to several interfaces. In Figure 3 this happens to point A. In such a situation it

is unclear which interface should be used when evaluating the fracture energy and the stiffness matrix at point A. There

is no issue in the current model, due to the local support of the phase field, as illustrated in Figure 2. Only points inside

the smeared interface, that is, the red areas in Figure 3, will be considered when computing the fracture energy and the

stiffness matrix.

4 SMEARED DISPLACEMENT JUMP ACROSS THE INTERFACE

In this section we will construct the displacement jump in a smeared setting. The displacement jump relies on a distance

parameter h. The optimal value of hwill be derived. The displacement jump error will be presented to study the influence

of h.
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(B)(A) (C)

F IGURE 4 (A) approximation of the displacement jump across the interface Γi; (B) uniaxial traction of a bar with an interface Γi; (C)

smeared interface Γ𝜉

i
(blue area). Due to the setup of the problem in (B), only mode-I crack opening 𝜐1 is included in the analysis. The

fracture energy function is given as: (𝜐1, 𝜅).

4.1 Displacement jump in a smeared setting

In the phase-field model the interface Γi only exists in a smeared sense. The displacement jump [[u]](xi) in the fracture

energy function ([[u]], 𝜿) is defined for the discrete interface, see Equation (2). Thus, we need to approximate the dis-
placement jump [[u]](xi) in a smeared sense. In the regularisation framework, the displacement filed u is continuous

in the whole domain. We can therefore approximate the displacement field around the interface Γi, see Figure 4A, by

employing a first-order Taylor expansion of u at the interface:

u

(
xi +

h

2
ni
)

≈ u(xi) +
h

2
∇uni,

u

(
xi −

h

2
ni
)

≈ u(xi) −
h

2
∇uni (23)

with xi being a point on the interface Γi, ni being the unit normal vector to the interface Γi, and h being a distance

parameter. Subsequently, we can approximate the displacement jump of point xi at the interface Γi as:

[[u]](xi) ≈ 𝝊(xi) = u

(
xi +

h

2
ni
)
− u

(
xi −

h

2
ni
)

= h∇uni (24)

with 𝝊(xi) = [𝜐1, 𝜐2] being the approximation of the displacement jump. Obviously, the parameter h should have a small

value to guarantee the feasibility of the approximation in Equation (24). In next sub-section, we will derive the optimal

value of h.

In the regularised context the displacement jump should be prescribed over the whole domain,24,25 see

the domain integration in Equation (4). However, our phase-field model, cf. Equation (21), narrows the influ-

ence of the interface and constrains it to a localised band, see Figure 3. Following the concept of the

smeared surface area, Equation (3), we now regularise the displacement jump with the aid of the Dirac-delta

function24,25:

[[u]](x) ≈ ∫
∞

xn=−∞

𝝊(x)𝛿c(xn)dxn = ∫
𝜋𝓁∕2

xn=−𝜋𝓁∕2

𝝊(x)𝛿c(xn)dxn (25)

with xn = (x − xi) ⋅ n(xi); 𝝊(x) denotes the displacement jump approximation at point x. The establishment of the

regularized form in Equation (25) requires that 𝝊(x) should be constant in the direction normal to the interface:

𝜕𝝊

𝜕xn
= 0 (26)

yielding

𝝊(x) = 𝝊(xi + xnn) = 𝝊(xi) (27)
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which indicates that we can directly use the displacement jump function in Equation (24) to compute the fracture

energy in Equation (4). This avoids the introduction of an auxiliary field to represent the displacement jump in the

cohesive interface model, being different from Verhoosel and de Borst’s method.19 In their approach, the displacement

jump is considered as an independent variable (auxiliary field) in the computation, and must be presented in the entire

domain.24

4.2 Optimal distance parameter h

To derive the optimal distance parameter h, we will consider a two-dimensional version of a uniaxial tension

problem, as illustrated in Figure 4B. The plate is characterised by a Young’s modulus E. An interface Γi is pre-

scribed in the centre of the plate. Due to the set-up of the problem, only mode-I crack opening 𝜐1 has to be

included in the analysis. The fracture energy is given as (𝜐1, 𝜅) = 1

2
k𝜐21, yielding the traction t1 = k𝜐1, with k being

the interface stiffness. The analytical solutions for the displacement, the displacement jump and the stress can be

derived as:

u1(x1, x2) =

⎧⎪⎨⎪⎩

k𝜐1
E
x1 +

k𝜐1
E

L

2
− L∕2 ≤ x1 ≤ 0−,

k𝜐1
E
x1 +

(
ū1 −

k𝜐1
E

L

2

)
0+ ≤ x1 ≤ L∕2,

[[u]] = 𝜐1 =
ū1E

kL + E
, 𝜎1(x1, x2) =

ū1kE

kL + E
, (28)

where 0− and 0+ are the left and right side of the interface Γi. We refer to this solution as the discrete analytical

solution.

For the phase-field regularised cohesive interface model, we can use the expression for the strain in Equation (13).

For the problem stated in Figure 4B,C we then obtain the stress using Hooke’s law (governing equation):

𝜎1(x1, x2) = E

(
d

dx1
u1(x1, x2) − 𝛿c𝜐1

)
(29)

with 𝜐1 being the displacement jump given in Equation (24); 𝛿c being Dirac-delta function defined in Equation (22). Then,

the momentum balance equation (governing equation) reads:

𝜎1(x1, x2) = E

(
d

dx1
u1(x1, x2) − 𝛿c𝜐1

)
= k𝜐1 (30)

with k𝜐1 being the cohesive traction acting on the interface Γi.

In the regularised framework, the displacement is continuous in the whole domain. In solving Equation (30) wemust

use the boundary condition for the problem stated inFigure 4B:u1 = ū1 at x1 = L∕2 andu1 = 0 at x1 = −L∕2. Furthermore,

we should consider the continuous displacement field at the smeared interface boundary 𝜕Γ𝜉

i
, that is, x1 = ±𝜋𝓁∕2. Then,

the displacement is given as:

u1(x1, x2) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

k𝜐1
E
x1 +

(
ū1 −

k𝜐1
E

L

2

)
𝜋𝓁∕2 ≤ x1 ≤ L∕2,

𝜐1

2
sin

(x1
𝓁

)
+
k𝜐1
E
x1 +

(
𝜐1

2
+
k𝜐1
E

L

2

)
− 𝜋𝓁∕2 < x1 ≤ 𝜋𝓁∕2,

k𝜐1
E
x1 +

k𝜐1
E

L

2
− L∕2 ≤ x1 ≤ −𝜋𝓁∕2.

(31)

We refer to this solution as the smeared analytical solution.

The displacement continuity condition at x1 = −𝜋𝓁∕2 is considered in deriving the above equation. If

we take the displacement continuity condition at x1 = 𝜋𝓁∕2 into account we can compute the displacement
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jump 𝜐1:

𝜐1 =
ū1E

kL + E
(32)

which is equal to the analytical solution of 𝜐1 in Equation (28).

To obtain the optimal distance parameter h, we use Equation (24) to compute the displacement jump 𝜐1:

𝜐1 = h∇uni = h

(
𝜐1

2

1

𝓁
cos

(x1
𝓁

)||||x1=0
+
k𝜐1
E

)
= h

(
𝜐1

2

1

𝓁
+
k𝜐1
E

)
(33)

which yields

h =
2𝓁

1 + 2k𝓁∕E
. (34)

In engineering practice, it normally holds that 2k𝓁∕E ≪ 1, due to the small values of interface stiffness k33 and the regu-

larisation length 𝓁
25 compared to the large value of Young’s modulus E, for example, for epoxy of composites E ≈ 4GPa

and E ≈ 20GPa for concrete.9 This approximation yields an approximated optimal distance parameter:

h = 2𝓁 (35)

which is independent of the shape of the cohesive-zone law.

Next, we study the influence of the distance parameter h and validate the optimal form of h as given by Equation

(35). We consider the uniaxial tension problem in Figure 4B. With a suitable re-scaling of the loading E0 = 99.0. A unit

cross-sectional area A = 1 is considered with a height H = 1 and a length L = 1. The interface stiffness is k = 1 and the

prescribed displacement is ū1 = 1 at x1 = L∕2. The plate has been discretised by the triangulation in Figure 5. We will

employ finite elements to solve the problem, see Section 5. In particular, we use 1-continuous Powell-Sabin B-splines,
which are based on triangles, for the spatial discretisation.42,47 The 1-continuity assures an improved stress prediction.48
To well represent the interface in a smeared sense, the regularisation length is chosen as l ≥ 4h (h: element size around

the crack).20 The distribution of the phase field d(x) along the interface is shown in Figure 5, prescribed analytically by

Equation (21).

(A) (B)

F IGURE 5 Initial triangulation of the plate and contour plot of the phase field prescribed along the interface. The regularisation

length is chosen as l = 0.1. (A) Initial triangulation (B) contour plot of phase field d(x).
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F IGURE 6 Displacement jump error Err and displacement u1.

Figure 6 shows the comparison between the numerical and the analytical solutions. To study the influence of the

distance parameter h, we define the relative displacement jump with respect to the analytical solution as:

Err =

√√√√√√
∫
Γ
𝜉

i

(
𝜐h1 − 𝜐a1

)2
dV

∫
Γ
𝜉

i

(
𝜐a1
)2
dV

(36)

with Γ
𝜉

i
being the smeared interface, also see Figure 4C, 𝜐h1 being the numerical solution, 𝜐

a
1 being the discrete analytical

solution in Equation (28).

Figure 6A shows that for increasing values of h, the relative error Err first reduces to a small value and then increases.

A similar behaviour is observed in Nguyen’s analysis.25 The smallest relative error Err is obtained in setting the distance

parameterh = 2𝓁, yielding support to the validity of Equation (34). Figure 6B presents the distribution of the displacement

u1. For h = 2𝓁 the numerical solution tends towards the smeared analytical solution, derived in Equation (31), whereas

for h = 0.5𝓁 the numerical solution diverges from the smeared analytical solution.

5 FINITE ELEMENT IMPLEMENTATION

To solve Equation (16), the finite element method is used. In the simulation, we need to solve the displacement field u.

The displacement jump 𝝊, linked to the interface Γi, can be inferred from Equation (24). The phase field d, used to

regularise the interface Γi, is obtained from Equation (21) and prescribed analytically along Γi, see Section 3.

In the examples we have used 1-continuous Powell-Sabin B-splines to discretise the domain.42,47 Standard

(0-continuous) finite elements could have been used equally well, but the 1-continuity ensures an improved stress

prediction, which is highly advantageous for predicting the correct direction of the crack path.48 Powell-Sabin B-splines

describe the geometry and interpolate the displacement field u in an isoparametric sense42:

x =

Nv∑
k=1

3∑
j=1

N
j

k
x
j

k
= Nx u =

Nv∑
k=1

3∑
j=1

N
j

k
U
j

k
= NU, (37)

where x
j

k
represent the coordinates of the corners Q

j

k
of the Powell-Sabin triangles, U

j

k
denotes the degrees of freedom at

Q
j

k
, and Nv is the total number of vertices. The indices j = 1, 2, 3 imply that three Powell-Sabin B-splines N

j

k
are defined

on each vertex k. N, x and U are the shape function matrix of the displacement, the vector of the coordinates and the

displacement, respectively.

In a two-dimensional setting we introduce the stress and the strain in a Voigt notation: 𝝈 = {𝜎11; 𝜎22; 𝜏12}
T and

𝜺 = {𝜀11; 𝜀22; 𝛾12}
T. With the Powell-Sabin interpolation of Equation (37), we have 𝜺(x) = Bu(x)U. The displacement
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jump 𝝊 in Equation (24) is then discretised as

𝝊(x) = hnB̃u(xi)U (38)

with

n =

[
n1 n2 0 0

0 0 n1 n2

]
(39)

and n1 and n2 being components of the normal vector n to the interface Γi. B̃u(xi) is the matrix which contains the

derivatives of the shape functions. xi is the perpendicular foot from the point x to the interface Γi.

{
𝜕u1
𝜕x1

;
𝜕u1
𝜕x2

;
𝜕u2
𝜕x1

;
𝜕u2
𝜕x2

}T

= B̃uU. (40)

In Equation (13) there is a term related to the displacement jump: sym(𝝊⊗ n)𝛿c = sym
(
𝜐inj

)
𝛿c. Substituting Equation

(38) into this expression yields

sym(𝝊⊗ n)𝛿c = h𝛿cMB̃u(xi)U (41)

with

M =

⎡
⎢⎢⎢⎢⎣

n21 n1n2 0 0

0 0 n1n2 n2
2

n1n2
2

n2
2

2

n21
2

n1n2
2

⎤
⎥⎥⎥⎥⎦
. (42)

Now, we can obtain the system of non-linear equations from the variational expression, Equation (14):

Fint,u(U) = Fext,u = ∫Γt

NTt̂dΓ (43)

with the internal force vectors:

Fint,u(U) = ∫Ω

[
BTu − h𝛿cB̃

T
u(xi)M

T
]
D
[
Bu − h𝛿cMB̃u(xi)

]
dV ⋅U

+ ∫Ω

h𝛿cB̃
T
uN

TtdV (44)

with D being the elasticity matrix, 𝛿c being the approximated Dirac-delta function defined in Equation (22), and t being

the cohesive traction given in Equation (12). Then, Equation (43) is solved by a standard Newton–Raphson procedure

with the tangent stiffness matrix:

Kuu = ∫Ω

[
BTu − h𝛿cB̃

T
u(xi)M

T
]
D
[
Bu − h𝛿cMB̃u(xi)

]
dV

+ ∫Ω

h2𝛿cB̃
T
uN

T 𝜕t
𝜕𝝊
NB̃udV . (45)

The overall algorithm reads as follows:

1. Initialization

(1.1) Initialize the displacement U0.

 1
0
9
7
0
2
0
7
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/n

m
e.7

4
1
2
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

0
/1

2
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



DE BORST and CHEN 13 of 18

(1.2) Find the perpendicular foot xi from Gauss points xg to the interface Γi, correspondingly get the normal vector

n(xi) to Γi. Then obtain the matrix B̃u(xi) in Equation (40).

(1.3) Find the distance xn =
(
xg − xi

)
⋅ n(xi) between the interfaceΓi andGauss points. TheDirac-delta function 𝛿c(xn)

is obtained from Equation (22).

2. FOR loading increment (pseudo time tn+1).

Given Un. Apply the Newton–Raphson scheme to obtain the displacement Un+1. Equation (43) and (45) will be

used.

6 NUMERICAL EXAMPLES

Two examples are now presented to assess the performance of the approach. First, we will consider a ‘H’-shaped plate

under uniaxial traction with a cohesive interface in the centre. Then, a debonding test on a fibre-reinforced epoxy spec-

imen is considered to explore interface debonding under mixed-mode loading conditions and to demonstrate the ability

of the method to accurately handle curved interfaces. In order to properly represent the interface in a smeared sense the

regularisation length has been chosen such that l ≥ 4h (h: element size around the crack).20

6.1 ‘H’-shaped plate under uniaxial traction

We consider an ‘H’-shaped plate under uniaxial loading, Figure 7A. A cohesive interface is prescribed at the centre of the

plate, and follows the Xu–Needleman relation, Equation (11).With a suitable re-scaling of the loading, we can set Young’s

modulus E0 = 1.0, Poisson’s ratio 𝜈 = 0.0. A unit cross-sectional areaA = 1 is consideredwith a heightH = 1 and a length

L = 1. In Figure 7A the discrete interface Γi is regularised as a smeared interface Γ
𝜉

i
(blue area) by the phase-fieldmodel of

Section 3. The regularisation length is set as 𝓁 = 0.1. A discrete interfacemodel is used to provide the reference solution.42

Figures 7B and 8 show the comparison between the numerical solution and the reference solution. According to

Figure 7B the displacements of the smeared model agree well with those of the discrete interface model, with exception

of course of the displacement within the smeared interface Γ𝜉

i
. The displacement plot shows a jump at the interface Γi

in the discrete model, while it is smooth along DF in the smeared interface model. The force-displacement diagram in

Figure 8 presents the relation between the horizontal resultant force Fx1 and the horizontal displacement ū1 at the left

edge. The ‘smeared’ solution compares well with the reference solution: the error level is below 1%.

(A) (B)

F IGURE 7 (A) Axial traction of a ‘H’-shaped plate with an interface Γi; the blue area indicates the smeared interface Γ
𝜉

i
; (B)

displacement u1 along the diagonal line DF in (A).
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F IGURE 8 Force-displacement curve and Err =
Fnumx1

−Fextx1

Fextx1

, the error of the numerical solution, where ‘num’ denotes the results of the

proposed method and ‘ext’ represents the discrete interface solution.

(B)

(A)

F IGURE 9 Contour plot of displacement u1 and stress 𝜎1. The figures in the left column represent the solution of the discrete model,

while the figures in the right column represent the solution of the ‘smeared’ model. (A) Contour plot of displacement u1 (B contour plot of

stress 𝜎1.
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The contour plots of the displacement u1 and stress 𝜎1 are given in Figure 9.The stresses and the displacements are

almost identical in the whole domain, except for a discrepancy in the range of the smeared interface Γ𝜉

i
, which is a direct

consequence of the term 𝝈 =
[
Bu − h𝛿cMB̃u(xi)

]
DU in Equations (10) and (44). Indeed, the regularisation strategy causes

zero stresses around the interface Γi due to the minus term in the equation for the stress.

6.2 Fiber-epoxy debonding test

We now consider a problem of fibre-epoxy debonding to demonstrate the ability of the method to analyse mixed-mode

cracks.24 Plane-strain conditions have been assumed.9 The geometry of the specimen is shown in Figure 10A. Due to

symmetry, only one quarter of the specimen has been considered with symmetry-enforcing boundary conditions. The

(A) (B)

F IGURE 10 (A) Geometry and boundary conditions of one quarter of the fibre,9 where the blue area indicates the smeared interface

Γ
𝜉

i
; (b) initial triangulation with the smallest element size e = 0.008𝜇m. To accurately describe Γ𝜉

i
the mesh around the interface Γi is refined

with the smallest element size e. In (B), the interface Γi is shown in red.

(B)(A)

F IGURE 11 (A) Response curves for the plate. The stress component 𝜎1 at xA = (15, 0)𝜇m is plotted vs the prescribed displacement ū.

A discrete interface model is employed to provide the reference solution; (B) displacement jump (𝜇m) along the interface Γi at the loading

step ū = 0.15𝜇m. The discrete interface model is employed to provide the reference solution.9
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(A)

(B)

F IGURE 12 Distribution of the displacement u1 and the stress 𝜎1 under the loading ū = 0.2𝜇m. The displacements have been

amplified by a factor 10. The left column denotes the solution of phase-field method, while the right column represents the solution of the

discrete interface model. (A) u1 contour plot (B) 𝜎1 contour plot.

material properties are as follows. For the fibre: Young’s modulus E = 225 GPa and Poisson’s ratio 𝜈 = 0.2. For the epoxy:

Young’s modulus E = 4.3 GPa and a Poisson’s ratio 𝜈 = 0.34. The tractions at the fibre-epoxy interface have been assumed

to follow the Xu–Needleman relation with tu = 50 MPa and c = 4 × 10−3 N/mm.

The response is presented in terms of the horizontal stress 𝜎1 at xA = (15, 0)𝜇m as a function of the prescribed dis-

placement ū, see Figure 11A. The results agree well with the solution of the discrete interface model.9 Figure 11B shows

the displacement jump obtained from the proposedmethod. The displacements and the stresses in the fibre and epoxy are

shown in Figure 12. The results of the ‘smeared’ model compare well with those of the discrete interface model, though

there are some oscillations in the plot around the smeared interface Γ𝜉

i
.

In this example we could have considered failure in the matrix by introducing a surface energy function.33,45,46

However, since our focus is on the interface failure modelling by the regularised phase-field model we have refrained

from this.

7 CONCLUDING REMARKS

In discrete cohesive interface models, the interfaces are treated as geometric discontinuities. To insert a new crack or

interface, remeshing around crack tips is then required. Alternatively, the extended finite element method introduces

enrichment functions to describe geometric discontinuities such as cracks. To avoid topological changes or the intro-

duction of enrichment functions we propose a phase-field regularised cohesive interface model to arrive at a smeared
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representation of the interface. Subsequently, the displacement jump is obtained by a first-order Taylor expansion of the

displacement at the interface. Then, the cohesive zone law can be used directly in the analysis, similar to a fully discrete

model.

The displacement jump function depends on the choice of a distance parameter. An optimal value of this parameter is

derived from the analytical solution of a uniaxial tension problem.We have assessed the accuracy of the proposedmethod

by comparing with the discrete interface solutions, featuring straight and curved interfaces.
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