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Measuring parental care behaviour in the wild is central to the study of animal ecol-
ogy and evolution, but it is often labour- and time-intensive. Efficient open-source 
tools have recently emerged that allow animal behaviour to be quantified from videos 
using machine learning and computer vision techniques, but there is limited appraisal 
of how these tools perform compared to traditional methods. To gain insight into 
how different methods perform in extracting data from videos taken in the field, we 
compared estimates of the parental provisioning rate of wild house sparrows Passer 
domesticus from video recordings. We compared four methods: manual annotation 
by experts, crowd-sourcing, automatic detection based on the open-source software 
DeepMeerkat, and a hybrid annotation method. We found that the data collected by 
the automatic method correlated with expert annotation (r = 0.62) and further show 
that these data are biologically meaningful as they predict brood survival. However, 
the automatic method produced largely biased estimates due to the detection of non-
visitation events, while the crowd-sourcing and hybrid annotation produced estimates 
that are equivalent to expert annotation. The hybrid annotation method takes approxi-
mately 20% of annotation time compared to manual annotation, making it a more 
cost-effective way to collect data from videos. We provide a successful case study of 
how different approaches can be adopted and evaluated with a pre-existing dataset, 
to make informed decisions on the best way to process video datasets. If pre-existing 
frameworks produce biased estimates, we encourage researchers to adopt a hybrid 
approach of first using machine learning frameworks to preprocess videos, and then to 
do manual annotation to save annotation time. As open-source machine learning tools 
are becoming more accessible, we encourage biologists to make use of these tools to 
cut annotation time but still get equally accurate results without the need to develop 
novel algorithms from scratch.
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Introduction

Parental care behaviour is a life history trait that is com-
monly studied in a wide range of animals (Royle et al. 2012). 
Parental care is defined as any behaviour that increases the 
fitness of offspring (Clutton-Brock 1991, Royle et al. 2012) 
at a cost of the survival probability of parents (Trivers 1972), 
presenting a life history trade-off (Stearns 1992). While there 
are many forms of parental care (e.g. nest building, preda-
tor defence, incubation, and feeding; Royle et al. 2012), the 
feeding of young is considered particularly costly for par-
ents because of the immense time and energy investments 
(Winkler and Wilkinson 1988, Owens and Bennett 1994). A 
large body of literature with a focus on birds, where 90% of 
species engage in parental care (Cockburn 2006), describes 
how nest visit frequency to dependent young is associated 
with aspects of an animal’s life history. For example, studies of 
the life history trade-off between parent and offspring fitness 
(Schroeder et al. 2013), parental coordination (Wojczulanis-
Jakubas et al. 2018, Ihle et al. 2019), parent–offspring con-
flict (Estramil et al. 2013), or ageing (Wilcoxen et al. 2010) 
have all used the frequency of parental visits to nests (provi-
sioning rate) as a proxy of parental investment. 

However, measuring provisioning rates in wild birds is 
labour-intensive and time-consuming. Data are traditionally 
collected by direct observation (Dunn and Cockburn 1996), 
which can be invasive by disturbing animals in the vicinity 
of their nest (Rose 2009). Less invasive methods include 
video recording (Nakagawa et al. 2007, García‐Navas and 
Sanz 2010), radio tracking (Mitchell et al. 2012), and the 
use of radio-frequency tags and antennas at the nest (RFID; 
Ringsby et al. 2009, Mariette et al. 2011, Sánchez-Tójar et al. 
2017). While radio tags allow visitation rates to be quanti-
fied over long periods of time, the technology is prone to 
missed detections (up to 20%; Mariette et al. 2011). Video 
analysis is more flexible and allows for other behaviours to be 
quantified, such as nest defence, copulations, or feeding load 
(Lendvai et al. 2015), but manual annotation of video data 
is time-consuming (Tuyttens et al. 2014). Another alterna-
tive is crowd-sourcing (Desell et al. 2015), where students or 
citizen scientists are recruited to collect data. Crowd-sourcing 
is efficient in collecting data, while also being educational for 
students (Voss and Cooper 2010, Unger 2022), and increases 
engagement with the public. However, time has to be invested 
in training volunteers and in designing suitable software for 
citizen scientists (Desell et al. 2015, Root-Gutteridge et al. 
2021). As the amount of video data collected by ecologists 
continues to increase, there is a need for more effective ways 
to extract data from video recordings (Weinstein 2018a). 

Recent advances in deep learning (Borowiec et al. 2021) 
and computer vision (Weinstein 2018a) provide a solu-
tion to this problem, by allowing quick and consistent 
extraction of information from field data (Valletta et al. 
2017). For example, machine learning methods have been 
successfully applied to solve problems with species iden-
tification (Wäldchen and Mäder 2018), bird song quantifi-
cation (Pearse et al. 2018, Priyadarshani et al. 2018), social 

behaviour measurement (Robie et al. 2017), and individual 
identification (Körschens et al. 2018, Bogucki et al. 2019, 
Schofield et al. 2019, Ferreira et al. 2020). Since computing 
resources are cheaper than human labour, such approaches 
have the potential to reduce the financial and time costs of 
data collection, evidenced by a recent increase in popularity 
for ecological applications (Borowiec et al. 2021, Tuia et al. 
2022). 

Recently, several open-source machine learning software 
packages have been developed to make methods acces-
sible to biologists. Examples include software for tracking 
animals and behaviours in captive settings (Harmer and 
Thomas 2019, Pennington et al. 2019, Sridhar et al. 2019, 
Walter and Couzin 2021), pose estimation (Graving et al. 
2019, Pereira et al. 2019, Lauer et al. 2022), or analysing 
timelapse videos (Weinstein 2015, 2018b). However, few 
studies have investigated whether these tools can be read-
ily applied to pre-existing datasets, especially in field studies 
and long-term datasets. While much open-source software 
can be useful for processing videos collected in the field, 
biologists often do not know the appropriate software to use 
for their specific project, or are unsure whether investing 
time in constructing novel software for their study system 
will be worth the effort. 

Here, we field tested alternative data collection methods 
– manual, crowd-sourcing, automatic (machine learning), 
and a manual/automatic hybrid method – in a model sys-
tem with annotated parental care videos of wild house spar-
rows Passer domesticus on Lundy Island, UK (Nakagawa et al. 
2007). We used DeepMeerkat (Weinstein 2018b), a popular 
machine learning-based framework that uses convolutional 
neural networks (CNNs) to detect movement events from 
wildlife monitoring videos. Despite the name, the software 
was initially designed for use in a hummingbird popula-
tion (Weinstein 2018b, Marcot et al. 2019), and has been 
adapted for use in marine (Sheehan et al. 2020) and insect 
(Pegoraro et al. 2020, Mertens et al. 2021) systems. To the 
best of our knowledge, DeepMeerkat and its predecessor 
MotionMeerkat (Weinstein 2015) are the only open-source 
software tools designed specifically for counting occurrences 
of animals in ecological timelapse videos (Weinstein 2018a), 
hence we chose DeepMeerkat since it best fit the nature of 
our dataset. While Marcot et al. (2019) did a comparison 
of the efficacy of MotionMeerkat (Weinstein 2015) in the 
hummingbird system, there has been limited appraisal of the 
accuracy and effort trade-offs that researchers need to con-
sider when applying these novel tools in their own systems. 
For this reason we set out to compare four data collection 
methods for measuring parental care visitation rates: 1) man-
ual, 2) crowd-sourcing, 3) automatic (using machine learn-
ing), and 4) a hybrid of manual and automatic. Using a large 
multi-year dataset, we determined how well the tool per-
formed in extracting parental care data, then compared the 
accuracy and time investment trade-off for each data collec-
tion method, to provide insight into how open-source tools 
can be readily incorporated into pre-established workflows to 
aid data collection. 
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Material and methods

 We first describe the study system and the parental care 
video dataset used, then introduce a framework showing 
how a researcher can approach the use of machine learning 
tools with similarly large datasets. We then describe each of 
the data collection methods in detail, followed by evaluation 
metrics used to compare the methods. We then test a simple 
biological hypothesis of effort–fitness trade-offs, and finally 
quantitatively compare the accuracies of the four methods. 

Study system

Data were collected from a population of house sparrows P. 
domesticus on Lundy Island (51°10′N, 4°40′W) in the Bristol 
Channel, UK. This population is part of a long-term study and 
has been monitored systematically since 2000, with > 99% of 
individuals each marked with a unique combination of colour 
rings, a metal ring with a unique number from the British Trust 
for Ornithology (Cleasby et al. 2011), and a unique passive-
integrated transponder (Schroeder et al. 2011). Since house 
sparrows rarely fly over large bodies of water (Magnussen and 
Jensen 2017) very little immigration or emigration has taken 
place in the population (Schroeder et al. 2015). As a result, 
the population has high recapture rates with no trapping bias 
(Simons et al. 2015), and we have reliable life history data 
available for every individual (Schroeder et al. 2015).

Parental care data

The Lundy sparrow population is situated within an area of 
0.2 km2 around a small village, the only viable habitat on the 
island (Schroeder et al. 2011). Nest boxes for the sparrows 
are checked systematically to detect all breeding attempts 
throughout the summer breeding season (Cleasby et al. 
2011). After eggs are found and the identities of the parents 
confirmed from their colour–ring combinations, 90-min vid-
eos (720 × 394, 25 fps) are recorded on Day 7 and Day 11 
after egg hatching, using video cameras placed 2–5 m away 
from the nest box and with a field of view of at least 30 cm 
radius around the nest entrance to measure parental visita-
tions (Nakagawa et al. 2007a for detailed procedure). 

Data collection framework

Here, we describe a framework for formulating the 
approaches that researchers can use when incorporating 
machine learning tools for video analysis (Table 1). We cat-
egorised data collection methods into four types: 1) manual: 

the traditional approach of data collection by expert research-
ers watching videos and transcribing behaviours manually, 2) 
crowd-sourcing: data collection manually by a large group of 
people such as students or the general public, 3) automatic: 
data collection by a machine learning tool, without human 
intervention, and 4) hybrid: a combination of both manual 
and automatic. Since the parental provisioning videos were 
taken in the field, there is no reliable ground truth for visi-
tation rates because of differing video conditions, observer 
bias, or subjectivity of behaviours (Tuyttens et al. 2014). For 
this reason, when comparing among methods, we are limited 
to assuming that manual annotation by experts is a suitable 
baseline. Finally, we also distinguish two main types of data 
that can be extracted with these methods: 1) bird presence, 
where birds are present within the video frame, and 2) bird 
visitation, a subset of the bird presence data, where birds 
enter the nest box or feed their young from the outside.

Method 1: manual

Manual annotation is based on an established protocol for 
parental care data for the study system (Nakagawa et al. 2007). 
During video annotation, birds were considered as feeding 
their young when entering and exiting the nest box and, in 
rare cases, when feeding behaviour could be observed through 
the nest box entrance with the parents not fully entering the 
nest box. We recorded when birds were perched outside the 
nest box as a separate behaviour that did not count towards 
visitation rate estimates. Visitation rates were calculated using 
the time period from the first visit of either parent until the 
end of the video, or until 90 min had elapsed from the first 
visit, whichever came first. We started counting from the first 
visit, and not from the beginning of the video, to allow time for 
habituation. The resulting time during which visits were scored 
was termed the effective observation time (Nakagawa et al. 
2007a). The total number of visits by both parents was divided 
by the effective observational time to obtain the visitation rate 
(visits/h) as a measure of parental provisioning. 

Between 2004 and 2015, videos (n = 2112) were manually 
annotated by graduate students and researchers working on 
the Lundy house sparrow project to obtain visitation rates. 
The dataset has contributed to multiple publications on the 
evolution of parental care (Nakagawa et al. 2007, Ihle et al. 
2019, Schroeder et al. 2012, 2013, 2016, 2019), and we con-
sidered these data to be the manual expert (Table 1) dataset. 

Method 2: crowd-sourcing

We also used a crowd-sourcing method where videos (n = 18) 
were provided to a cohort of 36 second-year undergraduate 

Table 1. Summary of methods employed and definitions. Methods categorized into four types: (1) manual, (2) crowd-sourcing, (3) automatic, 
and (4) hybrid. Expert manual annotation used as a baseline to compare the other methods.

Method Definition Sample size (number of videos)

(1) Manual Annotation by expert researchers 2112
(2) Crowd-sourcing Annotation by undergraduate students 18
(3) Automatic Processing using machine learning pipeline without human intervention 2629
(4) Hybrid Annotation of clips extracted from automatic pipeline by expert researcher 18
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students, who annotated full-length videos as part of their 
study. Students were first briefed on the annotation proto-
col as above. Each student was then assigned two videos to 
annotate. Since students are not trained experts, more than 
one student was assigned to every video to ensure no bias was 
introduced by individual observers. Finally, the average visi-
tation rates for each video were calculated across observers. 
Each student also measured the approximate time it took for 
them to fully annotate each video.

Method 3: automatic

We processed videos collected between 2011 and 2019 
(n = 2629) with the open-source software DeepMeerkat 
(Weinstein 2018b), which detects image changes between 
frames and identifies moving objects in wildlife monitoring 
videos. While we considered other approaches such as object 
detectors (e.g. YOLOv8; Jocher et al. 2023) or background 
subtraction from the OpenCV library (Bradski 2000), we 
decided DeepMeerkat was the most appropriate since it is 
designed for wildlife videos, has a user-friendly interface, and 
has models pre-trained on similar tasks (Weinstein 2018b). 
Since DeepMeerkat only detects motion, events that are 
detected may not always accurately correspond to visitations. 
This method processes the data without human intervention, 
and has a 1:1 processing time on a single CPU (e.g. a 1.5 h 
video takes approximately 1.5 h; Marcot et al. 2019).

We first processed each video with DeepMeerkat, then 
merged movement events detected fewer than 40 frames apart 
(25 fps videos, i.e. 1.6 s) and more than two frames in length 
as the same bird presence event. We then further grouped the 
events into 7 s video clips, to allow downstream annotation 
(Method 4 below). We observed that most bird visitations 
can be captured well within the 7 s threshold. We tallied the 
number of events for each video, then divided the tally by 
the effective observation time (above) to obtain the automatic 
presence rate (in events/h; Fig. 1). Since most of the visitation 
events on Lundy sparrows were by parents entering the nest 
box, we broadly assumed each visitation event corresponded 
to two presence events (entering and exiting the nest box). So, 
the automatic presence rate was divided by two. Finally, since 
certain videos produced over-inflated presence rate measures 
due to the filming environment (e.g. camera shaking, con-
tinuous background movement), we removed any videos with 
an automatic presence rate of 72.7 events/h or more (1.31% 

videos removed), since that was the maximum visitation rate 
we have ever recorded through expert manual annotation. 

Method 4: hybrid

In the hybrid method, the same videos used in the crowd-
sourcing method (n = 18) were first processed by the auto-
matic method (Method 3) and then the video clips were 
manually annotated by experts to obtain visitation rates. This 
method filtered out events where birds were present, but not 
attending the nest, so manually converting the presence rate 
obtained from automatic processing (Method 3) to visitation 
rates. The time it took to annotate each video was recorded 
for comparison with other methods. 

Comparing manual and automatic methods

To examine the reliability of the methods, we first compared 
the data obtained by manual annotation by experts with the 
automatic method (manual, n = 2112; automatic, n = 2629; 
Table 1). We used a Pearson’s correlation test to determine 
whether both measures were correlated on videos where both 
methods were used (n = 781), then used both measures in a 
case study to test the hypothesis that parental care was ben-
eficial to offspring and parental fitness (Trivers 1972). We 
tested whether broods whose parents had higher presence or 
visitation rates had a higher fledging and recruitment success, 
with ‘fledging’ referring to a sparrow chick being successfully 
fledged from the nest, and recruits being fledglings that pro-
duced at least one genetic offspring in their lifetime. While 
we expected visitation rates by expert manual annotation to 
predict higher fitness from previous studies (Schroeder et al. 
2013), we were also able to determine whether bird presence 
rates collected by automatic processing could similarly be a 
proxy for parental care behaviour. 

We fitted two generalised linear mixed models with the 
number of fledglings and the number of recruits for each 
brood as respective response variables, against the visitation 
rates and presence rates as explanatory variables, using a 
Poisson link function. We then z-transformed both measures 
of parental provisioning to allow effect sizes between the 
data collected by manual and automatic methods to be com-
pared. We used absolute count of fledglings and recruits as a 
proxy of fitness, because we were interested in how the abso-
lute differences in provisioning rates in the brood level will 

Figure 1. Automatic pipeline for processing parental provisioning videos of house sparrows on Lundy Island, UK. Videos were processed 
using open-source software DeepMeerkat (Weinstein 2018b), outputting frames with movement detected. Events were then defined by 
grouping movement frames that were less than 40 frames apart and at least two frames long. Finally, events for each provisioning video were 
tallied to obtain a presence rate estimate. 
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affect the fitness outcomes of the whole brood. Moreover, 
there is no way of knowing which offspring the parents are 
feeding within a brood, so we assumed that parental invest-
ment scales proportionately to the number of offspring 
(Schroeder et al. 2013). The clutch size of Lundy sparrows 
also has limited variation (4·2 ± 0·8; Westneat et al. 2014). 
To account for other effects that might affect fitness and 
parental care behaviour, we ran the models with the follow-
ing specifications. Since videos were collected on Day 7 and 
Day 11 after hatching, we averaged the values collected on 
both days to match with the response variable, because there 
was only a single fitness estimate for each brood. However, 
since visitation rates increase with brood age (Schroeder et al. 
2019), we also ran the models separately using the rates on 
Day 7 and Day 11 to ensure results were consistent. We 
also added the ages of the mother and father (Wiebe 2018), 
and hatch date (days after 1 April) as fixed effects to control 
for their effects on fitness outcomes. Since breeding success 
usually correlates with peak food abundance (Lack 1968, 
Cresswell and Mccleery 2003), we added a quadratic fixed-
effect term for hatch date, assuming peak food abundance 
in the middle of the breeding season. Next, the population 
has undergone routine cross-fostering, which is associated 
with slightly increased chick survival (Winney et al. 2015), 
hence we added a fixed factor for fostered status (yes/no) in 
all models. Note that the parental provisioning rates we used 
were always from the parents that actually visited, who were 
not always the genetic parents of the young (Lattore et al. 
2019). We added the social parent IDs and the year as ran-
dom effects to control for environmental effects (Rose et al. 
1998), and repeatable visitation rates by individual parents 
(Nakagawa et al. 2007). Finally, the location of the nest box 
was added as a random effect to control for environmental 
effects (Schroeder et al. 2012). 

We ran all models using the R package ‘MCMCglmm’ 
(Hadfield 2010) in R ver. 3.6.1 (www.r-project.org). The 
posterior distributions and autocorrelations were checked 
following Hadfield (2014) to ensure all fixed and random 
effects converged without violating any model assumptions. 
We defined a parameter estimate as statistically significant if 
the 95% credible interval did not overlap with zero. 

Comparing annotation methods

Next, we quantitatively compared crowd-sourcing, auto-
matic, and hybrid approaches for collecting data on parental 
care videos using expert manual annotation as a baseline. We 
standardised the measures by dividing the number of events 
detected (presence events for automatic, and visit events for 
crowd-sourcing and hybrid) by each method over the base-
line, to obtain a proportion of events detected compared 
to the baseline. Since a proportion of 1 would show that a 
method detected the same number of events as the baseline, 
we carried out one-sample t-tests to determine whether each 
method was significantly different from the baseline (by set-
ting the theoretical mean (µ) to 1). We then compared all 
methods with each other, using pairwise t-tests.

Finally, to assess the performance and sources of error of 
the automatic data collection method, we further analysed 
the data collected by hybrid expert annotation on video clips 
(Method 4; n = 1650 bird presence events over 18 videos). 
We first computed false positive rates by comparing the 
automatic results with what the expert annotators recorded. 
We calculated the proportion of events where bird visitation 
was falsely detected, both in the case where the bird was not 
present within the frame, or when the bird was present but 
not visiting the nest. We then computed false negative and 
true positive rates by calculating the proportion of bird visi-
tation events (based on expert manual annotation; Method 
1) that was captured (true positive) or missed (false nega-
tive) by the automatic method. All the proportions were 
calculated for each video, then subsequently averaged across 
videos.

Results

Automatic method is comparable to manual annotation

We found a significant positive correlation between expert 
manual annotation and the automatic method (r = 0.62, 
95% CI: 0.58–0.66, p < 0.001; Fig. 2a). We also found that 
both proxies of parental care behaviour significantly predicted 
an increase in both the number of fledglings and recruits in 
our statistical analysis (Fig. 3). None of the fixed and ran-
dom effects predicted fitness outcomes, except for a signifi-
cant negative quadratic effect for hatch date in most models, 
showing that fitness is maximised in the mid-breeding season 
(Supporting information). To test for the effect of outliers, 
we also ran the same models after removing data from nests 
with five recruits or fledglings, which yielded similar results 
(Supporting information).

Comparing data collection methods

 The proportion for the automatic method was significantly 
inflated based on the proportion we computed for the number 
of detected events compared to the baseline (Table 2, Fig. 2b). 
The proportion for crowd-sourcing and hybrid annotation 
was not significantly different from the baseline (Table 2, 
Fig. 2b), showing that the data obtained were consistent with 
expert annotation. The estimates obtained by the crowd-
sourcing undergraduate students were consistent, with the 
majority of students measuring a feeding rate within a differ-
ence of 10 compared to the baseline value (relative to mean 
of ~ 58.5 events in each video; Supporting information). On 
average, the crowd-sourcing data extraction by undergradu-
ate students took 65.4 min per video (min 25 min, max 100 
min), whereas the hybrid expert annotation method took an 
average of 12.0 min per video (min 4.6 min, max 31.0 min). 
This was an average of 53 min less time required when first 
processing videos using the hybrid pipeline, but more time 
consuming overall (102; 12 + ~ 90 min computer processing 
time). 
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To gain further insight into the sources of error and per-
formance of the automatic method, we computed a confu-
sion matrix using data from hybrid manual annotation (Table 
3). We show that the automatic pipeline had a false negative 
rate of 0.104. However, there was a higher false positive rate 
of 0.260, when many non-visitation events were captured. 
Further analysis showed that only 0.044 of visits were true 
false detections where no birds were present, and the majority 
(0.216) were caused by non-visitation events, where the birds 
were detected correctly by DeepMeerkat, but the bird was 
not visiting the nest. 

Discussion

In this study, we set out to compare four different methods 
for collecting parental provisioning data on a pre-existing 
video dataset of house sparrows to determine whether avail-
able open-source software can aid biologists in laborious data 
collection tasks. Using an automatic data collection method 
based on DeepMeerkat (Weinstein 2018b), we extracted visi-
tation rates from parental provisioning videos of house spar-
rows and found that the results obtained correlated positively 
with expert manual annotation. Our data analysis also shows 

Figure 2. Comparison of data collection methods for parental provisioning videos of house sparrows Passer domesticus on Lundy Island, UK. 
(a) Positive correlation between the presence and visit rates collected by the automatic method and expert manual annotation. The red line 
shows a significant positive correlation, and the dotted line shows a 1:1 line if both rates were equal. (b) Comparison of the proportion of 
events collected compared to the expert annotation baseline of the 18-video subset. (1) Crowd-sourcing : annotation by a cohort of under-
graduate students. (2) Automatic: collected by automatic pipeline without human intervention. (3) Hybrid: expert manual annotation of 
output clips identified by the automatic pipeline. The red dotted line represents the reference level of 1, brackets and labels represent the 
significance of paired t-tests between each pair of datasets (NS: not significant, *: p < 0.05, **: p < 0.01, ***: p < 0.001).

Figure 3. Relationship between the number of (a) fledglings and (b) recruits with mean provisioning rates in house sparrows Passer domes-
ticus on Lundy Island, UK. Provisioning rates (visits/h) for the manual expert method (blue) were collected by trained individuals, while 
provisioning rates (presence/h) for automatic methods (yellow) were obtained by the machine learning method without human interven-
tion. Provisioning rates were further z-transformed to allow effect sizes to be comparable, with 0 representing the mean and each unit rep-
resenting one standard deviation away from the mean. 
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that the automatic method led to comparable predictions 
of increased fitness for parents that expressed more parental 
care behaviour, showing that this new metric can be used as a 
proxy of parental investment (Trivers 1972, Schroeder et al. 
2013). However, further analysis shows that the automatic 
method has high false positive and false negative error rates, 
since DeepMeerkat was designed to detect the presence of 
animals (Weinstein 2018b), and not the specific behaviour 
of feeding the young. We highlight that a hybrid approach in 
which raw videos are first processed through DeepMeerkat to 
obtain clips, then manually annotated, can obtain estimates 
equivalent to expert manual annotation in approximately 
20% of the time. With the rapid development of open-source 
tools, we encourage any researchers with large video datasets 
to evaluate currently available software and, if required, to 
apply a hybrid method for annotation to considerably reduce 
the time investment needed to process huge backlogs of video 
data if there is no trade-off in accuracy.

Using the open-source software DeepMeerkat, we esti-
mated an automatic presence rate that broadly correlated 
with expert manual annotation (r = 0.62) and predicts an 
increase in fledglings and recruits in broods. However, while 
a fully automatic method seems to be able to extract bio-
logically meaningful presence rates for the Lundy sparrows, 
the effect size is quite low and should be interpreted with 

caution. This result may also not generalize well, because 
the current study system had a large sample size and a broad 
correlation between feeding bouts and the frequency of par-
ents being in proximity with the nest (as a weaker alternative 
measure of parental care). The placement of the camera to 
collect these videos also contributed to the effectiveness of 
DeepMeerkat, since it was pointed directly at the nest box, 
and most movements in the frame were caused by parents 
visiting the nest rather than being movements in the envi-
ronment or by chicks. As such, DeepMeerkat was an appro-
priate tool to use given the current dataset, but may be less 
applicable to open nest systems (Reif and Tornberg 2006) or 
cameras placed inside nest boxes (Zárybnická et al. 2016), 
which can dramatically increase the number of false detec-
tions from the movement of chicks or the background. This 
was also evident from the small subset of videos (1.31%) that 
was removed in the current dataset due to over-detection. 
To have an automatic pipeline that can reduce these biases, 
alternative custom machine learning algorithms will need to 
be designed to automatically recognize nest visits instead of 
just bird presence, using behavioural classification techniques 
(Conway et al. 2021, Ditria et al. 2021). However, this was 
largely outside the scope of the current study and represents 
an exciting future development.

While we show that DeepMeerkat was appropriate for the 
current study system, further analysis of the data collected 
by the hybrid annotation method revealed various sources of 
error when applying the automatic pipeline. We showed that 
the pipeline produced biased results, with a false negative rate 
averaging 10%, showing that the software can miss visitation 
events. However, this under-detection was negated by a high 
false positive rate (26%), mainly caused by the over-detec-
tion and misclassification of non-visitation events (22%) and 
false detections (4%), causing the overall estimate to be over-
inflated. The larger false positive rate can be attributed to the 
original design of DeepMeerkat, which is intended to detect 
movement between frames, instead of feeding behaviours. 
In this sense, fine-tuning DeepMeerkat using more frames 
from the current study system may potentially have reduced 
the false negative and false detection rates, but would have 
been ineffective because the inflated measure was mainly 
due to misclassification of non-visitation events (22%). 
Another source of the inflated measure can also be attributed 
to the definition of 7 s for each event, where events can be 
over-inflated when parents are staying in frame for a longer 
period of time. Better clustering algorithms can be applied to 
group events without relying on simple thresholds. Overall, 
DeepMeerkat was an appropriate choice of software for the 
current system, even though it produces biased estimates. 
While alternative approaches such as training an object detec-
tion model (Jocher et al. 2023) might reduce false detections, 
it will still result in similarly inflated measures unless a model 
is explicitly trained to detect behaviours. 

Using a smaller subset of testing videos, we show that 
crowd-sourcing annotation and hybrid expert annota-
tion were both comparable with the baseline set by expert 
manual annotation. Of all the methods, the crowd-sourcing 

Table 2. Comparison of three annotation methods using a validation 
dataset of 18 provisioning videos of house sparrows Passer domesti-

cus on Lundy Island, UK. Proportions compared to the baseline 
were calculated by dividing the number of detected events using 
each method by the measure obtained by expert manual annota-
tion. Test statistics were obtained from one-sample t-tests, with the 
theoretical mean (µ) set to 1. 

Method Mean
95% Confidence 

interval t p-value

(1) Crowd-sourcing 
annotation

1.01 0.97–1.06 1.13 0.52

(2) Automatic 1.39 1.17–1.63 3.68 0.002
(3) Hybrid 

annotation
0.94 0.88–1.01 −1.78 0.10

Table 3. Confusion matrix to evaluate performance of the automatic 
method (labelled ‘Predicted value’) compared with hybrid annotation 
by experts (labelled ‘Actual value’), based on 18 provisioning videos 
of house sparrows Passer domesticus on Lundy Island, UK. Reported 
as a mean (standard deviation). 1Proportion of nest visitation events 
detected by automatic method. 2Proportion of false detections by 
automatic method. These are further separated into: No presence: no 
bird was present in frame; No visitation: bird in frame, but not visiting 
nest. 3Proportion of bird visitation events missed entirely by automatic 
method. 4No estimate for true negative rates.

Actual value

Positive Negative

Predicted 
value

Positive True positive1 False positive2

0.896 (0.11) 0.260 (0.16)
No presence: 0.044 (0.07)
No visitation: 0.216 (0.14)

Negative False negative3 True negative4

0.104 (0.11) NA
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annotation appeared to be the most accurate, albeit with 
the recorded proportion of events compared to the baseline 
being larger than one, suggesting that the undergraduate stu-
dents may have identified some visitation events that were 
missed by expert manual annotation. This is possibly due to 
the multi-observer effect (Guay et al. 2013). We also show 
that the variation in parental visitation estimates for each 
individual annotator were consistent, within ± 10 visitation 
events compared to the baseline, with a mean of ~ 58.5 events 
per video (Supporting information). However, the between-
annotator variance of 10 visits can still introduce bias in 
provisioning estimates, hence we still recommend multiple 
observers to annotate a single video for future researchers 
who look to adopt a crowd-sourcing approach.

Even though crowd-sourcing seems to be the most accu-
rate method, the annotation time for hybrid annotation by 
the investigator only takes approximately 20% of the time 
compared to crowd-sourcing annotation, and may still 
obtain comparable and accurate visitation rates. While it 
takes more time overall once computing processing is con-
sidered (average ~ 102 min compared to 65.4 min), com-
putational time is much cheaper than human labour, and 
videos can be processed non-stop (e.g. overnight). For exam-
ple, if there are 100 videos each 90 min in length in a single 
field season, all the data can be realistically processed on one 
laptop in approximately 9000 min, which is approximately 
6.25 days, i.e. just under a week non-stop. We also show 
that the under-detection (false negative rate: 10%) reported 
above is negligible, such that after manual annotation in the 
hybrid method, the estimates of provisioning rates are still 
comparable to the baseline. A weakness of the approach is 
that if researchers would like to retrieve these missed detec-
tions, they will have to review the whole video from scratch, 
so future researchers will have to be aware that the paren-
tal visit rates estimated by this method might be potentially 
biased. Researchers who adopt this workflow in their study 
systems should also first make an evaluation and ensure the 
false negative rate is negligible, similar to the current case 
study. Nevertheless, we highlight the value of first using an 
open-source machine learning tool to pre-process videos 
for annotations, which not only reduces the actual annota-
tion time, but also the time needed to train observers in the 
appropriate experimental protocol. 

For field protocols that involve video recordings, we 
encourage researchers to explore available open-source 
machine learning tools and to evaluate the methods against 
traditional protocols. If the automatic tools produce com-
parable estimates, the method can be used directly to auto-
mate data collection, but if the pipeline produces biased 
estimates, researchers can consider hybrid approaches to save 
annotation time. For researchers with similarly large time-
lapse video datasets in the field, we also recommend the use 
of DeepMeerkat, instead of custom algorithms that require 
more domain-specific knowledge. DeepMeerkat not only 
has a user-friendly graphical interface but also requires lim-
ited investment in terms of machine learning knowledge or 
expensive hardware (e.g. GPUs). 

Conclusion

Machine learning and computer vision approaches are 
becoming widely used in ecology (Borowiec et al. 2021, 
Couzin and Heins 2022), but adoption of these frameworks 
by ornithologists is still slow and limited. Here we present 
a case study of using an open-source software to first pre-
process long-duration videos before annotation, to consider-
ably reduce annotation time without significant reduction 
in accuracy. With the increase in available open-source tools 
to reduce manual annotation efforts (Van Horn et al. 2015, 
Weinstein 2018b, Lauer et al. 2021, Walter and Couzin 
2021), and the increase in computing literacy of ecology 
graduates (Farrell and Carey 2018), we encourage research-
ers to evaluate the applicability of these tools and, if needed, 
make use of hybrid approaches. This would not only unlock 
the major time bottleneck of unanalysed data that would 
otherwise go to waste, but also allow more interesting bio-
logical hypotheses to be tested.
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