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Machine learning and topological 
data analysis identify unique 
features of human papillae in 3D 
scans
Rayna Andreeva 1, Anwesha Sarkar 2 & Rik Sarkar 1*

The tongue surface houses a range of papillae that are integral to the mechanics and chemistry 
of taste and textural sensation. Although gustatory function of papillae is well investigated, the 
uniqueness of papillae within and across individuals remains elusive. Here, we present the first 
machine learning framework on 3D microscopic scans of human papillae ( n = 2092 ), uncovering 
the uniqueness of geometric and topological features of papillae. The finer differences in shapes 
of papillae are investigated computationally based on a number of features derived from discrete 
differential geometry and computational topology. Interpretable machine learning techniques show 
that persistent homology features of the papillae shape are the most effective in predicting the 
biological variables. Models trained on these features with small volumes of data samples predict the 
type of papillae with an accuracy of 85%. The papillae type classification models can map the spatial 
arrangement of filiform and fungiform papillae on a surface. Remarkably, the papillae are found to be 
distinctive across individuals and an individual can be identified with an accuracy of 48% among the 15 
participants from a single papillae. Collectively, this is the first evidence demonstrating that tongue 
papillae can serve as a unique identifier, and inspires a new research direction for food preferences and 
oral diagnostics.

The tongue is a highly sophisticated, heterogeneous anatomical structure and its operation is fundamental to 
speech, friction regulation and oral processing of food. The surface of the tongue is covered with tiny projec-
tions known as papillae which enable perception of taste, texture and oral mechanics. Of these numerous ana-
tomical projections, fungiform papillae are considered as phenotypic markers of chemosensation of taste as they 
house the taste buds1, whereas filiform papillae that are devoid of taste buds are considered to be regulators of 
mechanoreception2 for textural perception. Women are believed to have more fungiform papillae and are classed 
more frequently as supertasters3. On the other hand, increased number of papillae have been found to be associ-
ated with enhanced fatty perception4,5. In addition to taste perception, papillae on the tongue are responsible for 
mechano-sensing. Mechano-sensing refers to our ability to sense the texture, friction, lubrication and touch on 
the tongue surface, and is carried out mainly by numerous filiform papillae that act as fine strain-amplified sen-
sors on the tongue surface. These sensory functions are critical for manipulation and transport of food and liquids 
in the mouth2,6. Such textural properties also influence our psychological reaction to food. For example, feelings 
such as satiety and therefore hunger are influenced by perception of friction and lubrication7,8. It has recently 
been shown that our preference for certain food such as chocolates is driven by surface lubrication that can be 
measured by artificial tongue-like surfaces9. Besides food preferences, there is burgeoning interest in understand-
ing the complex morphology of the tongue due to its involvement in various age-related oral conditions10–12, 
mucosal degeneration and systemic diseases13–16. Certain medical conditions17 and inter-individual differences 
are known to be associated specifically with the morphology of the papillae and the tongue. Understanding the 
finer details in morphology, differences in papillae structures can thus lead to fabricating novel bio-inspired 
artificial surfaces in biomedical engineering, food engineering and therapeutics18,19.

The intricate geometry of the tongue at a microscopic scale can be appreciated in 3D scans (see Fig. 1). These 
images are obtained via surface reconstruction of 3D optical scans of a silicone-polymer mask of a human tongue. 
Fungiform papillae (Fig. 1b) are larger, sparsely distributed over the surface, and have a simple hemisphere-like 
shape. The average diameter of a fungiform papilla is about 878µm18, and they are clearly visible in larger images 
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(Fig. 1a). The filiform papillae show a more intricate crown shape (Fig. 1c). They are smaller (about 355µm in 
diameter) and substantially more numerous. A square centimeter of human tongue surface is estimated to contain 
between 100 and 200 filiform papillae18.

Although there has been significant research on the importance of papillae density, our understanding of 
the papillae shapes and surface properties of the tongue suffers from the difficulty of extracting and analysing 
geometry of papillae at microscopic scales. Previous studies have thus focused on manually localising papillae 
from 2D images 20, primarily focusing on fungiform papillae21. Other works on biological surface data have used 
conformal geometry and computational topology at larger scales. Examples of such techniques include shape 
registration 22, segmentation and topological data analysis23–28. Machine learning has recently emerged as a pow-
erful technique for diagnosis where large volumes of medical data or images are available29. These approaches 
have largely focused on computing global functions such as a medical diagnosis from an image. However, to date 
there is no machine learning model that can classify microscopic tongue papillae based on 3D data.

Herein, we present the first study of the 3D shapes of filiform and fungiform papillae in humans, with an 
emphasis on the variations in the microscopic geometry seen in Fig. 1. We develop a machine learning based 
framework applied to custom designed topological and geometric properties – called features – to understand 
one fundamental issue: What separates one type of papillae from another? We also ask whether papillae are unique 
across and within individuals based on finer geometric details. Instead of applying machine learning as a black 
box application, we use statistics and explainable machine learning30,31 to differentiate one type of papillae from 
another and identify the most distinctive features.

We follow the process of Topological Data analysis, where implicit shapes in data are extracted as topological 
features that form the basis of machine learning models. However, in addition to topological features, we also 
make use of geometric features computed from discrete curvatures to understand the uniqueness of tongue 
papillae. These features together are seen to have a high accuracy of 85% in correctly identifying the papilla type 
(filiform or fungiform) in a small segment of a surface. As a result, we can now map the papillae arrangement 
for the first time – including filiform papillae that are critical for developing biorelevant tribological surface and 
unravelling mechano-sensing – as seen in Fig. 6.

Unprecedented analysis from our model reveals differences in papillae shapes across gender, age and indi-
viduals. We find that given a papilla, the age group and gender of the participant can be predicted to moderate 
accuracy, and even the exact individual from among 15 participants can be identified with approximately 48% 
accuracy, showing the first evidence for papillae to act as a unique identifier. This study demonstrating the 
uniqueness of papillae geometry at microscopic length scales using discrete differential geometry and compu-
tational topology stands to benefit future development of 3D tongue models for enabling rational food design 
diagnosis of oral medical conditions.

Results
Our analytic framework processes the data, computes the features, and then applies machine learning driven 
analysis. We briefly explain the data processing and feature extraction. Then we proceed with a machine learning 
driven analysis of the feature set, prediction of gender, age and papillae type that reveals insights about papillae.

The data is obtained as 3D digital scans. The process starts with taking masks of the dorsal area of tongue of 
participants on silicone polymers. These masks are scanned using a 3D scanner, which yields a set of 3D points. 
These points are then passed through a surface reconstruction algorithm32 implemented in Meshlab33, which 
yields a mesh and a corresponding surface (see Fig. 1). This process was developed by Andablo et al.18.

From this mesh data, we extract segments that are candidates for papillae. The extraction process is as follows. 
Around a point P on the surface, select the set B of points within a radius r + δ , where r = max(rfungiform, rfiliform) 
µm and δ = 100µm , which we find to work well in practice. A plane fit to B based on the RANSAC algorithm34 
represents our best approximation of the plane of the segment base. The local maximum m in the segment is 

Figure 1.   3D representation of a small portion of the dorsal part of the human tongue. Plot (a) shows the 
3D mesh of tongue surface obtained from masks taken on a real human tongue. The color bar shows the 
z-coordinate of the points on the surface representing the height. In plots (b) and (c) we see regions of the 
tongue with (b) Single Fungiform papilla and (c) Multiple filiform papillae. We note the distinctive shapes of 
papillae in plots (b) and (c), i.e. the dome-shaped Fungiform papilla in (b) and the crown-like shaped Filiform 
papillae in (c). Impressions of human tongue was collected at University of Leeds (Ethics DREC ref: 120318/
AS/245, University of Leeds)18 from healthy adults (n = 15 subjects, 9 females, age 18-55 years).
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defined as the point furthest away from the plane. This point is assumed to be the peak of a papilla, if present. 
Finally, we cut a region of radius r around m representing a candidate mesh for a papilla. Figure 2a and b show 
such extracted segments for a fungiform and filiform papilla, while Fig. 2c shows general surface area without 
any papilla. These three kinds of elements are the basis of our study.

A total of 2092 segments extracted from scans of 15 participants were labeled manually as Fungiform, Filiform 
or None. In the statistical workflow, a random subset of the segments (called the training set) is used to develop 
statistical models, while the remaining (the test set) – whose labels are unknown to the model – are used to test 
the accuracy of the models in a task of correctly predicting the label class (called classification). All accuracies 
reported in this paper are accuracy on the test set of unseen data. The analysis and machine learning are carried 
out on a large set of features (Table S1). In past work18, baseline features height and radii have been found to be 

Figure 2.   Papillae identification and topological feature characterization. Plots (a–c) show how the 
candidates for papillae from one Participant (Participant id 3) as meshes, using the library open3d. They 
are representatives from the 3 classes (a) Funigform, (b) Filiform and (c) None – no papilla. Plots (d–f) show 
their respective topological representations of (a–c) in the form of persistent diagrams measuring two main 
topological features: H0 – the connected components and H1 – the equivalent loops. Plots (g–i) show the 
equivalent representation of the persistent diagram in the form of a barcode, where the bars in red correspond 
to the connected components and the bars in blue – to the loops. Each bar represents a persistent generator, 
which is an interval where its left end point corresponds to the first filtration level where this topological feature 
appears, and its right end point is the filtration level where it disappears. Plots (j) and (k) show the kernel 
density estimate (KDE) using Gaussian kernels – plots representing the distribution of the lengths of bars from 
the barcode (for a–c). Plot (l) reveals the curvature distribution across the different labels.
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distinctive between papillae types. Our more comprehensive segment dataset and computational models improve 
upon these baseline features to attain high accuracy automated detection of papillae type and other tasks.

Features and feature visualisation
Features can be considered at different scales. At the global scale, a topological invariant of the entire papilla may 
be a distinctive feature. At the local scale of the neighborhood of a point on the surface, geometric properties 
– in particular, curvature of points in the neighborhood – best characterise the local shape of the surface. Local 
properties can be aggregated over the entire papilla to obtain a global feature. We describe below the significance 
of topological and geometric quantities in this context.

Topological features
In this work, topological properties are computed via persistent homology. In this approach, each vertex (for us, 
a point on the reconstructed surface) is treated as the center of a growing ball, and the union of these balls is 
observed for changing topology. One way to interpret computational persistent homology is that it monitors 
topological features of different dimensions as they are born and die with the growth of the balls. Connected 
components in 0-dimension, loops in 1-dimension, and higher dimensional spheres in higher dimeensions. 
For a comprehensive introduction see the text by Edelsbrunner and Harer35. Figure 2d–i show the persistent 
topological components for the three types of segments, where the scale is measured in µm . Figure 2d–f show 
the persistent diagram view, where each component manifests as a point indexed by its birth and death time. The 
difference in distribution of the points across plots suggests that there are variations in topological features for 
different segments. Figure 2g–i show an alternative view of the same data, called the barcode view – where each 
bar shows the life duration of a topological component. From these sets of bars we can derive statistical features 
based on the distribution of bar lengths and more sophisticated methods. The feature which we have used in this 
work are based on persistent entropy, persistent images, persistence landscapes and amplitudes (please refer to 
the "Methods" section for detailed definition of each of the features and Table S1).

The distribution of bars at different lengths for H0 (connected components) are shown in Fig. 2j,k as the kernel 
density estimates. Fungiform bar lengths in Plot 2(j) have higher density for shorter bars of length between 0 and 
10 as compared to Filiform and None (around 0.01), and then again in the mid range between 17 and 25, where 
all densities achieve their maximum. There are considerably fewer longer bars for Fungiform as compared to 
Filiform and None, which dominate the longer bar end of the spectrum. In plot (k) with densities H1 , we note 
that the density of short bars (lengths between 0 and 10) are higher for Fungifrom (0.07), followed by Filiform 
(0.065) and None (0.06). Thus there seems to be one predominant region of major difference, while H0 shows 
greater variation across types.

Geometric (curvature) features
Curvature is locally defined at each point and is a complete descriptor of a surface. Positive curvature occurs 
where the surface matches a region of a sphere, for example at the top of a fungiform papilla. Sharp peaks are 
characterised by high positive curvature, while gentle tops, such as at the top of the fungiform papillae, have 
lower positive curvature. Negative curvatures are observed in saddle shaped neighborhoods, for example, around 
the base of papillae.

In digital discrete data, where manifolds are piecewise linear (triangulated) meshes, as in our case, curvature 
is computed at each vertex of the mesh as the angle deficit of the manifold (see "Methods" section for details). 
For our analysis, we compute curvatures on a sample of points in the segment. The geometric features of a seg-
ment include quantities such as the maximum and minimum of Gaussian curvatures, percentage of points with 
positive and negative Gaussian curvature, and other aggregated quantities (See Table S1).

The distribution of curvatures of the segments in Fig. 2a–c are shown in Fig. 2l. For all types of papillae, 
most points are seen to be concentrated around small values of curvature close to zero. In particular, fungiform 
papillae have more points of near zero curvature, as can be expected from fungiforms having mostly flat or 
gently curving surfaces. In contrast, filliform and even generic surface areas are seen to have greater fraction of 
sharper curvature points.

Feature visualisation
The correlation matrix of features is shown in Fig. S4 in the Supplementary material. This set of features were 
selected after removing features with correlation higher than 0.65. The features remaining on this matrix show 
little correlation with each other, implying that they capture mutually distinct information, and thus they are 
informative in our analysis. Correlations by papillae type are shown in Fig. S3. PCA-based embedding of the data 
(Supplementary Fig. S2) shows overlap between classes. However, a non-linear method called Uniform Manifold 
Approximation and Projection for Dimension Reduction (UMAP)36 does cluster the data in ways that show clear 
separation between classes (Fig. S5), implying implicit distinction between the classes. Next, we examine these 
features in order to quantify more closely their usefulness.

Feature analysis and feature importance
Various features may have different levels of importance in the distinction between papillae. The importance of 
a feature is a fundamental question in the field of explainable machine learning, and is usually determined by 
its contribution to a classification model. It is a somewhat complex measure that is difficult to derive by looking 
at the feature in isolation. For our purposes, we use the technique called permutation feature importance37, and 
compute the contribution of these features to a class of standard classifiers called Kernel SVMs. The permuta-
tion feature importance method evaluates a feature f by nullifying f of the test data and observing the drop 
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classification accuracy of the model. A large drop in accuracy implies f is an important attribute for the classifier 
model. The effect of nullifying f is achieved by permuting the values of f among the test data points.

Figure 3 shows three most important features in determining each of the four labels of interest to us: the 
papillae type, the gender, the age and the participant id. The main observation here is that certain topological 
features are seen to be consistently important in these tasks (Fig. 3a–d). Topological features overall are also 
found to contribute more to prediction accuracy than other features (Fig. 3e).

Type prediction features
The KDE plots of the most important features for the papillae type classification task are presented in Fig. S7, 
and the box plots and the aggregated distributions are shown in Supplementary Fig. S1. The three distinctive 
features are seen to have very different distributions for the different types of segments, which explains their 
effectiveness in classification.

Gender prediction features
We have two topological and one curvature feature at the top three for gender prediction task, whose box plots 
and aggregated distributions can be found in Fig. 4. Persistent entropy (0) (Fig. 4a), Maximum Gaussian cur-
vature (Fig. 4b) and Short bars (1) (Fig. 4c) are all important features for determining gender. Figure 4a, shows 
that the female participants tend to have a higher median value of the max Gaussian curvature (which holds 

a b c

d e

Participant

Figure 3.   Feature importance across the classification tasks. The plots (a–d) represent the three most important 
features in the individual classification tasks. In particular, in plot (a) we see the papillae type task feature 
importance, in plot (b) Gender task features ordered by importance, in plot (c) the age task features and in 
plot (d) the participant task features ordered by importance. The x-axis represents the accuracy drop when the 
feature of interest is permuted, and the black line represents the standard deviation over 30 runs. In plot (d) we 
see the relative importance of all features from each kind in each task. The curvature followed by topological 
features are the most important for papillae type classification; the topological features are the most important 
for the Gender classification task; the topological are even more important for the Age classification task. In 
plot (e), we note the growing relative importance of topological features from 0.34 to 0.69 and the diminishing 
importance of the baseline features from 0.22 to 0.04, from left to right. The curvature features are the most 
important for the Type task with 0.44 and maintain consistent medium importance across the Gender, Age and 
Participant prediction task with 0.28, 0.25 and 0.27, respectively.
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for both Fungiform and Filiform) as compared to male participants, which could be linked to female papillae 
being ‘sharper’, or ‘pointier’.

Age prediction features
Topological features also dominate the age-prediction task, as seen in Fig. 3. The box plots and aggregated dis-
tributions of the top three features are presented in Fig. 5 – Persistent entropy (0) (Fig. 5a), Amplitude(Image,0) 
(Fig. 5b) and Maximum Gaussian (Fig. 5c) are the most important features for the age classification task. The 
baseline features (Height, Radius) are not amongst the most essential for this task, suggesting that their char-
acteristics do not differ much for the two age groups in this study. An interesting observation is that height is 
more important than radius. The distributions can be seen in Fig. 5. Similar to the gender-prediction task, the 
Maximum Gaussian curvature feature (Fig. 5b) is one of the most important. The median for the younger age 
group is 0.269 ( n = 840 ) and for the older is 0.166 ( n = 640 ), implying some difference between the two groups, 
with the younger group having ‘pointier’ papillae. This holds both for Fungiform and Filiform.

Figure 4.   Important features for gender classification. The most important features for gender classification 
and its aggregate distribution. Both the aggregate and individual distributions show that the females have lower 
number of short bars than males.
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Predicting gender, age and participant from papillae structure
Having understood the differences in papillae structure based on gender and age, we ask if one can easily predict 
gender, age and the participant given a papilla. Specifically, we ask if the papillae and the features identified above 
contain sufficient information to allow simple statistical methods to carry out accurate prediction.

Gender prediction
In this task we predict the biological gender of the participants. The classification performance is presented in 
Table 1. The models trained on topological features result in accuracy of 65% , outperforming the curvature fea-
tures by 5% and baseline features by 14% . Using all the features together marginally improves accuracy to 67%.

Age prediction
The participants are split into two groups depending on their age. The cut-off is 29 to achieve a close to equal 
split. The classification statistics are shown in Table 1. The results follow similar pattern to the gender prediction 
task. The topological features on their own achieve classification accuracy of 0.73, closely followed by curvature 
with 0.67. The baseline features are behind by almost 0.10, with a score of 0.58. Combining the features once 
again improves accuracy to 0.75. Results for Leave One Group Out test, where the age and gender of an unseen 
participant is predicted based on data from the others is shown in Supplementary Table S4.

Participant identity prediction
In this task we predict the participant from their papillae. The balanced accuracy of the topological features ( 39% ) 
are almost double that of curvature features ( 22% ). This is illustrated by the most important features as well, as 
all three of them are topological. Unlike in the previous two tasks for gender and age, here combining all the 

a
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Figure 5.   Important features for age classification. The most important features for age classification and its 
aggregate distribution.
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features brings a significant improvement in the balanced accuracy score to 48% , suggesting that both the local 
and global information can contribute to predicting the identity of the participant. Note that while accuracies 
around 40% to 50% as seen here are not good on binary classification tasks, in this case the task is distinction 
among 15 participants. A baseline rate of random prediction in this case will produce an accuracy of only 6% . 
The features thus distinguish participants to a high degree of distinctiveness.

Papillae detection and type classification
The final result is the accuracy of the classification task for 3-class classification (fungiform vs. filiform vs. none) 
based on the features (Table S1). The classification statistics are shown in Table 2. The accuracy of the topological 
features is better than the baseline and the curvature features, and combining all features together provides the 
best accuracy. We achieve balanced accuracy of 0.72 for the topological, 0.67 for the curvature and 0.62 for the 
baseline. Combining all the features increases the performance to 0.85.

Table 1.   Balanced accuracies for age, gender and participant prediction tasks. The topological features 
outperform the curvature and baseline features across all three tasks, and adding all features together does not 
improve the accuracy significantly for the age and gender tasks (only 0.02 increase). However, this is not the 
case for the participant prediction task, where the performance improves with 0.09. These results suggest that 
the topological information is a good indicator of age and gender. Highest accuracy values are in bold.

Model Balanced accuracy (age) Balanced accuracy (gender) Balanced accuracy (participant)

Baseline features 0.57± 0.02 0.52± 0.03 0.18± 0.02

Curvature features 0.66± 0.02 0.59± 0.03 0.22± 0.02

Topological features 0.72± 0.01 0.65± 0.02 0.39± 0.03

All combined 0.74 ± 0.02 0.67 ± 0.02 0.48 ± 0.02

Table 2.   Comparison of classification results for the classification task for 3-class classification (fungiform vs. 
filiform vs. none) with random split and using Leave-One-Group-Out (LOGO), where the test data are taken 
from a single participant and training is carried out on samples from all other participants. The models used 
are support vector machines (SVM) and logistic regression (LR). The standard deviation for the baseline and 
topological features is larger for LOGO, suggesting that there is higher variation between participants for these 
feature sets. This is not the case for the curvature features, which appear to be more similar and stable across 
participants. However, when all the features are combined, the balanced accuracy is improved and the standard 
deviation is relatively low. Highest accuracy values are in bold.

Bal. acc (SVM) Bal. acc (LR) Bal. acc (SVM-LOGO) Bal. acc (LR-LOGO)

Baseline (height, radius) 0.62 ± 0.03 0.57 ± 0.03 0.59 ± 0.14 0.55 ± 0.11

Curvature (our method) 0.67 ± 0.03 0.60 ± 0.03 0.67 ± 0.05 0.65 ± 0.03

Topological (our method) 0.72 ± 0.03 0.67 ± 0.03 0.72 ± 0.08 0.69 ± 0.08

All combined 0.85 ± 0.02 0.80 ± 0.02 0.83 ± 0.05 0.80 ± 0.06

Figure 6.   Automatic identification of tongue papillae. Illustration of the result of our tool for positioning 
papillae on the surface of the human tongue. Here our tool has detected the positions of fungiform (in blue) and 
filiform (in yellow) on the tongue surface. It has found 14 fungiform and 40 filiform papillae. As a red dot we see 
the centre of the papillae, which is determined as the local maxima for the structure with the highest distance 
from a fitted plane, using the RANSAC algorithm.
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Application of classification model
The machine learning model developed can be used for accurate papillae detection and positioning on segments 
from a single person’s tongue. Figure 6 shows the method accurately positions the fungiform form (in blue) and 
filiform (in yellow) on a tongue segment from one participant. This automated approach can thus efficiently and 
accurately construct maps or tongue prints from given tongue masks.

Discussion
We have presented here the first study of the 3D shapes of human papillae based on high resolution scans. Our 
study is based on a novel framework combining geometry, topology and machine learning. Past research38,39 has 
focused on fungiform papillae in 2D images. In contrast, our microscale 3D reconstruction based approach can 
detect filliform papillae and non-papillated areas of the tongue, which are hard to distinguish with the naked 
eye and 2D images. Recent research has shown that the human perception of food is governed not only by the 
chemical sensation of taste, but also heavily by the mechanosensation, i.e. texture perceived by filliform papillae, 
for example, in the perception of soft textured delicacies such as chocolates9. Of more importance, the framework 
proposed here can be extended beyond the tongue papillae to the general study of shape and arrangement of 
microscale surface elements such as finger-like projections that are omnipresent in biology.

To capture the intricate biological shape information, we have developed a pool of geometric and topological 
features. While 3D geometric and topological transformations have previously been used to process biological 
scan information40,41, we employ a unique approach and treat them as statistical data that are fed to a machine 
learning system. In this approach, curvature statistics are used for aggregated local information, while persistent 
homology is used for global characteristics. Based on the subject of study, other features may be used. In our 
analysis topological features turn out to be more informative in prediction. Recent research42 has suggested that 
persistent homology can capture local shape information as well as global properties. Our results on tongue 
papillae are consistent with this idea.

The analytics are based on machine learning models. The models themselves are built to predict the relevant 
variables of type, age, gender and participant, but our objective was to gain a better understanding of variations 
across classes and features. We thus used permutation feature importance to evaluate how each feature contrib-
utes to each model. From a pure accuracy point of view, large neural network models43 trained on big datasets 
are considered the most successful current paradigm44. However, our objective in this study was to develop an 
interpretable framework for investigation of biological surface features, operating on relatively few samples 
from few participants. We have thus used simpler models that can be trained with smaller quantities of data. The 
accuracy of the results with simple models gives us confidence in our conclusion of feature importances and in 
the feasibility of highly accurate machine learning models in future research.

The tasks for prediction of age group and gender suffer from the small number of participants. Machine learn-
ing models for these tasks achieve balanced accuracies of approximately 74% and 67% respectively. Note that for 
such binary prediction, a random prediction model achieves 50% accuracy. The results suggest that geometric 
and topological features do vary to an extent across these variables, but more data will be needed to confirm the 
result and the nature of variation. The higher max Gaussian curvature appears as an important feature for female 
participants and the younger age group, suggesting more sharply curved or pointy shapes in these demographics. 
In past research, women and younger people have been noted to have higher density of fungiform papillae, which 
has been attributed to variations in taste perception, and women have been observed to be supertasters more 
frequently3,45,46. The curvature variation implies a difference in papillae shapes that could be contributing to the 
sensory differences as well. Fungiform papillae density has been noted47 to drop above an age of 65. In our study 
the participants were within the relatively young range of 22− 37 . The shape features show some variations to 
reach a classification accuracy of 74% between age groups 22− 28 and 29− 37 . The Leave One Group Out test 
on age and gender (Supplementary Table S4) shows lower accuracy and greater variability. Certain individuals 
seem harder to model in this task. Further investigation with more participants will be required to gain greater 
insight into this issue.

The papillae type detection results are more accurate at 85% and based on a large number of papillae, which 
gives us confidence that the model is truly accurate. To confirm that the models generalise to unseen participants, 
we carry out the Leave One Group Out test, and find that the accuracy holds up even on samples from a com-
pletely unseen participant, which confirms that the models can be used to classify and localise papillae on new 
tongue impressions. The papillae type model can thus be used to automatically identify filiform and fungiform 
papillae on scans of new tongue impressions.

The individual participant model shows 48% balanced accuracy and 51% raw accuracy. This score is not 
impressive in a binary classification task, but our participant prediction task is a multi-class one, with 15 pos-
sible classes. A papilla could have belonged to any one of the 15 classes, and a random predictor would have 
an accuracy of only 6.66% . Considering the sample sizes from different participants, (Table S2) a predictor that 
always predicts the largest class can achieve an accuracy of 11% . In comparison, the model achieves between 4 to 
8 times the accuracy of these baselines based on the distinctiveness in the data of a single papilla. This distinctive-
ness may have multiple contributing factors – these can be true inter-individual variations as well as variations 
in experimental conditions in collecting the masks. The exact cause of this difference will require further study. 
Note that while the age, gender and participant identification tasks suggest unique individual characteristics, 
the success of the type identification task suggest a complementary conclusion of significant similarity within 
types and across individuals. Larger studies can potentially address some of these issues using larger models and 
more complex features, such as persistent homology of curvature functions.

The framework and discriminative models presented here enable deeper study of the papillae structure and 
their variations and arrangements. The model for localising and classifying papillae (as seen in Fig. 6) enables 
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the study of the overall tongue surface, or tongue prints. Such arrangements of papillae are known to influence 
the surface properties of the tongue and its perception abilities18. Our data and past research have shown that 
the distribution of papillae vary across individuals. A detailed study of this variation across various demographic 
parameters could reveal insights into preferences, cultures and medical conditions. Arrangements identified by 
our models could be used to build generative models that can fuel such insights and can create more realistic 
surfaces for use in food engineering and development of oral diagnostics. Ultimately, this study offers a new 
dimension showing papillae as an unique identifier for the first time in the literature which needs further valida-
tion using this developed method for a larger dataset of participants.

Methods
Data collection
Collection of human tongue silicone impressions
The data in this study has been obtained from 3D optical scans of masks of real human tongues from 15 healthy 
participants performed using an Alicona InfiniteFocus (IF), details of the data collection has been described in 
a previous publication18. Negative impressions of the upper surface of the tongue were collected from ( n = 15 
subjects, the mean age in years is 29.1, SD=3.7), 6 male and 9 female. More detailed information can be found 
in Table S3.

Experimental protocol
The study adhered to all relevant guidelines and regulations. Signed informed consent was obtained from all 
participants before undertaking the experimental protocol. The ethics declaration is included at the end of this 
section.

Dataset generation for papillae
Each participant’s point cloud was split into two smaller parts of approximate size 13mm by 9mm in order to 
reduce the size of the point cloud. On each part, The Screened Poisson surface reconstruction32 in Meshlab33 is 
applied. Then, a number of circular segments of radius r + δ , where r is set to match max(rfungiform , rfiliform) µ m 
and δ = 100 , were extracted according to our algorithm for extracting candidates for papillae locations described 
below. Based on previous work18 and our experiments in detecting papillae, we find that rfungiform = 439, rfiliform = 
177.5 work well for automated detection. These segments have been manually labelled into one of three classes: 
fungiform papillae, filiform papillae or None (neither a fungiform nor a filiform). The final dataset consists of 
414 fungiform, 1489 filiform and 190 None, resulting in 2092 tongue segments in total. The number of segments 
per participants can be found in Table S2.

Finding candidates for papillae locations
The pipeline for segment extraction works as follows. First, we pick a random point P on the surface. Then, we 
select a radius r + δ of points around P, where we set r to match max(rfungiform, rfiliform)µ m. Note that the distance 
from P is computed as the 3D Euclidean distance in the ambient space. If the set of points contain disconnected 
components, then components not containing P are discareded from the computation. We set δ = 100 to fully 
cover any papilla in the region. After that, we fit a plane based on the RANSAC algorithm34 and identify the point 
M furthest away from the plane, which will be a local maxima. We identify it to be the centre of the segment. 
Finally, we cut a region of radius r around m as a candidate segment. This process is applied repeatedly to identify 
multiple papilla segments. In future iterations, any maximum within a previously processed segment is ignored. 
Number of iterations and samples in our experiments were limited by the need for manual labelling. In applying 
our model for mapping papillae (e.g. as in Fig. 6) the process can be continued until no new papillae is found.

UMAP for visualisation
UMAP48 represents data by fitting it to non-linear manifolds and thus can capture complex information. We have 
used the supervised version of the method for visualisation. The supervised method explicitly tries to separate 
known classes by embedding their connectivity graphs. We use it to test presence of distinction between classes.

Baseline, curvature and topological features
Three sets of features are extracted from each of the selected segments – baseline, curvature and topological.

Baseline features
We use geometric measurements for baseline feature identification, which comprises of two quantitative shape 
characteristics of the papillae: height and radius. From the data presented in Table  in ref.18, based on Tukey’s 
test for statistical significance of the means and standard deviation, the diameter (and the radius, respectively) 
and height are different between fungiform and filiform. Therefore, they can serve as features for distinguishing 
between the three classes.

We note that defining the height and radius automatically is a challenging task due to the irregular nature 
of these structures and to our knowledge no unambiguous definitions exist in the literature to date to identify 
these features accurately. Human participants do this manually by observing the continuity of the papillae from 
the base to the tip.

We compute height and radius as follows. The point m, identified as the local maximum for the segment, as 
the centre of the structure. Then we define the radius r as the radius value of the sphere, centered at M, which 
contains 90% of the points in the segment. We compute this iteratively, by first guessing the value of the radius 
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i as a small value ( 100µm), and count the number of points in the neighbourhood of radius i (we use KDTree 
with FLANN49 for nearest neighbor search). We then increase i by 10, until the number of points contained 
in the neighbourhood exceeds 90% of all points. The value of i at the stopping condition is our candidate for 
radius value, r. The computation of the height, h, is dependent on the value of r. It works as follows: we first cut a 
region around the centre of radius r, we then fit a plane using the RANSAC algorithm34 and find the maximum 
distance from the plane to the local maximum point M. This value is our height value, h. All the computations 
have been performed using the Python libraries open3d and numpy. The algorithm is mimicking the manual 
procedure which a tongue expert would use to compute these values. An illustration of the procedure can be 
found in Fig. S8.

Curvature features
For each x ∈ H , where H is the surface generated by the Poisson surface reconstruction process, we compute 
the discrete curvature as defined by Meyer et al.50. The definition in the discrete case on the triangular mesh is 
via the vertex’s angular deficit kH (vi) = 2π −

∑
j∈N(i) θij , where N(i) are the triangles incident on vertex i and 

θij is the angle at vertex i in triangle j. The way that Gaussian and mean curvatures are computed uses averaging 
Voronoi cells and the mixed Finite-Element/Finite-Volume method50. We use the existing implementation from 
the Python version of Meshlab, called pymeshlab51.

We use the maximum and minimum of the Gaussian and mean curvature as features, the ratio of positively 
curved points to the number of all points in the mesh ( kpositiveratio ), and we introduced a new feature called 
curvature ratio ( kratio ). Let x be the number of points of positive curvature, and y be the number of points of 
negative curvature. Therefore, we define the curvature ratio kratio to be kratio = y

x if y ≤ x and kratio = x
y if x ≤ y . 

The signs of the mean and the Gaussian curvature provide plenty of information about the local behavior of the 
surface52. We computed the discrete Gaussian and mean curvature for all meshes and calculated the number of 
vertices of positive and negative curvature (after the Poisson surface reconstruction filter). The ratio of positively 
curved points to the number of all points in the mesh is defined as kpositiveratio = x

x+y . The full list and intuitive 
interpretations are provided in the Supplementary material, Table S1.

Topological features
We subsample the 3D point clouds to 1000 points each and compute the Vietoris-Rips complex, using the Euclid-
ean distance as a filtration. Persistent homology35 of the 3D point cloud was computed using the giotto-tda 
library53 and ripser54. We then generate 12 features which are one number summary of the diagram, providing 
different topological information. For more details on persistent homology, please refer to the Supplementary 
material.

Short bars are the number of intervals of length between 0 and 10. We compute them both in homology 
dimension 0 and 1. This features has been found to capture the local geometry of an object42

Persistent entropy55,56 is the measure of the entropy of the points in a persistent diagram. Concretely, let 
D = {(bi , di)}i∈I be a persistent diagram with non-infinite death times, i.e. di < ∞ . Then, the persistence entropy 
of D is defined as PE(D) =

∑
i∈I pi log(pi) , where pi = (di−bi)

LD
 and LD =

∑
i∈I(di − bi) . We compute persistent 

entropy in dimension 0 and 1, and denote it by Persistent entropy (0) and Persistent entropy (1).
Persistence landscapes: Given a persistent diagram D = {(bi , di)}i∈I , its persistence landscape is the set {�k}k∈N 

of functions �k(t) : R → [0,∞] , where �k(t) is the k-th largest value of the set {g(bi ,di)(x)}ni=1 , where g(b,d) = 0 
if x /∈ (b, d) ; g(b,d) = x − b if x ∈ (b, b+d

2 ) and g(b,d) = −x + d if x ∈ ( b+d
2 , d) . The parameter k is called a layer. 

In this work we consider the case when k = 1.
Persistence image: diagrams are converted to sums of Dirac deltas. The convolution with Gaussian kernel is 

performed, where the computation is done over a grid with rectangular shape. The locations of the points are 
evenly sampled from the values of the filtration, turning it into a raster image, which is then flattened into a 
vector.

Amplitude can be defined as the distance from the persistent diagram to the empty diagram, which contains 
only the diagonal points. Here we use 2 kernels (persistence landscapes57 and persistence image58) and the 
amplitude of the kernel is computed using the L2 norm, and 2 metrics (Wasserstein and Bottleneck). For the 
computation, we use the default parameters in giotto-tda.

We here denote Persistence image amplitude by Amplitude (Image, 0) Amplitude (Image, 1) for the compu-
tation of the amplitude with the persistent image kernel (which is the is the L2 norm of that vector) in homol-
ogy dimension 0 and 1, respectively. Similarly, Amplitude (Landscape, 0) and Amplitude (Landscape, 1) is the 
Persistence Landscape amplitude in homology dimension 0 and 1.

The Wasserstein amplitude of order p is the Lp norm of the vector of point distances to the diagonal, which 
is Aw =

√
2
2 (

∑
i∈I(di − bi)

p)
1
p . Here we use p = 2 . Similarly, the Bottleneck amplitude, AB , is defined by let-

ting p to ∞ in the definition of the Wasserstein amplitude. In other words, it is a fraction of the longest bar 
AB =

√
2
2 supi∈I(di − bi) . We denote them by Amplitude (Wasserstein, 0), Amplitude (Wasserstein, 1) and 

Amplitude (Bottleneck, 0), Amplitude (Bottleneck, 1) respectively, corresponding to the different homology 
dimensions.

Machine learning and statistics
Classification models
The experiments use classes of simple models – Support vector machines (SVMs) and Logistic regression models. 
The implementations from scikit-learn59 were used without modification and with the default hyperpa-
rameters. The SVMs were used with a radial basis kernel (RBF). Details of these techniques can be found in any 
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introductory book on machine learning. We use 20% of the data for testing and the other 80% for training using 
a random split. The procedure is repeated 50 times.

Performance metrics for machine learning
Accuracy represents the proportion of correct predictions made by the model out of the total number of predic-
tions. To adjust for the varying number of samples across classes, we compute the balanced accuracy. It calculates 
the average of the correct classification proportions for both positive and negative observations.

Feature importance
The plots are based on classification by the best balanced accuracy split of the data, and 30 permutations of the 
features for that split. The black line represents the standard deviation of the feature importance over the 30 runs.

Ethics declarations
Signed informed consent was obtained from all participants before undertaking the experimental protocol. Ethi-
cal approval for this study was granted by the University of Leeds ethics committee DREC ref: 120318/AS/245, 
as well as the University of Edinburgh (Reference number 2019/71645).

Data availability
The datasets generated and analysed during the current study are not publicly available but are available on 
reasonable request to authors.
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