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1. Introduction 
 
The objective of this note is to set out the specification of a quite general member of 
McFadden’s (1981) GEV family of models and to discuss some of the relevant 
properties of that model. 
 
The key value of McFadden’s (1981) result was to establish that a large family of 
models was consistent with the ‘RUM’ concept of utility maximisation.  The simplest 
members of that family were the MNL models, for which this consistency had already 
been known for a few years.  The GEV result was also immediately applied to show 
the consistency of the ‘tree logit’ model with RUM, a result that was also proved at 
around the same time by other researchers independently of GEV theory. 
 
Although McFadden indicated further possibilities for the GEV concept, applications 
of these were slow to materialise, primarily because specialised software was not 
available and general-purpose software, in particular Gauss, was too slow on the 
computers of the time to be used for serious modelling.  However, in recent years 
applications have been made: the Paired Comparisons Logit (PCL, Koppelman and 
Wen, 2000), Cross-Nested Logit (CNL, McFadden, 1981, Vovsha, 1997), Generalised 
Nested Logit (GNL, Wen and Koppelman, 2000) and Ordered Generalised Extreme 
Value (OGEV, Small 1987).  It is interesting to note that all of these models are of 
two-level structures: that is, elementary alternatives combine in ‘nests’ to form 
composite alternatives (in various ways); choice is then represented as a two stage 
process of choosing between these nests and then within them.  The sole exception to 
this that has been found in the recent literature is Bhat’s (1998) model in which an 
OGEV is ‘grafted’ onto the bottom of an MNL model to give a three-level structure.  
In each case the GEV function has been constructed and shown to satisfy McFadden’s 
requirements, thus showing that the model is consistent with utility maximisation. 
 
In contrast, tree logit models have long been known and even occasionally used in 
structures with multiple levels.  Indefinite structures can be specified and even 
programmed efficiently (Daly, 1987). 
 
A paper by Dagsvik (1994) indicates that there is a huge variety of GEV models, 
fitting effectively every possible RUM structure.  However, neither Dagsvik nor 
McFadden indicate how GEV models should be constructed to meet specific 
requirements. 
  
Recent research appears to be moving away from further exploitation of the GEV 
family, focussing instead on models of the ‘mixed logit’ family, which are in many 
cases easier to construct to meet specific requirements, as McFadden (2000) points 
out.  However, GEV models still offer considerable advantages. 
− In GEV models it is much quicker to calculate probabilities and their derivatives, 

making estimation and application much quicker than with other model forms.1 
− The existence of the GEV function itself is a considerable advantage for 

evaluation and use in further modelling. 
                                                 
1 The form of these models is often called ‘closed’, neglecting the fact that the evaluation of 
exp x involves the approximation of an infinite series.  Nevertheless, it is true that these evaluations are 
singly infinite, whereas the evaluation of (e.g.) normal functions requires approximations of doubly 
infinite series. 
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− Several of the GEV models can be proved to converge in transport planning 
applications with conventional assignment procedures (see Prashker and Bekhor, 
1999); it is not clear how far these proofs can be extended to more general GEV 
forms. 

A substantial problem with GEV models is that it is necessary to specify the structure 
in advance in order to be able to work with them.  Thus when the structure is at issue 
this family is not as convenient as those in which the significance of several structural 
elements can be tested simultaneously.  For these reasons it is desirable to be able to 
write down GEV models with pre-defined properties. 
 
In this note a model is presented which generalises all of the GEV models presented 
in the literature listed above, as well as generalising a multi-level tree logit model.  
This is achieved by specifying a recursive nesting structure that allows cross-nesting.   
 
The Recursive Nested Extreme Value (RNEV) model can be specified with a wide 
range of cross-elasticity properties to fit a wide range of circumstances.  The means 
by which this can be achieved are discussed in Section 3.  The fact that this model 
generalises several other models means that its properties can be used to derive the 
properties of its special cases. 
 
A further advantage of this models is that there exists an efficient estimation 
procedure, based on a generalisation – itself useful – of the tree logit estimation 
method of Daly (1987).  This procedure is also discussed.  It offers an efficient 
estimation method, using first and true second derivatives of the likelihood function, 
for the RNEV model itself and of course for its special cases.  These special cases 
have been estimated by much less efficient means to date, impairing their 
applicability substantially.  The estimation procedure is outlined in Section 4. 
 
 
2. Definition and Basic Properties of RNEV Model 
 
Given a set E of elementary alternatives, the analyst constructs a structure with an 
arbitrary number of levels in which alternatives at one level are grouped with arbitrary 
cross-nesting into nests at the next ‘higher’ level.  At the ‘highest’ level there is just 
one nest, which is called the root and labelled r.  Choice is then modelled by MNL 
models at each nest.  At each nest, a ‘logsum’ variable is formed which feeds into 
choice at the next ‘highest’ level.  A formal definition of the RNEV structure is given 
in Appendix 1. 
 
Choice in this structure can be modelled by the definition of a function Y for each of 
the elements of the set D which contains all the nests (including the root) and all the 
elementary alternatives, as follows 
 
 Ye  represents the attractiveness or utility of the choice e 

when e ∈ E, i.e. e is elementary; 
 
 Yd  =  Σk∈N(d) λkd . Yk

µd/µk  when d ∈ D\E, i.e. d is a nest. 
 
In this definition, N(d) is the set of members of the nest d, whether these are 
elementary or other nests. 
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Appendix 1 shows that it is possible to make this definition rigorous, i.e. to define the 
structure so that it is finite and has no cycles.  This in turn implies that the Y’s are 
well-defined. 
 
The parameters λ and µ have to satisfy the constraints that (i) λ, µ > 0, (ii) k ∈ N(d) 
and k ∉ E implies µk ≥ µd and (iii) µe is constant over the elementary alternatives.  
 
Note that the µ’s appear in the model only in the form of ratios.  Thus they can all be 
multiplied by a constant without making any change.  This feature will be used to 
make the normalisation µr = 1.  Independently of the normalisation, it is always 
possible to redefine  
 
 Ye’  = ( Ye )

µe

 
so that µe disappears from the model.  (The absence of a constraint on the ratio 
involving µe is necessary to make this transformation.)  The setting of µe and µr to 1 
will be used to simplify the formulae subsequently.  However, for the proofs it is 
slightly simpler to retain them in the equations. 
 
The function Yr, i.e. the Y value at the root element, can be viewed as a function of 
the Ye for the elementary alternatives, by defining 
 
 G (Ye, e ∈ E)  =  Yr

 
Appendix 2 proves that G is a GEV function as defined by McFadden (1981).  
 
We can then use the GEV theorem of McFadden to claim that this model is consistent 
with individual utility maximisation, and that log G is the social surplus function, 
when the indirect utilities (log Ye) of the alternatives in E are distributed with the 
multivariate extreme value distribution. 
 
The choice probabilities of the RNEV model are given by the following formula 
which is also part of the GEV theorem 
 
 pe  =  ∂(log Yr) / ∂(log Ye)   = (∂Yr/∂Ye) . (Ye / Yr) 
 
At each stage in the recursive definition of the model we have, for k ∈ N(d) 
 

∂Yd/∂Yk =  λkd .
 (µd/µk) . Yk

(µd/µk)-1

 
and so 
 

∂Yr/∂Ye  =  Σall sequences Π k∈N(d) λkd .
 (µd/µk) . Yk

(µd/µk)-1

 
where the sum runs over all the sequences that run from the root to alternative e and 
the product runs over all nests in each sequence.  Collecting terms, labelling the set of 
sequences to elementary alternative e as Se, and setting µe and µr to 1, we obtain 
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pe  =  Σs∈Se Π k∈s, d=s(k)  λkd . Yk
(µd/µk) / Yd 

 
where s(k) denotes the next node after k in the sequence s from e via k to the root. 
 
The λ variables in this model play an interesting role.  Effectively, they are 
alternative-nest-specific constants.  If there is also an alternative-specific constant for 
k, then the λ’s will need to be constrained in some way to avoid over-specification.  
Wen and Koppelman (2000) describe them in the GNL model as ‘allocation 
parameters’ and apply the constraint that they must sum to 1; this interpretation is 
interesting, since it suggests that a part of the alternative is allocated to each sequence.  
However, it is not clear that the λ’s are essential to the specification of the model and 
the option of setting them all to 1 will often be adopted. 
 
If we define Vk(s) = log(λkd . Yk

(µd/µk)), where d=s(k), we can write  
 

pe  =  Σs∈Se [ exp Σ k∈s (Vk(s) – log Σs(h)=s(k) exp Vh(s)) ] 
 
and the term in [ ] is just the probability of an alternative in a tree logit model as 
defined by Daly (1987, 2001b).  This formulation also clarifies the role of the λ 
parameters. 
 
Note that the probability within [ ] is determined by s.  Full sequences for alternatives 
other than e are not relevant to the calculation: such alternatives enter when one of 
their sequences intersects with s.  A useful equivalent formulation of the RNEV 
model is to see it as an extended TL model, in which each sequence from each 
elementary alternative in the RNEV model is an alternative in the TL model. 
 
From the last equation above we see that the choice probabilities of the alternatives in 
RNEV are just the sums of tree logit probabilities.  From this it is clear that RNEV is 
a generalisation of (normalised) TL, which represents the RNEV special case in 
which there is just one sequence Se for each elementary alternative e.  Obviously 
(therefore) RNEV also generalises MNL. 
 
RNEV also generalises Wen and Koppelman’s (2000) GNL, this is the case of RNEV 
in which the sequences Se are of maximum length 2.  RNEV therefore also generalises 
PCL2, CNL, OGEV and the Principles of Differentiation model, all of which are 
special cases of GNL (see W&K).  It also generalises Bhat’s (1998) combined 
OGEV/TL model.  Thus any properties possessed by RNEV are also possessed by 
these special cases.  Note that GNL is not a generalisation of TL for more than two 
levels 
 
I am not aware of any GEV model of the McFadden (1981) type that is not a special 
case of RNEV. 
 
 

                                                 
2 Including the Chu variant, the factors (1 – σ) can be represented through the λ parameters. 
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3. Elasticity and Demand Derivatives 
 
Key characteristics of demand models are the ‘own’ and cross demand differentials, 
i.e. 
 
 ∂p1/∂V1 and ∂p1/∂V2 

 
These functions are of course closely related to the elasticities with respect to a 
characteristic c, differing from them by a factor p1/βcXc, where X is the value of the 
characteristic and β is the differential of V with respect to it.  However, both X and p1 
vary in the population, while the presence of β also restricts the applicability of the 
elasticity, so that the demand differentials are a more stable representation of the 
sensitivity of the model. 
 
Further, since Σk pk  =  1, 
 
 ∂p1/∂V1  =  – Σk≠1 ∂pk/∂V1

 
so that a statement of the cross-derivatives of demand is sufficient to specify the 
model, the own-derivatives are then implied.  The corresponding formulae for 
elasticities are rather more complicated. 
 
The use of demand differentials has the added advantage in the present context that 
the differentials for RNEV can be obtained simply by adding the differentials for the 
corresponding tree logit model.  This would of course not be true for elasticities. 
 
For the tree logit model whose probabilities sum to those of the RNEV, the 
probability of an alternative (i.e. of a sequence in the RNEV) is 
 
 p1 =  exp Σ k∈S1 (Vk – log Σs(h)=s(k) exp Vh ) 
 
To calculate the cross-derivative, we need to identify the lowest common nest to 
which both alternatives 1 and 2 belong: say x.  For choices above x, a change in the 
utility of 2 has a positive impact on 1, they belong to the same alternative; at and 
below x the impact is negative because 1 and 2 are competing. 
 
 ∂p1/∂V2  =  p1 . { Σ k∈Sx [ ( 1 – pk|s(k) ) . p2|k . µs(k) ] –  p2|x. µx } 
 
This derivative is non-positive, of course.3  It is also symmetrical: this is a necessary 
corollary of the RUM theory. 
 
To focus on the competition between alternatives 1 and 2, it is interesting to eliminate 
other alternatives from consideration.  If we set all the utilities to be –infinity except 
for those of alternatives 1 and 2, we obtain  

                                                 
3 µx ≥ µk, for all k∈sx, and p2|k = p2|x . px|k so it is sufficient to show that  

Σ k∈Sx ( 1 – pk|s(k) ) . px|k ≤ 1. 
Because pk|s(k).px|k is px|s(k) , the left side of this equation is just 

Σ k∈Sx px|k – px|s(k)  =  1 – px|r, 
since most of the terms cancel out and px|x is 1.  This is obviously less than 1. 
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 ∂p1/∂V2  =  – p1 . p2. µx

 
since px and all higher choices have probability 1.  The negative of this derivative has 
a maximum at V1 = V2 which can be defined as the competitiveness of the alternatives 
 
 ψ12  =  ¼ µx

 
since p1 = p2 = ½.  The competitiveness between two alternatives in TL (whatever 
their position in the tree) is proportional to the inverse utility scale µx at the point in 
the tree at which the sequences for those two alternatives meet.  For MNL, ψ12 = ¼  in 
all cases, as it is in TL for alternatives whose sequences meet at the root. 
 
In the RNEV model, the probability of an alternative is given by the sum of a number 
of TL probabilities and its derivative is thus the sum of the derivatives of those 
probabilities.  The cross-derivative for each other alternative will have a number of 
impacts, one for each of its sequences.  The full cross-derivative is then (when all 
other alternatives are set to –infinity, and neglecting the λ’s) 
 
 ∂p1/∂V2  =  Σs1∈S1 Σs2∈S2 { – ps1 . ps2 . µxs1s2 } 
 
The symmetry of competitiveness measures follows from the symmetry of the 
demand derivatives that underlie them. 
 
When the utilities of alternatives 1 and 2 are equal, ps1 = ps2 = 1/(n1 + n2), where n1 
and n2 are the numbers of sequence-alternatives for alternatives 1 and 2 respectively.  
Under these circumstances, we get a competitiveness4

 
 ψ12  =  n1.n2 / (n1+n2)

2 . Σs1∈S1 Σs2∈S2 µxs1s2

 
i.e., the cross-derivative between the utilities of two alternatives is determined by the 
sum of the utility scales at the points at which all sequences meet.  This formula can 
be used to study the intrinsic properties of RNEV and to compare them with those of 
other models. 
 
In the PCL we have n1 = n2 = (n – 1), there are (n – 1) sequences for each alternative 
and all the higher-level µ’s are equal, so we get 
 
 ψ12  =  ¼ { (n2 – 2n) + µ } 
 
For the GNL, there is little simplification relative to the RNEV formula and we get 
 
 ψ12  =  n1.n2 / (n1+n2)

2 . { ( n1 + n2 – n12)  +  Σ1,2∈N(x) µx } 
 
where n12 is the number of nests that contain both alternatives 1 and 2, i.e. the size of 
the set { x | 1,2∈N(x) } over which the sum is calculated. 
 
                                                 
4 This value is not necessarily the maximum of the demand derivative in cross-nested models, 
unless all the λ’s are equal. 
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An alternative comparison is that with a probit model.  For a multinomial probit 
model, it is easy to calculate 
 

ψ12  =  1 / σ12√(2π) 
 
where σ12 is the standard deviation of the utility difference between alternatives 1 and 
25.  In this case, there is a simple one-to-one relationship between the competitiveness 
ψ and the variance of utility differences, so that a statement of the matrix of 
competitivenesses specifies the probit model entirely, up to the set of 
‘indistinguishable’ models (Daly, 2001a).  Of course, before starting on such an 
exercise, one would be well advised to check that a model with the required properties 
might exist. 
 
An interesting issue for further research is the extent to which it is possible to design 
GEV models, for example RNEV models, to match any given set of competitiveness 
figures.  As in the case of probit models, it would be useful to check in advance that 
the specified set of competitivenesses might exist. 
 
In a TL model, given an existing structure, it is always possible to introduce a new 
alternative that has any required competitiveness with any existing alternative.  
However, the competitiveness with other alternatives is then fixed.  A TL model for n 
alternatives has a maximum of n–1 nests (including the root), so a severe restriction 
on competitiveness must be expected. 
 
In a GNL model, there is a maximum of n(n–1)/2 nests, each with its own parameter, 
so in principle the number of degrees of freedom is adequate to represent any desired 
competitiveness pattern.  However, if two alternatives are required each to have 
specific patterns of interaction with other alternatives, then they have a minimum 
level of competitiveness with each other, because all the other nests are connected to 
the root.  Therefore it is difficult to introduce a pattern of low and high 
competitiveness into the model. 
 
In an RNEV model, greater freedom exists and it is possible to imagine complex 
patterns of interaction between subsets of alternatives, which then have complex 
patterns of interaction with each other.  A greater range of high and low 
competitiveness can be specified.  But the full working out of the possibilities of the 
model is the subject for future research. 
 
4. Estimation Procedure for RNEV 
 
It has been shown that RNEV predicts choice as the sum of a number of tree logit 
probabilities.  This specification of the model can be extended to allow the estimation 
of RNEV models as tree logit models. 
 
Consider a tree logit model in which the elementary and composite alternatives are 
defined by the sequences leading to elementary and composite alternatives in an 

                                                 
5 Note that if we set σ = π / √3, so that the normal distribution has the same variance as would 
be obtained from a standard logistic distribution, we obtain ψ = 0.220.., a rather lower value than for 
the ‘almost indistinguishable’ (Daly, 2001a) MNL model (0.25). 
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RNEV model.  At each stage in the two models, the conditional choice probabilities 
are the same, and the sequences define sets of ancestors as required for tree logit. 
 
It would thus be possible to estimate RNEV as a moderate extension of the 
capabilities of a tree logit estimation program.  The extension, which would require 
the acceptance that choice could be an unknown member of a specified subset of 
alternatives, would also be useful in other contexts6.  
 
For a general choice model, the kernel of the likelihood function for a choice falling 
within a set is given by 
 
 log L  =  Σobs lobs  =  Σobs log pobs  =  Σobs  log { Σk∈c(obs) pk,obs } 
 
where c(obs) is the set of alternatives containing the choice for a given observation 
and pk,obs is the probability of choice k for that observation. 
 
The contribution of each observation to the first and second differentials of this 
function are as follows (using subscripts to indicate differentiation with respect to the 
unknown parameters) 
 
 li  =  (1/p) . Σk∈c pki

 
 lij  =  (1/p) . Σk∈c pkij  –  (1/p2) . Σk∈c pki. Σk∈c pkj  =  (1/p) . Σk∈c pkij  –  li lj
 
In the present case, these probabilities are those of a tree logit model and are given 
by7

 
 log pk  =  Σa∈S(k) ( Va – log Σs(b)=s(a) exp Vb ) 
 
where S(k) is the sequence (set of ancestors) of k (including k but excluding the root) 
induced by the tree function s. 
 
Hence 
 
 pki  =  pk . Σa∈S(k) ( Vai – V*s(a)i ) 
 
where Vai is the differential of the (indirect) utility function of alternative a with 

respect to unknown parameter i; 
V* si = Σs(b)=s pb|s Vbi; and 
pb|s is the conditional probability of b, a member of nest s, given that the nest 
is chosen. 

 
and 
 

                                                 
6 Current software can accommodate choice within a subset of alternatives but only if that 
subset forms a nest in the tree structure.  This feature has proved useful in several practical contexts but 
has slightly limited the model specification search. 
7 The following equations apply to both normalised and non-normalised logit models, the 
differences can be expressed within the V functions alone, see Daly (2001b). 
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 pkij  =  pkj . Σa∈S(k) ( Vai – V*s(a)i ) 
        +  pk . Σa∈S(k) ( Vaij – V*s(a)ij – Σs(b)=s(a) pb|s(a),j Vbj ) ) 
 
        =  pki . pkj / pk

        +  pk . Σa∈S(k) ( Vaij – V*s(a)ij – Σs(b)=s(a) pb|s(a).Vbi.Vbj + V*s(a)i.V* s(a)j ) 
 
where Vaij is the differential of the (indirect) utility function of alternative a with 

respect to unknown parameters i and j; and 
V* sij = Σs(b)=s pb|s Vbij.

 
Often, Vaij will be zero for elementary alternatives as V is often linear in the unknown 
parameters.  However, even in this case [lij] may be non-definite because Vaij is not 
zero for composite alternatives.  These formulae are relatively simple to calculate and 
many components are already available in the existing software. 
 
The advantage of using true second derivatives of the likelihood function has been 
established over a number of years.  A typical alternative approach is that used by 
Bhat (1998), who programs the likelihood function and its first derivatives of his 
OGEV-MNL combined model, then uses the capabilities of the Gauss software to find 
the optimum.  The latter approach is obviously less efficient in computer time – both 
because of the use of general-purpose rather than specialised software and because the 
successive steps in the optimisation use approximate rather than exact second 
derivatives – and does not give the correct values of the error measures of the 
estimated parameters at the optimum.  The Gauss approach is suited to ground-
breaking research rather than production work.  
 
An algorithm exploiting the true second derivatives must be prepared to cope with 
situations in which the matrix is not negative definite, but procedures for dealing with 
this situation are well established. 
 
5. Conclusions 
 
A model structure, the Recursive Nested EV model, has been defined which is 
believed to be novel and which generalises all known EV models.  This structure is 
consistent with the GEV theory. 
 
Elasticity, demand derivative and competitiveness formulae can be derived for the 
RNEV model.  They give greater flexibility than previous models but it is not yet 
known to what extent a pre-specified structure can be implemented. 
 
The RNEV model can be estimated relatively easily by viewing it as the sum of a 
number of intertwined tree logit models.  Of course this estimation procedure would 
also apply for the special cases of the model.  The first and second derivatives of the 
likelihood function can be written down and would not require great difficulty to 
program.  The program would also cover a useful practical case when the choice in a 
tree logit (or other RNEV special case) model was known only as a member of a 
subset. 
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Appendix 1: Model Definition 
 
Consider a model of discrete choice, i.e. giving the probability of choice of a single 
alternative from a finite set E.  Let D be a finite superset of E, let M be the set of non-
empty subsets of D and let N be a single-root non-circular function 
 
 N: D\E → M 
 
The set N(d) is called the nest of d. 
 
‘Non-circular’ in this context means that there exist no cycles 
 
 d, d′∈N(d), d′′∈N(d′), ... d  for any member d of D. 
 
In particular d∉N(d).  If N is non-circular there exists an indexing function I on D 
(i.e. a mapping from D to the set of positive integers) such that 
 

if d′∈N(d) then I(d′) < I(d). 
 
Conversely, the existence of such a mapping implies that N is non-circular. 
 
This structure also implies that the sequences d, d′∈N(d), .. always end with an 
element d* such that N(d*) ⊂ E. 
 
There exists an element r of D which has the highest value of I; r will be called the 
‘root’.  It clearly cannot be a member of the nest of any other member of D.  
 
‘Single-root’ in this context means that every member of D except the root is 
represented at least once in the nests defined by N.  This property, together with non-
circularity, implies that for any member d* of D that there exists at least one sequence 
 
 r, d ∈ N(r), d′∈N(d), .. d* 
 
In particular this applies for members of E.  Let Se be the set of sequences from the 
root to e∈E, defining each s∈Se to include e but exclude r.  In each sequence, each 
lower-level alternative k has a unique higher-level alternative d such that k∈N(d); we 
define this higher-level alternative to be s(k).  Note that s is a tree function and the 
sequence Se itself forms the set of ‘ancestors’ of each elementary alternative e as 
defined by Daly (1987). 
 
The idea here is that choice is represented as successive choices from subsets.  So 
when d has been chosen, the next choice is one of the elements of the ‘nest’ N(d) and 
so on until we arrive at an elementary alternative.  There is no insistence that nests 
should not overlap, so this structure is a generalisation of strict ‘tree’ models.  The 
fact that choices can be defined over an indefinite series of nests will mean that the 
structure can generalise the Wen and Koppelman (2000) Generalised Nested Logit, 
which is restricted to two levels. 
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The model is called ‘nested’ and the composite nodes D\E could be defined to be 
‘nests’ containing the elementary alternatives in any of whose sequences they fall but 
(a) there may be more than one nest with the same set of alternatives and (b) this is 
not essential to the definition: D\E can be any arbitrary construct. 
 
The function I is not central to the definition, it is set up only to guarantee non-
circularity and it also plays a useful role in the proofs. 
 
Given this non-circular nesting and a positive function Y for elementary alternatives, 
we can define Y for the remaining elements of D recursively 
 
 Yd  =  Σk∈N(d) λkd . Yk

µd/µk

 
subject to the constraints that (i) λ, µ > 0, (ii) k ∈ N(d) and k ∉ E implies µk ≥ µd and 
(iii) µe is constant over the elementary alternatives.  
 
Note that the Y’s are also well defined because of the non-circularity of N (a proof 
can be given easily by induction using I).   
 
Yr, the Y function for the root, can be viewed as a function of the Y’s for the 
elementary alternatives.  Define 
 
 G  =  Yr (Ye, e ∈ E ). 
 
This function is proved to be a McFadden GEV function in Appendix 2. 
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Appendix 2: Proof that RN G is a McFadden GEV Function 
 
The function G is defined as in Appendix 1.  The required properties for it to be GEV 
are given by Ben-Akiva and Lerman (1985) as follows. 
 
GEV1 G is non-negative: this is obvious from the form of Y, and the constraints on 

Ye and λ. 
 
GEV2 G is homogenous.  It can easily be calculated that 
 
  G(αY1, αY2, ..)  = αµr/µe G(Y1, Y2, ..) 
 
 This follows from the non-circularity of N, the Y definitions and the fact that 

µe is constant.  Thus G is homogenous of degree µr/µe which is positive and 
therefore satisfies the extended Ben-Akiva/Francois definition of GEV. 

 
GEV3 G goes to infinity with any of the Ye’s.  This follows from the single-root 

definition of N, i.e. all elementary alternatives ‘feed in’ to the same root, and 
the constraints on λ and µ. 

 
GEV4 The mixed partial derivatives of G with respect to Ye are continuous, with 

non-positive even and non-negative odd mixed partial derivatives.  It is clear 
that all the derivatives exist and are continuous, from the form of Y and the 
restrictions on µ.  Proof of this property is given below. 

 
McFadden (1981) gives a further condition for GEV, seemingly not required by Ben-
Akiva and Lerman, which appears to state only that the addition of infinitely bad 
alternatives (Y=0) to the choice set does not alter the choice.  This appears to be 
necessary to ensure the symmetry of partial derivatives.  I have assumed that the Ben-
Akiva-Lerman conditions are sufficient to define a GEV function. 
 
GEV4 is proved by first establishing a Lemma.  For convenience of notation, we 
define θdk = µd/µk when k∈N(d) (the constraints on µ imply that 0 < θdk ≤ 1 when 
k∉E) so we can write 
 

Yd  =  Σk∈N(d) λkd . Yk
θdk 

 
Lemma:  For distinct Y1, .. Ym, and for any d ∈ D\E, 
 

∂rYd / ∂Y1...∂Ym  =  Σk∈N(d) λkd Σi=1,m πθdk,i . Yk
θdk-i . Simk

 
where  πθ,i = θ . (θ – 1) . (θ – 2) .. (θ – i + 1), i.e. πθ,1 = θ 
 
and Simk is the sum of all different products of i partial derivatives of any order of 

Yk with respect to distinct Yj, j =1, .. m, such that each Yj appears exactly 
once; the sum of the orders of the partial derivatives in each product is then m. 

 
Proof 
Simply differentiating Yd we obtain 
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∂Yd / ∂Y1  =   Σk∈N(d) λkd . θdk. Yk

θdk-1 . ∂Yk / ∂Y1 

 
∂2Yd / ∂Y1∂Y2  =   Σk∈N(d) λkd . { θdk. Yk

θdk-1 . ∂2Yk / ∂Y1∂Y2

    +  θdk (θdk – 1) Yk
θdk-2 . ∂Yk / ∂Y1. ∂Yk / ∂Y2 }

 
and these have the form required.  It is thus sufficient to show that the mth derivative 
implies the m+1th to prove the entire Lemma by induction on the order of the partial 
derivative.  Differentiating the inductive hypothesis, we obtain 
 
 ∂r+1Yd / ∂Y1...∂Ym+1 = Σk∈N(d) λkd Σi=1,m πdk,i .  

{ (θdk – i).Yk
θdk-i-1.∂Yk/∂Ym+1.Simk + Yk

θdk-i.∂Simk/∂Ym+1 } 
 
and we can always express 
 
 Si(m+1)k =  ∂Yk/∂Ym+1.S(i-1)mk +  ∂Simk/∂Ym+1

 
the former term giving all the partial derivative products including ∂Yk/∂Ym+1, the 
latter term giving all the products excluding that first-order differential.  Note that 
S1mk has only the single mth order differential with respect to all the Y’s (when S1mk is 
expressed as in the last equation above the first term does not exist), while Smmk is just 
the product of the m first partial derivatives (the second term in the last equation does 
not exist).  For all other values of i, appropriate contributions are made to Si(m+1)k by 
the first term in { } brackets for (i–1) and the second term in { } for i.  
 
Thus the Lemma is proved. 
 
Note that the second and higher mixed derivatives of alternatives Ys(e) directly above 
elementary alternatives, with respect to the Ye functions of those elementary 
alternatives e, have a particularly simple form.  The first derivative with respect to Ye 
contains only a term in the same Ye, so that all the second and higher mixed 
derivatives are zero, even if only one of the components relates to an elementary 
alternative in the nest of s(e).   
 
GEV4 and thus the entire result is then proved by induction on the index I (defined in 
Appendix 1) of each alternative, as follows.   
 
The alternative with the lowest value of I is certainly an elementary alternative and for 
such alternatives the partial derivative with respect to itself is 1 and with respect to all 
other Y’s is 0.  Both these possible values are non-negative.  The higher-order 
derivatives are all zero which of course satisfies the requirement. 
 
Suppose that GEV4 holds for values of I less than that of alternative d and consider 
the sign of the partial derivatives of Yd.  Either d is elementary, in which case there is 
no problem, or it has a nest.  All the alternatives in the nest have partial derivatives 
satisfying GEV4, by the inductive hypothesis, because their I value is less than that of 
d. 
 
Each product in Simk has the sum of its orders equal to m, thus the number of odd-
order derivatives in each product is equal to m modulo 2.  Since there are i 
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components in each product, the number of even-order derivatives is equal to i-m 
modulo 2.  Since the even-order derivatives are non-positive (by inductive 
hypothesis), each product in Simk (and hence Simk itself) is non-positive if i-m is odd, 
non-negative if i-m is even. 
 
πθdk,i is non-negative if i is odd, non-positive if i is even, when k∉E, since 0 < θdk ≤ 1.  
The product of πθdk,i and Simk is then non-positive if m is even, non-negative if m is 
odd.  When k∈E, the derivatives have the simple form as noted above, so that S1mk is 
positive and Simk is zero for i>1.  Thus the partial derivatives for alternative d also 
satisfy the hypothesis. 
 
By induction this proof can be extended to cover all the alternatives and in particular 
the root r, thus establishing GEV4. 
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