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1. I ntroduction

The objective of this note is to set out the specification of a quite general member of
McFadden’s (1981) GEV family of modeblnd to discuss some of the relevant
properties of that model.

The key value of McFadden'd981) result was to establish that a large family of
models was consistent with the ‘RUM’ concept of utility maximisation. The simplest
members of that family were the MNL models, for which this consistency had already
been known for a few years. The GEV resudis also immediatglapplied to show

the consistency of the ‘tree logit’ modeltwvRUM, a result that was also proved at
around the same time by other researchers independently of GEV theory.

Although McFadden indicated further possibilities for the GEV concept, applications
of these were slow to materialise, painty because specialised software was not
available and general-purpose software particular Gauss, was too slow on the
computers of the time to be used forimes modelling. Howewe in recent years
applications have been made: the Pai@ainparisons Logit (PCL, Koppelman and
Wen, 2000), Cross-Nested Logit (CNL, McFadden, 1981, Vovsha, 1997), Generalised
Nested Logit (GNL, Wen and Koppelma2000) and Ordered Generalised Extreme
Value (OGEV, Small 1987). It is interesting note that all of these models are of
two-level structures: that is, elementaajternatives combine in ‘nests’ to form
composite alternatives (in various wayshoice is then represented as a two stage
process of choosing between these neststa@rdwithin them.The sole exception to

this that has been found the recent literaturés Bhat's (1998) model in which an
OGEV is ‘grafted’ onto the bottom of an MNhodel to give a tlge-level structure.

In each case the GEV function has been constructed and shown to satisfy McFadden’s
requirements, thus showing that the made&onsistent with utility maximisation.

In contrast, tree logit models have longebh known and even occasionally used in
structures with multiple levels. Indefiai structures can be specified and even
programmed efficiently (Daly, 1987).

A paper by Dagsvik (1994) indicates thhere is a huge vaty of GEV models,
fitting effectively every possible RUM structure. However, neither Dagsvik nor
McFadden indicate how GEV models shlibube constructed to meet specific
requirements.

Recent research appears to be movingyaftom further exploitation of the GEV

family, focussing instead on models of theiXed logit’ family, which are in many

cases easier to construct to meet specdguirements, as McFadden (2000) points

out. However, GEV models stilfffer considerable advantages.

— In GEV models it is much quicker to calate probabilitiesrad their derivatives,
making estimation and application mughicker than with other model forms.

— The existence of the GEV function itsek a considerable advantage for
evaluation and use in further modelling.

! The form of these models is often called ‘closed’, neglecting the fact that the evaluation of

exp x involves the approximation of an infinite seriékevertheless, it is true that these evaluations are
singly infinite, whereas the evaluation of (e.g.) normal functions requires approximetioiesibly
infinite series.



— Several of the GEV models can be pmv® converge in transport planning
applications with converdnal assignment procedurésee Prashker and Bekhor,
1999); it is not clear how fahese proofs can be extended to more general GEV
forms.

A substantial problem with GEV models is tlitais necessary to specify the structure

in advance in order to be able to work with them. Thus when the structure is at issue

this family is not as convenient as thosevimich the significance of several structural

elements can be tested simultaneously. Fesehlreasons it is desirable to be able to
write down GEV models witipre-defined properties.

In this note a model is presented which generalises all of the GEV models presented
in the literature listed above, as well asigmlising a multi-level tree logit model.
This is achieved by specifying a recursivetimgsstructure that alles cross-nesting.

The Recursive Nested Extreme Value (RNEW)del can be specified with a wide
range of cross-elasticity propies to fit a wide range afircumstances. The means
by which this can be achieved are discusseSiection 3. The fact that this model
generalises several other mtsdeneans that its propertiesan be used to derive the
properties of its special cases.

A further advantage of this models isaththere exists an efficient estimation
procedure, based on a gerisation — itself useful — of the tree logit estimation
method of Daly (1987). This procedure aso discussed. It offers an efficient
estimation method, using first and true @&t derivatives of # likelihood function,

for the RNEV model itself and of courser fits special cases. These special cases
have been estimated by much less efficient means to date, impairing their
applicability substantially. The estimati procedure is outlined in Section 4.

2. Definition and Basic Propertiesof RNEV Model

Given a set E of elementary alternatives, the analyst constructs a structure with an
arbitrary number of levels in which alterivais at one level argrouped with arbitrary
cross-nesting into nests at thext ‘higher’ level. At the ‘highest’ level there is just

one nest, which is called the root and ligkr. Choice is then modelled by MNL
models at each nest. At each nest, aslog’ variable is formed which feeds into
choice at the next ‘highest’ level. A formdgfinition of the RNEV structure is given

in Appendix 1.

Choice in this structure can be modelledtiy definition of a function Y for each of
the elements of the set D which contairistad nests (includinghe root) ad all the
elementary alternatives, as follows

Y represents the attractivesseor utility of the choice e
when ec E, i.e. e is elementary;

Ya = Skene) M - YU whend € D\E, i.e. d is a nest.

In this definition, N(d) is the set amembers of the nest d, whether these are
elementary or other nests.



Appendix 1 shows that it is possible to malkis definition rigorous, i.e. to define the
structure so that it is finitand has no cycles. This in turn implies that the Y’s are
well-defined.

The parameters andu have to satisfy the constraints thati(i)u > 0, (ii) k € N(d)
and kg E impliespy > ng and (iii) pe is constant over the elementary alternatives.

Note that theu's appear in the model only in the fowhratios. Thus they can all be
multiplied by a constant without making any change. This feature will be used to
make the normalisation, = 1. Independentlyof the normalisation, it is always
possible to redefine

Ye’ - (Ye )ue
so thatp. disappears from the model. (Thésence of a constraint on the ratio
involving pe IS necessary to make thisisformation.) The setting @t andp, to 1
will be used to simplify the formulae subsequently. However, for the proofs it is
slightly simpler to retain them in the equations.

The function Y, i.e. the Y value at the root element, can be viewed as a function of
the Ye for the elementary alternatives, by defining

G(Ye, €€ E) = ¥
Appendix 2 proves that G is a GEWMmction as defined by McFadden (1981).
We can then use the GEV theorem of McFadden to claim that this model is consistent
with individual utility maximisation, and #t log G is the social surplus function,
when the indirect utilities (log & of the alternatives in E are distributed with the

multivariate extreme value distribution.

The choice probabilities ofhe RNEV model are given by the following formula
which is also part of the GEV theorem

pe = 0(log Yy) /0(log Ye) = @Y /OYe) . (YelY))
At each stage in the recursive definition of the model we have,daX{d)
OY oYk = Mg - (gl . Y, ok
and so
Y Y e = Zan sequenced | kend) M - (o) - Yi ML
where the sum runs over alletlsequences that run fronethoot to alternative e and

the product runs over all nests in each segeierCollecting terms, labelling the set of
sequences to elementary alternative e.partsl settingi. andy, to 1, we obtain



Pe = ZseselTkes, d=s(9 Mk - Y, B 1y g

where s(k) denotes the next node after thinsequence s from e via k to the root.

The L variables in this model play antémesting role. Effectively, they are
alternative-nest-specific constants. If therals an alternative-specific constant for
k, then the\’s will need to be constrained in some way to avoid over-specification.
Wen and Koppelman (2000) describe them the GNL model as ‘allocation
parameters’ and apply the comstt that they must sum tb; this interpretation is
interesting, since it suggests tlagpart of the alternative &located to each sequence.
However, it is not clear that thiés are essential to the specification of the model and
the option of setting themldo 1 will often be adopted.

If we define i) = logQua . Y ¥9), where d=s(k), we can write

Pe = Zsese[ €XPE kes (Vi) — 109 Zshy=sm) €XP Vhs) |

and the term in [ ] is just the probabiliof an alternative in a tree logit model as
defined by Daly (1987, 2001b). This forratibn also clarifis the role of the.
parameters.

Note that the probability within [ ] is detemed by s. Full sequences for alternatives
other than e are not relevant to the cakooita such alternatives enter when one of
their sequences intersects with s. Aefus equivalent formulation of the RNEV
model is to see it as an extended TL model, in which saguencerom each
elementary alternative in the RNEV médean alternative in the TL model.

From the last equation above we see thaictivice probabilities of the alternatives in
RNEYV are just the sums of tree logit probal@s. From this it is clear that RNEV is
a generalisation of (normalised) TL, whichpresents the RNEV special case in
which there is just one sequencef& each elementary alternative e. Obviously
(therefore) RNEV also generalises MNL.

RNEYV also generalises Wen and KoppelmdB®00) GNL, this is the case of RNEV

in which the sequences &e of maximum length 2. RNENerefore also generalises
PCL?% CNL, OGEV and the Principles of fiérentiation model, all of which are
special cases of GNL (see W&K). It also generalises Bhat's (1998) combined
OGEV/TL model. Thus any propertigossessed by RNEV are also possessed by
these special cases. Note that GNL isangeneralisation ofL for more than two
levels

| am not aware oany GEV model of the McFadden (198type that is not a special
case of RNEV.

2 Including the Chu variant, the factors (&)-can be represented through thearameters.



3. Elasticity and Demand Derivatives

Key characteristics of demand models ame ‘dbwn’ and cross demand differentials,
i.e.

opi/oV1 andopi/oV,

These functions are of course closely tedato the elasticities with respect to a
characteristic c, differing from them by a factaffigX., where X is the value of the
characteristic anfl is the differential of V with respect to it. However, both X and p
vary in the population, while the presencefoélso restricts the applicability of the
elasticity, so that the demand differentiale a more stable representation of the
sensitivity of the model.

Further, sinc&y p« = 1,
6p1/6V1 = —Xke1 apklavl

so that a statement of tlweoss-derivatives of demand is sufficient to specify the
model, the own-derivatives are themplied. The corresponding formulae for
elasticities are rather more complicated.

The use of demand differentials has the ddadvantage in the present context that
the differentials for RNEV can be obtainsidnply by adding the differentials for the
corresponding tree logit modeThis would of course ndie true for elasticities.

For the tree logit model whose proHddles sum to those of the RNEV, the
probability of an alternative (i.@f a sequence in the RNEV) is

Pr= expZkesi (Vk — 109 Zsm)=s@€XP Vh)

To calculate the cross-derivative, we need to identify the lowest common nest to
which both alternatives 1 and 2 belong: gayFor choices above x, a change in the
utility of 2 has a positive impact on 1, theglong to the samalternative; at and
below x the impact is negative because 1 and 2 are competing.

Op/oV2 = P { Zkesx[ (1 —Msw) - Pk - Usy ] — Pojx- bx }

This derivative is non-positive, of coursdlt is also symmeteal: this is a necessary
corollary of the RUM theory.

To focus on the competition between alternativesd 2, it is interesting to eliminate
other alternatives from consideration. If we set all the utilities to be —infinity except
for those of alternatives 1 and 2, we obtain

3y >y, for all kesx, and Bk = P2jx - Py SO it is sufficient to show that
Zresx (1 —Rysw) - P < 1.
Because Pk IS Pys » the left side of this equation is just

2 kesx Pk — Bas = 1 — Rin
since most of the terms cancel out aggdip 1. This is obviously less than 1.



0p/oV2 = — . P Hx

since p and all higher choices have probability 1. The negative of this derivative has
a maximum at Y=V, which can be defined as thempetitivenessf the alternatives

Y12 = Yapy

since p = p = %. The competitiveness between two alternatives in TL (whatever
their position in the tree) is progmmal to the inverse utility scalg at the point in

the tree at which the sequences Farse two alternatives meet. For MNju, = %4 in

all cases, as itis in TL for alternags whose sequences meet at the root.

In the RNEV model, the probdity of an alternative igiven by the sum of a number

of TL probabilities and its derivative ifwds the sum of the deatives of those
probabilities. The cross-derivative for each other alternative will have a number of
impacts, one for each of its sequences.e Tl cross-derivative is then (when all
other alternatives are set-tmfinity, and neglecting the’s)

OP1/OV2 = Zs1es1 Zsoes2{ — Psi- P2 - Hxsis2}

The symmetry of competitiveness measures follows from the symmetry of the
demand derivatives that underlie them.

When the utilities of alternatives 1 and 2 are equal=ms2 = 1/(n. + np), where i

and n are the numbers of sequence-alternatfeeslternatives 1 and 2 respectively.
Under these circumstances, we get a competitivéness

Wiz = M/ (M+m)? . Teiest Tszes? Hxsis?
i.e., the cross-derivative bet@n the utilities of two alternatives is determined by the
sum of the utility scales at the points at which all sequences meet. This formula can

be used to study the intrinsic propertielRMEV and to compare them with those of
other models.

In the PCL we haveir= n, = (n — 1), there are (n — 1) sequences for each alternative
and all the higher-level’s are equal, so we get

yiz = Ya{ (F—2n) +u}
For the GNL, there is little simplificatiorelative to the RNEV formula and we get
W12 = Mg/ (Mtng)? . { (N + b= 1p) + Za2enpg Hx }

where n» is the number of nests that conthwih alternatives 1 and 2, i.e. the size of
the set { x | 1,2N(x) } over which the sum is calculated.

4 This value is not necessarily the maximum of the demand derivative in cross-nested models,

unless all thé.’s are equal.



An alternative comparison is that with probit model. Foa multinomial probit
model, it is easy to calculate

Yi2 = 1 /012\/(27'5)

wherecs; is the standard deviation of the imyildifference between alternatives 1 and

2°. In this case, there is a simple one-to-one relationship between the competitiveness
v and the variance of utility differences, so that a statement of the matrix of
competitivenesses specifies the probitodel entirely, up to the set of
‘indistinguishable’ modelqgDaly, 2001a). Of course, fmee starting on such an
exercise, one would be well advised to chéndt a model withhe required properties

might exist.

An interesting issue for further researchhie extent to which it is possible to design
GEV models, for example RNEV models,t@tch any given set of competitiveness
figures. As in the case of probit models, it would be useful ézlcin advance that
the specified set of competitivenesses might exist.

In a TL model, given an existing structurejs always possilel to introduce a new
alternative that hasny required competitiveness withny existing alternative.
However, the competitiveness with other alternatives is then fixed. A TL model for n
alternatives has a maximum of n—1 nestsligiag the root), so a severe restriction
on competitiveness must be expected.

In a GNL model, there is a maximum ohr{)/2 nests, each with its own parameter,
so in principle the number of degrees @efdom is adequate to represent any desired
competitiveness pattern. However, if tvadternatives are required each to have
specific patterns of interaoth with other alternativeghen they have a minimum
level of competitiveness witeach other, because all the other nests are connected to
the root. Therefore it is difficult tointroduce a pattern of low and high
competitiveness into the model.

In an RNEV model, greater freedom dgisand it is possible to imagine complex
patterns of interaction beten subsets of alternatives, which then have complex
patterns of interaction with each othe A greater rangeof high and low
competitiveness can be specified. But thevirking out of the possibilities of the
model is the subject for future research.

4. Estimation Procedurefor RNEV
It has been shown that RNEV predict®icke as the sum of a number of tree logit
probabilities. This specification of the model can be extended to allow the estimation

of RNEV models as tree logit models.

Consider a tree logit model in which the elementary and composite alternatives are
defined by thesequencedeading to elementary and composite alternatives in an

5 Note that if we set = & / V3, so that the normal distribution has the same variance as would

be obtained from a standard logistic distribution, we obtain 0.220.., a rather lower value than for
the ‘almost indistinguishable’ (Daly, 2001a) MNL model (0.25).



RNEV model. At each stage in the two models, the condltidmaice probabilities
are the same, and the sequences defin@katgestors as required for tree logit.

It would thus be possible to estimaBRNEV as a moderate extension of the
capabilities of a tree logit estimation pragr. The extension, which would require
the acceptance that choice could be an aowknmember of a specified subset of
alternatives, would also be useful in other confexts

For a general choice model, the kernetra likelihood function for a choice falling
within a set is given by

|09 L = Xobslobs = zobslog obs = Zobs |Og { 2kec(obs)pk,obs}

where c(obs) is the set of alternativesmtaining the choice for a given observation
and R obsis the probability of choice k for that observation.

The contribution of each observation to thest and second differentials of this

function are as follows (using subscriptdridicate differentiation with respect to the
unknown parameters)

|i = (1/p) Zkec Pxi

li = (1/p) Zkee Py — (U/P) - Zkee Pai- Tkec PG = (1IP) Skee Py — b ;

In the present case, these probabilities tapnse of a tree logit model and are given
by’

log Pk = Zaesk) ( Va— 109 Zsm)=s@)€XP W)

where S(K) is the sequence (set of ancestors) of k (including k but excluding the root)
induced by the tree function s.

Hence
Pi = - Zaesk) ( Vai— V¥s@i)

where \4 is the differential of the (indirectitility function of alternative a with
respect to unknown parameter i;
V* i = Zs(0)=s Pojs Vi; and
Pojs iS the conditional probability of b, a member of nest s, given that the nest
is chosen.

and

6 Current software can accommodate choice withisubset of alternatives but only if that

subset forms a nest in the tree stuuet This feature has proved useful in several practical contexts but
has slightly limited the model specification search.

The following equations apply to both normalised and non-normalised logit models, the
differences can be expressed withinthiinctions alone, see Daly (2001b).



Paii = By - Zaesk) (Vai— Visa)i)

+ R Zacsw) ( Vaij — V¥s@)ij — Zso)=s(a)Pbis(@), Vbj ) )
= [P/
+ R - Zaesk) ( Vaij — V*s@)ij — Zs(b)=s(@)Pois(a) Vbi- Vo + V*s(2)i V* s(a); )

where \4j is the differential of the (indirect) utility function of alternative a with
respect to unknown parameters i and j; and

V*sij = Zs(b)=s Poys Vbij.

Often, Vs will be zero for elementary altertinges as V is often linear in the unknown
parameters. However, even in this cagerflay be non-definite because;\Vs not
zero for composite alternatives. These foamudre relatively simple to calculate and
many components are already aual#ain the existing software.

The advantage of using true second déinea of the likelihood function has been
established over a number of years. A dagpialternative approach is that used by
Bhat (1998), who programs the likelihood function and its first derivatives of his
OGEV-MNL combined model, then uses the dalizes of the Gauss software to find

the optimum. The latter apmach is obviously less effignt in computer time — both
because of the use of general-purpose réltlaer specialised software and because the
successive steps in the optimisation use approximate rather than exact second
derivatives — and does not give the correatues of the erromeasures of the
estimated parameters at the optimurithe Gauss approach is suited to ground-
breaking research rath#van production work.

An algorithm exploiting the true second datives must be prepared to cope with
situations in which the matrix is not negatigefinite, but procedures for dealing with
this situation are well established.

5. Conclusions

A model structure, the Recursive NestBd model, has been defined which is
believed to be novel and whigeneralises all known EVadels. This structure is
consistent with the GEV theory.

Elasticity, demand derivative and competitiveness formulae can be derived for the
RNEV model. They give greater flexibilitthan previous mode but it is not yet
known to what extent a pre-speed structure can be implemented.

The RNEV model can be estimated relalyveasily by viewing it as the sum of a
number of intertwined tree logit model©f course this estimation procedure would
also apply for the special cases of the nodée first and seand derivatives of the
likelihood function can be written down amabuld not require great difficulty to
program. The program would also cover afukpractical case when the choice in a
tree logit (or othe RNEV special case) model w&nown only as a member of a
subset.
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Appendix 1: Model Definition

Consider a model of discrete choice, i.aimgg the probability of choice of a single
alternative from a finite set E. Let D bdimite superset of Het M be the set of non-
empty subsets of D and let N bsiagle-roothon-circularfunction

N: D\E—> M

The set N(d) is called the nest of d.

‘Non-circulat in this context means that there exist no cycles
d,d eN(d), d’eN(d), ... d for any member d of D.

In particular gN(d). If N is non-circuhr there exists an dexing function | on D
(i.e. a mapping from D to the set of positive integers) such that

if d’eN(d) then I(d) < I(d).
Conversely, the existence of such gpiag implies that N is non-circular.

This structure also implies that the sequences’dN@l), .. alwaysend with an
element d* such that N(d#) E.

There exists an element r of D which has thighest value of I; r will be called the
‘root’. It clearly cannot be a member thie nest of any other member of D.

‘Single-root in this context means that every member of D except the root is
represented at least once in the nestiddfby N. This property, together with non-
circularity, implies that for any member d* Dfthat there exists at least one sequence

r,d e N(r), deN(d), .. d*

In particular this appliefor members of E. LetsDe the set of sequences from the
root to e=E, defining each S to include e but exclude r. In each sequence, each
lower-level alternative k Isaa unique higher-leveltarnative d such thatddN(d); we
define this higher-level alternative to bé)s( Note that s is a tree function and the
sequence Sitself forms the set of ‘ancestoref each elementary alternative e as
defined by Daly (1987).

The idea here is that choice is represénss successive choices from subsets. So
when d has been chosen, the next choiceasobthe elements of the ‘nest’ N(d) and

SO0 on until we arrive at an elementary alternative. There is no insistence that nests
should not overlap, so this structure is angerlisation of stricttree’ models. The

fact that choices can be defined over adefinite series of s will mean that the
structure can generalise the Wen andplkelman (2000) Generalised Nested Logit,
which is restricted to two levels.

11



The model is called ‘nested’ and the gasite nodes D\E could be defined to be
‘nests’ containing the elementary alternativesany of whose sequences they fall but
(a) there may be more than one nest withsémme set of alternatives and (b) this is
not essential to the definition: B\can be any arbitrary construct.

The function | is not central to the definition, it is set up only to guarantee non-
circularity and it also plays aseful role in the proofs.

Given this non-circular nesting and a positive function Y for elementary alternatives,
we can define Y for the remaining elements of D recursively

Ya = Skene) M - YU

subject to the constraints thatXi)u > 0, (ii) k € N(d) and kg E impliespx > uq and
(i) peis constant over the elementary alternatives.

Note that the Y’s are also well defineddause of the non-circularity of N (a proof
can be given easily by induction using ).

Y., the Y function for the root, can beewed as a function of the Y’s for the
elementary alternatives. Define

G =Y. (Ye,ecE).

This function is proved to beMcFadden GEV function in Appendix 2.

12



Appendix 2: Proof that RN G isa McFadden GEV Function

The function G is defined as Appendix 1. The requiregroperties for it to be GEV
are given by Ben-Akiva and Lerman (1985) as follows.

GEV1 G is non-negative: this obvious from the form of Y, and the constraints on
YeandA.

GEV2 G is homogenous. It can easily be calculated that
GlaYy, aYs ..) =a"™ G(Yy, Yo, ..)

This follows from the non-circularity dfl, the Y definitions and the fact that
Le IS constant. Thus G is homogenous of degrge which is positive and
therefore satisfies the extended B¥kiva/Francois definition of GEV.

GEV3 G goes to infinity with any of the8. This follows from the single-root
definition of N, i.e. all elementary alternatives ‘feed in’ to the same root, and
the constraints ok andp.

GEV4 The mixed partial derivatives of G with respect toare continuous, with
non-positive even and non-negative odd rdiyartial derivatives. It is clear
that all the derivatives &t and are continuous, from the form of Y and the
restrictions ornu. Proof of this property is given below.

McFadden (1981) gives a further conditiom 8EV, seemingly not required by Ben-
Akiva and Lerman, which appears to statdyathat the addition of infinitely bad
alternatives (Y=0) to the choice set does alber the choice. This appears to be
necessary to ensure the symmetry of padeivatives. | have assumed that the Ben-
Akiva-Lerman conditions are sufint to define a GEV function.

GEV4 is proved by first establishing arhena. For convenience of notation, we
define 64k = no/lk when keN(d) (the constraints op imply that 0 <64 < 1 when
kg E) so we can write

Yd = Zken(d) Md - Y, 2
Lemma For distinct Y, .. Y, and for any ¢ D\E,
OYal0Y1..0Ym = Zken(d) Md Zi=1,m Todk,i - YO S
wheremp;=0.0-1).0-2)..0—-1+1),i.emp1=06
and S is the sum of all different products iopartial derivativesof any order of
Y with respect to distinct jYj =1, .. m, such that each; ¥ppears exactly

once; the sum of the orders of the paderivatives in eacproduct is then m.

Proof
Simply differentiating ¥ we obtain
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OYdal0Y1 = Zken(d) Mkd - Odk Ykedk_l_ oY/ 0Y1

82Yd / 8Y18Y2 = zkeN(d) de . { edk. Ykedk-l_ 82Yk / aYlaYz
+ Oak (O — 1) Yi®%2 8Y\ 1 0Y 1. Y 10Y2}

and these have the form required. Ithigs sufficient to show that the'hderivative
implies the m+1 to prove the entire Lemma by induction on the order of the partial
derivative. Differentiating # inductive hypothesis, we obtain

8r+1Yd [OY1..0Y ms1 = 2ZkeN(d) K_kd 2i=1,m Tdk,i - _
{ (0 — 1).YiP¥ L Y /Y 1. Sk + Y™ 0SmidOY ma1 }

and we can always express
S(m+1)k = 8Yk/8Ym+1.S(i_1)mk + 0Sm/OY m+1

the former term giving all the partial derivative productsluding 0Y /0Y m+1, the
latter term giving all the products excludingatHirst-order differential. Note that
S:mk has only the single fhorder differential with respect to all the Y’s (whefSis
expressed as in the last equation above the first term does not exist), ywRike j8st
the product of the m first pizail derivatives (the secondrte in the last equation does
not exist). For all other values ofappropriate contributions are made i@« by
the first term in { } brackets for (i-1) and the second term in { } for i.

Thus the Lemma is proved.

Note that the second and higher mixed derivatives of alternatiygslivectly above
elementary alternatives, with respect to the f¥inctions of those elementary
alternatives e, have a particularly simplenio The first derivative with respect tq Y
containsonly a term in the same Y so that all the second and higher mixed
derivatives are zero, even dinly one of the componentslates to an elementary
alternative in the nest of s(e).

GEV4 and thus the entiresdt is then proved by induoth on the index | (defined in
Appendix 1) of each alternative, as follows.

The alternative with the lowest value of | is certainly an elementary alternative and for
such alternatives the partial derivative widspect to itself is 1 and with respect to all
other Y’s is 0. Both these possiblelues are non-negative.The higher-order
derivatives are all zero which oburse satisfies the requirement.

Suppose that GEV4 holds for values of | léssn that of alterative d and consider
the sign of the partiaerivatives of ¥. Either d is elementary, in which case there is
no problem, or it has a nest. All the altéivies in the nest have partial derivatives
satisfying GEV4, by the inductive hypothesiscéase their | value is less than that of
d.

Each product in i@« has the sum of its orders efjo@a m, thus the number of odd-
order derivatives in each product isuafjto m modulo 2. Since there are i
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components in each product, the numbeewén-order derivatives is equal to i-m
modulo 2. Since the even-order detives are non-positive (by inductive
hypothesis), each product in,S(and hence % itself) is non-positive if i-m is odd,
non-negative if i-m is even.

Todk,i IS NoN-negative if i is odd, non-positive if i is even, whercksince 0 Dg < 1.

The product oftggxi and Snk is then non-positive if m is even, non-negative if m is
odd. When kE, the derivatives have the simple form as noted above, so;thas S
positive and Jx is zero for i>1. Thus the partial derivatives for alternative d also
satisfy the hypothesis.

By induction this proof can be extended to cover all the alternatives and in particular
the root r, thus establishing GEV4.
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