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I. THE MAP

To specify the map in fully generality it will be useful for us to be able to describe Bell and contextuality
scenarios in which the different measurements have different numbers of outcomes. Thus, we redefine
our tuples that denote the scenarios as follows.
We use a tuple (A,B, X, Y ) to denote a two-party Bell scenario in which Alice (Bob) has X (Y )

inputs and given an input x ∈ [X] (y ∈ [Y ]) she (he) can obtain one of Ax (By) possible outcomes,
where Ax (By) are the entries of the X-tuple A (Y -tuple B). We use the notation 󰀂A󰀂 =

󰁓

x Ax and
󰀂B󰀂 =

󰁓

y By.

Given a Bell scenario (A,B, X, Y ), a correlation is given by a vector p ∈ R
󰀂A󰀂󰀂B󰀂, with entries

p(a, b|x, y). A correlation p is in the quantum set, Cqs, if there exist separable Hilbert spaces HA and
HB, positive-operator-valued measures Mx = {Mx

a }a∈[Ax] for all x ∈ [X] on HA and Ny = {Ny
b }b∈[By ]

for all y ∈ [Y ] on HB, and a density operator (positive semidefinite operator with unit trace) ρ on
HA ⊗HB such that

p(a, b|x, y) = Tr (Mx
a ⊗Ny

b ρ) . (I.1)

A correlation p is in the no-signalling set if it satisfies the no-signalling constraints

󰁛

b

p(a, b|x, y) =
󰁛

b

p(a, b|x, y′) ∀a, x, y, y′ (I.2)

󰁛

a

p(a, b|x, y) =
󰁛

a

p(a, b|x′, y) ∀b, y, x, x′. (I.3)

A correlation p is local if there exists a measurable space (Λ,Σ), a probability measure µ : Σ → [0, 1], and
local probability distributions lA(a|x,E) and lB(b|y,E) satisfying

󰁓

a l
A(a|x,E) =

󰁓

b l
B(b|y,E) = 1 for

all x ∈ [X], y ∈ [Y ] and non-empty E ∈ Σ, such that

p(a, b|x, y) =

󰁝

Λ

lA(a|x,λ)lB(b|y,λ)dµ(λ). (I.4)

We identify a prepare-and-measure contextuality scenario with X preparations satisfying equivalences
OEP and Y measurements where measurement y ∈ [Y ] has By outcomes by the tuple (X,Y,B,OEP ),
where B is a Y -tuple with yth element By.
A behaviour q is in the set of contextual behaviours if for every equivalence of the form

󰁛

x

αxPx ≃
󰁛

x

βxPx, (I.5)
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in OEP the behaviour satisfies
󰁛

x

αxq(b|x, y) =
󰁛

x

βxq(b|x, y) ∀b, y. (I.6)

A behaviour q is in the quantum set, Q, if there exists a separable Hilbert space H, POVMs {Ny
b }b∈[By ]

for y ∈ [Y ] on H satisfying OEM and density operators ρx on H satisfying
󰁓

x αxρx =
󰁓

x βxρx for every
equivalence of the form in Eq. (I.5) in OEP such that

q(b|x, y) = Tr(Ny
b ρx) . (I.7)

A behaviour q is in the non-contextual set if there exists a measurable space (Λ,Σ), probability
measures µx : Σ → [0, 1] for all x ∈ [X] satisfying

󰁓

x αxµx(E) =
󰁓

x βxµx(E) for every equivalence
relation of the form (I.5) in OEP and so-called response functions ξy(b|·) for all b ∈ [By] and y ∈ [Y ] on
Λ, and

󰁓

b ξ(b|E) = 1 for all E ∈ Σ, such that

q(b|x, y) =

󰁝

Λ

ξy(b|λ)dµx(λ) . (I.8)

Now we can define the map Γ on the full set of non-signalling correlations. Notice that if there is an
outcome a|x that never occurs for Alice in the correlation p then pA(a|x) = 0 and the corresponding
preparation Pa|x of Bob’s system does not appear in the preparation equivalences NS(pA) (since it
would have coefficient zero). Consequently, the choice of preparation Pa|x would be unconstrained in
both contextual and non-contextual theories. As a result the correlation p could be mapped to one
of many possibilities. Since we wish to map each non-signalling correlation to a single behaviour in a
contextual scenario, we will not include these unconstrained preparations in the contextuality scenario.

A correlation p in a Bell scenario (A,B, X, Y ) is mapped to a behaviour q in the contextuality scenario
(󰀂Ap󰀂, Y,B,NS(pA)), where 󰀂Ap󰀂 =

󰁓

x∈[X]|A
p
x| and Ap

x = {a : pA(a|x) > 0} for all x ∈ [X], and where

the preparation equivalences are given by

󰁛

a∈[A1]

pA(a|1)Pa|1 ≃ · · · ≃
󰁛

a∈[AX ]

pA(a|X)Pa|X , (I.9)

which we encode as a vector NS(pA) in the Cartesian product R
A1 × · · · × R

AX where the x-th vector
has a-th element pA(a|x). If a preparation Pa|x has coefficient zero we will say Pa|x does not appear in
NS(pA).
The mapping is given by

Γ : [p, (A,B, X, Y )] 󰀁→ [q, (󰀂Ap󰀂, Y,B,NS(pA))] (I.10)

where

q(b|[a|x], y) =
p(a, b|x, y)

pA(a|x)
(I.11)

for a ∈ Ap
x, b ∈ [By], x ∈ [X] and y ∈ [Y ].

For the inverse mapping, let Ax ∈ N for all x ∈ [X] and someX ∈ N, then consider some p̂A(a|x) ≥ 0 for
all a ∈ [Ax] and x ∈ [X] such that

󰁓

a∈Ax
p̂A(a|x) = 1 for all x ∈ [X]. Then, letNS(p̂A) ∈ R

A1×· · ·×R
AX

be such that the a-th element of the x-th vector is p̂A(a|x). We can now define a contextuality scenario
(Z, Y,B,NS(p̂A)) where the number of preparations, Z, is the number of non-zero elements in all the
vectors of NS(p̂A). Here NS(p̂A) encodes preparation equivalences as described in Eq. (I.9). The inverse
mapping Γ

−1 takes a behaviour q in this contextuality scenario to a correlation p in the Bell scenario
(A = (A1, . . . , AX),B, X, Y ) and is given by

Γ
−1 : [q,

󰀃

Z, Y,B,NS(p̂A)
󰀄

] 󰀁→ [p, (A,B, X, Y )] (I.12)

where

p(a, b|x, y) = p̂A(a|x)q(b|[a|x], y) (I.13)

for b ∈ [By], x ∈ [X] and y ∈ [Y ]. When the scenarios are already specified, we will refer to the q in
Eq. (I.11) as Γ(p) and similarly, the p in Eq. (I.13) as Γ−1(q).
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If we are simply given a behaviour in a contextuality scenario of the right type1 we have a choice of
Bell scenario into which to map. This choice stems from being able to consider a correlation in a Bell
scenario as a correlation from a larger scenario where some outcomes never occur. For example, consider
a contextuality scenario with five preparations Q1, . . . , Q5 and preparation equivalences 1

2Q1 +
1
2Q2 ≃

1
4Q3 + 3

4Q4 ≃ Q5, and two measurements with two outcomes each. The simplest choice would be
to map to a Bell scenario with three measurements for Alice, the first two having two outcomes each
and the third having one (trivial) outcome. This choice corresponds to thinking of the preparations as
Q1 = P1|1, Q2 = P2|1, Q3 = P1|2, Q4 = P2|2 and Q5 = P1|3 which results from choosing NS(pA) =
(1/2, 1/2)× (1/4, 3/4)× (1).
However, an equally valid choice is to take NS(pA) = (0, 1/2, 0, 0, 1/2) × (1/4, 3/4, 0) × (0, 1) which

means we would think of the preparations as Q1 = P2|1, Q2 = P5|1, Q3 = P1|2, Q4 = P2|2 and Q5 = P2|3.

The resulting Bell scenario is
󰀃

(5, 3, 2), (2, 2), 3, 2
󰀄

. In this case the behaviours from this contextuality
scenario will map to the correlations in the Bell scenario with marginals given by the coefficients in the
equivalences, e.g. pA(1|2) = 1/4, and in which all Alice’s outcomes that do not have a corresponding
preparation never occur, e.g. pA(1|1) = 0. It follows from the results of the present manuscript that if
the image of a behaviour in the first Bell scenario is a local, quantum or non-signalling correlation, then
the image in the second Bell scenario will also be local, quantum or non-signalling, respectively.

II. QUANTUM CASE: CONTEXTUALITY TO BELL

In this section we will show that Γ−1 always takes a quantum behaviour q in a scenario (Z, Y,B,NS(p̂A))
to a quantum correlation p. In the case of the simplest Bell scenario some similar arguments are de-
scribed in Refs. [28] and [29]. Consider a contextuality scenario (Z, Y,B,NS(p̂A)) as described in the
previous section, where p̂A(a|x) ≥ 0 for a ∈ [Ax] and x ∈ [X] and NS(p̂A) ∈ R

A1 × · · · × R
AX has a-th

element in the x-th vector p̂A(a|x) and where Z is the number of strictly positive elements of the vectors

in NS(p̂A). We will also denote by Âx the subset of [Ax] such that p̂A(a|x) > 0. Let q be a quantum
behaviour in this scenario with a realisation, that is

q(b|[a|x], y) = Tr(ρa|xN
y
b ) , (II.1)

for some density operators ρa|x for all a ∈ Âx and x ∈ [X], and some POVMs {Ny
b }b for all b ∈ [By] and

y ∈ [Y ] on a Hilbert space H, where
󰁓

a∈Âx
p̂A(a|x)ρa|x = ρB for all x ∈ [X] and some density operator

ρB.
We will show that the correlation

p(a, b|x, y) = p̂A(a|x)q(b|[a|x], y) (II.2)

for a ∈ [Ax], b ∈ [By], x ∈ [X] and y ∈ [Y ] in the Bell scenario (A,B, X, Y ) has a quantum realisation.
Now, we want to find POVMs Mx = {Mx

a }a∈[Ax] on a Hilbert space HA and a density operator ρ
on HA ⊗ HB such that if Alice measures the POVM Mx on system A then with probability p̂A(a|x)
(from our operational equivalences NS(p̂A)) she sees outcome a and Bob is left with the state ρa|x

(from our quantum realisation in the contextuality scenario) for a ∈ Âx and outcome Mx
a never occurs

for a ∈ [Ax]\Âx. In other words, we are looking for a way for Alice to steer Bob’s system into the
assemblage given by the states ρa|x.
Mathematically, we want

TrA (Mx
a ⊗ Iρ) =

󰀫

p̂A(a|x)ρa|x if a ∈ Âx

0 otherwise ,
(II.3)

since then, if Alice measures Mx on system A and Bob measures Ny (also from the quantum realisation
in the contextuality scenario) on system B when the system AB is in state ρ we find

p(a, b|x, y) = Tr(Mx
a ⊗Ny

b ρ) =

󰀫

p̂A(a|x) Tr(N
y
b ρa|x) = p̂A(a|x)q(b|[a|x], y) if a ∈ Âx

0= p̂A(a|x)q(b|[a|x], y) otherwise ,
(II.4)

1 A scenario with no measurement equivalences and preparation equivalences given by multiple decompositions of one

hypothetical preparation in which each preparation only appears once.
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and we have a quantum realisation for our Bell correlation. Our construction of Mx and ρ is based
on the Schrödinger–HJW theorem [16], in particular, on the infinite dimensional argument given by
Navascués et al. [22, Lemma 4].

Since ρB is a density operator, it has a spectral decomposition given by a countable sum

ρB =
󰁛

n

λn |n〉 〈n| , (II.5)

where {|n〉 : n ∈ N} is a set of orthonormal vectors of H, and the positive eigenvalues λn of ρB satisfy
󰁓

n λn = 1. Note that we have excluded any zero eigenvalues from this decomposition. Let HB be the
support of ρB and ΠB =

󰁓

n |n〉 〈n| be the projection onto this closed subspace of H. Thus, we have that
{|n〉 : n ∈ N} forms an orthonormal basis for HB and ΠBρBΠB = ρB. Furthermore, we have ΠBρa|xΠB =

ρa|x for all a ∈ Âx and x ∈ [X] since we have 1 = Tr(ΠBρBΠB) =
󰁓

a′∈Âx
p̂A(a

′|x) Tr
󰀃

ΠBρa′|xΠB

󰀄

which

implies Tr(ΠBρa|xΠB) = 1 and therefore ΠBρa|xΠB = ρa|x for all a ∈ Âx.

First, we define the state for the realisation of the quantum behaviour p. LetHA = HB, then the state is

given by |Ψ〉 = 󰁓

n

√
λn |n〉 |n〉 ∈ HA⊗HB. This series converges since

󰁓

n

󰀐

󰀐

√
λn |n〉 |n〉

󰀐

󰀐

2
=

󰁓

n λn = 1.

Second, we define the effects Mx
a for a ∈ Âx of the POVM in the quantum realisation of p(a, b|x, y).

To do so, we define the operators

Mx
a,K =

󰀥

K
󰁛

m=1

1√
λm

|m〉 〈m|

󰀦

p̂A(a|x)ρ
T
a|x

󰀥

K
󰁛

n=1

1√
λn

|n〉 〈n|
󰀦

(II.6)

on HA, where the transpose is taken in the eigenbasis of ρB, and K ∈ N. From now on, we assume that
HA is infinite dimensional, since the finite-dimensional case is simpler. We will show that the operator
Mx

a on HA given by Mx
a |ψ〉 = limK→∞ Mx

a,K |ψ〉 is a bounded linear operator on HA for all a ∈ Âx and

x ∈ [X], and these operators will form the effects of the POVMs in the quantum realisation.

We have Mx
a,K ≥ 0 for all K ∈ N since Mx

a,K = S†p̂A(a|x)ρ
T
a|xS, where S =

󰁓K
m=1

1√
λm

|m〉 〈m|,

and p̂A(a|x)ρ
T
a|x is positive semidefinite (since transposition is a positive map). Further, we have that

Mx
a,K ≤ I, since

󰁛

a

Mx
a,K =

󰀥

K
󰁛

m=1

1√
λm

|m〉 〈m|

󰀦

ρTB

󰀥

K
󰁛

n=1

1√
λn

|n〉 〈n|
󰀦

=

󰀥

K
󰁛

m=1

1√
λm

|m〉 〈m|

󰀦 ∞
󰁛

j=1

λj |j〉 〈j|
󰀥

K
󰁛

n=1

1√
λn

|n〉 〈n|
󰀦

=

K
󰁛

m=1

|m〉 〈m| ≤ I.

(II.7)

Thus, Mx
a,K is a positive semidefinite bounded linear operator on HA for all K ∈ N, a ∈ Âx, and x ∈ [X].

Consider the vector subspace F of HA consisting of finite linear combinations of the eigenvectors of

ρB, i.e. vectors of the form
󰁓L

n=1 cn |n〉, for some L ∈ N. The limit limK→∞ Mx
a,K |ψ〉 converges in HA

for every element |ψ〉 of the subspace F , since there exists some Kψ ∈ N such that limK→∞ Mx
a,K |ψ〉 =

Mx
a,Kψ

|ψ〉 = Mx
a |ψ〉. Thus, we find that on F , 󰀂Mx

a |ψ〉󰀂 =
󰀐

󰀐

󰀐Mx
a,Kψ

|ψ〉
󰀐

󰀐

󰀐 ≤ 󰀂|ψ〉󰀂 and, hence, Mx
a is

a bounded linear operator on F . Since F is a dense subspace of HA, we have that Mx
a has a unique

linear extension to HA. This extension is defined as follows: given a vector |ψ〉 ∈ HA let (|ψj〉)j∈N be
a sequence in F such that (|ψj〉)j → |ψ〉 as j → ∞. Then we define Mx

a |ψ〉 = limj→∞ Mx
a |ψj〉. This

limit exists since the sequence (Mx
a |ψj〉)j is Cauchy which can be seen by the following argument. The

sequence (|ψj〉) is Cauchy, therefore for every 󰂃 > 0 there exists N ∈ N such that 󰀂|ψm〉 − |ψn〉󰀂 < 󰂃 for
all m,n > N . Thus, we have that 󰀂Mx

a |ψm〉 −Mx
a |ψn〉󰀂 ≤ 󰀂|ψm〉 − |ψn〉󰀂 < 󰂃 since |ψm〉 − |ψn〉 ∈ F .

Finally, we set Mx
a = 0 for the remaining values of a, i.e. for a ∈ [Ax]\Âx and verify that Eq. (II.3)

holds, that is, we have a quantum realisation of our correlation p(a, b|x, y), given by the POVMs Mx =
{Mx

a } on HA for Alice and Ny = {Ny
b } on HB for Bob and the quantum state |Ψ〉 = 󰁓

n

√
λn |n〉 |n〉 ∈
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HA ⊗HB. Clearly, for a ∈ [Ax]\Âx we have TrA(M
x
a ⊗ I |Ψ〉 〈Ψ|) = 0. Then, for a ∈ Âx we have

TrA(M
x
a ⊗ I |Ψ〉 〈Ψ|) =

󰁛

j,m,n

󰁳

λmλj 〈j|⊗ I (Mx
a ⊗ I |m〉 〈n|⊗ |m〉 〈n|) |j〉 ⊗ I

=
󰁛

j,m

󰁳

λmλj 〈j| lim
K→∞

Mx
a,K |m〉 |m〉 〈j|

=
󰁛

j,m

󰁳

λmλj

∞
󰁛

k=1

pA(a|x)√
λmλk

〈j|k〉 〈n| ρTa|x |m〉 |m〉 〈j|

=
󰁛

j,m

p̂A(a|x) 〈m| ρa|x |j〉 |m〉 〈j| = p̂A(a|x)ρa|x .

(II.8)

III. QUANTUM CASE: BELL TO CONTEXTUALITY

Conversely, consider a quantum correlation, p, from a bipartite Bell scenario (A,B, X, Y ) given by

p(a, b|x, y) = Tr(Mx
a ⊗Ny

b ρ) , (III.1)

for some POVMs Mx = {Mx
a } on a Hilbert space HA and Ny = {Ny

b } on a Hilbert space HB and a
density operator ρ on HA ⊗HB. Denote Alice’s marginal probabilities by pA(a|x) = Tr(Mx

a ⊗ Iρ) and
Bob’s reduced states after outcome a of measurement x of Alice with pA(a|x) ∕= 0 by

ρa|x =
TrA(M

x
a ⊗ Iρ)

pA(a|x)
. (III.2)

Recalling that we denote the subset of [Ax] such that pA(a|x) > 0 byAp
x, we have that

󰁓

a∈Ap
x
pA(a|x)ρa|x =

TrA(ρ) for all x ∈ [X], therefore the density operators ρa|x satisfy the equivalences NS(pA) given in
Eq. (I.9). Taking ρa|x as preparation Pa|x and Ny as the y-th measurement in the contextuality scenario
(󰀂Ap󰀂, Y,B,NS(pA)) results in the behaviour

q(b|[a|x], y) = Tr(Ny
b ρa|x) =

Tr(Mx
a ⊗Ny

b ρ)

pA(a|x)
=

p(a, b|x, y)

pA(a|x)
. (III.3)

Thus, q is a quantum behaviour in the contextuality scenario (󰀂Ap󰀂, Y,B,NS(pA)).

IV. LOCAL AND NON-CONTEXTUAL CASE

Let p(a, b|x, y) be a local correlation in a Bell scenario (A,B, X, Y ). Then, there exists a measurable
space (Λ,Σ), a probability measure µ : Σ → [0, 1] and local probability distributions lA(a|x,E) and
lB(b|y,E) satisfying

󰁓

a l
A(a|x,E) =

󰁓

b l
B(b|y,E) = 1 for all x ∈ [X], y ∈ [Y ] and non-empty E ∈ Σ

such that

p(a, b|x, y) =

󰁝

Λ

lA(a|x,λ)lB(b|y,λ)dµ(λ). (IV.1)

We now construct a non-contextual ontological model that yields the behaviour

q(b|[a|x], y) =
p(a, b|x, y)

pA(a|x)
(IV.2)

in the contextuality scenario (󰀂Ap󰀂, Y,B,NS(pA)). Note that the marginals of Alice, pA(a|x) =
󰁓

b p(a, b|x, y), can now be expressed as pA(a|x) =
󰁕

Λ
lA(a|x,λ)dµ(λ).

We select the ontic state space (Λ,Σ) and each preparation Pa|x for a ∈ Ap
x and x ∈ [X] is given by

the measure

µa|x(E) =
lA(a|x,E)µ(E)

pA(a|x)
(IV.3)
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on Λ. These are indeed probability measures on Λ, since

󰁝

Λ

dµa|x(λ) =
1

pA(a|x)

󰁝

Λ

lA(a|x,λ)dµ(λ) = 1 . (IV.4)

Furthermore, the measures µa|x satisfy the operational equivalences NS(pA), since

󰁛

a

pA(a|x)µa|x(E) = µ(E), (IV.5)

for all E ∈ Σ and x ∈ [X].
The response function for each measurement My for y ∈ [Y ] is given by ξy(b|E) = lB(b|y,E). Now,

for all a ∈ Ap
x and x ∈ [X] we find that

q(b|[a|x], y) =

󰁝

Λ

ξy(b|λ)dµa|x(λ) =

󰁝

Λ

lB(b|y,λ)
lA(a|x,λ)

pA(a|x)
dµ(λ) =

p(a, b|x, y)

pA(a|x)
. (IV.6)

Conversely, consider a non-contextual behaviour q(b|[a|x], y) in a contextuality scenario (Z, Y,B,NS(p̂A))
where p̂A(a|x) ≥ 0 for a ∈ [Ax] and x ∈ [X] and NS(p̂A) ∈ R

A1 × · · · × R
AX has a-th element in the

x-th vector p̂A(a|x) and where Z is the number of strictly positive elements of the vectors in NS(p̂A).

We will also denote by Âx the subset of [Ax] such that p̂A(a|x) > 0.

Then, there exists a measurable space (Λ,Σ), probability measures µa|x for all a ∈ Âx and x ∈ [X]
and ξy(b|·) for all b ∈ [By] and y ∈ [Y ] on Λ satisfying

󰁓

a p̂A(a|x)µa|x(E) = µ(E) for all x ∈ [X] and
󰁓

b ξ(b|E) = 1 for all E ∈ Σ such that

󰁝

Λ

ξy(b|λ)dµa|x(λ) = q(b|[a|x], y) . (IV.7)

Note that we can assume that µ(E) > 0 for all non-empty E ∈ Σ.
We will construct a local hidden variable model for the correlation

p(a, b|x, y) =

󰀫

p̂A(a|x)q(b|[a|x], y) if a ∈ Âx

0 otherwise ,
(IV.8)

for b ∈ [By], x ∈ [X] and y ∈ [Y ]. Let

lA(a|x,E) =

󰀫

p̂A(a|x)µa|x(E)

µ(E) if a ∈ Âx and E non-empty

0 otherwise,
(IV.9)

and lB(b|y,E) = ξy(b|E). Then, for a ∈ Âx, we find

p(a, b|x, y) =

󰁝

Λ

lA(a|x,λ)lB(b|y,λ)dµ(λ)

=

󰁝

Λ

p̂A(a|x)ξy(b|λ)dµa|x(λ) = p̂A(a|x)q(b|[a|x], y) ,

(IV.10)

and for a ∈ [Ax]\Âx, we have p(a, b|x, y) = 0.

V. NON-SIGNALLING AND CONTEXTUAL CASE

Given a non-signalling correlation p in a Bell scenario (A,B, X, Y ) we find that q defined by Eq. (I.11)
is in the set of contextual behaviours in the contextuality scenario (󰀂Ap󰀂, Y,B,NS(pA)) since

󰁛

a∈Ap
x

pA(a|x)q(b|[a|x], y) =
󰁛

a∈Ap
x

p(a, b|x, y) =
󰁛

a∈[Ax]

p(a, b|x, y) = pB(b|y) , (V.1)

for all b ∈ [By], x ∈ [X] and y ∈ [Y ].
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Conversely, given a behaviour in the contextual set of a scenario (Z, Y,B,NS(p̂A)) we find that the
correlation p in Eq. (I.13) is non-signalling in the Bell scenario (A,B, X, Y ) since

󰁛

a∈[Ax]

p(a, b|x, y) =
󰁛

a∈Âx

q(b|[a|x], y)p̂A(a|x) = Q(b|y) , (V.2)

for some Q(b|y) ∈ R (recalling that Âx denotes the subset of [Ax] such that p̂A(a|x) > 0), and

󰁛

b∈[By ]

p(a, b|x, y) =
󰁛

b∈[By ]

q(b|[a|x], y)p̂A(a|x) = p̂A(a|x) , (V.3)

for all for all b ∈ [By] and y ∈ [Y ].

VI. LIMITATIONS OF THE MAP

Preparation equivalences in the form of Eq. (14) of the main text generally may involve a single
preparation appearing in multiple mixtures, for example, see how preparation P1 appears in all three
mixtures in Eq. (VI.1) below. Such equivalences do not arise from the no-signalling constraint in a
remote-preparation scenario. In this section we will demonstrate with an explicit example how treating
the multiple instances of a single preparation as different preparations in order to apply our map can
result in local correlations being mapped to contextual behaviours.
Preparation equivalences do not have one unique expression. For example, the equivalence

1

2
(P1 + P2) ≃

1

3
(P1 + P3 + P4) , (VI.1)

can be expressed as

1

4
P1 +

3

4
P2 ≃ 1

2
(P3 + P4) . (VI.2)

Relabelling these preparations can now yield an equivalence in the form in Eq. (I.9), since each prepara-

tion only appears once. In fact, any single equivalence
󰁓Z

a=1 pa,1Pa ≃
󰁓Z

a=1 pa,2Pa can be expressed such
that each preparation only features once, like in the case of Eqs. (VI.1) and (VI.2). This rearrangement
is achieved by subtracting pa,xPa from both sides and renormalising for all a, where x ∈ {1, 2} is such
that pa,x = min{pa,1, pa,2}.
Performing this procedure for each of the individual equivalences in Eq. (14) of the main text will in

general lead to equivalences given by decompositions of multiple different hypothetical preparations. For
example,

OH =

󰀫

1

2
(P1 + P2) ≃

1

3
(P1 + P3 + P4) ≃

1

5
P1 +

2

5
(P3 + P5)

󰀬

(VI.3)

becomes

1

4
P1 +

3

4
P2 ≃ 1

2
(P3 + P4) and

3

8
P1 +

5

8
P2 ≃ 1

2
(P3 + P5) .

(VI.4)

Consider then the contextuality scenario H = (5, 2, 2,OH), where the preparation equivalences OH
are given in Eq. (VI.3). By considering multiple instances of a repeated preparation, e.g. P3, as distinct
preparations, we can embed the behaviours from the scenario H in a scenario H ′ which can be mapped
to a Bell scenario. To do so, we first subtract 1

5P1 from each hypothetical preparation and renormalise
to arrive at the relations

3

8
P1 +

5

8
P2 ≃ 1

6
P1 +

5

12
(P3 + P4) ≃

1

2
(P3 + P5) (VI.5)
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Next, we can treat the two instances of P1 and the two instances of P3 as different preparations (re-
interpreting the second instance of P1 as P6 and the second instance of P3 as P7) to embed the behaviours
into H ′ = (7, 2, 2,OH′) where

OH′ =

󰀫

3

8
P1 +

5

8
P2 ≃ 1

6
P6 +

5

12
(P3 + P4) ≃

1

2
(P7 + P5)

󰀬

. (VI.6)

Under relabelling, these preparation equivalences are of the form NS(pA). Explicitly, we can map a
behaviour q in the scenario H to a behaviour q′ in the scenario H ′ by setting q′(b|x, y) = q(b|x, y) for
1 ≤ x ≤ 5, and q′(b|6, y) = q(b|1, y) and q′(b|7, y) = q(b|3, y). However, although under this embedding
non-contextual and quantum behaviours remain non-contexual and quantum, respectively, it is possible
for a contextual behaviour to become non-contextual due to the relaxation of preparation equivalences.
Indeed, we now give an explicit example of a contextual behaviour in H that becomes a non-contextual

behaviour in H ′ using the above notation and mapping. Using the procedure in Ref. [Section IV,10] and
the vertex enumeration software package lrs [23], we found all the facet inequalities defining the non-
contextual polytope in H. The polytope has 60 facets, one of which is given by the inequality

− q(1|1, 2)− 3q(1|2, 1) + 2q(1|3, 1) + 2q(1|3, 2) + 2 ≥ 0. (VI.7)

An explicit contextual behaviour violating this inequality is given by

qc =
󰀃

qc(1|1, 1), qc(1|1, 2), qc(1|2, 1), qc(1|, 2, 2), . . . , qc(1|5, 2)
󰀄

=

󰀕

19

200
,
1

2
,
127

200
,
1

2
,
19

200
,
19

200
,
181

200
,
181

200
,
77

100
,
181

200
,
19

200
,
1

2
,
19

200
,
19

200

󰀖

,
(VI.8)

where qc(2|x, y) = 1− qc(1|x, y). In particular, this behaviour violates Eq. (VI.7) by − 1
40 , and thus it is

contextual.
Let us now map qc above to a behaviour q′c in the scenario H ′, that is, we have

q′c =

󰀕

19

200
,
1

2
,
127

200
,
1

2
,
19

200
,
19

200
,
181

200
,
181

200
,
77

100
,
181

200
,
19

200
,
1

2
,
19

200
,
19

200
,
19

200
,
1

2
,
19

200
,
19

200

󰀖

. (VI.9)

This behaviour is non-contextual, which can be shown by constructing an explicit non-contextual model,
that is, a measurable space (Λ,Σ), probability measures µx : Σ → [0, 1] and ξy(b|.) response functions
such that

q′c(b|x, y) =

󰁝

Λ

ξy(b|λ)dµx(λ) ∀b, x, y. (VI.10)

Let us take the discrete measurable space Λ = {1, 2, 3, 4} with the usual σ-algebra Σ of the power sets.
We define the response functions

ξ1(1|1) = ξ1(1|3) = 0, ξ1(1|2) = ξ1(1|4) = 1 (VI.11)

ξ2(1|1) = ξ2(1|2) = 0, ξ2(1|3) = ξ2(1|4) = 1 (VI.12)

with ξy(2|λ) = 1 − ξy(1|λ) for all y and λ. Furthermore, we define the probability measures via their
values µx({λ}) given by

µ =

󰀳

󰁅

󰁅

󰁅

󰁅

󰁅

󰁃

1
2

73
200

1671
2000 0 0 81

200
133
160

81
200 0 139

2000
19
200

23
100

1
2

59
800

0 27
200

139
2000

19
200

19
200

19
200

59
800

19
200

1
2

51
2000

81
100

27
40 0 17

800

󰀴

󰁆

󰁆

󰁆

󰁆

󰁆

󰁄

, (VI.13)

where the rows are indexed by λ and the columns are indexed by x, i.e. µλ,x = µx({λ}). It is a
straightforward computation to verify Eq. (VI.10) with these choices. Thus, the contextual behaviour qc
in the scenario H is mapped to a non-contextual behaviour q′c in the scenario H ′.
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VII. PROOF OF COROLLARY 1

Suppose there exists an algorithm to decide whether any behaviour belongs to the quantum set in
any given contextuality scenario. Then, given any correlation p in a Bell scenario (A,B, X, Y ) one
can decide whether q given by Eq. (I.11) belongs to the quantum set in the contextuality scenario
(󰀂Ap󰀂, Y,B,NS(pA)). Since q ∈ Q if and only if p ∈ Cqs, one could therefore decide the membership
problem for the set of quantum spatial correlations, however this problem is known to be undecidable [14,
24].

VIII. PROOF OF COROLLARY 2

If any behaviour in Q in any contextuality scenario could be realised with finite dimensional quantum
systems, then the construction in Sec. II would give a finite dimensional quantum realisation of any
correlation in a Bell scenario, which is known not to exist [25].

IX. PROOF OF COROLLARY 3

For the proofs of Corollaries 3 and 4, we will find it useful to remove probability zero or one outcomes
of Alice from a correlation. To do so we will map a given correlation in a Bell scenario to one in a
scenario with fewer inputs and/or outputs in which Alice’s marginal probabilities are strictly between
zero and one. We now describe this map and show how it preserves the closure Cqa of the set of quantum
spatial correlations Cqs.
Let p̂ ∈ Cqa be a correlation in a Bell scenario (A,B, X, Y ) such that p̂A(a|x) = 0 for all a > a′x

for each x ∈ [X] (note that if there are some zeroes in Alice’s marginals, we can always relabel Alice’s
outcomes such that these zeroes appear at a > a′x, since relabelling is a symmetry of Cqa). Furthermore,
let Alice’s outcomes be completely deterministic for inputs x > X ′. Since p̂ ∈ Cqa, there exists a sequence
of correlations (p̂j)j ⊂ Cqa with finite dimensional quantum realisations such that p̂j → p̂ as j → ∞, i.e,
for each j ∈ N we have

p̂j(a, b|x, y) = 〈ψj |M
x,j
a ⊗Ny,j

b |ψj〉 (IX.1)

for some separable Hilbert spaces Hj
A and Hj

B, unit vectors |ψj〉 ∈ Hj
A⊗Hj

B and projective measurements

{Mx,j
a } and {Ny,j

b } on Hj
A and Hj

B, respectively.
Now, consider the Bell scenario (A′,B, X ′, Y ) in which we have removed all of Alice’s inputs that

give a deterministic outcome in p̂, i.e. x > X ′ and all the outputs a|x for Alice such that p̂A(a|x) = 0,
i.e. a > a′x. Therefore, A′ has elements A′

x = a′x. Define a correlation τ(p̂) = p′ in this scenario by
p′(a, b|x, y) = p̂(a, b|x, y) for all a ∈ [A′

x], b ∈ [By], x ∈ [X ′] and y ∈ [Y ].

Lemma 1. A correlation p̂ is in the set Cqa of a Bell scenario (A,B, X, Y ) if and only if p′ = τ(p̂) is a
correlation in the set Cqa of the Bell scenario (A′,B, X ′, Y )

Proof. Firstly, it is clear that removing all the deterministic inputs x > X ′ from each correlation in
the sequence Eq. (IX.1) leaves a sequence of correlations pj(a, b|x, y) = p̂j(a, b|x, y) for all a ∈ [Ax],
b ∈ [By], x ∈ [X ′] and y ∈ [Y ] with a quantum realisation that tend to a correlation p defined by
p(a, b|x, y) = p̂(a, b|x, y) for all a ∈ [Ax], b ∈ [By], x ∈ [X ′] and y ∈ [Y ].
We then proceed by removing all the zero probability outcomes of one input x∗ ∈ [X ′] of Alice, by

mapping p to a correlation p∗ in the scenario (A∗,B, X ′, Y ), where A∗
x∗ = a′x∗ and A∗

x = Ax for all
x ∕= x∗. We take p∗(a, b|x, y) = p(a, b|x, y) for all a ∈ [A∗

x], b ∈ [By], x ∈ [X ′] and y ∈ [Y ]. Let

Π
j =

󰁓

a≤A∗

x∗

Mx,j
a and Hj∗

A be the support of Πj . Observe that, denoting the identity operator on Hj
A

(Hj
B) by IAj (IBj ), we have that

0 =
󰁛

a>A∗

x∗

pA(a|x
∗) = lim

j→∞
〈ψj | (IAj −Π

j)⊗ IBj |ψj〉 = lim
j→∞

󰀃

1− 〈ψj |Π
j ⊗ IBj |ψj〉

󰀄

, (IX.2)

which gives

lim
j→∞

〈ψj |Π
j ⊗ IBj |ψj〉 = 1. (IX.3)
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We may then define the states

|ψ∗
j 〉 =

Π
j ⊗ IBj |ψj〉

󰁳

〈ψj |Πj ⊗ IBj |ψj〉
∈ Hj∗

A ⊗Hj
B , (IX.4)

where without loss of generality we can assume that the denominator is strictly positive for all j ∈ N

since it tends to one in the limit j → ∞.
It also follows from Eq. (IX.3) that (embedding |ψ∗

j 〉 into Hj
A ⊗Hj

B)

lim
j→∞

〈ψj |ψ
∗
j 〉 = lim

j→∞
〈ψj |Π

j ⊗ IBj |ψj〉
󰁳

〈ψj |Πj ⊗ IBj |ψj〉
= 1 . (IX.5)

Observe that we can find unit vectors |ψ⊥
j 〉 ∈ Hj

A ⊗ Hj
B orthogonal to |ψj〉 such that (again for the

embedding)

|ψ∗
j 〉 = αj |ψj〉+ βj |ψ

⊥
j 〉 (IX.6)

for each j ∈ N. Note that we can choose the |ψ⊥
j 〉 such that βj ∈ R, and we have that αj = 〈ψj |Π

j ⊗
IBj |ψj〉 ∈ R, which also implies βj =

󰁴

1− α2
j . By Eq. (IX.5), we find that limj→∞ αj = 1 and hence,

also limj→∞
󰁴

1− α2
j = 0.

Now, consider the sequence of quantum spatial correlations in the scenario (A∗,B, X ′, Y ) given by

p∗j (a, b|x, y) = 〈ψ∗
j |R

x,j
a ⊗Ny,j

b |ψ∗
j 〉 , (IX.7)

for all a ∈ [A∗
x], b ∈ [By], x ∈ [X ′] and y ∈ [Y ], where the operators Rx,j

a = Π
jMx,j

a Π
j form projective

measurements on the subspace Hj∗
A of Hj

A since they satisfy
󰁓

a∈[A∗

x]
Rx,j

a =
󰁓

a∈[A∗

x]
Π

jMx,j
a Π

j =

Π
j
IAjΠ

j = IA∗j .
We can now evaluate the limit of our sequence of correlations using the expression in Eq. (IX.6):

lim
j→∞

p∗j (a, b|x, y) = lim
j→∞

〈ψ∗
j |R

x,j
a ⊗Ny,j

b |ψ∗
j 〉

= lim
j→∞

〈ψ∗
j |M

x,j
a ⊗Ny,j

b |ψ∗
j 〉

= lim
j→∞

α2
j 〈ψj |M

x,j
a ⊗Ny,j

b |ψj〉

+ 2Re
󰀓

αj

󰁴

1− α2
j 〈ψ⊥

j |M
x,j
a ⊗Ny,j

b |ψj〉
󰀔

+ (1− α2
j )

2 〈ψ⊥
j |M

x,j
a ⊗Ny,j

b |ψ⊥
j 〉 .

(IX.8)

Since we have 0 ≤ Mx,j
a ⊗Ny,j

b ≤ IAjBj , both
󰀏

󰀏

󰀏〈ψ⊥
j |M

x,j
a ⊗Ny,j

b |ψ⊥
j 〉

󰀏

󰀏

󰀏 and
󰀏

󰀏

󰀏〈ψ⊥
j |M

x,j
a ⊗Ny,j

b |ψj〉
󰀏

󰀏

󰀏 are

bounded in the unit interval. It follows that the final two summands of the last expression in Eq. (IX.8)

tend to zero in the limit due to the factor of
󰁴

1− α2
j . Remembering that αj → 1 as j → ∞, we are left

with

lim
j→∞

p∗j (a, b|x, y) = lim
j→∞

〈ψj |M
x,j
a ⊗Ny,j

b |ψj〉 = p(a, b|x, y) , (IX.9)

for all a ∈ [A∗
x], b ∈ [By], x ∈ [X ′] and y ∈ [Y ]. This argument can be applied iteratively for each x ∈ [X ′]

to show that the correlation p′ = τ(p̂) is a member of the set Cqa in the Bell scenario (A′,B, X ′, Y ).
Conversely, given any correlation p′ ∈ Cqa in a scenario (A′,B, X ′, Y ) we can embed the correlation

in a scenario (A,B, X, Y ) in which Alice has more inputs and/or outputs via the map

p̂(a, b|x, y) =

󰀻

󰁁

󰀿

󰁁

󰀽

p′(a, b|x, y) for a ∈ [A′
x], b ∈ [By], x ∈ [X ′], y ∈ [Y ]

1 for a = 1 and X ′ < x ≤ X

0 otherwise.

(IX.10)
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If p′ ∈ Cqa then there exists a sequence of correlations p′j which tend to p′ and have quantum realisa-
tions. This sequence can be transformed to a sequence of quantum spatial correlations in the scenario
(A,B, X, Y ) which tends to p̂ by adding zero operators to the POVMs for the additional probability
zero outcomes in the existing inputs of Alice and adding POVMs given by the identity operator followed
by zero operators for the additional deterministic settings.

Remark 1. One can analogously show that a correlation p̂ is in the set Cqs of a Bell scenario (A,B, X, Y )
if and only if p′ = τ(p̂) is a correlation in the set Cqs of the Bell scenario (A′,B, X ′, Y ) with an argument
that follows the proof of Lemma 1 but with the simplification of not having to consider limits of sequences
of correlations.

Now, let p be a correlation in a Bell scenario (A,B, X, Y ) that is contained in the closure Cqa of the
set Cqs of quantum spatial correlations but that is not contained in the set Cqs itself, i.e. p ∈ Cqa\Cqs [24].
It follows from Lemma 1 and Remark 1 that p′ = τ(p) ∈ Cqa\Cqs in the scenario (A′,B, X ′, Y ). First,
we will construct a sequence (pn)n∈N of correlations in Cqs in the scenario (A′,B, X ′, Y ) converging
to p′ such that every element of the sequence has the same marginals for Alice as p′, i.e. pnA = p′A
for all n ∈ N. Since the correlations pn will all have the same marginals for Alice, they will each be
mapped to a behaviour qn = Γ(pn) in the same single contextuality scenario (󰀂A′p󰀂, Y,B,NS(p′A)) where

󰀂A′p󰀂 =
󰁓

x∈[X′]|A
p
x| =

󰁓

x∈[X′]

󰀏

󰀏

󰀏Ap′

x

󰀏

󰀏

󰀏.

Next, we will show that this sequence of behaviours converges to q = Γ(p′), meaning q is in the closure
Q of the set of quantum behaviours. Finally, it follows that q /∈ Q since otherwise we could construct
a quantum realisation of the correlation p′ = Γ

−1(q), via the method in Sec. II. Thus, we have that
q ∈ Q \ Q.

Consider the correlation pint(a, b|x, y) = p′A(a|x)
1
By

. We demonstrate that this correlation is in the

relative interior of the local polytope (and, hence, in the relative interior of Cqs) as follows. The vertices
of the local polytope are exactly the correlations V that admit an expression

V (a, b|x, y) = vA(a|x)vB(b|y) , (IX.11)

for two deterministic conditional probability distributions vA and vB. In any polytope of unconstrained
conditional probability distributions r(c|z) over some variables c ∈ [C] and z ∈ [Z] for some C,Z ∈ N,
any point on the boundary contains at least one zero element, i.e. r(c|z) = 0 for some c ∈ [C] and z ∈ [Z].
Both distributions pintA (a|x) = p′A(a|x) and pintB (b|y) = 1

By
are entirely non-zero and, therefore, are in the

relative interiors of their respective polytopes.

It follows that pintA (a|x) and pintB (b|y) admit convex decompositions pintA (a|x) =
󰁓

a,x αa,xv
A(a|x) and

pintB (b|y) =
󰁓

b,y βb,yv
B(b|y) where αa,x > 0, βb,y > 0 for all a ∈ [A′

x], b ∈ [By], x ∈ [X] and y ∈ [Y ]

and
󰁓

a,x αa,x =
󰁓

b,y βb,y = 1. Thus, we find that pint(a, b|x, y) also admits a convex decomposition in
which all of the vertices of the local polytope have a strictly non-zero coefficient, namely,

pint(a, b|x, y) =
󰁛

a,b,x,y

αa,xβb,yv
A(a|x)vB(b|y) , (IX.12)

showing that pint is in the relative interior of the local polytope.

Additionally, we have that pintA = p′A. Define pn = 1
n
pint +

󰀃

1− 1
n

󰀄

p′. Each term of the sequence has
the same marginals for Alice, pnA = p′A, and is in the relative interior of Cqa, since it is a mixture of a
point in Cqa and a point in the relative interior of Cqa. It follows that (p

n)n∈N is a sequence of points in
Cqs that converge to p′.

Now, consider the image (qn)n∈N of the sequence (pn)n∈N under our map Γ [see Eq. (I.11)] in the
contextuality scenario (󰀂A′p󰀂, Y,B,NS(p′A)), noting that all points in the sequence are mapped to the
same contextuality scenario since they have the same marginals p′A(a|x) for Alice. Since each pn ∈ Cqs,
we have that each qn ∈ Q. Furthermore, we have that for every 󰂃 > 0 there exists N󰂃 ∈ N such that
󰀂pn − p′󰀂1 < 󰂃 for all n ≥ N󰂃. Thus, letting 󰂃′ = mina,x{p

′
A(a|x)}󰂃, we have that for all n ≥ N󰂃′
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󰀂qn − q󰀂1 =
󰁛

a,b,x,y

|qn(b|[a|x], y)− q(b|[a|x], y)|

=
󰁛

a,b,x,y

󰀏

󰀏

󰀏

󰀏

pn(a, b|x, y)

p′A(a|x)
− p′(a, b|x, y)

p′A(a|x)

󰀏

󰀏

󰀏

󰀏

≤ max
a,x

󰀝

1

p′A(a|x)

󰀞

󰁛

a,b,x,y

|pn(a, b|x, y)− p′(a, b|x, y)|

< max
a,x

󰀝

1

p′A(a|x)

󰀞

󰂃′ =
󰂃′

mina,x{p′A(a|x)}
= 󰂃 ,

(IX.13)

and we find that (qn) ⊂ Q converges to q, meaning q ∈ Q.
On the other hand, we have that q /∈ Q since otherwise we could construct a quantum realisation of

the correlation p′ = Γ
−1(q), via the method in Sec. II. Therefore, it follows that that q ∈ Q \ Q and Q

is not closed.

X. PROOF OF COROLLARY 4

We require two results from the literature. Firstly, it is known that the following weak-membership
problem for Cqa = Cqs is undecidable [14]:

[WMEM] given a correlation p in a Bell scenario (A,B, X, Y ) and ε > 0 decide whether p ∈ Cqa or
p /∈ Cε

qa = {p : 󰀂p− p′󰀂1 ≤ ε for some p′ ∈ Cqa} with the promise that either p ∈ Cqa or p /∈ Cε
qa,

where 󰀂.󰀂1 is the ℓ1-norm.
Secondly, it is known [14] that for any δ > 0 there exists an algorithm (FIN) that verifies that

a correlation p ∈ Cδ
qa and halts for any correlation p ∈ Cδ

qa. The input of this algorithm is a fixed

correlation p. At the d-th step, (FIN:d), of the algorithm a finite set of quantum correlations, {p̃dn}n, is
constructed such that these correlations are realisable when dim(HA) = dim(HB) = d, and moreover,
for any correlation, p̃ that is also realisable with such Hilbert spaces we have

󰀐

󰀐p̃− p̃dn
󰀐

󰀐

1
< δ for some

p̃dn. This can be achieved, because the set of quantum correlations achievable in a fixed dimension is
compact. Then, the distance

󰀐

󰀐p− p̃dn
󰀐

󰀐

1
is calculated for all n. If this distance is less than δ for some n

the algorithm returns p ∈ Cδ
qa. Otherwise, the algorithm proceeds to (FIN:d + 1). Since the closure of

the set of quantum correlations realisable in some finite dimension is the same as Cqa [26, 27], it follows
that if p ∈ Cδ

qa then the algorithm halts for some finite d, otherwise it does not halt.
Now, suppose there exists a hierarchy of SDPs wherein each level, j, decides whether a behaviour q in

a contextuality scenario (Z, Y,B,NS(p̂A)) is in a superset Qj of Q or not, and these supersets converge
to Q as j tends to infinity (i.e. Q = ∩NQj). Under this hypothesis, we will construct an algorithm that
decides the problem [WMEM], and therefore reach a contradiction.
We can now give the algorithm that decides [WMEM]. Given a correlation p with the promise that

either p ∈ Cqa or p /∈ Cε
qa:

Step (1): If pA is deterministic return p ∈ Cqa and halt.
Otherwise, relabel Alice’s inputs such that any inputs giving a deterministic outcome are labelled
with the highest values x > X ′ in [X] and for each x ∈ [X ′] relabel the outcomes such that any
zeroes in pA are for outcomes a > a′x for some a′x ∈ N and (we retain the notation p for this
relabelling), and map p to the correlation p′ = τ(p) in the Bell scenario (A′,B, X ′, Y ) such that
p′ has marginals p′A strictly between zero and one (see Sec. IX).

Step (2): Map p′ to q = Γ(p′) in the contextuality scenario (󰀂A′p󰀂, Y,B,NS(p′A)), where 󰀂A′p󰀂 =
󰁓

x∈[X′]|A
p
x| =

󰁓

x∈[X′]

󰀏

󰀏

󰀏
Ap′

x

󰀏

󰀏

󰀏
—see Eqs. (I.10) and (I.11)..

Step (j ≥ 3): Use level j of the SDP hierarchy to decide whether q ∈ Qj .
If q /∈ Qj : return p /∈ Cε

qa and halt.
If q ∈ Qj : run step (FIN:j) of the algorithm (FIN) on p′ with δ < ε.
If (FIN:j) returns p′ ∈ Cδ

qa: return p ∈ Cqa and halt.
Otherwise, perform Step (j+1).
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To see that the algorithm would return the correct answer, first, define Qε = {q : 󰀂q − q′󰀂1 ≤
ε for some q′ ∈ Q}.
Case (1) p /∈ Cε

qa:

Let p′ε be any behaviour such that 󰀂p′ − p′ε󰀂1 < ε. Then we have that
󰀐

󰀐p− τ−1(p′ε)
󰀐

󰀐

1
= 󰀂p′ − p′ε󰀂1 < ε

and thus τ−1(p′ε) /∈ Cqa. Therefore, p′ε /∈ Cqa in the scenario (A′,B, X ′, Y ) and p′ /∈ Cε
qa, since there is

an ε-ball around p′ entirely outside of Cqa.
Now we will show that q = Γ(p′) /∈ Qε. Consider any behaviour qε such that 󰀂qε − q󰀂1 < ε and let

pε = Γ
−1(qε) be the image of qε under the map in Eq. (I.13) (where p̂A = p′A). Then we have

󰀂pε − p′󰀂1 =
󰁛

a,b,x,y

|p′A(a|x)qε(b|[a|x], y)− p′(a, b|x, y)|

=
󰁛

a,b,x,y

|p′A(a|x)qε(b|[a|x], y)− p′A(a|x)q(b|[a|x], y)|

=
󰁛

a,b,x,y

p′A(a|x)|qε(b|[a|x], y)− q(b|[a|x], y)|

≤
󰁛

a,b,x,y

|qε(b|[a|x], y)− q(b|[a|x], y)| < ε .

(X.1)

Therefore, we have that pε /∈ Cqa, which implies pε /∈ Cqs and thus qε = Γ(pε) /∈ Q. We have shown that
there is an ε-ball around q entirely outside of Q, thus q /∈ Qε.
For a finite level j of the SDP hierarchy we find q /∈ Qj and hence, at a finite step (j + 1) of the

algorithm we obtain p /∈ Cε
qa. On the other hand, at no Step (j) will the algorithm return p ∈ Cqa, since

we have shown that p′ /∈ Cε
qa in the scenario (A′,B, X ′, Y ), and therefore 󰀂p′ − p′′󰀂1 > ε > δ for any

correlation p′′ realisable with finite dimensional quantum systems.
Case (2) p ∈ Cqa:

We have that p′ = τ(p) ∈ Cqa in the scenario (A′,B, X ′, Y ), and we will show that q = Γ(p′) ∈ Q
using the same method as in Sec. IX. To do so, we will construct a sequence (pn)n∈N of correlations
in Cqs converging to p′ such that every element of the sequence has the same marginals for Alice as p′,
i.e. pnA = p′A for all n ∈ N. Since the correlations pn will all have the same marginals for Alice, they will
all be mapped to a behaviour qn = Λ(pn) in the same contextuality scenario (󰀂A′p󰀂, Y,B,NS(p′A)).
Consider the correlation pint(a, b|x, y) = p′A(a|x)

1
By

. We demonstrate that this correlation is in the

relative interior of the local polytope (and, hence, in the relative interior of Cqs) as follows. The vertices
of the local polytope are exactly the correlations V that admit an expression

V (a, b|x, y) = vA(a|x)vB(b|y) , (X.2)

for two deterministic, conditional probability distributions vA and vB. In any polytope of unconstrained
conditional probability distributions r(c|z) over some variables c ∈ [C] and z ∈ [Z] for some C,Z ∈ N,
any point on the boundary contains at least one zero element, i.e. r(c|z) = 0 for some c ∈ [C] and z ∈ [Z].
Both distributions pintA (a|x) = p′A(a|x) and pintB (b|y) = 1

By
are entirely non-zero and, therefore, are in the

relative interiors of their respective polytopes.
It follows that pintA (a|x) and pintB (b|y) admit convex decompositions pintA (a|x) =

󰁓

a,x αa,xv
A(a|x) and

pintB (b|y) =
󰁓

b,y βb,yv
B(b|y) where αa,x > 0, βb,y > 0 for all a ∈ [A′

x], b ∈ [By], x ∈ [X] and y ∈ [Y ]

and
󰁓

a,x αa,x =
󰁓

b,y βb,y = 1. Thus, we find that pint(a, b|x, y) also admits a convex decomposition in
which all of the vertices of the local polytope have a strictly non-zero coefficient, namely,

pint(a, b|x, y) =
󰁛

a,b,x,y

αa,xβb,yv
A(a|x)vB(b|y) , (X.3)

showing that pint is in the relative interior of the local polytope.
Additionally, we have that pintA = p′A. Define pn = 1

n
pint +

󰀃

1− 1
n

󰀄

p′. Each term of the sequence has
the same marginals for Alice, pnA = p′A, and is in the relative interior of Cqa, since it is a mixture of a
point in Cqa and a point in the relative interior of Cqa. It follows that (p

n)n∈N is a sequence of points in
Cqs that converge to p′.
Now consider the image (qn)n∈N of the sequence (pn)n∈N under our map Γ [see Eq. (I.11)] in the

contextuality scenario (󰀂A′p󰀂, Y,B,NS(p′A)), noting that all points in the sequence are mapped to the
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same contextuality scenario since they have the same marginals p′A(a|x) for Alice. Since each pn ∈ Cqs,
we have that each qn ∈ Q. Furthermore, we have that for every 󰂃 > 0 there exists N󰂃 ∈ N such that
󰀂pn − p′󰀂1 < 󰂃 for all n ≥ N󰂃. Thus, letting 󰂃′ = mina,x{p

′
A(a|x)}󰂃, we have that for all n ≥ N󰂃′

󰀂qn − q󰀂1 =
󰁛

a,b,x,y

|qn(b|[a|x], y)− q(b|[a|x], y)|

=
󰁛

a,b,x,y

󰀏

󰀏

󰀏

󰀏

pn(a, b|x, y)

p′A(a|x)
− p′(a, b|x, y)

p′A(a|x)

󰀏

󰀏

󰀏

󰀏

≤ max
a,x

󰀝

1

p′A(a|x)

󰀞

󰁛

a,b,x,y

|pn(a, b|x, y)− p′(a, b|x, y)|

< max
a,x

󰀝

1

p′A(a|x)

󰀞

󰂃′ =
󰂃′

mina,x{p′A(a|x)}
= 󰂃 ,

(X.4)

and we find that (qn) ⊂ Q converges to q, meaning q ∈ Q.
Therefore, in this case the algorithm will not return p /∈ Cε

qa in any step j. On the other hand, at some

finite step (FIN:d) the algorithm (FIN) will establish p′ ∈ Cδ
qa and our algorithm will return p ∈ Cqa and

halt at Step d.
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