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—— Abstract

Principal components analysis (PCA) is a useful analytical tool to represent key characteristics of
multivariate data, but does not account for spatial effects when applied in geographical situations. A
geographically weighted PCA (GWPCA) caters to this issue, specifically in terms of capturing spatial
heterogeneity. However, in certain situations, a GWPCA provides outputs that vary discontinuously
spatially, which are difficult to interpret and are not associated with the output from a conventional
(global) PCA any more. This study underlines a GW non-negative PCA, a geographically weighted
version of non-negative PCA, to overcome this issue by constraining loading values non-negatively.
Case study results with a complex multivariate spatial dataset demonstrate such benefits, where
GW non-negative PCA allows improved interpretations than that found with conventional GWPCA.
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1 Introduction

A principal components analysis (PCA) summarizes multi-dimensional data [5], by reducing
the number of dimensions of the dataset. It provides a purely mathematical means of
highlighting key sources of variation. Due to its form, spatial effects of spatial autocorrelation
and spatial heterogeneity are not considered in transforming the multi-dimensional spatial
data. For spatial data, some PCA methods have been developed to consider these spatial
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autocorrelation and heterogeneity [2]. Spatial PCA, referred to as sPCA, takes spatial
autocorrelation into account to reveal spatial patterns [6]. sPCA yields global principal
components (PCs) similar to the conventional PCA, but its scores underline the spatial
autocorrelation; thus, for example, the spatial distribution of its first PC score is positively
high autocorrelated. Similarly, geographically weighted (GW) PCA takes spatial heterogeneity
into account. Analogous to GW regression (GWR) [1], GWPCA assembles local PCAs by
applying a moving window weighted kernel and yields spatially varying eigenvalues, loadings,
and percentage of total variance captured by each PC [4, 7]. The outputs of GWPCA are
extensive but unique in terms of their spatial variations, allowing an investigation into the
spatial data structure [2]. However, in some cases, GWPCA gives spatially discontinuous
loadings (from positive to negative, for example, see [10]), and this presents problems of
interpretation, and espcially in terms of relating to its global, conventional PCA counterpart.
This issue arises because GWPCA assembles local PCAs that are independent of each other.
To deal with this issue, we consider a GW non-negative PCA (GWnnegPCA) to constrain
all loadings non-negatively [11]. This results in that at any local PCA calibration point, the
input variables are linearly summed to build new PCs, but where loadings are only zero or
positive, providing a more intuitive interpretation for the GWnnegPCA mapped outputs as
a whole.

2 Methods

GWPCA assembles a series of local PCAs where each PCA is constructed using nearby,
spatially-weighted data according to a moving window kernel. Given a n x m matrix X
which consists of m variables at n observation sites and each variable is re-scaled to zero-mean
and unit-variance, GWPCA decomposes the GW variance-covariance matrix of X at the
p-th location with coordinates (u,, vp), which is defined by 3, = XTW,,X, by

L,V,L] =%, (1)

where L, is a GW loading matrix and V), is a diagonal matrix of GW eigenvalues at the
p-th location. W, is a diagonal matrix of geographic weights that can be generated using a
given kernel function. In this case study, we used the bisquare kernel function for the ¢-th
location:

o\ 2
1— (e > if |dyo| < b,
Wpq = ( ( b ) ] (2)

0 otherwise,

where the bandwidth size b is any distance for a given number of nearest observations (i.e.,
100 or 10% of the total observation), and d,, is the euclidean distance between spatial
locations of the p-th and ¢-th data locations in this work.

The first loading lél) for the GWPCA at the p-th location is applied so that:

argmax lél)TZ)plz(,l), subject to \|11()1)||2 =1 (3)
1)

The subsequent loading maximizes the variance under the constraint that it is orthogonal to
the previous component(s) [9]: lg,i)TElg) for all i € {2,...,m}, subject to ||1§,i)||2 =1 and
151 = .

A robust GWPCA has also been proposed to reduce the effect of anomalous observations
on the output [3]. This uses a local covariance matrix by using the robust minimum covariance

determinant (MCD) estimator [8].
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In this context, we develop the GWnnegPCA which applies the following additional
restriction to the equation (3):

subject to ||l§,1)\|0 <k, 15,1) >0, (4)

where k (< m) is the number of non-zero variables and ||1§,1) llo is the cardinality of lg). This
makes all the loadings at any location non-negative. However, as the order of local PC axes
determined by the eigenvalues, the order at the p-th location from GW-based PCA may not
be the same as that from the conventional PCA due to high spatial heterogeneity. Thus,
by using the result of the conventional and non-negative PCA loadings, we rearranged the
order of local loadings by GW-based PCAs. The Pearson’s correlation matrix between the
absolute values of the global and the local loadings at every location was calculated, then
the local loadings were reordered according to the correlation coefficient. This modification
is expected to make global and local loadings comparative.
The local PC scores at the p-th location, S, are represented by:

S, = X,L, ()

Tt is noted that to introduce the non-negativity, the cardinality in equation (4) requires
a minimum angle between components and thus the orthogonality constraint of the PCs
is relaxed [9]. This means that components are quasi-orthogonal amongst the PCs. In
this sense, loadings from non-negative PCA and GW non-negative PCA are regarded as
quasi-eigenvectors.

Bandwidth is a critical parameter in the GW framework as its size determines the localness
of the analysis and whether the given process is indeed non-stationary. The bandwidth of
GWPCA is optimized by a leave-one-out cross-validation [4] and in this study, the optimized
bandwidth by GWPCA is also used for robust GWPCA and GWnnegPCA to be comparative.
The bandwidth size used in this study was 45.3% of the total.

3 Case study

For our case study, we build 21 variables using census statistics of Japan in 2005 (Table 1).
These variables describe the urban social structure of Tokyo within the 3,134 chocho-aza
units (the smallest administrative unit in Japan) of the 23 special wards, Tokyo. All 21
variables were standardized (zero mean with a unit variance) before being input into our
non-spatial and GW models.

4 Results

Spatial distribution maps of a loading (HIGH EDU) for PC1-3 by GWPCA, robust GWPCA,
and GWnegPCA were shown in Figure 1 as an example. The loading values of this variable
for conventional PCA were 0.30, 0.19, and -0.37, respectively, and those for non-negative PCA
were 0.42, 0.02, and 0.11, respectively. All results from the GWPCA, robust GWPCA, and
GWnnegPCA are associated with the conventional and non-negative PCAs, while GW-based
PCAs show spatial distributions of loading values. The loading map for GWPC1 represents
the higher value surrounding the center of Tokyo compared to other regions. The map for
GWPCQC2 represents slightly lower negative values in the east and the north of the regions,
while positive values are found in the central part. The negative values are also found with
a strip shape within the central part. Furthermore, the map for GWPC3 shows a clear
discontinuous spatial pattern with positive/negative patches. Such loading maps make us
confuse how to interpret them, resulting in the difficulty of using GWPCA.
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Table 1 Variable descriptions used in this study.

Abbreviation Variable Descriptions

AGE0014 Num. of persons in the age of 0 — 14 / The total pop.
AGE1529 Num. of persons in the age of 15 — 29 / The total pop.
AGE3044 Num. of persons in the age of 30 — 44 / The total pop.
AGE4564 Num. of persons in the age of 45 — 64 / The total pop.
AGEG65 Num. of persons in the age over 65 / The total pop.
UNIVPOP Num. of university students / The total pop.
HIGHEDU Num. of university graduates / The total pop.

NUCFAMR Num. of nuclear families / The total households
MULTIFAM Num. of extended families / The total households

SINGHR Num. of single households / The total households

OWNHR Num. of owned housing households / The total households
SELFEMP Num. of self employments / The total worker pop.

WHITER Num. of white-coloured employees / The total worker pop.
BLUER Num. of blue-coloured employees / The total worker pop.
PRIMR Num. of the prime sector employees / The total worker pop.
SECR Num. of the second sector employees / The total worker pop.
TERR Num. of the third sector employees / The total worker pop.

SHORTCOM  Num. of commuters (< 30 min) / The total num. of commuters
LONGCOM Num. of commuters (> 1 hour) / The total num. of commuters
NEWCOMER Num. of in-migrant pop. (> 5 yrs.) in 5 yrs. / Total pop. (> 5 yrs.)
WPRATIO Num. of workers / The total pop.

The loading maps for robust GWPCA show a more continuous spatial pattern than those
for GWPCA, but at the middle west part of the region, a positive patch is found in the
loading map for robust GWPC2. Such a pattern can be found in the loading map for robust
GWPC3 such that a negative patch in regions with positive values.

GWnnegPCA also provides loading maps, and those spatial patterns are simpler. The
loading map for GWnnegPC1 represents a positive value in large parts of the area. The
map for GWnnegPC2 shows zero value in almost all areas, corresponding with the result of
non-negative PCA. The map for GWnnegPC3 represents positive values in the middle and
western regions while zero in others. These loading values for GWnnegPCA tell in which
areas this HIGH EDU variable contributes to each PC.

5 Discussion

This study demonstrates that GWPCA can give quite discontinuous spatial patterns for its
localized loadings. This characteristic can be challenging to interpret spatially compared
to the corresponding conventional global PCA outputs. This is especially pertinent as
GW methods are often employed to (hopefully) reveal smoothly changing spatial drifts
of model parameters, not discontinuous ones. The discontinuous issue would come from
the flexibly rotated axes of local PCs at each observation point. It is applicable to fix the
first axis direction to be all positive in GWPCA by applying a similar modification as the
fix__sign option in the princomp R function. However, such an approach may not work
straightforwardly for the subsequent components for GW-based PCA because the reminders
of data variance after applying the equation (3) are not constant over space: that is, the
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Figure 1 Loading maps of the HIGHEDU variable for the first, the second, and the third principal
component by geographically weighted principal components analysis, robust geographically weighted
principal components analysis, and geographically weighted non-negative principal components
analysis as an example.

explained variation in the data for the GWPCI1 varies spatially. Thus, the second component
axis (and subsequent component axes as well) at each observation point cannot be determined
in a particular manner, and such rotations at the p-th location cannot be coordinated with
each other. GWnnegPCA has overcome this issue significantly. Non-negativity of local PCAs
fixes the flexible rotation of PC axes of GWPCA, and thus the loading maps represent
spatially varying patterns. Figure 1 showed a clear difference of spatially varying patterns
of loading maps of an example variable. GWPCA has been used in many case studies to
obtain the largest absolute value of loading at every location as the winning variable [4],
and is valuable to see the spatial heterogeneity in the input data structure. It is however
challenging to investigate the spatial pattern of each loading due to the discontinuous problem
as seen in this study, even applying the robust way. In this context, GWnnegPCA has the
potential to show the continuous spatial variation smoothly that would contribute to further
interpretations of the result.

Similar to the discussion on the validity of installing the non-negativity for PCA, GWn-
negPCA also inherits the technical issue of heavy computation and relaxing orthogonality [9].
In addition, we found noisy patterns in loading maps of GWnnegPCA, which may come from
the sparsity and outliers in input data. Further investigations will be expected to be the
stability of the result.
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Conclusions

We demonstrated in the case study that geographically weighted principal components
analysis (GWPCA) and robust GWPCA yield discontinuous spatial patterns for its localized
loadings and introduced geographically weighted non-negative principal components analysis
(GWnnegPCA) to overcome this issue. GWnnegPCA would be a reasonable choice to show
spatially varying loading values in multivariable spatial data so that the degree of variable(s)

contribution to a principle component varies spatially. This allows us to interpret data locally

to understand regional characteristics in the spatial data as we expect GW approach. We

will work on interpreting regional changes in loading patterns and handling noises on loading
maps for further developments.
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