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Abstract

We present a deep learning-based method for Visible-Infrared person Re-

Identification (VI-ReID). The major contribution lies in the incorporation of

co-segmentation into a multi-task learning framework for VI-ReID, where the

co-segmentation concept aids in making the distributions of RGB images and

IR images the same for the same identity but diverse for different identities.

Accordingly, a novel multi-task learning based model, i.e., co-segmentation

assisted VI-ReID (CSVI), is proposed in this paper. Specifically, the co-

segmentation network first takes as the inputs the modality-shared features

extracted from a set of RGB and IR images by using the VI-ReID model.

Then, it exploits their semantic similarities for predicting the person masks

of the common identities within the input RGB and IR images by using a

cross-modality center based weight generation module and a segmentation
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decoder. Doing so enables the VI-ReID model to extract more additional

modality-shared shape features for boosting performance. Meanwhile, the co-

segmentation network implicitly establishes the interactions among the set of

RGB and IR images, thus further bridging the large modality discrepancies.

Our model’s effectiveness and superiority are verified through experimental

comparisons with state-of-the-art algorithms on several benchmark datasets.

Keywords: cross-modality person re-identification, co-segmentation,

multi-task learning.

1. Introduction1

Person Re-IDentification (PReID) is a crucial technology for intelligent2

video surveillance, aimed at identifying individuals across non-overlapping3

cameras. Recently, re-identifying persons from visible images (VV-PReID)4

has shown impressive performance and found applications in real-life scenarios[1,5

2]. Although such progress has been made, researchers find that the applica-6

tions of VV-RReID models in many realistic scenarios have been hindered,7

since visible cameras cannot capture informative images in case of inadequate8

illuminations (e.g., at night). Motivated by such challenges, cross-modality9

PReID, i.e., associating RGB and infrared (IR) pedestrian images for cross-10

modality image retrieval, has drawn increasing attention[3, 4], since Infrared11

(IR) cameras excel at capturing more information in challenging illumina-12

tions, particularly in low-light conditions [5]. Additionally, many surveillance13

cameras can automatically switch between RGB and IR modes, making the14

integration of cross-modality approaches feasible and practical.15

Generally speaking, VI-ReID faces two major challenges, i.e., cross-modality16
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Figure 1: Frameworks of existing co-segmentation models. (a) Architecture of the co-

segmentation task. (b) Framework of our proposed model. The images with the same

color boxes belong to the same objects (a) or identities (b).

variations and intra-modality variations. The cross-modality variations result17

from the inherent differences between visible and infrared images. The intra-18

modality variations are caused by differences in viewpoints, poses, and expo-19

sures of individuals. Most existing models try to capture those discriminative20

features co-existing in the two modalities (i.e., modality-shared features) for21

simultaneously tackling these challenges. However, the cross-modality varia-22

tions not only lead to different feature distributions between visible features23

and infrared features but also cause much person-discriminative information24

within one modality to be interfered[3]. For instance,VV-PReID heavily re-25

lies on color information as a crucial appearance cue, while it is hardly used26

in VI-ReID. This often makes such modality-shared feature learning difficult.27

Employing person masks as auxiliary information has proved to be an28

effective way for facilitating VI-ReID, since the person masks contain abun-29

dant and accurate modality-invariant person shape information. The most30

common way of exploiting person masks for VI-ReID is directly employing31

the person masks for selection [6, 7], i.e., selecting persons from backgrounds32

or selecting features from person regions. However, this only helps VI-ReID33

models to eliminate the interference information within the backgrounds from34
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their extracted person features, but cannot enable VI-ReID models themself35

to extract more accurate semantics from the input images, since those person36

masks do not directly provide any gradients for training (see Section III for37

more details), thus leading to unsatisfactory results.38

Alternatively, Huang et. al [8] proposed a multi-task learning based VI-39

ReID model to facilitate their VI-ReID network extracting more modality-40

shared person shape information for VI-ReID by exploring the relations41

between person segmentation and VI-ReID. Specifically, in [8], two sub-42

networks are employed on top of a shared feature extractor for person seg-43

mentation and VI-ReID, respectively. By doing so, the person segmentation44

sub-network can facilitate the shared feature extractor directly extracting45

abundant person-related semantics for VI-ReID by predicting those person46

masks. Meanwhile, those person semantics extracted by the person segmen-47

tation sub-network can also be introduced into the VI-ReID sub-network48

for further boosting performance, thus achieving large performance improve-49

ments. However, this model mainly focuses on exploring the relations between50

different tasks but ignores the relations between the features across modali-51

ties, thus also easily leading to sub-optimal results. Besides, it also introduces52

some extra computational costs, since an extra segmentation sub-network is53

required.54

In this paper, we gain inspiration from the task of co-segmentation and55

eventually utilize it to address the above issues. Specifically, co-segmentation56

aims to detect the common objects or regions in a set of relevant images, e.g.,57

the apples in Fig. 1(a). One of the main ideas of such a task is to utilize58

semantic similarity for segmenting objects with the same semantic class but59
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with different appearances and backgrounds. In deep learning based models,60

the semantic similarity usually means that the distributions of high-level61

features, which are also called semantic features, are the same for those62

images with the same classes, but different for those images with different63

classes, e.g., the semantic features’ distributions of apples vs those of cars64

in Fig. 1 [9, 10]. Accordingly, those deep learning based models can achieve65

co-segmention by interacting those semantic features from different input66

images. For instance, a correlation layer can help to segment the objects67

with the same class across two input images, which can be implemented by68

either computing the correlations of the semantic features [11] or employing69

the shared weights to select a set of features from a set of input images for70

segmenting their co-existing objects [12].71

Moreover, as depicted in Fig. 1(b), the concept of semantic similarity72

appears reasonable for VI-ReID. It typically aims to enable the distributions73

of RGB images and IR images to be the same for the same identity, and74

vice versa. Therefore, in this paper, we use the co-segmentation to facilitate75

the VI-ReID by transferring the VI-ReID task to a task that detects the76

same identities from a set of RGB and IR images. If incorporating the co-77

segmentation task into the framework of VI-ReID models, the co-segmention78

network will exploit the semantic similarity across a set of RGB and IR im-79

ages with the same identities for predicting the masks of this identity, which80

will enhance the VI-ReID network to extract more additional discriminative81

modality-shared person shape information for VI-ReID. Moreover, during the82

co-segmentation, the features from the set of RGB and IR images will also be83

implicitly interacted with each other. This will further help the VI-ReID net-84
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work to reduce the large modality discrepancies. Accordingly, those issues in85

VI-ReID mentioned above will be well addressed. To this end, a novel multi-86

task learning based VI-ReID model, i.e., co-segmentation assisted VI-ReID87

(CSVI), is presented in this paper.88

Concretely, during the training stage, a VI-ReID network will be first89

utilized to extract modality-shared RGB and IR features from a given set90

of input RGB and IR images. Then, an auxiliary co-segmentation model91

will be designed and cascaded after the VI-ReID network to perform co-92

segmentation on those input images for assisting the VI-ReID network. Es-93

pecially, for those input images, the co-segmentation model will interact their94

cross-modality features and further segment their common identities by ex-95

ploring their semantic similarity via a Cross-modality Center based Weight96

Generation (CCWG) module and a segmentation decoder. While, in the97

testing stage, the auxiliary co-segmentation model will be removed and only98

the VI-ReID model is employed for VI-ReID, thus without introducing any99

more parameters and computational costs.100

Furthermore, we will theoretically prove that, compared with the ways101

of taking person masks as selection maps, our proposed model can learn102

to extract more person shape information from the input images with the103

aid of those person masks. Meanwhile, compared to the multi-task learning104

based models that explore the relations between person segmentation and VI-105

ReID, our proposed model will not only capture more discriminative person-106

related features by exploring relations between segmentation and VI-ReID,107

but also effectively reduce the large cross-modality variations by establishing108

the interactions between modality-shared RGB and IR features via the co-109
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segmentation model, thus obtaining better VI-ReID results.110

To summarize, the main contributions of this paper are as follows:111

(1) This paper takes the initiative to use the co-segmentation to assist112

the VI-ReID in a multi-task learning framework. Benefiting from their com-113

mon idea, i.e., semantic similarity, our co-segmentation model significantly114

enhances our VI-PeID model’s abilities in the extraction of discriminative115

person-related features and the reduction of cross-modality variation.116

(2) An auxiliary co-segmentation model is designed to segment the same117

identity from a set of input images with different modalities by establishing118

the interactions across those modality-shared features with different modal-119

ities. This will help the VI-ReID model to extract more accurate modality-120

shared features from the input images, thus significantly boosting the per-121

formance of VI-ReID.122

(3) The theoretical comparisons between our proposed model and existing123

models are provided, which further verify our proposed model’s effectiveness124

in theory.125

In the following sections, we will discuss the relevant previous works on126

ReID and VI-ReID in Section 2. Subsequently, we will present the details of127

our proposed method in Section 3. Section 4 will showcase the experimental128

results used to validate our approach. Finally, a concise conclusion will be129

provided in Section 5.130
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2. Related Work131

2.1. VV-PReID132

VV-PReID has been extensively explored in the literature. Conventional133

models mainly focus on designing discriminative hand-crafted descriptors,134

such as colors, textures and some regular patterns [13]. Recently, CNN-135

based VV-PReID models have pushed performance to a new level. Specifi-136

cally, some of these models primarily concentrate on representation learning,137

with the objective of capturing some person-related features to distinguish138

different individuals. For example, Jia et al. [14] proposed a transformer139

framework, termed by DRL-Net. This framework employs a novel alignment140

process, enabling the implicit disentanglement of person representations in a141

supervision-free manner. Consequently, this model can effectively extract142

those person-related information for occluded VV-PReID, thus achieving143

state-of-the-art performance.144

Alternatively, others mainly dedicate themselves to metric learning, i.e.,145

aiming at learning an embedding representation that increases the feature146

similarity among the same identities and reduces the feature similarity among147

different identities in the embedding space. For example, Yang et al. [15]148

developed a structural metric learning objective for VV-PReID. In their ap-149

proach, each positive pair was allowed to compete against all negative pairs in150

a minibatch. Moreover, they dynamically assigned a hardness-aware weight151

to each positive pair, adjusting their contributions based on the level of dif-152

ficulty, leading to improved performance.153
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2.2. VI-ReID154

Recently, a considerable number of VI-ReID models have been extensively155

studied, and providing a comprehensive summary of all these models is be-156

yond the scope of this paper. For interested readers, we recommend referring157

to [3] for recent surveys on this subject.158

Existing VI-ReID models can be broadly classified into two groups: modality-159

shared feature learning and modality-specific feature compensation.Similar to160

other cross-modality matching task [16], the former aims to extract discrim-161

inative features that are common across multiple modalities. For instance,162

Wei et al. [17] introduced the Adaptive Body Partition model, which employs163

separate sub-networks to extract single-modality information from RGB and164

IR images. A shared sub-network is then utilized to detect and segment165

body parts, enabling the extraction of more discriminative local information.166

Chen et al. [18] presented a structure-aware positional transformer, which167

leverages structural and positional information to explore semantically aware,168

shareable modality features. They introduce an ASR module to explicitly169

explore structure-related features from each modality, thereby reducing com-170

plex background noise. Furthermore, a TPI module is designed to model171

contextual and positional relations. Similar to Huang et al. [8], Miao [19]172

proposed a two-stream framework based VI-ReID model which explores the173

pose estimation as the auxiliary learning task to help the ReID task in VI-174

ReID. To facilitate transferring the pose information from pose estimation to175

VI-ReID stream, they proposed a Hierarchical Feature Constraint (HFC) to176

ensure the discriminability consistency of global features and local ones via177

the knowledge distillation strategy.178
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In contrast, modality-specific feature compensation-based models typi-179

cally start by generating the missing modality information from the avail-180

able modality, thsu addressing cross-modality variations. Subsequently, they181

utilize both the original and generated information to handle intra-modality182

variations. Liu et al.[20] proposed a new two-stage GAN based model, which183

first optimizes the image generator’s structures and objective functions in the184

first stage. Then, it improves the ReID network by employing the feature-185

level fusion rather than the image-level fusion for their original and gener-186

ated information in the second stage. Differently, Lai et al.[21] introduced a187

feature-level compensation approach for VI-ReID. They first disentangled the188

single-modality features into modality-specific features and modality-shared189

features. Subsequently, they generated the missing modality-specific features190

from the disentangled modality-shared features. Finally, they fused the orig-191

inal modality-specific features, the generated modality-specific features, and192

the disentangled modality-shared features to perform VI-ReID. This feature-193

level compensation strategy allowed for better handling of cross-modality194

variations and intra-modality variations in their model.195

3. Proposed Model196

Figure 2 illustrates the structure of our proposed model, which comprises197

a VI-ReID network and an auxiliary co-segmentation network. It is worth198

noting that the auxiliary co-segmentation network is only used during the199

training stage and will be excluded during the testing stage, without intro-200

ducing any extra parameters. In the subsequent sections, we will delve into201

the specifics of each component in detail.202
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Figure 2: Illustration of the proposed model. In our proposed model, VI-ReID network

first employs two independent subnetworks to extract those single-modality RGB and IR

features from the input RGB and IR images, respectively, and further uses two parameter-

shared subnetworks to extract those modality-shared features. Meanwhile, some of those

extracted modality-shared features are fed into the auxiliary co-segmentation network to

assist VI-ReID network. Here, a CCWG module is first employed to generate some feature

weights for a set of RGB and IR images with the same identities and a segmentation

decoder is further employed to segment their common identities.

3.1. VI-ReID Network203

The VI-ReID network is a modification of ResNet-50. Initially, two sep-204

arate sub-networks are employed to extract single-modality features from205

the input RGB and IR images, respectively. Subsequently, the extracted206

RGB features and IR features are projected into a shared feature space,207
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where their modality-shared features are extracted using two sub-networks208

with shared parameters. Finally, a part module is applied to the extracted209

modality-shared features to obtain the final person part features for VI-ReID.210

Suppose that there are N identities and each identity has K RGB images211

and K IR images with the size of W × H, i.e., XR = {xi
R ∈ RH×W}Ji and212

XI = {xi
I ∈ RH×W}Ji . Here, J = NK.213

3.1.1. Modality-specific Feature Extraction214

Typically, the low-level features obtained from RGB and IR images, re-215

spectively, exhibit significant discrepancies due to their capture in different216

spectrums. Therefore, as shown in Fig. 2, two shallower sub-networks are217

employed in our proposed VI-ReID network to extract those single-modality218

features from the input RGB images and IR images, respectively. Here, the219

sub-networks have the same structure but extract different modality-specific220

information using distinct parameters. Specifically, the two shallower sub-221

networks are constructed by using the same structures as the first three con-222

volutional blocks in ResNet50 [22]. As a result, we obtain the RGB features223

FR and the IR features FI ∈ RJ×C1×
W

8
×

H

8 . Mathematically, this process is224

expressed by225

Fm = ConvB(Xm, αm), (1)

where ConvB(∗, αm) denotes a sub-network with its corresponding parame-226

ters αm.227

3.1.2. Modality-shared Feature Extraction228

As shown in Fig. 2, the extracted single-modality RGB and IR features229

are fed into two sub-networks, both with shared parameters, to obtain their230
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corresponding modality-shared features. Both sub-networks follow the same231

structures, which are based on the last two convolutional blocks of ResNet-50232

[22]. Notably, the strides of the convolutional layers in the last block are set233

to 1 to preserve more spatial details during the feature extraction process.234

Accordingly, the modality-shared features Fs,m ∈ RJ×C1×
W

16
×

H

16 are obtained235

by236

Fs,m = ConvB(Fm, β), (2)

where, m ∈ {R, I} denotes RGB or IR modality. ConvB(∗, β) denotes the237

convolutional blocks with the parameters β. C1 denotes the number of the238

feature channels.239

3.1.3. Part Module240

After obtaining the modality-shared features Fs,m, a part module is uti-241

lized to further extract those discriminative modality-shared person features242

from different person parts. Specifically, following [23], those modality-shared243

features Fs,m are initially divided into six strips along their vertical direction.244

This division helps to focus on individual person parts and enables the extrac-245

tion of more specific and discriminative information from each part. Then,246

a global average pooling is performed on each strip, thus obtaining six parts247

of features F̂p
s,m ∈ RJ×C1 . Here, p = 1, 2, 3, ..., 6 denotes different parts. Af-248

ter that, a fully connected layer is employed for the features of each part249

to embed them into a metric space, obtaining the final person part features250

Fp
m ∈ RJ×C2 . Finally, a fully connected layer based classifier is employed to251

predict their corresponding person identities, obtaining their corresponding252
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scores clspm, p=1,2,...,6. Mathematically, this process is expressed by253

F̂
1
s,m, ..., F̂6

s,m = GAP(Sep(Fs,m)),Fp
m = FC(F̂p

s,m, γp), cls
p
m = FC(Fp

m, γs), (3)

where Sep(∗) denotes the separation operation. GAP(∗) denotes the global254

average pooling. FC(∗, γp) and FC(∗, γs) denote the fully connected layers255

with their corresponding parameters γp and γs, respectively. In this paper,256

C1 = 2048 and C2 = 512.257

3.1.4. Loss Function258

two loss functions, including an identity loss ξid1 and a center loss ξc1, are259

employed to train our proposed VI-ReID network. The identity loss ξid1 is260

performed on the classification scores clspm to make the model extract those261

identity-related information, which is expressed by262

ξid1 =

6
∑

p=1

ξce(cls
p
R, clsg) +

6
∑

p=1

ξce(cls
p
I , clsg), (4)

where clsg are the corresponding ground-truth labels for those input images.263

ξce is the cross-entropy loss, which is expressed by264

ξce(pt, pg) = −
1

L

L
∑

l=1

plg log(p
l
t), (5)

where L is the class number and is equal to N , i.e., the total identities in265

the dataset, in this paper. plg are the ground-truth labels for the l-th class266

and plt are their corresponding predicted values for the probability of being267

the l-th class.268

The center loss ξc1 is performed on the person part features Fp
m, aiming269

to make the features from the same identity to be compact. It is expressed270
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by271

ξc1 =

6
∑

p=1

ξhc(F
p
R,F

p
I), (6)

where ξhc is the hetero-center loss [24] and is expressed by272

ξhc(F
p
R,F

p
I) =

N
∑

n=1

∥

∥F
n,p
CR − F

n,p
CI

∥

∥

2
. (7)

Here, Fn,p
CR and Fn,p

CI are the feature centers of the p-th part features for the273

n-th identity, respectively, which are computed by274

F
n,p
CR =

1

K

K
∑

k=1

F
n,k,p
R ,F

n,p
CI =

1

K

K
∑

k=1

F
n,k,p
I , (8)

where Fn,k,p
CR and Fn,k,p

CI denote the features of the p-th part from the k-th RGB275

and IR images of the n-th identity. Therefore, the total loss for training the276

VI-ReID network is expressed by277

ξV IN = ξid1 + ξc1. (9)

3.2. Co-segmentation Network278

The modality-shared features Fs,m ∈ RJ×C1×
W

16
×

H

16 obtained by using Eq.279

(2) will be further fed into an auxiliary co-segmentation network to predict280

their person masks. It should be noted that, different from person segmenta-281

tion, which may directly predict the person mask from each modality image to282

facilitate the extraction of person semantics for VI-ReID, the co-segmentation283

network aims to detect the person masks of one certain identity from a set284

of images across different modalities.285

For that, as shown in Fig. 2, the co-segmentation network first employs286

a cross-modality center based weight generation (CCWG) module, which287

15



will explore the relations across the modality-shared RGB and IR features288

extracted from the K RGB images and K IR images of one identity, and289

accordingly generate a set of shared co-segmentation weights for the K RGB290

images and K IR images. Then, by virtue of the generated weights, the291

co-segmentation network will select those unique features about this identity292

from such modality-shared features for each RGB or IR image. Subsequently,293

for each RGB or IR image of this identity, the co-segmentation network will294

further employ a parameter-shared decoder to predict a person mask of this295

identity by using those selected modality-shared features from this image.296

Through this approach, our proposed model can effectively explore the re-297

lationships between person segmentation and VI-ReID, resulting in the ex-298

traction of more discriminative person-related features. Simultaneously, the299

model also considers the relationships between the features of the two modal-300

ities, which helps in reducing cross-modality variations. Consequenceally, our301

model achieves enhanced performance in handling both intra-modality and302

cross-modality challenges for VI-ReID tasks. In the following content, we303

will take the n-th identity as an example for the introduction.304

3.2.1. Cross-modality Center based Weight Generation (CCWG) Module305

Theoretically, if a set of images contains the same semantics in the co-306

segmentation task, the features extracted from the set of images should307

have the same subset of highly activated features, thus enabling the co-308

segmentation network to segment the same semantics from the set of im-309

ages. Considering that, the CCWG module is designed to generate the co-310

segmentation weights for selecting the subset of features according to their311

semantics.312

16



Specifically, for the n-th identity, the VI-ReID network can extract its313

modality-shared RGB features Fn
s,R ∈ RK×C1×

W

16
×

H

16 fromK RGB images and314

IR features Fn
s,I ∈ RK×C1×

W

16
×

H

16 from K IR images, respectively. Considering315

that the feature centers of different identities should be separated from each316

other in the VI-ReID task, the feature center of one identity can well represent317

the unique characteristics of this identity. Therefore, the feature centers of318

different identities can be used to segment the same identities across the319

images of different modalities. For that, the CCWG module first computes320

the cross-modality feature center Fn
Center ∈ RC1×1×1 for the n-th identity by321

F
n
Center =

1

2K

K
∑

k=1

(Fn,k
g,R + F

n,k
g,I ), (10)

where the features Fn,k
g,m ∈ RC1×1×1 denotes the global features of the modality-322

shared features Fn,k
s,m. Here, m ∈ R, I denotes the RGB or IR modality. They323

are computed by using a global average pooling layer, i.e.,324

F
n,k
g,m = GAP(Fn,k

s,m). (11)

Accordingly, a fully connected layer is performed on the cross-modality325

feature center to generate their corresponding co-segmentation weights wn ∈326

RC1×1×1 for selecting those unique features about the n-th identity, i.e,327

w
n = FC(Fn

Center, θ), (12)

where FC(∗, θ) denotes a fully connected layer with its corresponding param-328

eters θ. Here, the weights wn are shared for all the RGB or IR images of the329

n-th identity, since the single-modality features Fn,k
sel,m for different images of330

the n-th identity should have the same distributions. Accordingly, the subset331
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of unique features Fn,k
sel,m for the k-th image related to the n-th identity are332

selected by333

F
n,k
sel,R = w

n ⊗ F
n,k
s,R,F

n,k
sel,I = w

n ⊗ F
n,k
s,I , (13)

where ⊗ denotes the channel-wise multiplication. The features Fn,k
sel,R and334

Fn,k
sel,I ∈ RK×C1×

W

16
×

H

16 are the selected features for the corresponding RGB335

and IR images, respectively.336

3.2.2. Segmentation Decoder337

As shown in Fig. 2, the selected features Fn
sel,R and Fn

sel,I will be fed338

into a segmentation decoder to predict their person masks. Specifically, the339

selected features are fed into two stacked deconvolutional blocks to predict340

the final person masks Mn
R and Mn

I ∈ RK×N×
W

4
×

H

4 , respectively, which are341

expressed by342

M
n
m = DConv(DConv(Fn

sel,m, λ1), λ2), (14)

where DConv(∗, λ1) and DConv(∗, λ2) denote two deconvolutional blocks343

with their parameters λ1 and λ1, respectively. Furthermore, for each decon-344

volutional block, a deconvolutional layer is first employed to up-sample the345

selected features and then two standard convolutional layers are employed to346

capture more features. Therefore, the sizes of Mn
R and Mn

I become W
4
× H

4
.347

Similar operations are also performed on other identities. Accordingly, we348

can obtain the selected features Fsel,R and Fsel,I ∈ RJ×C1×
W

16
×

H

16 as well as349

their predicted masks MR and MI ∈ RJ×N×
W

4
×

H

4 .350

During the training stage, the co-segmentation network only utilizes those351

modality-shared features extracted from the VI-ReID network to predict the352
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masks of one certain identity from a set of images with different modali-353

ties. This will enhance the VI-ReID network’s ability of extracting more dis-354

criminative modality-shared features, especially for those modality-invariant355

features related to person shapes. Meanwhile, the single-modality features356

from a set of RGB and IR images with the same identity will implicitly357

interact with each other in the CCWG module via the gradient backpropa-358

gation. This will also help the VI-ReID network to reduce the large modality359

discrepancies, thus further boosting performance.360

Moreover, to keep the selected features corresponding to different iden-361

tities rather than some general person features, as shown in Fig.2, an extra362

parameter-shared part module is performed on the selected features Fsel,R363

and Fsel,I for predicting their identities. Accordingly, the person part features364

Fp
sel,m ∈ RJ×C2 and their scores clspsel,m are also obtained. Here, p = 1, 2, ..., 6365

denotes different person parts, andm ∈ {R, I} denotes the RGB or IR modal-366

ity.367

3.2.3. Loss Functions368

Three loss functions, including an identity loss ξid2, a center loss ξc2369

and a segmentation loss ξseg, are employed for training the proposed co-370

segmentation network.371

Similar to Eq.(4), the identity loss ξid2 is performed on the classification372

scores clspsel,m to ensure that the co-segmentation network can extract those373

identity-related information, which is expressed by374

ξid2 =
6

∑

p=1

ξce(cls
p
sel,R, clsg) +

6
∑

p=1

ξce(cls
p
sel,I , clsg), (15)

where clsg denotes their corresponding ground truth labels. Similar to Eq.(6),375
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the center loss ξc2 is performed on the person part features Fp
sel,m, aiming to376

make the features from the same identity to be compact, i.e.,377

ξc2 =
6

∑

p=1

ξhc(F
p
sel,R,F

p
sel,I), (16)

The segmentation loss ξseg is used to make the co-segmentation model378

learn to extract more person shape information, i.e.,379

ξseg = ξce(MR,MRg) + ξce(MI ,MIg), (17)

where MRg and MIg denote their corresponding ground-truth person masks.380

It should be noted that all the ground-truth person masks are obtained from381

the paper [8]. Accordingly, the total loss for training CCWG is382

ξccwg = ξid2 + ξc2 + ξseg. (18)

Furthermore, our proposed model is trained in an end-to-end manner.383

Accorrdingly, the total loss function is384

ξtotal = ξV IN + ξccwg. (19)

3.3. Theoretical analysis385

In this section, we will theoretically analyze different ways of using those386

person maps in the task of VI-ReID. As shown in Fig. 3, there are three387

ways of using those person maps in the task of VI-ReID. The most widely388

used way is shown in Fig. 3(a), which simply takes those person maps as389

the weight maps for selecting those person-related features. While, as shown390

in Fig. 3(b), some works try to explore the relations between the tasks391

of VI-ReID and person segmentation via a multi-task learning framework.392
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Figure 3: llustration of different ways of using those person maps. (a) Simply using

person maps for feature selection, i.e., [6] and [7]. (b) Exploring person maps via existing

multi-task learning frameworks, i.e., [8]. (c) Our proposed model.

Differently, as shown in Fig. 3(c), we propose a novel multi-task learning393

framework, which explores the relations between the tasks of VI-ReID and394

co-segmentation. We will first simplify their structures and then theoretically395

analyze the three ways of using person maps in the following contents.396

Feature selection: The simplified structures of the feature selection397

based models are shown in Fig. 3(a). The input RGB/IR images are directly398

fed into the VI-ReID network G(∗, ǫG) for extracting their corresponding399

modality-shared features Fs,R/Fs,I . Here, ǫG denotes the VI-ReID network’s400

parameters. Then, the person masks MRg and MIg are used for selecting401

those person-related features. Finally, the selected features are employed for402

computing the ID loss in the training stage. Accordingly, the gradients from403
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the ID loss to the VI-ReID network in the backpropagation are computed by404

∂ξID

∂ǫG
=

∂ξID

∂Fsel,R

∂Fsel,R

∂Fs,R

∂Fs,R

∂ǫG
+

∂ξID

∂Fsel,I

∂Fsel,I

∂Fs,I

∂Fs,I

∂ǫG

= MRg

∂ξID

∂Fsel,R

∂Fs,R

∂ǫG
+MIg

∂ξID

∂Fsel,I

∂Fs,I

∂ǫG
.

(20)

Here,405

Fsel,R = MRgFs,R,Fsel,I = MIgFs,I , (21)

where MR and MI can be seen as the constant values.406

It can be seen that the person masks in Eq.(20) are taken as the constant407

values for filtering out those background information. While, they do not408

directly provide any gradients for training the VI-ReID model. Accordingly,409

the VI-ReID network cannot learn to extract more modality-invariant shape410

information, thus leading to suboptimal results in VI-ReID tasks.411

Multi-task learning framework based on segmentation and VI-412

ReID: In this VI-ReID model, the input RGB/IR images are first fed into413

a task-shared sub-network B(∗, ǫB) for extracting their single-modality fea-414

tures FR and FI . Then, the task-shared features are fed into a sub-network415

S(∗, ǫS) for segmentation and a sub-network G(∗, ǫG) for VI-ReID, respec-416

tively. Here, ǫB, ǫS and ǫG denote the parameters of their corresponding net-417

works. Besides, the features FSeg,R and FSeg,I extracted by the segmentation418

sub-network are also introduced into the sub-network G(∗, ǫG) for boosting419

the performance. The total loss function of this process is computed by sum-420

ming the ID loss (ξID) and the segmentation loss (ξSeg). Accordingly, the421

gradients from the total loss to the VI-ReID network are computed by422

∂ξtotal

∂ǫG
=

∂ξID

∂ǫG
+

∂ξSeg

∂ǫG
=

∂ξID

∂Fs,R

∂Fs,R

∂ǫG
+

∂ξID

∂Fs,I

∂Fs,I

∂ǫG
. (22)
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And,423

∂ξtotal

∂ǫB
=

∂ξID

∂ǫB
+

∂ξSeg

∂ǫB
=

∂ξID

∂Fs,R

∂Fs,R

∂ǫG
(
∂ǫG

∂FR

+
∂ǫG

∂FSeg,R

∂FSeg,R

∂ǫS

∂ǫS

∂FR

)
∂FR

∂ǫB

+
∂ξID

∂Fs,I

∂Fs,I

∂ǫG
(
∂ǫG

∂FI

+
∂ǫG

∂FSeg,I

∂FSeg,I

∂ǫS

∂ǫS

∂FI

)
∂FI

∂ǫB
+

∂ξSeg

∂MR

∂MR

∂ǫS

∂ǫS

∂FR

∂FR

∂ǫB

+
∂ξSeg

∂MI

∂MI

∂ǫS

∂ǫS

∂FI

∂FI

∂ǫB
.

(23)

Similar to the ID loss in Eq. (20), the ID loss in Eq. (22) and Eq. (23)424

can facilitate the VI-ReID network to extract more person-related and ID-425

discriminative information for identifying different persons. Differently, the426

last two items of Eq. (23) (marked by the green boxes) indicate that the427

person masks can directly provide gradients to train the VI-ReID network,428

thus enabling the VI-ReID network to learn the ability of extracting more429

accurate and modality-invariant person semantics from the person masks for430

VI-ReID. Accordingly, this framework can explore the relations between the431

tasks of VI-ReID and person segmentation, thus achieving better results. It432

can be also seen that the last two items of Eq. (23) are independent for433

each other. This means that, in this framework, the modality-shared RGB434

features and the modality-shared IR features are not interacted with each435

other, which cannot well reduce the modality differences, thus leading to436

sub-optimal results.437

Multi-task learning framework based on co-segmentation and438

VI-ReID (our model): The simplified structure of our proposed model is439

shown in Fig.3(c). It first employs a VI-ReID sub-network G(∗, ǫG) to ex-440

tract those modality-shared features from the input images. Then, a weight441
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generation sub-network W(∗, ǫW ) is employed to predict the weights w for442

selecting a set of unique features of one identity. Here, ǫS also denotes the443

parameters of the weight generation sub-network. Finally, the selected fea-444

tures will be fed into a co-segmentation sub-network S(∗, ǫS) to segment those445

objects co-existing within the input images. Accordingly, the gradients from446

the total loss, including the ID loss (ξID) and the segmentation loss (ξSeg),447

to the VI-ReID network are computed by448

∂ξtotal

∂ǫG
=

∂ξID

∂ǫG
+

∂ξSeg

∂ǫG
=

∂ξID

∂Fs,R

∂Fs,R

∂ǫG
+

∂ξID

∂Fs,I

∂Fs,I

∂ǫG
+

∂ξSeg

∂MR

∂MR

∂ǫS

∂ǫS

∂Fsel,R

(w + Fs,R

∂w

∂Fs,R

)
∂FR

∂ǫG
+

∂ξSeg

∂MI

∂MI

∂ǫS

∂ǫS

∂Fsel,I

(w + Fs,I

∂w

∂Fs,I

)
∂FI

∂ǫG

=
∂ξID

∂Fs,R

∂Fs,R

∂ǫG
+

∂ξID

∂Fs,I

∂Fs,I

∂ǫG
+ Fs,R

∂ξSeg

∂MR

∂MR

∂ǫS

∂ǫS

∂Fsel,R

∂w

∂Fs,R

∂FR

∂ǫG

+ Fs,I

∂ξSeg

∂MI

∂MI

∂ǫS

∂ǫS

∂Fsel,I

∂w

∂Fs,I

∂FI

∂ǫG
+ w(

∂ξSeg

∂MR

∂MR

∂ǫS

∂ǫS

∂Fsel,R

∂FR

∂ǫG

+
∂ξSeg

∂MI

∂MI

∂ǫS

∂ǫS

∂Fsel,I

∂FI

∂ǫG
) .

(24)

Similar to that in Eq.(24), the proposed model can also effectively explore449

the relations between the tasks of VI-ReID and person segmentation via450

the two items marked by the green boxes in Eq.(24). Accordingly, the VI-451

ReID network can also learn the ability of extracting those accurate and452

modality-invariant person semantics from the person masks for VI-ReID.453

Moreover, as shown in the last item of Eq. (24) (marked by the red box),454

the modality-shared RGB features and the modality-shared IR features will455

be interacted with each other with the aid of those generated weights, thus456

benefiting to reduce their modality discrepancies. Accordingly, the proposed457
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model can effectively explore the relationships between person segmentation458

and VI-ReID, leading to the extraction of more discriminative person-related459

features. Moreover, it also considers the relationships between the features460

of the two modalities, which helps in reducing cross-modality variations.461

As a result, the model achieves improved performance by addressing both462

intra-modality and cross-modality challenges for VI-ReID tasks. Besides,463

the co-segmentation network only appears in the training stage, which does464

not introduce any more parameters in the testing stage.465

Fig. 4 shows the person masks of two identities obtained from our pro-466

posed model. The person masks in the second row are predicted by taking a467

set of RGB and IR images of one of the two identities as the inputs. While,468

the person masks in the third row are obtained by simultaneously taking as469

the inputs all of the RGB and IR images of the two identities, where the470

images of the first identity are far more than those of the second identity. It471

can be seen that our proposed model can rightly predict the person masks472

across a set of RGB and IR images if the input images only contain one473

identity. Meanwhile, if the images of two identities are mixed together as the474

inputs, the results of our proposed model are degraded. Nonetheless, it can475

still well predict the person masks of the first identity. While, for the second476

identity, it can only detect a small person region. This indicates that our477

proposed co-segmentation sub-network can select those id-related features478

from the inputs by generating those image-shared weights from their feature479

centers of different modalities.480
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(a) (b)

Figure 4: Person masks detected under different settings. (a) and (b) show two identities.

The person masks in the second row are predicted by separately taking the images in (a)

and (b) as the inputs. The person masks in the third row are obtained by simultaneously

taking the images in (a) and (b) as the inputs.

4. Experiments481

4.1. Datasets and Evaluation Metrics482

Datasets: Our proposed model is trained and evaluated on two publicly483

available datasets, i.e., SYSU-MM01 [25] and RegDB [26]. SYSU-MM01484

[25] a large-scale VI-ReID dataset, comprising RGB images and IR images485

from both indoor and outdoor scenes. It uses four visible cameras and two486

infrared cameras for data collection. The dataset includes two test modes:487

indoor-search and all-search, each with single-shot and multi-shot settings.488

RegDB [26] contains 8240 images from 412 person identities captured using489

several dual-mode cameras. It divides the images into a training set of 206490

identities and a testing set of the remaining 206 identities. The dataset also491

includes two test modes: RGB-to-IR mode and IR-to-RGB mode.492

Evaluation metrics: As in existing works [24, 27, 28, 17], the perfor-493

mance of our model is evaluated with the standard metrics (i.e., Cumulated494

Matching Characteristics (CMC) and mean Average Precision (mAP)) in495
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the ReID task. CMC evaluates the recognition accuracy of a model in the496

top-K matches, i.e., R1, R10 and R20 in this paper. mAP is the ratio of the497

numbers of correctly matched pedestrians to the total number of matched498

pedestrians, which considers each pedestrian in the query and averages the499

AP (Average Precision) for each pedestrian.500

4.2. Online Batch Sampling Strategy501

In the training phase, we first sample N person identities for each batch502

from the dataset. For each selected identity, we randomly choose K RGB503

images and K IR images. Consequently, each batch contains a total of 2 ×504

N × K images. In this paper, we set N = 8 and K = 4 for our training505

process.506

In the testing stage, we extract person features from all query images507

and gallery images. Subsequently, we calculate the similarities between each508

query image and all gallery images using the Euclidean distance metric. Fi-509

nally, we generate the ranking list for each query image by sorting the com-510

puted similarities in descending order.511

4.3. Implementation details512

We implement our proposed model using PyTorch libraries [29] and con-513

duct its training and testing on an NVIDIA 2080Ti GPU. We first use a514

pre-trained ResNet50 to initialize the parameters of the feature extractor.515

After initializing some parameters using the Xavier algorithm [30], we op-516

timize the model using the SGD (Stochastic Gradient Descent) algorithm517

with an initial learning rate of 0.01 and a weight decay of 0.0005. To prevent518

overfitting and ensure better convergence, we reduce the learning rates by519
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Table 1: Comparisons with some state-of-the-art models on SYSU-MM01 dataset.

- All-Search Indoor-Search

- Single-shot Multi-shot Single-shot Multi-shot

Methods R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

eBDTR [27] 27.8 67.3 81.3 28.4 - - - - 32.4 77.4 89.6 42.4 - - - -

AlignGAN[31] 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3

ABP [17] 51.56 75.65 81.69 32.50 - - - - - - - - - - - -

HATML [32] 55.29 92.41 97.36 53.89 - - - - 62.10 95.75 99.20 69.37 - - - -

DG-VAE [33] 59.49 93.77 - 58.46 - - - - - - - - - - - -

BDF [34] 51.05 87.85 94.43 49.63 - - - - 55.93 91.55 96.95 63.38 - - - -

GECNet [35] 53.37 89.86 95.66 51.83 - - - - 60.60 94.29 98.10 62.89 - - - -

NFS [9] 56.91 91.34 96.52 55.45 63.51 94.42 97.81 48.56 62.79 96.53 99.07 69.79 70.03 97.70 99.51 61.45

FMI [10] 60.02 94.18 98.14 58.80 - - - - 66.05 96.59 99.38 72.98 - - - -

PSE [36] 61.68 93.10 97.17 57.51 - - - - 63.41 91.69 95.28 68.17 - - - -

DTRM[37] 63.03 93.82 97.56 58.63 - - - - 66.35 95.58 98.80 71.76 - - - -

SPOT[38] 65.34 92.73 97.04 62.25 - - - - 69.42 96.22 99.12 74.63 - - - -

ML [8] 67.25 95.38 98.46 64.29 72.95 96.94 99.27 57.62 69.58 96.66 99.03 74.37 80.39 98.80 99.83 68.60

OUR 70.13 96.15 98.79 65.32 77.06 97.87 99.28 59.23 71.00 96.96 98.99 75.21 83.22 98.99 99.78 70.20

a factor of 0.1 every 8 epochs. Furthermore, data augmentation techniques,520

such as random flipping, cropping, and erasing, are employed during training521

to enhance the model’s generalization ability.522

4.4. Comparison with SOTA models523

In this subsection, the following SOTA VI-ReID methods: BDTR [40],524

DGD MSR[41], AlignGAN[31], eBDTR [27], Hi-CMD[42], EDFL [43], BEAT525

[44], CMPG [45], HPILN[46], ABP [17], HATML [32], HC [24], DG-VAE [33],526

cm-SSFT [47], FBP-AL [48], DDSN [49], AMBT [39], BDF [34], GECNet527

[35], NFS [9], FMI [10], SPOT[38], DTRM[37] and PSE [36], are compared528

with our proposed VI-ReID model.529

As shown in Table 1, our proposed model outperforms SOTA models in530

most metrics. Particularly, in the all-search mode with single-shot/multi-531

shot settings, our model achieves the best performance across all metrics.532
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Table 2: Comparisons with some state-of-the-art models on RegDB dataset.

- RGB-to-IR IR-to-RGB

Methods R1 R10 R20 mAP R1 R10 R20 mAP

eBDTR [27] 31.8 56.1 66.8 33.2 34.21 58.74 68.64 32.49

HATML [32] 71.83 87.16 92.16 67.56 70.02 86.45 91.61 66.30

DG-VAE [33] 72.97 86.89 - 71.78 - - - -

AMBT [39] 71.10 - - 68.10 - - - -

GECNet [35] 82.33 92.72 95.49 78.45 78.93 91.99 95.44 75.58

NFS [9] 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79

FMI [10] 73.2 - - 71.6 71.8 - - 70.1

SPOT[38] 80.35 93.48 96.44 72.46 79.37 92.79 96.01 72.26

DTRM[37] 79.09 92.25 95.66 70.09 78.02 91.75 95.19 69.56

PSE [36] 91.05 97.16 98.57 83.28 89.30 96.41 98.16 81.46

ML[8] 89.91 9 6.57 98.33 85.64 88.34 96.16 97.98 84.06

OUR 91.41 97.72 98.92 85.14 90.06 97.46 98.74 83.86

Table 3: Quantitative results of different ablation experiments.

Methods r1 r10 MAP

Baseline 63.22 94.02 59.97

Baseline+Sel 64.05 93.96 60.32

Baseline+Seg ReID 67.25 95.38 64.29

Baseline+Decoder 65.86 95.24 62.02

Baseline+CoSeg ReID 70.13 98.79 65.32

Additionally, in the indoor-search mode with single-shot/multi-shot settings,533

our model achieves the best results in Rank-1, top-10 accuracies of CMC, and534
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mAP. Moreover, it also achieves competitive results compared to the ML [8]535

method. These results indicate that our proposed model, with the aid of536

person masks and by exploring the relations between co-segmentation and537

VI-ReID, effectively extracts more discriminative modality-shared features538

from the input RGB and IR images for VI-ReID tasks.539

Likewise, the results on the RegDB dataset, as presented in Table 2,540

further reinforce the effectiveness of our proposed model. Specifically, our541

model achieves competitive or superior results compared to most state-of-542

the-art models in both the RGB-to-IR and IR-to-RGB modes. Moreover, it543

achieves comparable results in the RGB-to-IR and IR-to-RGB modes. These544

findings serve as additional evidence of the effectiveness and robustness of545

our proposed model on the RegDB dataset.546

-40 -35 -30 -25 -20 -15

0

5

10

15

20

25

30

35

ID1 ID2

ID3

(a)

10 15 20 25

-30

-20

-10

0

10

20

30

ID1

ID2

ID3

(b)

-15 -10 -5 0

-30

-20

-10

0

10

20

30

ID1

ID2

ID3

(c)

Figure 5: Distributions of the features extracted by different models. (a) ‘Baseline’. (b)

‘Baseline+Seg ReID’. (c) ‘Baseline+CoSeg ReID’. The green dots and the blue dots denote

the RGB features and the IR features of different identities, respectively. Accordingly, the

red pentagrams and the blue triangles denotes the centers of RGB features and IR features,

respectively. These figures are visualized by using the T-SNE algorithm[50].
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(a) (b) (c) (d) (e) (f) (g)

Figure 6: Illustration of the features extracted by different models. (a) RGB and IR

images. (b) (c) (d) and (e) The features extracted by ‘Baseline’, ‘Baseline+Sel’, ‘Base-

line+Seg ReID’ and our proposed model, respectively. (f)Person masks predicted by our

proposed model. (g) The pseudo ground truth maps generated by [8].

4.5. Ablation study547

In this section, we conduct several ablation experiments on the SYSU-548

MM01 dataset to validate the effectiveness of each component in our proposed549

model.550

4.5.1. Effectiveness of each component in our proposed model551

We verify each component of our proposed model. As shown in Table552

3, we first remove the auxiliary co-segmentation model from our proposed553

model. The model denoted as ‘Baseline+Sel’ uses person masks for feature se-554

lection. In other words, it employs the person masks (as shown in Fig. 3(a))555

to select modality-shared features from the person regions. Subsequently,556

these selected features are fed into the part module for further processing.557

‘Baseline+Seg ReID’ denotes the model in Fig. 3(b), which performs multi-558

task learning with segmentation and VI-ReID. ‘Baseline+Decoder’ denotes559

the model that removes the CCWG module from our proposed model. It is560

also a multi-task learning based model, which stacks the segmentation sub-561

network after the VI-ReID sub-network rather than parallels them. While,562

‘Baseline+CoSeg ReID’ is our final model. The quantitative results of dif-563
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ferent models are shown in Table 3.564

The results of ‘Baseline+Sel’ indicate that taking the person masks for565

feature selection may slightly improve the performance. This may be due566

to the fact that, although the VI-ReID model can reduce the interfering567

information within backgrounds to some extent via those person masks, the568

VI-ReID model cannot learn how to extract those person semantics by itself,569

since those person masks do not provide gradients for training in such a570

feature selection way. Besides, this model may also discard some personal571

information, since those person masks may be incomplete. The results of572

‘Baseline+Seg ReID’ indicate that the multi-task learning based VI-ReID573

model can obtain better results. This may owe to the fact that it can directly574

extract many person semantics from the person masks.575

The results of ‘Baseline+Decoder’ indicate that directly taking segmen-576

tation as an auxiliary model and linking it after a VI-ReID model obtain577

sub-optimal results. This may result from the task difference between person578

segmentation and VI-ReID, i.e., the person segmentation task aims to extract579

those person-related information without caring about their identities, while580

VI-ReID tries to extract those identity-related person information. Differ-581

ently, compared with ‘Baseline+Decoder’, ‘Baseline+CoSeg ReID’, i.e., our582

final model, which employs the CCWG module for co-segmentation, signifi-583

cantly boosts the performance and becomes the best one. This indicates that584

our proposed CCWG module can address the task difference by segmenting585

the same identities across a set of input images, and can extract more person586

semantics from the input images for VI-ReID, thus obtaining better results.587
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4.5.2. Visualization of the feature distributions of different models588

The distributions of features extracted by ‘Baseline’, ‘Baseline+Seg ReID’589

and ‘Baseline+CoSeg ReID’ are shown in Fig.5, respectively. It can be seen590

that, compared with ‘Baseline’, ‘Baseline+Seg ReID’ can better reduce the591

modality discrepancy, since it can effectively extract more discriminative592

modality-invariant features from the input RGB/IR images by exploring their593

inner relations between VI-ReID and segmentation. While, compared with594

‘Baseline+Seg ReID’, our proposed model ‘Baseline+CoSeg ReID’ can fur-595

ther reduce the large modality discrepancy, due to the fact that our proposed596

model can simultaneously explore the relations between person segmentation597

and VI-ReID for extracting more discriminative person-related features, and598

the relations between the features of two modalities for reducing the cross-599

modality variation by using the co-segmentation as an auxiliary model.600

4.5.3. Visualization of those person masks and features from different models601

Fig. 6 shows the person masks and features extracted by different models,602

which is obtained by first normalizing the features extracted by our proposed603

model via min-max normalization and combining them with the inputs, thus604

generating those heatmaps. The visualized features are from the last feature605

extraction block of different models, which are taken as the heatmaps and606

projected into the input images.607

Fig. 6(c) proves that the models, simply taking the person masks for608

feature selection, can eliminate those background information, but cannot609

learn to extract more accurate person-related semantics for VI-ReID. Fig.610

6(d) and Fig. 6(e) show that, even without providing those person masks,611

such multi-task learning based models have already learned to extract more612

33



Table 4: Number of parameters of different models.

Models BDTR [40] HC[24] PSE [36] ML [8] OUR (training) OUR (testing)

Parameters (M) 48.2 58.6 33.2 46.8 52.6 32.1

accurate person-related semantics from the input images for VI-ReID. Fur-613

thermore, they also reveal that our proposed model pays more attention on614

the persons than on the backgrounds. This may result from the fact that,615

by virtue of our proposed CCWG, our proposed model will interact a set of616

images and generate shared weights for segmenting their common objects,617

thus helping our proposed model to focus more on the foregrounds and less618

on the backgrounds. Consequently, the VI-ReID network can extract more619

modality-shared person-related features for further improving results. As620

shown in Fig. 6(f) and Fig. 6(g), our proposed model can well predict the621

person masks, which also proves that our proposed model can learn abundant622

person-related semantics for mask prediction.623

4.5.4. Number of parameters624

As shown in Table. 4, we further compare the number of parameters be-625

tween our proposed model and some existing modality-shared feature learn-626

ing based models. It should be noted that BDTR and HC employ two full627

ResNet50 for feature extraction. While, HC, ML and our proposed model628

share the feature extractors for modality-shared feature extraction. It can629

be seen that, if removing the segmentation model in the testing stage, our630

proposed model will reduce its parameters from 52.6M to 32.1M. As a re-631

sult, this enables our proposed model to have competitive and even fewer632

parameters than others during the test stage.633
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5. Conclusion634

This paper presents a novel multi-task learning framework that uses the635

co-segmentation to assist the VI-ReID by bridging the two tasks via the ex-636

ploitation of their common concepts, i.e., semantic similarity. By doing so,637

the co-segmentation model can effectively enhance the VI-ReID network’s638

feature extraction ability of extracting more person shape information via639

person mask prediction. Furthermore, the co-segmentation model can also640

help the VI-ReID network to interact those features across different modali-641

ties when segmenting the same objects from a set of multi-modality images,642

thus reducing their large cross-modality variations. Consequently, the VI-643

ReID network extracts more discriminative and modality-invariant modality-644

shared features for VI-ReID and achieves significant performance improve-645

ments. Moreover, the auxiliary co-segmentation model is only employed in646

the training stage and is removed in the testing stage, thus increasing no more647

parameters and computational costs. Theoretical analysis and experimental648

results both validate the superiorities of our model over existing ones.649
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