

This is a repository copy of A lack of focus on data sharing, stakeholders, and economic benefits in current global green infrastructure planning.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/206607/</u>

Version: Accepted Version

Article:

Ruan, T., Paavola, J. orcid.org/0000-0001-5720-466X, Chan, F.K.S. et al. (3 more authors) (2023) A lack of focus on data sharing, stakeholders, and economic benefits in current global green infrastructure planning. Journal of Environmental Management, 351. 119849. ISSN 1075-4253

https://doi.org/10.1016/j.jenvman.2023.119849

© 2023 Elsevier Ltd. This is an author produced version of an article published in Journal of International Management. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Materials

A lack of focus on data sharing, stakeholders, and economic benefits in current global green infrastructure planning

Table S1. GI typology

	Object type (Jones et al, 2022)	Object category							
1	Gardens	Balcony, private garden, shared common garden area							
1	Parks	Park, pocket park, botanical garden, heritage garden, nursery garden							
2 Ar	Amenity areas	Sports field, school yard, playground, golf course, shared open space (e.g., square)							
	Constructed GI on infrastructure	Green roof (extensive), green wall, roof garden (intensive), pergola (with plants)							
3	Other public space	Cemetery, allotment/other growing space, city farm, adopted public space							
4	Linear features/routes	Street tree, cycle track, footpath, road verge, railway corridor, riparian woodland,							
4	Linear reatures/routes	hedge							
	Hybrid GI for water	Permeable paving, permeable parking/roadway, attenuation pond, flood control							
5	Hybrid Of for water	channel, rain garden, bioswale							
	Water bodies	Wetland, river/stream, canal, pond, lake, reservoir, estuary/tidal river, sea (incl. coast)							
6	Other non-sealed urban areas	Woodland (other), grass (other), shrubland (other), sparsely vegetated land							
7	Multi-type GI	More than one type of GI							

Reference

Jones, L., Anderson, S., Læssøe, J., Banzhaf, E., Jensen, A., Bird, D. N., et al. 2022. A typology for urban green infrastructure to guide multifunctional planning of nature-based solutions. *Nature-Based Solutions*, 2, 100041.

Information on 145 green infrastructure planning cases

Please refer to Table S1 for GI types

Scores of data sharing, stakeholder participation and economic benefits (0, 1, 2, 3 = none, low-level, medium-level, high-level)

DS = Data Sharing

SP = Stakeholder Participation

EB = Economic Benefits

Author	Year	Continent	Country	City/ region	Longitude	Latitude	Actions	GI types	Goals	DS	SP	EB	Funds	Ref.
Albert et al	2020	Europe	Germany	Hesse	9.177386	50.639072	Scientific research	5	5 Conserving biodiversity		3	0	Public funding	[1]
Albert et al	2020	Europe	Germany	Rhineland-Palatinate	7.433092	50.188679	Scientific research	5	Conserving biodiversity	0	3	0	Public funding	[1]
Amado et al	2020	other	Angola	Luanda	13.23288	-8.81566	Survey	7	Multiple goals	1	0	1	Institution funding	[2]
Anderson et al	2020	North American	America	Chicago	-87.6336	41.889191	Scientific research	1	Conserving biodiversity	0	0	0	Institution funding	[3]
Angelstam et al	2017	Europe	Sweden	Sweden	18.067724	59.331709	Policy development	6	Conserving biodiversity	0	0	1	private funding	[4]
Angelstam et al	2017	Europe	Lithuania	Lithuania	24.442844	54.691105	Policy development	6	Conserving biodiversity	0	0	1	private funding	[4]
Angelstam et al	2017	Europe	Russia	Komi Republic	57.252414	66.047002	Policy development	6	Conserving biodiversity	0	0	1	private funding	[4]
Angelstam et al	2020	Europe	Sweden	Sweden	18.067724	59.331709	Policy development	6	Conserving biodiversity	3	1	1	Institution funding	[5]
Anguluri et al	2017	Asia	India	Kalaburagi	77.57565	12.338353	Provisioning services	4	Improving human well-being	0	0	0	private funding	[6]
Apud et al	2020	Other	Uruguay	Montevideo	-56.164655	-34.897621	Develop models/ frameworks	5	Multiple goals	0	2	3	Combined funding	[7]
Balbi et al	2020	Europe	France	Rennes	-1.685567	48.113582	Scientific research	4	Conserving biodiversity	3	2	0	Public funding	[8]
Balbi et al	2020	Europe	France	Lens	2.826475	50.443713	Scientific research	4	Conserving biodiversity	3	2	0	Public funding	[8]
Barron et al	2016	North American	Canada	Vancouver	-123.129793	49.281085	Public involvement	6	Multiple goals	1	3	2	Institution funding	[9]
Beery et al	2017	Europe	Sweden	Kristianstads kommun	14.101529	56.024289	Cultural services	7	Improving human well-being	0	2	0	Unfunded	[10]
Beery et al	2017	Europe	Denmark	Copenhagen	12.433376	55.668299	Cultural services	7	Improving human well-being	0	2	0	Unfunded	[10]
Camps-Calvet et al	2016	Europe	Spain	Barcelona	2.155007	41.415583	Develop models/ frameworks	1	Multiple goals	3	2	1	Public funding	[11]
Capotorti et al	2017	Europe	Italy	Rome	12.490041	41.906004	Survey	6	Multiple goals	1	0	0	Combined funding	[12]
Capotorti et al	2015	Europe	Italy	Rome	12.493778	41.904823	Cultural services	6	Improving human well-being	1	0	0	Public funding	[12]
Capotorti et al	2019	Europe	Italy	Rome	12.493778	41.904823	Develop models/ frameworks	6	Multiple goals	3	0	3	Public funding	[13]
Cariñanos et al	2020	Europe	Spain	Granada	-3.599419	37.181936	Regulating services	6	Improving human well-being	2	3	0	Public funding	[15]
Carlier et al	2019	Europe	UK	Fermanagh	-7.917197	54.38	Survey	4	Multiple goals	3	0	0	Institution funding	[16]
Carlier et al	2019	Europe	Ireland	Sligo	-8.539906	54.075698	Survey	4	Multiple goals	3	0	0	Institution funding	[16]
Carlier et al	2019	Europe	Ireland	Letterkenny	-7.757464	54.964504	Survey	4	Multiple goals	3	0	0	Institution funding	[16]
Carlier et al	2019	Europe	Ireland	Castlebar	-9.302837	53.870161	Survey	4	Multiple goals	3	0	0	Institution funding	[16]
Condon et al	1999	North American	Canada	Surrey	-122.829936	49.161458	Develop models/ frameworks	7	Multiple goals	0	0	0	Unfunded	[17]
Connop et al	2016	Europe	UK	Barking	0.135032	51.520929	Public involvement	5	Multiple goals	3	3	0	Combined funding	[18]
Connop et al	2016	Europe	UK	London	-0.141164	51.515288	Public involvement	7	Multiple goals	3	3	0	Combined funding	[18]
Connop et al	2016	Europe	Germany	Ludwigsburg	9.192014	48.89558	Public involvement	7	Multiple goals	3	3	0	Combined funding	[18]

AUTBOR	Vear	Continent	Country	City/region	Longitude	Latituda	Actions	CI types	Coals	DS	SP	FR	Funds	Ref
Czortak at al	2020	Europe	Poland	Świacia	18 / 30205	53 /13065	Scientific research	1	Concerting highly areity	0	0	1	Unfunded	[10]
Daniels et al	2020	Europe	Germany	Aschen	6 080438	50 778443	Scientific research	1	Conserving biodiversity	3	õ	0	Public funding	[20]
Davoren et al	2020	other	South Africa	Ratewana	25 173437	-26 74334	Scientific research		Conserving biodiversity	0	õ	ž	Combined funding	[21]
Davoren et al	2010	Furone	Turkey	Auden	27 847285	37 843715	Develop models/ frameworks	5	Multiple goals	õ	õ	1	Unfunded	[22]
El Ghorah et al	2020	other	Empt	Subar	31 69379	26 610474	Provisioning services	7	Improving human well being	0	0	1	Unfunded	[23]
El Oliolad et al	2010	Furona	Leypt	Lithuania	24 442844	54 601105	Policy development	6	Concerting hodiversity	0	2	0	Public funding	[2.5]
Forrell et al	2010	Europe	Ireland	Dublin	6 276572	53 364771	Cultural services	4	Improving human well being	õ	3	ŏ	I unfunded	[25]
Famandas at al	2013	Europe	Portugal	Porto	9 611293	41 152078	Provisioning services	4	Improving human well-being	2	0	0	Unfunded	[20]
Fernandes et al	2017	other	Australia	Mathourna	144 050600	27 912044	Pomulating contribut	-	Improving human well-being	2	0	0	Dublic funding	[20]
Fowdar et al	2017	Asia	China	Deiting	116 402464	-37.812944	Regulating services	2	Improving human well-being	0	0	0	Fublic funding	[27]
Fuetal Evictal	2010	North American	Amorian	Cincinnati	94 514047	20 11 42 9 4	Stormuster management	2	Enhancing alimata rasilionaa	0	0	0	Dublic funding	[20]
Chafmani at al	2019	North American	America	Cinculard	-64.314247	20 605050	Stormwater management	5	Enhancing climate resilience		0	0	Fublic funding	[29]
Gitt et al	2019	Furene	TUV	Graatar Manahaatar	140.023342	-38.083038 52.620007	Stormwater management	2	E-mancing contate restitence	2	0	0	Dublic funding	[30]
Uni et al	2007	Europe	UN	Greater Manchester	-2.33938	55 052572	Survey	7	Multiple goals	2	2	2	Public funding	[31]
Fiansen et al	2019	Europe	Commente	Darlin	-3.18/11/	53 531400	Survey	7	Multiple goals	2	2	2	Public funding	[34]
manisen et al	2019	Larope	Germany	Derim	10.100107	56 155365	Survey	7	Nutriple goals	2	2	2	Public funding	[32]
Hansen et al	2019	Europe	Denmark	Aarnus Die de Teneire	10.188187	20.122202	Survey	7	Multiple goals	•	2	2	Public funding	[32]
Herzog et al	2016	Other	Brazil	Rio de Janeiro	-43.1/8045	-22.8/0306	Survey		Multiple goals	1		1	Unfunded	[33]
Huera-Lucero et al	2020	other	Ecuador	Puyo	-//.99/901	-1.400103	Survey	4	Multiple goals	3	1	1	Public funding	[34]
loja et al	2014	Europe	Romania	Bucharest	26.100238	44.432948	Survey	1	Multiple goals	0	0	0	Public funding	[35]
Jaworek-Jakubska et al	2020	Europe	Poland	Wrocław	17.02129	51.113131	Provisioning services	6	Improving human well-being	1	3	0	Unfunded	[36]
Kim et al	2018	North American	America	Phoenix	-112.086723	33.460781	Develop models/ frameworks	1	Multiple goals	0	0	0	Combined funding	[37]
Kim et al	2019	North American	America	The Woodlands	-97.743277	30.269836	Scientific research	6	Conserving biodiversity	0	0	1	Institution funding	[38]
La Rosa et al	2020	Europe	Italy	Avola	15.137454	36.909913	Stormwater management	5	Enhancing climate resilience	0	0	0	Unfunded	[39]
Lähde et al	2019	Europe	Finland	Turku	22.251682	60.455625	Public involvement	7	Multiple goals	2	0	0	Public funding	[40]
Lanzas et al	2019	Europe	Spain	Catalonia	2.171723	41.385426	Develop models/ frameworks	6	Multiple goals	3	0	0	Public funding	[41]
Li et al	2015	North American	America	Prince George's County	-77.18255	38.273911	Stormwater management	5	Enhancing climate resilience	3	0	0	Unfunded	[42]
Li et al	2020	Europe	Belgium	Ghent	3.73051	50.0542	Stormwater management	7	Enhancing climate resilience	2	0	0	Public funding	[43]
Liao et al	2020	Asia	China	Three Gorges Reservoir	109.465014	31.023146	Develop models/ frameworks	5	Multiple goals	2	0	1	Public funding	[44]
Locatelli et al	2020	Europe	Spain	Barcelona	2.165068	41.395996	Stormwater management	5	Enhancing climate resilience	2	3	3	Public funding	[45]
Locatelli et al	2020	Europe	Spain	Badalona	2.222378	41.446784	Stormwater management	5	Enhancing climate resilience	2	3	3	Public funding	[45]
Lourenço et al	2020	other	Brazil	Rio de Janeiro	-43.191293	-22.916168	Stormwater management	5	Enhancing climate resilience	2	0	3	Public funding	[46]
Makido et al	2019	North American	America	Portland	-122.67401	45.523223	Heat mitigation	4	Enhancing climate resilience	1	0	1	Public funding	[47]
Marques-Perez et al	2018	Europe	Spain	Valencia	-0.377438	39.469462	Public involvement	3	Multiple goals	2	3	2	Public funding	[48]
Maya-Manzano et al	2017	Europe	Spain	Extremadura	-6.105863	39.484829	Regulating services	6	Improving human well-being	1	0	0	Public funding	[49]
Mazhar et al	2015	Asia	Pakistan	Lahore	74.216658	31.630101	Heat mitigation	1	Enhancing climate resilience	0	0	0	Unfunded	[50]
McWilliam et al	2014	North American	Canada	Toronto	-79.388358	43.663453	Policy development	6	Conserving biodiversity	0	0	0	private funding	[51]
Meerow et al	2017	North American	America	Detroit	-83.065247	42.35727	Develop models/ frameworks	7	Multiple goals	1	3	0	Combined funding	[52]
Newman et al	2020	North American	America	Manchester	-2.28575	53.478874	Develop models/ frameworks	5	Multiple goals	1	3	0	Institution funding	[53]
Nielsen et al	2017	Europe	Sweden	Sweden	18.067724	59.331709	Heat mitigation	6	Enhancing climate resilience	0	0	0	Public funding	[54]
Mistern et al.	2017	Europe	Denmark	Denmark	12,430357	55 670736	Heat mitigation	6	Enhancing climate resilience	0	0	0	Public funding	[54]

Author	Year	Continent	Country	City/ region	Longitude	Latitude	Actions	GI types	Goals	DS	SP	EB	Funds	Ref.
Norton et al	2015	other	Australia	Port Phillip	144.960183	-37.814768	Heat mitigation	7	Enhancing climate resilience	1	3	2	Public funding	[55]
Orantes et al	2017	Asia	South Korea	Yesan County	126.760277	36.094007	Develop models/ frameworks	5	Multiple goals	0	0	1	Unfunded	[56]
Palme et al	2020	Europe	Italy	Catania	15.080156	37.51406	Heat mitigation	6	Enhancing climate resilience	1	1	1	Institution funding	[57]
Pappalardo et al	2017	Europe	Italy	Avola	15.137454	36.909913	Stormwater management	5	Enhancing climate resilience	0	2	0	Unfunded	[58]
Parsa et al	2019	Asia	Iran	Tabriz	46.269777	38.089878	Survey	6	Multiple goals	3	0	0	Unfunded	[59]
Plummer et al	2020	Europe	UK	Britain	-1.023024	53.60623	Habitat construction	6	Conserving biodiversity	3	0	0	Institution funding	[60]
Raje et al	2013	North American	America	Gainesville	-82.345564	29.637623	Stormwater management	5	Enhancing climate resilience	0	0	0	Unfunded	[61]
Ramyar et al	2019	Asia	Iran	Tehran	51.38495	35.697875	Survey	4	Multiple goals	0	0	2	Unfunded	[62]
Rolf et al	2019	Europe	Sweden	Malmö	13.013596	55.596843	Public involvement	7	Multiple goals	1	3	2	Public funding	[63]
Rusche et al	2019	Europe	UK	Manchester	-2.295523	53.477159	Develop models/ frameworks	7	Multiple goals	1	0	0	Unfunded	[64]
Rusche et al	2019	Europe	Germany	Ruhr	7.467023	51.519504	Develop models/ frameworks	7	Multiple goals	1	0	0	Unfunded	[64]
Rusche et al	2019	Europe	Denmark	Copenhagen	12.433376	55.668299	Develop models/ frameworks	7	Multiple goals	1	0	0	Unfunded	[64]
Ryan et al	2010	North American	America	Orlando	-81.379115	28.546861	Provisioning services	5	Improving human well-being	1	0	0	Public funding	[65]
Sabyrbekov et al	2020	Asia	Kyrgyzstan	Bishkek	74.766667	41.883333	Provisioning services	1	Improving human well-being	3	1	1	Public funding	[66]
Schmidt et al	2014	North American	America	McIntosh County	-81.476529	31.539403	Survey	7	Multiple goals	3	3	1	Public funding	[67]
Semeraro et al	2018	Europe	Italy	Apulia	17.182831	40.790217	Public involvement	3	Multiple goals	3	0	3	private funding	[68]
Sharma et al	2016	other	Australia	Glengowrie	138.60089	-34.924237	Stormwater management	7	Enhancing climate resilience	0	3	1	Institution funding	[69]
Tillie et al	2016	Europe	Netherlands	Rotterdam	4.470544	51.938221	Develop models/ frameworks	7	Multiple goals	0	3	3	Unfunded	[70]
Tirpak et al	2018	North American	America	Knoxville	-83.921429	35.962623	Stormwater management	5	Enhancing climate resilience	0	0	0	Public funding	[71]
Tiwary et al	2016	Europe	UK	Newcastle	-1.623607	54.982598	Others	6	Enhancing climate resilience	1	0	0	Public funding	[72]
Torres- Camacho et al	2017	North American	America	San Juan	-66.6	-18.27	Scientific research	2	Conserving biodiversity	0	2	1	Institution funding	[73]
Tran et al	2020	North American	America	Philadelphia	-75.165797	39.959442	Develop models/ frameworks	7	Multiple goals	3	2	2	Institution funding	[74]
Tsegaye et al	2019	North American	America	Tampa	-82.459081	27.955381	Stormwater management	6	Enhancing climate resilience	3	0	0	Public funding	[75]
Tsegaye et al	2019	North American	America	Milwaukee	-87.907623	43.04586	Stormwater management	6	Enhancing climate resilience	3	0	0	Public funding	[75]
Tzoulas et al	2010	Europe	UK	Warrington	-2.604313	53.393113	Cultural services	1	Improving human well-being	0	0	0	Unfunded	[76]
Van der Sommen et al	2018	other	Australia	Darwin	130.89652	-12.426274	Others	6	Enhancing climate resilience	0	2	1	Unfunded	[77]
Van Renterghem et al	2020	Europe	Belgium	Antwerp	4.401314	51.223959	Regulating services	2	Improving human well-being	0	2	0	Public funding	[78]
Vasiljević et al	2019	Europe	Serbia	Belgrade	20.44749	44.801535	Policy development	6	Conserving biodiversity	0	0	0	Unfunded	[79]
Vollmer et al	2015	other	Indonesia	Jakarta	106.845452	-6.193038	Cultural services	5	Improving human well-being	1	3	0	Public funding	[80]
Walmsley et al	2006	North American	America	New Jersey	-74.59364	40.086438	Scientific research	4	Conserving biodiversity	0	0	1	Unfunded	[81]
Wang et al	2019	Europe	Germany	Leipzig	12.37135	51.349776	Develop models/ frameworks	3	Multiple goals	3	1	1	Unfunded	[82]
Wang et al	2020	Asia	China	Fengtai District	116.389277	39.802661	Develop models/ frameworks	7	Multiple goals	2	1	0	Unfunded	[83]
Wanghe et al	2019	Asia	China	Beijing	116.75	38.933333	Scientific research	7	Conserving biodiversity	3	0	0	Unfunded	[84]
Weerakkody et al	2019	Europe	UK	Stoke	-1.176254	52.940499	Regulating services	2	Improving human well-being	0	0	0	private funding	[85]
Wong et al	2015	Asia	China	Hong Kong	114.182101	22.282082	Stormwater management	2	Enhancing climate resilience	3	0	0	Combined funding	[86]
Wong et al	2018	Asia	China	Hong Kong	114.169452	22.282082	Regulating services	2	Improving human well-being	1	0	0	Institution funding	[87]
Wright et al	2018	North American	America	State of Washington	-122.892786	47.041429	Stormwater management	5	Enhancing climate resilience	1	0	0	Public funding	[88]
Yang et al	2013	North American	America	Houston	-95.380777	29.771738	Stormwater management	6	Enhancing climate resilience	1	0	0	Unfunded	[89]
Yang et al	2016	North American	America	Texas	-97.743277	30.269836	Scientific research	6	Conserving biodiversity	0	0	2	Combined funding	[90]
Yang et al	2017	North American	America	Phoenix	-112.086723	33.460781	Provisioning services	5	Improving human well-being	2	0	1	Public funding	[91]

Author	Year	Continent	Country	City/ region	Longitude	Latitude	Actions	GI types	Goals	DS	SP	EB	Funds	Ref.
Zefferman et al	2018	North American	America	Knoxville	-83.931777	35.965194	Survey	7	Multiple goals	0	2	0	Institution funding	[92]
Zhang et al	2017	Asia	China	Changchun	125.330606	43.823827	Scientific research	6	Conserving biodiversity	3	0	0	Public funding	[93]
Zhang et al	2019	North American	America	Detroit	-83.033333	41.316667	Develop models/ frameworks	7	Multiple goals	1	0	0	Unfunded	[94]
Zölch et al	2019	Europe	Germany	Munich	11.583333	47.133333	Heat mitigation	2	Enhancing climate resilience	1	0	0	Institution funding	[95]
Beaujean et al	2021	Europe	Belgium	Lie`ge	5.568508	50.650151	Develop models/ frameworks	7	Multiple goals	1	0	0	Institution funding	[96]
Bonilla-Bedoya et al	2021	other	Ecuador	Quito	-78.469563	0	Regulating services	6	Improving human well-being	3	0	0	Public funding	[97]
Campbell-Arvai et al	2021	North American	America	Detroit	-83.065247	42.35727	Stormwater management	7	Enhancing climate resilience	0	3	1	Public funding	[98]
Dudzic-Gyurkovich et al	2021	Europe	Poland	Krakow	19.932014	50.065578	Provisioning services	1	Improving human well-being	2	0	2	Unfunded	[99]
Elbardisy et al	2021	other	Egypt	Cairo	31.21238	30.086917	Heat mitigation	4	Enhancing climate resilience	1	0	0	Unfunded	[100]
Fagerholm et al	2021	Europe	Finland	Turku	22.250532	60.456903	Regulating services	7	Improving human well-being	2	0	0	Institution funding	[101]
Fu et al	2021	North American	America	Congress Run watershed	-84.425532	39.208641	Develop models/ frameworks	7	Multiple goals	3	3	2	Public funding	[102]
Graviola et al	2021	other	Brazil	Rio Claro	-47.565142	-22.406479	Develop models/ frameworks	7	Multiple goals	0	3	0	Public funding	[103]
Herath et al	2021	other	Australia	Melbourne	144.962483	-37.804961	Heat mitigation	2	Enhancing climate resilience	1	0	0	Public funding	[104]
Johnson et al	2021	Europe	Germany	Berlin	13.404379	52.530877	Heat mitigation	7	Enhancing climate resilience	0	1	3	Unfunded	[105]
Kirk et al	2021	other	Australia	Melbourne	144.962483	-37.804961	Habitat construction	7	Conserving biodiversity	1	2	1	Public funding	[106]
Li et al	2021	Asia	China	Liaoning	122.388673	41.750256	Regulating services	7	Improving human well-being	3	0	2	Public funding	[107]
Ouyang et al	2021	Asia	China	Hong Kong	114.182101	22.282082	Heat mitigation	7	Enhancing climate resilience	3	0	0	Institution funding	[108]
Rosenberger et al	2021	Europe	Germany	Munich	11.577381	48.140515	Stormwater management	5	Enhancing climate resilience	0	0	0	Unfunded	[109]
Quezada et al	2021	other	Chile	Concepción	-73.122766	-36.764679	Provisioning services	5	Improving human well-being	3	0	0	Public funding	[110]
Takakura et al	2021	other	Brazil	São Paulo	-46.635609	-23.542039	Provisioning services	6	Improving human well-being	1	0	1	Unfunded	[111]
Venter et al	2021	Europe	Norway	Oslo	10.751095	59.916174	Public involvement	2	Multiple goals	3	3	0	Public funding	[112]
Yao et al	2021	Asia	China	Fuzhou	119.297721	26.091332	Heat mitigation	1	Enhancing climate resilience	0	0	0	Public funding	[113]
Anderson et al	2021	North American	Canada	Ontario	-86.809371	51.83487	Regulating services	7	Improving human well-being	0	1	2	Public funding	[114]
Bonilla-Duarte et al	2021	other	Dominican	Santo Domingo	-69.939049	18.49431	Regulating services	6	Improving human well-being	1	3	0	Institution funding	[115]
Bosch et al	2021	Europe	Switzerland	Lausanne	6.638042	46.532886	Heat mitigation	6	Enhancing climate resilience	3	0	0	Institution funding	[116]
Di Pirro	2021	Europe	Italy	Lazio region	12.744701	42.013411	Scientific research	6	Conserving biodiversity	3	1	0	Institution funding	[117]
Gatto et al	2021	Europe	Italy	Rome	12.487139	41.924165	Heat mitigation	6	Enhancing climate resilience	0	3	3	Institution funding	[118]
Gómez-Villarino et al	2021	Europe	Spain	Madrid	-3.707814	40.418972	Others	7	Enhancing climate resilience	2	0	1	Unfunded	[119]
Guenat et al	2021	Other	Malawi	Lilongwe	33.774346	-13.956548	Public involvement	7	Multiple goals	1	3	0	Institution funding	[120]
Jarvis et al	2021	North American	Canada	Vancouver	-123.162132	49.291004	Regulating services	7	Improving human well-being	1	0	1	Institution funding	[121]
Jia et al	2021	Asia	China	Hong Kong	114.182101	22.282082	Heat mitigation	7	Enhancing climate resilience	1	0	0	Public funding	[122]
Lehnert et al	2021	Europe	Czech	Brno	14.342245	49.998133	Heat mitigation	2	Enhancing climate resilience	2	2	0	Combined funding	[123]
Lehnert et al	2021	Europe	Czech	Olomouc	14.342245	49.998133	Heat mitigation	2	Enhancing climate resilience	2	2	0	Combined funding	[123]
Lehnert et al	2021	Europe	Czech	Ostrava	14.342245	49.998133	Heat mitigation	2	Enhancing climate resilience	2	2	0	Combined funding	[123]
Lehnert et al	2021	Europe	Czech	Plze [*] n	14.342245	49.998133	Heat mitigation	7	Enhancing climate resilience	2	2	0	Combined funding	[123]
Lehrer	2021	North American	America	Chicago	-87.649698	41.892198	Habitat construction	7	Conserving biodiversity	3	0	0	private funding	[124]
van Oorschot et al	2021	Europe	Netherlands	Hague	4.308267	52.08446	Develop models/ frameworks	7	Multiple goals	1	2	1	Unfunded	[125]

References

- [1] Albert, C. et al. Planning nature-based solutions: principles, steps, and insights. Ambio, 16 (2020).
- [2] Amado, M. et al. Using different levels of information in planning green infrastructure in Luanda, Angola. Sustainability 12, 26, (2020).
- [3] Anderson, E. C. & Minor, E. S. Assessing four methods for establishing native plants on urban vacant land. Ambio, 11 (2020).
- [4] Angelstam, P. & Lazdinis, M. Tall herb sites as a guide for planning, maintenance and engineering of riparian continuous forest cover. Ecol. Eng. 103, 470-477 (2017).
- [5] Angelstam, P. et al. Sweden does not meet agreed national and international forest biodiversity targets: a call for adaptive landscape planning. Landsc. Urban Plan. 202, 17 (2020).
- [6] Anguluri, R. & Narayanan, P. Role of green space in urban planning: outlook towards smart cities. Urban For. Urban Gree. 25, 58-65 (2017).
- [7] Apud, A., Faggian, R., Sposito, V. & Martino, D. Suitability Analysis and Planning of Green Infrastructure in Montevideo, Uruguay. Sustainability 12, 18 (2020).
- [8] Balbi, M. et al. Least-cost path analysis for urban greenways planning: A test with moths and birds across two habitats and two cities. J. Appl. Ecol. 12 (2020).
- [9] Barron, S., Sheppard, S. R. J. & Condon, P. M. Urban Forest indicators for planning and designing future forests. Forests 7 (2016).
- [10] Beery, T. H. et al. Fostering incidental experiences of nature through green infrastructure planning. Ambio 46, 717-730 (2017).
- [11] Camps-Calvet, M., Langemeyer, J., Calvet-Mir, L. & Gomez-Baggethun, E. Ecosystem services provided by urban gardens in Barcelona, Spain: insights for policy and planning. Environ. Sci. Policy 62, 14-23 (2016).
- [12] Capotorti, G., et al. Combining the conservation of biodiversity with the provision of ecosystem services in urban green infrastructure planning: critical features arising from a case study in the metropolitan area of Rome. Sustainability 9 (2017).
- [13] Capotorti, G., et al. Setting Priorities for Urban Forest Planning. A Comprehensive Response to Ecological and Social Needs for the Metropolitan Area of Rome (Italy). Sustainability 7, 3958-3976 (2015).
- [14] Capotorti, G., et al. Biodiversity and ecosystem services in urban green infrastructure planning: A case study from the metropolitan area of Rome (Italy). Urban For. Urban Gree. 37, 87-96 (2019).
- [15] Carinanos, P. et al. Assessing allergenicity in urban parks: A nature-based solution to reduce the impact on public health. Environ. Res. 155, 219-227 (2017).
- [16] Carlier, J. & Moran, J. Hedgerow typology and condition analysis to inform greenway design in rural landscapes. J. Environ. Manage. 247, 790-803 (2019).
- [17] Condon, P. M. & Isaac, K. Green municipal engineering for sustainable communities. P. I. Civil Eng-Munic. 156, 3-10 (2003).
- [18] Connop, S. et al. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 62, 99-111 (2016).
- [19] Czortek, P. & Pielech, R. Surrounding landscape influences functional diversity of plant species in urban parks. Urban For. Urban Gree. 47, 10 (2020).
- [20] Daniels, B., Jedamski, J., Ottermanns, R. & Ross-Nickoll, M. A "plan bee" for cities: Pollinator diversity and plant-pollinator interactions in urban green spaces. Plos One 15, 29 (2020).
- [21] Davoren, E., Siebert, S., Cilliers, S. & du Toit, M. J. Influence of socioeconomic status on design of Batswana home gardens and associated plant diversity patterns in northern South Africa. Landsc. Ecol. Eng. 12, 129-139 (2016).
- [22] Deniz, B. Urban ecosystem-based planning and design strategy of an urban river, Tabakhane stream, Aydin, Turkey. Curr. Sci. 119, 93-102 (2020).
- [23] El Ghorab, H. K. & Shalaby, H. A. Eco and Green cities as new approaches for planning and developing cities in Egypt. Alex. Eng. J. 55, 495-503 (2016).
- [24] Elbakidze, M., et al. Defining priority land covers that secure the livelihoods of urban and rural people in Ethiopia: a case study based on citizens' preferences. Sustainability 10 (2018).
- [25] Farrell, M., Cooper, A. & Yates, K. Challenges and benefits in the design of coastal walking and cycling amenities: toward a more integrated coastal management approach. Coast. Manage. 43, 628-650 (2015).
- [26] Fernandes, C. O., et al. Between tree lovers and tree haters. Drivers of public perception regarding street trees and its implications on the urban green infrastructure planning. Urban For. Urban Gree. 37, 97-108 (2019).
- [27] Fowdar, H. S., Hatt, B. E., Breen, P., Cook, P. L. M. & Deletic, A. Designing living walls for greywater treatment. Water Res. 110, 218-232 (2017).
- [28] Fu, W., Yu, K. J. & Li, D. H. Spatio-temporal relational evaluation of the Beijing water crisis and planning implementation from 1949 to 2013. Water Policy 20, 490-509 (2018).

- [29] Fu, X. R. et al. Evaluation of Permeable Brick Pavement on the Reduction of Stormwater Runoff Using a Coupled Hydrological Model. Water 12, 15 (2020).
- [30] Ghofrani, Z., Sposito, V. & Faggian, R. Designing a pond and evaluating its impact upon storm-water quality and flow: a case study in rural Australia. Ecol. Chem. Eng. S. 26 (2019).
- [31] Gill, S. E. et al. Characterising the urban environment of UK cities and towns: A template for landscape planning. Landsc. Urban Plan. 87, 210-222 (2008).
- [32] Hansen, R., Olafsson, A. S., van der Jagt, A. P. N., Rall, E. & Pauleit, S. Planning multifunctional green infrastructure for compact cities: What is the state of practice? Ecological Indicators 96, 99-110 (2019).
- [33] Herzog, C. A multifunctional green infrastructure design to protect and improve native biodiversity in Rio de Janeiro. Landsc. Ecol. Eng. 12, 141-150 (2016).
- [34] Huera-Lucero, T., Salas-Ruiz, A., Changoluisa, D. & Bravo-Medina, C. Towards sustainable urban planning for Puyo (Ecuador): Amazon forest landscape as potential green infrastructure. Sustainability 12, 28 (2020).
- [35] Ioja, C. L., Gradinaru, S. R., Onose, D. A., Vanau, G. O. & Tudor, A. C. The potential of school green areas to improve urban green connectivity and multifunctionality. Urban For. Urban Gree. 13, 704-713 (2014).
- [36] Jaworek-Jakubska, J., Filipiak, M., Michalski, A. & Napierala-Filipiak, A. Spatio-temporal changes of urban forests and planning evolution in a highly dynamical urban area: the case study of Wroclaw, Poland. Forests 11, 18 (2020).
- [37] Kim, G. & Coseo, P. Urban Park systems to support sustainability: the role of urban park systems in hot arid urban climates. Forests 9 (2018).
- [38] Kim, J. Subdivision design and landscape structure: case study of the Woodlands, Texas, US. Urban For. Urban Gree. 38, 232-241 (2019).
- [39] La Rosa, D. & Pappalardo, V. Planning for spatial equity a performance based approach for sustainable urban drainage systems. Sustain. Cities Soc. 53, 14 (2020).
- [40] Lahde, E., Khadka, A., Tahvonen, O. & Kokkonen, T. Can we really have it all?designing multifunctionality with sustainable urban drainage system elements. Sustainability 11 (2019).
- [41] Lanzas, M., Hermoso, V., de-Miguel, S., Bota, G. & Brotons, L. Designing a network of green infrastructure to enhance the conservation value of protected areas and maintain ecosystem services. Sci. Total Environ. 651, 541-550 (2019).
- [42] Li, H. Green Infrastructure for Highway Stormwater Management: Field investigation for future design, maintenance, and management needs. J. Infrastruct. Syst. 21 (2015).
- [43] Li, L. Y., Van Eetvelde, V., Cheng, X. & Uyttenhove, P. Assessing stormwater runoff reduction capacity of existing green infrastructure in the city of Ghent. Int. J. Sust. Dev. World 27, 749-761 (2020).
- [44] Liao, Q. P., Wang, Z. & Huang, C. B. Green infrastructure offset of the negative ecological effects of urbanization and storing water in the Three Gorges Reservoir area, China. Int. J. Env. Res. Pub. He. 17, 19 (2020).
- [45] Locatelli, L. et al. Socio-economic assessment of green infrastructure for climate change adaptation in the context of urban drainage planning. Sustainability 12, 18 (2020).
- [46] Lourenco, I. B., Guimaraes, L. F., Alves, M. B. & Miguez, M. G. Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. J. Clean. Prod. 276, 19 (2020).
- [47] Makido, Y., Hellman, D. & Shandas, V. Nature-based designs to mitigate urban heat: the efficacy of green infrastructure treatments in Portland, Oregon. Atmosphere 10 (2019).
- [48] Marques-Perez, I. & Segura, B. Integrating social preferences analysis for multifunctional peri-urban farming in planning. An application by multi-criteria analysis techniques and stakeholders. Agroecol. Sustain. Food Syst. 42, 1029-1057 (2018).
- [49] Maya-Manzano, J. M. et al. Allergenic pollen of ornamental plane trees in a Mediterranean environment and urban planning as a prevention tool. Urban For. Urban Gree. 27, 352-362 (2017).
- [50] Mazhar, N., Brown, R. D., Kenny, N. & Lenzholzer, S. Thermal comfort of outdoor spaces in Lahore, Pakistan: lessons for bioclimatic urban design in the context of global climate change. Landsc. Urban Plan. 138, 110-117 (2015).
- [51] McWilliam, W., et al. Barriers to the effective planning and management of residential encroachment within urban forest edges: a Southern Ontario, Canada case study. Urban For. Urban Gree. 13, 48-62 (2014).
- [52] Meerow, S. & Newell, J. P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 159, 62-75 (2017).
- [53] Newman, G. et al. Citizen Science-Informed Community Master Planning: Land Use and Built Environment Changes to Increase Flood Resilience and Decrease Contaminant Exposure. Int. J. Env. Res. Pub. He. 17, 13 (2020).
- [54] Nielsen, A. B., Hedblom, M., Olafsson, A. S. & Wistrom, B. Spatial configurations of urban forest in different landscape and socio-political contexts: identifying patterns for green infrastructure planning. Urban Ecosyst. 20, 379-392 (2017).
- [55] Norton, B. A. et al. Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc. Urban Plan. 134, 127-138 (2015).
- [56] Orantes, M. J. C., Kim, J. & Kim, J. Socio-cultural asset integration for a green infrastructure network plan in Yesan County, Korea. Sustainability 9 (2017).
- [57] Palme, M., Privitera, R. & La Rosa, D. The shading effects of green infrastructure in private residential areas: building performance simulation to support urban planning. Energy Build. 229, 20 (2020).

- [58] Pappalardo, V., La Rosa, D., Campisano, A. & La Greca, P. The potential of green infrastructure application in urban runoff control for land use planning: a preliminary evaluation from a southern Italy case study. Ecosyst. Serv. 26, 345-354 (2017).
- [59] Parsa, V. A., Salehi, E., Yavari, A. R. & van Bodegom, P. M. An improved method for assessing mismatches between supply and demand in urban regulating ecosystem services: a case study in Tabriz, Iran. Plos One 14 (2019).
- [60] Plummer, K. E., Gillings, S. & Siriwardena, G. M. Evaluating the potential for bird-habitat models to support biodiversity-friendly urban planning. J. Appl. Ecol. 57, 1902-1914 (2020).
- [61] Raje, S. et al. Green infrastructure design for pavement systems subject to rainfall-runoff loadings. Transport. Res. Rec. 79-87 (2013).
- [62] Ramyar, R., Saeedi, S., Bryant, M., Davatgar, A. & Hedjri, G. M. Ecosystem services mapping for green infrastructure planning- the case of Tehran. Sci. Total Environ. 703, 14 (2020).
- [63] Rolf, W., Pauleit, S. & Wiggering, H. A stakeholder approach, door opener for farmland and multifunctionality in urban green infrastructure. Urban For. Urban Gree. 40, 73-83 (2019).
- [64] Rusche, K., Reimer, M. & Stichmann, R. Mapping and assessing green infrastructure connectivity in European city regions. Sustainability 11 (2019).
- [65] Ryan, P., Wanielista, M. & Chang, N. B. Nutrient reduction in stormwater pond discharge using a Chamber Upflow Filter and Skimmer (CUFS). Water Air Soil Pollut. 208, 385-399 (2010).
- [66] Sabyrbekov, R., Dallimer, M. & Navrud, S. Nature affinity and willingness to pay for urban green spaces in a developing country. Landsc. Urban Plan. 194 (2020).
- [67] Schmidt, J. P., Moore, R. & Alber, M. Integrating ecosystem services and local government finances into land use planning: a case study from coastal Georgia. Landsc. Urban Plan. 122, 56-67 (2014).
- [68] Semeraro, T., Pomes, A., Del Giudice, C., Negro, D. & Aretano, R. Planning ground-based utility scale solar energy as green infrastructure to enhance ecosystem services. Energy Policy 117, 218-227 (2018).
- [69] Sharma, A. K. et al. Water sensitive urban design: an investigation of current systems, implementation drivers, community perceptions and potential to supplement urban water services. Water 8 (2016).
- [70] Tillie, N. & van der Heijden, R. Advancing urban ecosystem governance in Rotterdam: from experimenting and evidence gathering to new ways for integrated planning. Environ. Sci. Policy 62, 139-144 (2016).
- [71] Tirpak, R. A., Hathaway, J. M. & Franklin, J. A. Evaluating the influence of design strategies and meteorological factors on tree transpiration in bioretention suspended pavement practices. Ecohydrology 11 (2018).
- [72] Tiwary, A. et al. Development of multi-functional streetscape green infrastructure using a performance index approach. Environ. Pollut. 208, 209-220 (2016).
- [73] Torres-Camacho, K. et al. Intrinsic and extrinsic drivers of yard vegetation in urban residential areas: implications for conservation planning. Urban Ecosyst. 20, 403-413 (2017).
- [74] Tran, T. J., Helmus, M. R. & Behm, J. E. Green Infrastructure Space and Traits (GIST) model: Integrating green infrastructure spatial placement and plant traits to maximize multifunctionality. Urban For. Urban Gree. 49, 11 (2020).
- [75] Tsegaye, S. et al. Transitioning from Gray to Green (G2G)- a green infrastructure planning tool for the urban forest. Urban For. Urban Gree. 40, 204-214 (2019).
- [76] Tzoulas, K. & James, P. Peoples' use of, and concerns about, green space networks: a case study of Birchwood, Warrington New Town, UK. Urban For. Urban Gree. 9, 121-128 (2010).
- [77] Van der Sornmen, F. J., et al. Analysis of the interrelationship between houses, trees and damage in a cyclone affected city: can landscape design and planning utilising trees minimise cyclone impact? Int. J. Disast. Risk Re. 28, 701-710 (2018).
- [78] Van Renterghem, T., Dekoninck, L. & Botteldooren, D. Multi-stage sound planning methodology for urban redevelopment. Sustain. Cities Soc. 62, 12 (2020).
- [79] Vasiljevic, N. et al. The concept of green infrastructure and urban landscape planning: a challenge for urban forestry planning in Belgrade, Serbia. Iforest 11, 491-498 (2018).
- [80] Vollmer, D., et aal. Understanding the value of urban riparian corridors: considerations in planning for cultural services along an Indonesian river. Landsc. Urban Plan. 138, 144-154 (2015).
- [81] Walmsley, A. Greenways: multiplying and diversifying in the 21st century. Landsc. Urban Plan. 76, 252-290 (2006).
- [82] Wang, J. X., Pauleit, S. & Banzhaf, E. An Integrated Indicator Framework for the Assessment of Multifunctional Green Infrastructure-Exemplified in a European City. Remote Sensing 11 (2019).
- [83] Wang, Y. A., Chang, Q. & Fan, P. L. A framework to integrate multifunctionality analyses into green infrastructure planning. Landsc. Ecol. 19 (2020).
- [84] Wanghe, K. Y. et al. Gravity model toolbox: An automated and open-source ArcGIS tool to build and prioritize ecological corridors in urban landscapes. Glob. Ecol. Conserv. 22, 14 (2020).
- [85] Weerakkody, U., Dover, J. W., Mitchell, P. & Reiling, K. Topographical structures in planting design of living walls affect their ability to immobilise traffic-based particulate matter. Sci. Total Environ. 660, 644-649 (2019).
- [86] Wong, G. K. L. & Jim, C. Y. Identifying keystone meteorological factors of green-roof stormwater retention to inform design and planning. Landsc. Urban Plan. 143, 173-182 (2015).

- [87] Wong, G. K. L. & Jim, C. Y. Abundance of urban male mosquitoes by green infrastructure types: implications for landscape design and vector management. Landsc. Ecol. 33, 475-489 (2018).
- [88] Wright, O. M., et al. Is there a limit to bioretention effectiveness? Evaluation of stormwater bioretention treatment using a lumped urban ecohydrologic model and ecologically based design criteria. Hydrol. Process. 32, 2318-2334 (2018).
- [89] Yang, B. & Li, S. J. Green infrastructure design for stormwater runoff and water quality: empirical evidence from large watershed-scale community developments. Water 5, 2038-2057 (2013).
- [90] Yang, B. & Li, S. J. Design with Nature: Ian McHarg's ecological wisdom as actionable and practical knowledge. Landsc. Urban Plan. 155, 21-32 (2016).
- [91] Yang, J. C. & Wang, Z. H. Planning for a sustainable desert city: the potential water buffering capacity of urban green infrastructure. Landsc. Urban Plan. 167, 339-347 (2017).
- [92] Zefferman, E. P., McKinney, M. L., Cianciolo, T. & Fritz, B. I. Knoxville's urban wilderness: Moving toward sustainable multifunctional management. Urban For. Urban Gree. 29, 357-366 (2018).
- [93] Zhang, D. et al. Effects of urbanization intensity on forest structural-taxonomic attributes, landscape patterns and their associations in Changchun, Northeast China: implications for urban green infrastructure planning. Ecol. Indic. 80, 286-296 (2017).
- [94] Zhang, Z. Z., Meerow, S., Newell, J. P. & Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Gree. 38, 305-317 (2019).
- [95] Zolch, T., Rahman, M. A., Pfleiderer, E., Wagner, G. & Pauleit, S. Designing public squares with green infrastructure to optimize human thermal comfort. Build. Environ. 149, 640-654 (2019).
- [96] Beaujean, S. et al. A multistep approach to improving connectivity and co-use of spatial ecological networks in cities. Landsc. Ecol. 36, 2077-2093 (2021).
- [97] Bonilla-Bedoya, S. et al. Spatiotemporal variation of forest cover and its relation to air quality in urban Andean socio-ecological systems. Urban For. Urban Gree. 59, 12 (2021).
- [98] Campbell-Arvai, V. & Lindquist, M. From the ground up: Using structured community engagement to identify objectives for urban green in frastructure planning. Urban For. Urban Gree. 59, 13 (2021).
- [99] Dudzic-Gyurkovich, K. Urban development and population pressure: The case of Mlynowka Krolewska park in Krakow, Poland. Sustainability 13, 25 (2021).
- [100] Elbardisy, W. M., Salheen, M. A. & Fahmy, M. Solar irradiance reduction using optimized green infrastructure in Arid hot regions: A case study in El-Nozha District, Cairo, Egypt. Sustainability 13, 32 (2021).
- [101] Fagerholm, N., Eilola, S. & Arki, V. Outdoor recreation and nature's contribution to well-being in a pandemic situation-Case Turku, Finland. Urban For. Urban Gree. 64, 15 (2021).
- [102] Fu, X., Hopton, M. E. & Wang, X. H. Assessment of green infrastructure performance through an urban resilience lens. J. Clean. Prod. 289, 11 (2021).
- [103] Graviola, G. R., Ribeiro, M. C. & Pena, J. C. Reconciling humans and birds when designing ecological corridors and parks within urban landscapes. Ambio 51, 253-268 (2022).
- [104] Herath, P., Thatcher, M., Jin, H. D. & Bai, X. M. Effectiveness of urban surface characteristics as mitigation strategies for the excessive summer heat in cities. Sustain. Cities Soc. 72, 15 (2021).
- [105] Johnson, D., Exl, J. & Geisendorf, S. The potential of stormwater management in addressing the urban heat island effect: An economic valuation. Sustainability 13, 19 (2021).
- [106] Kirk, H. et al. Building biodiversity into the urban fabric: A case study in applying Biodiversity Sensitive Urban Design (BSUD). Urban For. Urban Gree. 62, 14 (2021).
- [107] Li, K. M. et al. Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization. J. Clean. Prod. 325, 12 (2021).
- [108] Ouyang, W. L. et al. Evaluating the thermal-radiative performance of ENVI-met model for green infrastructure typologies: Experience from a subtropical climate. Build. Environ. 207, 21 (2022).
- [109] Rosenberger, L., Leandro, J., Pauleit, S. & Erlwein, S. Sustainable stormwater management under the impact of climate change and urban densification. J. Hydrol. 596, 11 (2021).
- [110] Quezada, C. R. & Jorquera, F. Urban fabrics to eco-friendly blue-green for urban wetland development. Sustainability 13, 20, (2021).
- [111] Takakura, M. & Massi, K. G. Wealth and education influences on spatial pattern of tree planting in a tropical metropolis in Brazil. Environ. Manage. 69, 169-178 (2022).
- [112] Venter, Z. S. et al. Interactive spatial planning of urban green infrastructure Retrofitting green roofs where ecosystem services are most needed in Oslo. Ecosyst. Serv. 50, 11 (2021).
- [113] Yao, X. et al. How can urban parks be planned to mitigate urban heat island effect in "Furnace cities"? An accumulation perspective. J. Clean. Prod. 330, 10 (2022).
- [114] Anderson, V., Gough, W.A. & Agic, B. Nature-Based Equity: An assessment of the public health impacts of green infrastructure in Ontario Canada. Int. J. Environ. Res. Public Health 18, 17 (2021).
- [115] Bonilla-Duarte, S., et al. Contribution of urban forests to the ecosystem service of air quality in the city of Santo Domingo, Dominican Republic. Forests 12, 11 (2021).

- [116] Bosch, M. et al. Evaluating urban greening scenarios for urban heat mitigation: a spatially explicit approach. Royal Society Open Science 8, 12 (2021).
- [117] Di Pirro, E., Sallustio, L., Capotorti, G., Marchetti, M. & Lasserre, B. A scenario-based approach to tackle trade-offs between biodiversity conservation and land use pressure in Central Italy. Ecol. Modell. 448, 10 (2021).
- [118] Gatto, E., Buccolieri, R., Perronace, L. & Santiago, J. L. The challenge in the management of historic trees in urban environments during climate change: The Case of Corso Trieste (Rome, Italy). Atmosphere 12, 18 (2021).
- [119] Gomez-Villarino, M. T., Villarino, M. G. & Ruiz-Garcia, L. Implementation of urban green infrastructures in Peri-Urban Areas: A case study of climate change mitigation in Madrid. Agronomy-Basel 11, 11 (2021).
- [120] Guenat, S., Lopez, G. P., Mkwambisi, D. D. & Dallimer, M. Unpacking stakeholder perceptions of the benefits and challenges associated with urban greenspaces in Sub-Saharan Africa. Front. Environ. Sci. 9, 12 (2021).

[121] Jarvis, I. et al. Assessing the association between lifetime exposure to greenspace and early childhood development and the mediation effects of air pollution and noise in Canada: a population-based birth cohort study. Lancet Planet. Health 5, E709-E717 (2021).

- [122] Jia, S. Q. & Wang, Y. H. Effect of heat mitigation strategies on thermal environment, thermal comfort, and walkability: A case study in Hong Kong. Build. Environ. 201, 16 (2021).
- [123] Lehnert, M., Brabec, M., Jurek, M., Vladimir, T. & Geletic, J. The role of blue and green infrastructure in thermal sensation in public urban areas: A case study of summer days in four Czech cities. Sustain. Cities Soc. 66, 16 (2021).
- [124] Lehrer, E. W. et al. Urban bat occupancy is highly influenced by noise and the location of water: Considerations for nature-based urban planning. Landsc. Urban Plan. 210, 9 (2021).
- [125] van Oorschot, J., Sprecher, B., van 't Zelfde, M., van Bodegom, P. M. & van Oudenhoven, A. P. E. Assessing urban ecosystem services in support of spatial planning in the Hague, the Netherlands. Landsc. Urban Plan. 214, 11 (2021).