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Connecting Physical and Virtual Touch: Haptic Rendering of Virtual

Textures from Visual Pictures and Conditioned on Tactile Images

Guanqun Cao1, Jiaqi Jiang2, Ningtao Mao3, Danushka Bollegala1, Min Li4, and Shan Luo2

Abstract— For humans, touch is a fundamental source of
information for learning and interacting with the physical
world. With the development of teleoperation, haptic rendering
is an essential technique for human operators to touch objects
remotely and gain a comprehensive understanding of their
surroundings. Previous haptic rendering methods are limited
to using the recorded tactile signals from tactile sensor for
haptic rendering. However, the collection of tactile data is very
expensive and time-consuming due to the complex exploration.
In this paper, we propose a haptic rendering method based on
the generative model that generates the signals for rendering
from vision and combines the characteristics of roughness
and smoothness of an object’s surface to provide a vivid
haptic rendering. The evaluation from users demonstrates that
our proposed method enables people a realistic haptic feeling
and the participants can match the haptic rendering with
corresponding physical objects correctly for 6.3 times over 10
trials on average. The improved haptic rendering can be used to
enhance the realism and immersion of teleoperation and virtual
reality.

I. INTRODUCTION

The sense of touch is a fundamental information source

for humans to learn and interact with the physical world.

It allows humans to perceive exclusive physical properties,

such as textures, roughness, smoothness, etc., which are dif-

ficult to be obtained through vision or any other sensations,

thus helping humans understand the properties of contacting

objects and explore the surrounding environment.

With the development of teleoperation, great demands

exist in providing humans with haptic feedback to touch

an object remotely. The act of touching things to prove

their existence is a biological need to human nature, and

haptic feedback enables human operators a comprehensive

cognition of the remote environment from touch sensation.

Various kinds of hardware devices have been developed to

provide humans haptic feedback based on different working

principles, such as vibrotactile feedback [1], electrovibration

feedabck [2] and thermal feedback [3]. As one kind of

haptic-rendering device, electrovibration-based haptic dis-

play, which enables the frictional force changes on user’s
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Fig. 1: Haptic rendering framework. A generative model is used to

generate signals for rendering from visual images, then the generated signals

are used for haptic rendering through a haptic display.

fingers, is gaining popularity in simulating surface char-

acteristics for different objects, e.g., frictional information,

roughness, and textures [4]–[6].

However, it is still difficult to design the signals that are

rendered on the haptic display to provide a vivid haptic

feeling. The haptic feeling of an object’s surface largely

depends on two aspects, i.e., roughness and smoothness [7].

Height disparities of high-frequency range changes on an

object’s surface are referred to as roughness. The textures

and the height of surface particles differ on different types of

materials. The smoothness is related to surface slipperiness

which can be assessed by static or dynamic coefficients. Even

with the same texture, the smoothness might vary according

to their different material characteristics. Both aspects pose

great challenges to designing signals in a unified way for

the haptic rendering for different materials. Although it is

possible to perform haptic rendering utilising the tactile

signals captured from a tactile sensor that to be rendered

on a haptic display directly, the process of data collection

is very expensive and time-consuming. It requires a large

number of physical contacts between the tactile sensor and

the target objects, and the sensor is easy to be damaged.

To address the above problem in the haptic rendering,

as shown in Fig. 1, we propose a cross-modal generation

model to translate the visual images to height information

and frictional information of object’s surface. Subsequently,

we integrate the height information, which indicates the

roughness, and frictional information, which measures the

smoothness of the surface, for haptic rendering. The evalua-

tion results from users demonstrate that haptic rendering on

the haptic display has a high similarity with the touch feeling



of physical object’s surface using our proposed method.

The contributions of this paper are as follows:

1) We develop a generative model that generates height and

frictional information from visual images and a haptic

rendering algorithm that uses the generated signals to

provide people with haptic rendering;

2) The generated height maps and frictional coefficients,

demonstrating the roughness and smoothness of object’s

surfaces respectively, are combined together for haptic

rendering, for the first time;

3) A set of experiments demonstrate our proposed method

improves the realism of haptic rendering, which is

promising to enhance the immersion of teleoperation

and virtual reality (VR) in the future.

II. RELATED WORKS

Vision and touch are two important modalities for humans

to perceive the surrounding environment in different dimen-

sions. In this section, we will first review works on visual-

tactile matching and tactile signals generation from vision,

followed by a discussion of tactile signals rendering on the

haptic display.

A. Matching visual images with tactile signals

There has been extensive research about cross-modal

retrievals where the information from different modalities

can be matched with each other [8]–[10]. To match the

visual images with corresponding tactile information, Yuan

et al. [11] apply both visual data and tactile data to train a

CNN jointly to project the data to a shared subspace, and use

the embedded vectors to determine if the visual image and

tactile data are from one same object by a distance metric.

Liu et al. [12] propose a dictionary learning model for active

visual-tactile cross-modal matching where the visual images

are retrieved based on the query tactile samples. Zheng et

al. [13] propose a low-rank similarity learning method with

adaptive margin to evaluate the similarity between vision and

touch for retrievals.

B. Cross-modal visual-tactile generation

With the development of generative models, it is possible

for us to translate the data from one accessible domain to

another inaccessible domain. In the visual-tactile generation,

Lee et al. [14] proposed a cross-modal data generation frame-

work based on cGAN to generate pseudo tactile textures from

visual images, using the data collected from fabrics. Cai et

al. [15] come up with a residue-fusion module based on the

generative model to do the cross-modal generation between

visual images and accelerometer signals. Li et al. [16] adapt

the generative model to perform two prediction tasks: gener-

ating tactile signals from visual video; reconstructing a visual

scene that indicates which object is touched from tactile

input. Moreover, Zhang et al. [17] propose a generative

partial visual-tactile fused framework for clustering where

the generated data are used to mitigate the missing data.

However, these works only generate tactile data from visual

data, but the generated tactile signals are not applied for

haptic rendering in a further step.

C. Tactile signals rendering on electrovibration haptic dis-

play

By using a haptic display, an object’s surface tex-

ture, roughness, temperature, and shape can be reproduced.

Among various kinds of devices, electrovibration-based hap-

tic displays are capable of providing vivid haptic feedback

as they can change the friction of different locations between

the screen surface and bare fingertips by changing electro-

static force.

Several studies have been conducted about providing hap-

tic rendering from visual information, e.g., using shadings,

shapes, and gradients of visual textures. İşleyen et al. [5] in-

vestigate how the roughness experience changes correspond-

ing to different spatial periods and normal force according

to the shape of virtual gatings on an electrovibration haptic

display. Wang et al. [18] develop a tactile-rendering method

to obtain the height information by implementing shapes

from shading with Gaussian bump. Wu et al. [19] propose a

mapping model to get frequency and amplitude based on the

gradients on image textures, which is able to demonstrate

the hardness and granularity on the electrovibration-based

haptic display. However, these methods only provide a lim-

ited tactile feeling based on properties from visual images

directly.

Another popular method is to employ the tactile sensor

to record the tactile data of the contacting surface and

reproduce the haptic feeling using the recorded tactile data.

Jiao et al. [6] measure the frictional coefficients from the

recorded frictional and normal forces and replay it on the

haptic display by controlling the voltage to the display.

Ilkhani et al. [20] propose a texture rendering algorithm to

reproduce the acceleration signal on the haptic display, and a

comparison is conducted between simulated feeling and real

objects. Zhao et al. [21] combines the acceleration signals

and friction properties to improve the realism of the haptic

rendering.

To eliminate complex steps of tactile data collection,

Cai et al. [22] use a generative model to synthesise the

frictional signals from visual images, then the synthesised

frictional signals are rendered on the haptic display instead

of the real signal. However, the touch feeling of the object’s

surface relates to the roughness and slipperiness, and the

above work [22] only considers frictional coefficients in

a straight line but ignores the height disparities over the

object’s surface. In our proposed method, we use visual

information and generative models to generate height map

and frictional coefficients data, and combine them together

for haptic rendering, for the first time.

III. METHODOLOGIES

In our framework, we aim to generate tactile signals

of frictional coefficients on different locations and height

maps of the object’s surface from visual images, and render

these generated signals on the haptic display to provide a

realistic touch feeling. Since the frictional coefficients data

over different locations can be treated as temporal data and

represented by 2D by converting it to spectrograms which
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Fig. 2: Diagram of proposed haptic rendering framework. Two generators Gh and Gs are implemented to generate the height maps of object’s surface

and spectrogram of frictional coefficients respectively. The discriminator is used to identify the generated tactile signals from real tactile signals. After

training, the generators are capable to generate realistic tactile signals from corresponding visual images. Then, the spectrogram are transformed to the

waveform using inverse short-time Fourier transform algorithm and combined with generated height map for haptic rendering.

can illustrate the pattern of coefficients change in time-

frequency domain effectively, as shown in Fig. 2, an image-

to-image translation method based on cGAN [23] is proposed

to generate both spectrograms of frictional-coefficients and

height maps. The spectrogram and height map can demon-

strate the smoothness and roughness of the object’s surface

respectively. By rendering the generated signals of these two

key characteristics, the haptic display is able to provide a

realistic haptic feeling to humans.

A. Generation of height maps and frictional coefficients from

vision

As illustrated in Fig. 2, our generative model consists of

two generators Gs and Gh as well as a discriminator D. The

generators Gs and Gh take visual images to generate corre-

sponding spectrograms of frictional coefficients and height

maps of object’s surfaces respectively. The discriminator D

uses the input visual image x as auxiliary information, along

with the generated results and data from real distribution, to

train the model to identify whether the input to the D is from

real distribution or generated.

During the training process, we optimise the generators

and discriminators iteratively. Concretely, the discriminator

D is trained by minimising:

LD(D) =− Ex,s,h[logD(x, s, h)]

− Ex[log(1−D(x,Gs(x), Gh(x))],
(1)

where s and h represent the spectrogram of frictional coef-

ficients and height maps respectively. At the same time, the

generators are trained to generate indistinguishable signals

to fool the discriminator by minimising:

LG(Gs, Gh) = −Ex[log(D(x,Gs(x), Gh(x))]. (2)

Through the competition, the generators are capable to

generate realistic spectrograms and height maps for haptic

rendering. Moreover, we minimise the L1 distance between

the generated data and real data for less blurring [24]:

LL1(Gs, Gm) = Ex,s [∥s−Gs(x)∥1]

+ Ex,m [∥m−Gm(x)∥1] .
(3)

The final objective is:

G∗

s, G
∗

h = arg min
Gs,Gh

max
D

Ex,s,h[logD(x, s, h)]

+ Ex[log(1−D(x,Gs(x), Gh(x))]

+ Ex,s [∥s−Gs(x)∥1]

+ Ex,h [∥h−Gh(x)∥1] .

(4)

B. Haptic display

A TanvasTouch Desktop Development Kit is used for

haptic rendering. The Tanvas haptic display, based on elec-

trovibration mechanism, is able to provide software-defined

haptics through the SDK. The Tanvas haptic display has a

10.1-inch screen with a resolution of 1280 × 800 pixels.

The haptics are mapped 1:1 to the input electro-adhesion

image. The value of pixels of the electro-adhesion image

ranges from 0 to 255, where 0 represents the friction that

naturally exists on the surface of the haptic display, and 255

represents the highest amount of friction that the device is

capable of producing. The device will output the required

interaction as soon as the finger is over a location where an



electro-adhesion image has been added.

C. Haptic rendering algorithm

In the physical world, when we use a finger to slide on

the object’s surface, the surface of the finger is inserted

into the textures of the object due to the pressure. As a

result, the locations with higher heights prevent the finger

from moving and the locations with lower heights provide

less friction [25]. However, even the surfaces with the same

textures, the tactile feelings may vary due to the different

frictional coefficients. To this end, we can use the average

frictional coefficients to scale the value of the height map as

the electro-adhesion image for haptic rendering.

Specifically, we use the trained generators Gh and Gs to

generate the height maps h′ = Gh(x
′) and spectrograms s′ =

Gs(x
′) of test objects respectively, where x′ are the visual

images of test objects. Then, the spectrograms are converted

to the frictional coefficient waveform f = istft(s′) by

using the inverse short-time Fourier transform algorithm [26].

Consequently, the electro-adhesion image can be denoted as:

m = favg ∗ h
′, (5)

where favg denotes the average value of frictional coeffi-

cients over different locations. Finally, we map the electro-

adhesion images of test materials into the range of the input

values of Tanvas haptic display:

mk
normi,j

= 255 ∗
mk

i,j −min(m)

max(m)−min(m)
, (6)

where k represents the index of the test materials, and i, j

denotes the location of pixels.

IV. DATA COLLECTION AND EXPERIMENT SETUP

In order to train the generative model, we collect a novel

weakly-paired dataset, which includes visual images, height

maps, and spectrograms of frictional coefficients from 15

different kinds of fabrics. Some examples are shown in

Fig. 4.

A. A set of physical fabrics

A total of 15 kinds of fabrics are selected in our experi-

ments, which are made of different materials and manufac-

tured using different weaving or knitting techniques, e.g.,

tarlatan cotton, loomstate, zeddana silk, etc. The selected

fabrics have different height distributions and frictional co-

efficients on their surfaces. Compared with other objects,

fabrics have finer textures and irregular surfaces. As a result,

the proposed method can be generalised to other objects if

the haptic rendering has a significant similarity to the haptic

feeling of physical fabrics.

B. Visual images of the physical fabrics

The visual images of fabrics are collected by a digital

camera Canon 150D. Fabrics are placed on a flat plane with

the image plane approximately parallel to them. For each

piece of fabric, 5 colour images are taken under different in-

plane rotations. Moreover, data augmentation is performed

Tactile image Height map 3D visualisation

Frictional coefficients Spectrogram

(a)

(b)

Fig. 3: Data collection. (a) a GelSight sensor is controlled to press against

fabrics to collect tactile images. Then, height maps can be obtained from

tactile images by using photometric stereo algorithm. (b) a force/torque

sensor is used to slide over fabrics at a constant speed to collect frictional

coefficients on a straight line. Then, the recorded frictional coefficients

are transformed into spectrograms by using a short-term Fourier transform

algorithm.

Recorded signals Generated signals

Fig. 4: Recorded signals and generated signals. Left three columns: visual

images; height maps obtained from tactile images; spectrograms of frictional

coefficients. Right two columns: generated height maps and spectrograms

respectively.

such as by using random rotation, flip and Gaussian noise to

extend our dataset. As a result, there are 3375 colour images

of fabrics in total in our data set.

C. Height maps obtained from pressing the GelSight sensor

against the fabrics

A GelSight sensor [27] is used to collect the height maps

of the fabric’s surface textures. A GelSight sensor mainly

consists of an elastomer, a webcam, a supporting plate as

well as RGB LEDs. The elastomer is deformed when it

contacts a fabric. The surface texture of the fabric is mapped

to this deformation which is recorded by the webcam under

the RGB lights.

Firstly, the GelSight sensor is mounted on the UR5 robot

arm to press against the flat fabrics by a constant force

(20N) to collect tactile images. Specifically, the GelSight

sensor, which has a perception field around 1.5cm× 1.1cm,



TABLE I: The used input modalities of different haptic rendering methods.

(Vis, Tac, H, and Fric represent visual images. tactile images, height maps,

and frictional coefficients. HG and FricG represent generated height maps

and generated frictional coefficients.)

Methods Vis Tac H Fric HG FricG

Vis2Haptic ✓

Tac2Haptic ✓

H2Haptic ✓

Fric2Haptic ✓

H&Fric2Haptic ✓ ✓

HG2Haptic ✓

FricG2Haptic ✓

HG&FricG2Haptic ✓ ✓

is controlled by moving along the warp directions with

a 0.2cm step length after each press, and this process is

repeated by changing the weft location by 0.2cm step length

as well to collect the tactile data from different locations.

After collecting tactile images, following [27], we use the

photometric stereo algorithm to reconstruct the height map

that demonstrates the vertical displacement on the elastomer

(as shown in Fig. 3 (a)). Consequently, there are 3375 height

maps of the surface textures in the data set.

D. Spectrograms of frictional signals collected from sliding

a force sensor over fabrics

Apart from the height maps, we collect frictional coeffi-

cients on a straight line of fabrics to measure the smoothness

of each fabric. Specifically, the UR5 robot arm is equipped

with a force/torque sensor Nano17, with a sampling rate

of around 60Hz, to move over the fabrics. The sensor is

controlled to slide along the fabric for 4 cm at a steady

speed of 5 mm/s after being pressed against it with a force of

roughly 15 N. By using the recorded friction and the normal

pressure force, we can calculate the coefficient of friction

over a straight line for each fabric. Then, we apply the short-

term Fourier transform (STFT) [28] to convert the frictional

coefficients into a spectrogram because the spectrogram, as

a time-frequency analysis, can show the pattern of force

changes effectively (as shown in Fig. 3 (b)) compared to

the waveform. Finally, we have 3375 spectrograms after

subsampling on recorded frictional coefficients.

E. Baselines of haptic rendering of virtual textures

Our proposed method enables humans to have haptic feel-

ings on the Tanvas haptic display. To evaluate the effective-

ness of our proposed method, a number of baseline methods

that employ different input signals are used for comparison.

The comparison can be divided into three groups: (1) using

the visual input for haptic rendering; (2) using the generated

signals from visual images for haptic rendering; (3) using

the recorded signals from tactile sensor for haptic rendering.

Table I details the baseline methods with different input

signals.

Fig. 5: Test fabrics. (a) loomstate; (b) viscose/cotton rib; (c) jute hessian

(d) tarlatan cotton; (e) zeddana silk; (f) crepe fine polyester; (g) wool/cotton

felt

F. Experimental setup for user study

In our experiment, we investigate if the haptic rendering

based on our proposed methods keeps a high similarity with

the physical fabrics. We recruit 10 volunteers (8 males and 2

females) from the University of Liverpool. The age of partic-

ipants ranges from 24 to 31. None of them have experience

with haptic displays. To reduce the time consumption of the

testing, 7 pieces of fabrics are selected in our experiment (as

shown in Fig 5). As illustrated in Fig 6, the participants will

be blinded to touch the physical fabrics and haptic display

respectively, and then be asked to respond to a series of

questions as described in Table II. Before the experiments,

the haptic rendering of random fabrics will be given on the

haptic displays and let participants have a mock-up test and

be familiar with the device.

For question Q1, the participants will be given one haptic

rendering on the haptic display and three physical fabrics,

and the physical fabric corresponding to haptic rendering is

among these three physical fabrics and the other two are

randomly selected. The participants will be asked to match

the haptic rendering with the most similar physical fabrics

Fig. 6: Experimental setup. The participant is blinded with an eye mask

and let to touch the physical fabrics on the table and the virtual fabrics

on the haptic display. The instructor will change the physical and virtual

fabrics and record the reaction from the participant.



TABLE II: The participants will be answer the following questions to

measure the similarity between haptic rendering and physical fabrics.

Q1
Which of the showed three fabric pieces

does the haptic rendering match with?

Q2
Does the haptic rendering have the same

smoothness as the physical fabric?

Q3
Does the haptic rendering have the same

texture as the physical fabric?

Q4
How much realism of haptic rendering do you feel

compared with physical fabric?

through haptic feeling.

After testing question Q1 for all testing fabrics, questions

Q2-Q4 will be asked for each fabric. Specifically, a haptic

analog scale (HAS) based on a visual analog scale (VAS)

rating is proposed to measure the degree of similarity be-

tween physical fabrics and haptic rendering. Each physical

fabric and its corresponding haptic rendering will be shown

to participants one by one. In the experiment, participants are

required to memorise a nine-sectioned line segment before

the test and grade similarity on this analog scale during the

testing. A rating of 0 indicates that the haptic rendering and

the haptic feeling of physical fabric are unrelated, and a

rating of 10 indicates that the haptic rendering is very similar

to the properties of physical fabrics. To help participants

understand the scale, an example is provided: the haptics of

a piece of sandpaper and a piece of silk are unrelated, which

receives a score of 0; the haptics from two same fabrics are

totally the same, which receives a score of 10.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In our proposed framework, the signals including the

spectrograms and height maps are generated from the visual

images first. Fig. 5 demonstrate a visual comparison between

the generated signals and the ground truth signals recorded

by the tactile sensor. Concretely, the generated height maps

and real height maps are illustrated in the second column

and fourth column respectively. The third and fifth columns

show the generated spectrograms and real spectrograms

respectively. It can be seen that our proposed generative

model is capable to generate corresponding height maps and

spectrograms from visual images, and the generated results

exhibit diversity and a high degree of similarity with the

ground truth signals. Then, the results of haptic rendering

using generated signals are compared with the baseline

methods by a user study.

A. Do the vision-based methods work in haptic rendering?

Firstly, we adopt two baseline methods that use visual

information as input signals for haptic rendering: (1) using

grey-scale visual images that are obtained by the weighted

mean of RGB channels of colour images ; and (2) using

shape from shading from visual images [18]. Fig. 7 (a) (b)

demonstrate the evaluation results respectively. It can be

seen that haptic renderings are successfully matched with

the corresponding physical fabrics for 3.9 times on average

in 10 trials with the grey-scale images as input. The average

similarity scores of smoothness, texture, and overall realism

are 5.1, 5.4, and 5.4, respectively. The use of shape from

shading, which extracts the height information from visual

images, has a minor improvement in the similarities of

texture and realism. However, the overall performance is low,

as the similarities of realism are around 5.5 out of 10 and

the participants usually cannot match the rendering correctly

in most cases.

B. Do the height map and frictional coefficients generated

from vision improve the realism for haptic rendering?

Our proposed method employs visual images to generate

the corresponding height maps and frictional coefficients for

haptic rendering. We ablate our method to demonstrate how

the generated tactile signals affect the haptic perception of

humans. Firstly, we only use the generated frictional coef-

ficients for haptic rendering. Secondly, we create the haptic

feedback based on generated height maps. Finally, generated

height maps and frictional coefficients are combined in haptic

rendering for comparison.

The Fig. 7 (c) (d) (e) illustrate the ablated results respec-

tively. Compared with visual input, the use of generated

frictional coefficients improves the haptic feeling signifi-

cantly. The participants are able to match 5.6 haptic rendering

correctly on average over 10 trials, 1.7 times higher than the

results of visual input. Moreover, compared to the results of

shape of shading, the average similarities of smoothness and

realism increase by 0.9 and 0.4 respectively.

The generated height maps, which contain the 2D texture

geometry, improve the average similarities in textures and

overall realism by 0.2 and 0.1 respectively, compared to

the results using frictional coefficients. In a further step,

the combination of the generated frictional coefficients and

height maps achieve the highest scores in all evaluation

metrics, compared with the ablated results. It means that the

combination of the generated height maps, which represent

the degree of roughness, and the generated frictional coeffi-

cients, which measure the smoothness of an object’s surface,

is able to improve the realism of haptic rendering.

C. What is the difference between using recorded tactile

signals and generated tactile signals in haptic rendering?

We further compare our proposed method with the meth-

ods which apply the recorded signals as input for haptic ren-

dering without the generation process. The experiments here

are four-fold: (1) using grey-scale tactile images; (2) using

height maps obtained from tactile images; (3) using recorded

frictional coefficients data; (4) combining both height maps

and frictional coefficients data for haptic rendering.

As shown in Fig. 7 (f) (g) (h) (i), it is observed that using

the grey-scale tactile images achieves the lowest performance

as the mapping from colour tactile images to grey-scale

images does not provide valid height or friction information

for haptic rendering. The other results follow a similar trend

to the results of generated tactile signals. The combination

of height maps from tactile images and recorded frictional

coefficients produces the best results among all experiments.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7: Results with different input signals (a) grey-scale visual images; (b) shape from shading; (c) generated frictional coefficients; (d) generated height

maps; (e) generated height maps and coefficients; (f) grey-scale tactile images; (g) frictional coefficients; (h) height maps from tactile images (i) height

maps and frictional coefficients

The participants are capable to match the haptic rendering

with physical fabrics for 7.1 times over 10 trials, and the

score of overall realism comes to 6.9 out of 10. It is worth

noting that the results of our proposed method maintain at

the same level compared to the results using both height

maps and recorded frictional coefficients (as shown in Fig. 7

(e) (i)). Specifically, the average scores of similarities in

smoothness, textures, and realism are only 0.3, 0.2, and 0.3

less respectively, which demonstrates the effectiveness of our

proposed method.

D. Comparison of electro-adhesion images with different

input

Fig. 8 illustrates how different input signals result in

different electro-adhesion images that to be rendered on the

haptic display. It is observed from Fig. 8 (a) (c) that the

simple mapping from colour image to a grey-scale image

does not preserve the height or friction information of the

object’s surface, which can lead to a blurred haptic rendering.

Fig. 8 (b) shows that the height information is reconstructed

from vision by using the shape from shading method. How-

ever, there are many noisy bright pixels, which indicate

a high friction value, that can adversely affect the human

perception of haptic rendering. Fig. 8 (d) (g) demonstrate the

electro-adhesion images using the frictional coefficients data.

The frictional coefficients, however, only represent friction

changes along straight lines, so humans can only feel friction

changes in one dimension and cannot perceive the 2D texture

clearly through the haptic rendering. Concretely, pixels in the

electro-adhesion image change in value horizontally but stay

the same vertically.

By combining the frictional coefficients and height maps,

it can be seen that the intensity of the electro-adhesion

images increase (as shown in Fig. 8 (f) (i)) compared to

Fig. 8 (e) (g). The increase in intensity is corresponding to

the property of object’s smoothness, which can enhance the

realism of haptic rendering. In addition, the electro-adhesion

images in the second and third rows that represent generated

and recorded tactile signals, respectively, show a high degree

of similarity, which illustrates the effectiveness of our haptic



(a) (b) (c)

(d) (e) (f)

(g) (g) (i)

Fig. 8: The electro-adhesion images for rendering with different input

signals. (a) grey-scale visual image; (b) shape from shading; (c) grey-

scale tactile images;(d) generated frictional coefficients; (e) generated height

maps; (f) generated height maps and coefficients; (g) grey-scale tactile

images; (h) frictional coefficients; (i) height maps from tactile images (g)

height maps and frictional coefficients

rendering method with the generative model.

VI. CONCLUSIONS

In this paper, we propose a haptic rendering framework

that uses a generative model to generate the height maps

and frictional coefficients of the object’s surface, which are

then combined together for haptic rendering. The realism of

the haptic rendering produced by our proposed method is

comparable to approaches that render haptics using recorded

tactile signals by tactile sensors. The participants are able to

identify the haptic rendering and its corresponding physical

fabrics for 6.3 times over 10 trials on average. The proposed

haptic rendering method can be used in teleoperation and VR

to provide a vivid haptic feedback to humans in the future.
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[5] A. İşleyen, Y. Vardar, and C. Basdogan, “Tactile roughness perception
of virtual gratings by electrovibration,” IEEE Transactions on Haptics,
vol. 13, no. 3, pp. 562–570, 2019.

[6] J. Jiao, Y. Zhang, D. Wang, Y. Visell, D. Cao, X. Guo, and X. Sun,
“Data-driven rendering of fabric textures on electrostatic tactile dis-
plays,” in 2018 IEEE Haptics Symposium (HAPTICS), pp. 169–174,
IEEE, 2018.

[7] N. Mao, Y. Wang, and J. Qu, “Smoothness and roughness: Character-
istics of fabric-to-fabric self-friction properties,” in The Proceedings

of 90th Textile Institute World Conference, The Textile Institute, 2016.
[8] F. Feng, R. Li, and X. Wang, “Deep correspondence restricted boltz-

mann machine for cross-modal retrieval,” Neurocomputing, vol. 154,
pp. 50–60, 2015.

[9] J. Kim, J. Nam, and I. Gurevych, “Learning semantics with deep belief
network for cross-language information retrieval,” in Proceedings of

COLING 2012: Posters, pp. 579–588, 2012.
[10] G. Andrew, R. Arora, J. Bilmes, and K. Livescu, “Deep canonical

correlation analysis,” in International conference on machine learning,
pp. 1247–1255, PMLR, 2013.

[11] W. Yuan, S. Wang, S. Dong, and E. Adelson, “Connecting look
and feel: Associating the visual and tactile properties of physical
materials,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pp. 5580–5588, 2017.
[12] H. Liu, F. Wang, F. Sun, and X. Zhang, “Active visual-tactile cross-

modal matching,” IEEE Transactions on Cognitive and Developmental

Systems, vol. 11, no. 2, pp. 176–187, 2018.
[13] W. Zheng, H. Liu, B. Wang, and F. Sun, “Online weakly paired

similarity learning for surface material retrieval,” Industrial Robot:

the international journal of robotics research and application, 2019.
[14] J.-T. Lee, D. Bollegala, and S. Luo, ““touching to see” and “seeing

to feel”: Robotic cross-modal sensory data generation for visual-
tactile perception,” in 2019 International Conference on Robotics and

Automation (ICRA), pp. 4276–4282, IEEE, 2019.
[15] S. Cai, K. Zhu, Y. Ban, and T. Narumi, “Visual-tactile cross-modal

data generation using residue-fusion gan with feature-matching and
perceptual losses,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 7525–7532, 2021.

[16] Y. Li, J.-Y. Zhu, R. Tedrake, and A. Torralba, “Connecting touch and
vision via cross-modal prediction,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 10609–
10618, 2019.

[17] T. Zhang, Y. Cong, G. Sun, J. Dong, Y. Liu, and Z. Ding, “Gen-
erative partial visual-tactile fused object clustering,” arXiv preprint

arXiv:2012.14070, 2020.
[18] T. Wang and X. Sun, “Electrostatic tactile rendering of image based

on shape from shading,” in 2014 International Conference on Audio,

Language and Image Processing, pp. 775–779, IEEE, 2014.
[19] S. Wu, X. Sun, Q. Wang, and J. Chen, “Tactile modeling and render-

ing image-textures based on electrovibration,” The Visual Computer,
vol. 33, no. 5, pp. 637–646, 2017.

[20] G. Ilkhani, M. Aziziaghdam, and E. Samur, “Data-driven texture
rendering on an electrostatic tactile display,” International Journal of

Human–Computer Interaction, vol. 33, no. 9, pp. 756–770, 2017.
[21] L. Zhao, Y. Liu, Z. Ma, and Y. Wang, “Design and evaluation of a

texture rendering method for electrostatic tactile display,” in Extended

abstracts of the 2019 CHI conference on human factors in computing

systems, pp. 1–6, 2019.
[22] S. Cai, L. Zhao, Y. Ban, T. Narumi, Y. Liu, and K. Zhu, “Gan-based

image-to-friction generation for tactile simulation of fabric material,”
Computers & Graphics, vol. 102, pp. 460–473, 2022.

[23] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[24] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings of

the IEEE conference on computer vision and pattern recognition,
pp. 1125–1134, 2017.

[25] S. Lafaye, C. Gauthier, and R. Schirrer, “The ploughing friction:
analytical model with elastic recovery for a conical tip with a blunted
spherical extremity,” Tribology Letters, vol. 21, no. 2, pp. 95–99, 2006.

[26] B. Yang, “A study of inverse short-time fourier transform,” in 2008

IEEE International Conference on Acoustics, Speech and Signal

Processing, pp. 3541–3544, IEEE, 2008.
[27] W. Yuan, S. Dong, and E. H. Adelson, “Gelsight: High-resolution robot

tactile sensors for estimating geometry and force,” Sensors, vol. 17,
no. 12, p. 2762, 2017.
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