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Abstract
We study the problem of estimating a regression function when the predictor and/
or the response are circular random variables in the presence of measurement errors. 
We propose estimators whose weight functions are deconvolution kernels defined 
according to the nature of the involved variables. We derive the asymptotic proper-
ties of the proposed estimators and consider possible generalizations and extensions. 
We provide some simulation results and a real data case study to illustrate and com-
pare the proposed methods.

Keywords  Characteristic function · Deconvolution kernels · Fourier coefficients · 
Measurement errors · Wind direction · CO pollution

1  Introduction

Circular, or angular, data are observations consisting of directions or angles, and, as 
such, are defined on a circle—with unit radius—after the origin and orientation are 
established. Such data occur in many fields, for example: meteorology (wind and 
marine current directions), biology (directions of animal species migration), bioin-
formatics (conformational angles of a protein), geology (directions of rock fracture), 
social science and economics (clock or calendar effects). The fact that maximum and 
minimum of the measure scale are the same makes classical methods of statistics gen-
erally inappropriate for addressing circular data. However, circular statistics is a very 
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active research field, and there are counterparts for most inferential techniques. For a 
recent comprehensive account about circular statistics, see Ley and Verdebout  (2017) 
and Ley and Verdebout (2018).

Statistical regression models are generally based on the assumption that predic-
tors have been measured exactly. However, sometimes they are, for some reason, not 
directly observable or are measured with errors, for instance due to imperfect measure-
ment devices (deterioration or miscalibration), or the impossibility of directly accessing 
the variables of interest. When this is the case, specific models, known as errors-in-
variables or measurement error models, have to be considered. A key to solving many 
errors-in-variables problems is often to take the Fourier transform of the various func-
tions involved, because, in the Fourier domain, equations generally become much sim-
pler to solve. For a review of the extensive literature about the so-called deconvolution 
problem see, e.g., Carroll and Hall (1988); Liu and Taylor (1989); Carroll et al. (1995).

In the regression setting the kernel deconvolution estimator has been shown to reach 
the optimal rate of convergence by Fan and Truong (1993). The generalization of the 
higher order version of the local constant estimator, along with the derivation of the 
asymptotic normality, has been proposed by Delaigle et al. (2009). Carroll et al. (1999) 
introduced two new approaches to nonparametric regression in the presence of meas-
urement error based on the simulation-extrapolation method and regression splines. 
Also, estimators involving kernel and orthogonal series methods based on a low order 
approximation approach have been proposed by Carroll and Hall (2004). The estima-
tion of a nonparametric regression function with a covariate contaminated by a mixture 
of Berkson and classical measurement has been treated by Carroll et al. (2007).

The problem of estimating the density of an unobserved circular variable meas-
ured with error has been recently addressed by Di Marzio et al. (2021). Also, non-
parametric regression for circular responses has been introduced by Di Marzio et al. 
(2012a) and Di Marzio et al. (2012b).

In this paper we introduce a nonparametric regression estimator that is consistent 
in the presence of measurement error when the data can be represented as points on 
the circumference of the unit circle. Specifically, we present a deconvolution estima-
tor, showing resulting rates of asymptotic accuracy measures comparable to Euclid-
ean deconvolution ones. The finite-sample properties of the estimator are investi-
gated through Monte Carlo experiments.

We collect some basic concepts about the characteristic functions in Sect. 2, and 
recall the Nadaraya-Watson estimators involving circular variables in Sect. 3. Esti-
mators which take into account of the presence of the measurement error are pro-
posed in Sect. 4, along with some asymptotics. In Sect. 5 we present some simu-
lation results, and we conclude with a real data case study exploring the relation 
between levels of carbon monoxide and wind direction in Sect. 6.

2 � Some preliminaries

Given a real random variable X with distribution function FX , its characteristic 
function is defined as �X(t) = � [exp(itX)] = ∫ ∞

−∞
exp(itx)dFX(x) , where i2 = −1 . 

Since there is a one-to-one correspondence between characteristic functions and 



1219

1 3

Kernel regression for errors‑in‑variables problems in the…

distribution functions, if �X is absolutely integrable, it is possible to recover the den-
sity function fX of X, for every x ∈ ℝ , from the characteristic one by using the well 
known inversion formula

Now consider the random variable Θ taking values on the unit circle. In this case, 
the density of Θ , say fΘ , is a 2�-periodic density function, i.e. fΘ(�) = fΘ(� + 2r�) 
for any integer r; then its characteristic function, say �Θ , is just defined for integer 
� , and satisfies �Θ(�) = �Θ+2�(�),� ∈ ℤ . Notice that �Θ(�) corresponds to the � th 
trigonometric moment of Θ

and that �� = 0 when fΘ is symmetric. It is interesting to note that �� and �� are 
the � th order Fourier coefficients of the density fΘ . Analogously to the inversion 
formula for characteristic functions of real-valued random variables, if fΘ is square 
integrable on [0, 2�) , one can represent fΘ(�) , � ∈ [0, 2�) , through the Fourier series

The smoothness of a generic density function can be determined by the rate of decay 
of the characteristic function: a polynomial decay characterizes ordinary smooth 
functions, while an exponential decay characterizes supersmooth ones. When the 
random variable is real-valued, examples of ordinary smooth densities include the 
Laplace and Gamma, while the Normal and Cauchy ones are supersmooth. In the 
circular case, examples for these two classes of functions are obtained by consid-
ering the wrapped version of the aforementioned densities. The von Mises density 
belongs to the class of the supersmooth ones.

3 � Circular kernel regression in the error‑free case

In this section we briefly recall the local constant regression estimators, also known 
as kernel regression or Nadaraya-Watson estimators, proposed by Di Marzio et al. 
(2009) and Di Marzio et  al. (2012a) when the predictor and/or the response vari-
ables have circular nature.

3.1 � Circular response

Consider a pair of ( × )-valued random variables (Ψ,Δ) , where  is a generic domain 
and = [0, 2�) . We are interested in the dependence of the response Δ on the predic-
tor Ψ . Given the random sample (Ψ1,Δ1),… , (Ψn,Δn) , assume the regression model

(1)fX(x) =
1

2� ∫ �X(t) exp(−itX)dt.

�Θ(�) = �� + i�� , �� = � [cos(�Θ)], �� = � [sin(�Θ)],

(2)

fΘ(�) =
1

2�

∞
∑

�=−∞

�Θ(�) exp(−i��) =
1

2�

{

1 + 2

∞
∑

�=1

(

�� cos(��) + �� sin(��)
)

}

.
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where the �i s are i.i.d. random angles with zero mean direction and non-zero con-
centration (so we do not allow a U(0, 2�) distribution for �i ), which are independent 
of the Ψi s. Now, for � ∈ , let

with gj = mjf  , for j ∈ (1, 2) , where f is the design density, i.e. the density of 
the covariate, which may be linear or circular, m1(�) = �[sin(Δ) ∣ Ψ = �] , 
m2(�) = �[cos(Δ) ∣ Ψ = �] and the function �����(y, x) returns the angle between 
the x-axis and the vector from the origin to (x, y). A kernel estimator for the regres-
sion function m at � has been proposed by Di Marzio et al. (2012a) as

where

with W� being a weight function, which may be linear or circular accord-
ing to the nature of Ψ , having 𝜈 > 0 as its smoothing parameter, whose role 
is to emphasize the contribution of the observations close to the estima-
tion point � . Noting that m1(�) and m2(�) are the components of the condi-
tional first trigonometric moment of Δ , we can write m1(�) = C(�)fs(�) and 
m2(�) = C(�)fc(�) , where C(�) = {m2

1
(�) + m2

2
(�)}1∕2 and f 2

s
(�) + f 2

c
(�) = 1 . 

We also define s2
1
(�) = �[sin2(Δ) ∣ Ψ = �] , s2

2
(�) = �[cos2(Δ) ∣ Ψ = �] and 

c(�) = �[sin(Δ) cos(Δ) ∣ Ψ = �] , which describe the conditional second trigono-
metric moments of Δ.

In what follows, we recall both the cases where Ψ is a random angle, i.e. = [0, 2�) , 
or Ψ is a linear random variable, i.e. = ℝ.

3.1.1 � Circular predictor

Consider the case where both  and  are [0, 2�) , and denote the predictor variable as 
Θ . For � ∈ [0, 2�) , a local constant estimator for m(�) is defined as in Eq. (5) where 
the functions ĝj , j ∈ (1, 2) , involve a circular kernel K� with a smoothing parameter 
𝜅 > 0 called the concentration.

We recall that a circular kernel of order r, defined by Di Marzio et al. (2009) as 
rth sin-order kernel, is a function symmetric around the null mean direction, with 
� increasing with n in such a way that, as � increases, ∫ �

−�
K�(�)d� tends to 1, for 

� ∈ (0,�) , and, denoting �j(K�) = ∫ 2�

0
sinj(�)K�(�)d� , it holds

(3)Δi = (m(Ψi) + �i)���(2�),

(4)m(�) = �����(g1(�), g2(�)),

(5)m̂(𝜓 ;𝜈) = �����
(

ĝ1(𝜓 ;𝜈), ĝ2(𝜓 ;𝜈)
)

,

(6)

ĝ1(𝜓 ;𝜈) =
1

n

n
∑

i=1

sin(Δi)W𝜈(Ψi − 𝜓) and ĝ2(𝜓 ;𝜈) =
1

n

n
∑

i=1

cos(Δi)W𝜈(Ψi − 𝜓),
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Some asymptotic properties for the local constant estimator m̂(𝜃) are collected in the 
following

Result 1  Given the [0, 2�) × [0, 2�)-valued random sample (Θ1,Δ1),… , (Θn,Δn) , 
consider estimator (5) equipped with a circular kernel K� as the weight function. If 

	 (i)	 K� is a second sin-order kernel admitting a convergent Fourier series representa-
tion 1∕(2�){1 + 2

∑∞
�=1 ��(�) cos(��)} , with � increasing with n in such a way that, 

for � ∈ ℤ
+ , limn→∞

1−�� (�)
1−�2(�)

= �2

4
, limn→∞ ��(�) = 1 and limn→∞

1
n

∑∞
�=1 �

2
�(�) = 0,

	 (ii)	 the design density fΘ and the conditional expectations m1 and m2 are twice 
continuously differentiable in a neighbourhood of �,

then, at � ∈ [0, 2�),

and

Remark 1  Condition i) of Result 1 is very mild because most of the usual circu-
lar densities, which are symmetric about the null mean direction, are included in 
the class of second sin-order kernels. Among these, an uncommon case is the uni-
form kernel on [−�∕(� + 1),�∕(� + 1)] , which has a smaller support than the cir-
cle, where � ∈ ℕ . A kernel satisfying above conditions, without being a density is 
instead the Dirichlet kernel (2� sin(�∕2))−1 sin((� + 1∕2)�) . It can be negative, and 
its order depends on the value of � , being � + 1 if � is odd, and � + 2 otherwise.

A local linear version of estimator m̂ can be obtained using the circular analogue 
of a local linear weight in defining the sample statistics ĝ1 and ĝ2 , see Di Marzio 
et al. (2012a) for details.

3.1.2 � Linear predictor

Now we consider the case where = ℝ , and denote the predictor variable as X. 
Here the functions ĝj , j ∈ (1, 2) , of the local constant estimator (5) use a linear 
kernel

𝜂0(K𝜅) = 1, 𝜂j(K𝜅) = 0 for 0 < j < r, and 𝜂r(K𝜅) ≠ 0.

�[m̂(𝜃;𝜅)] − m(𝜃) =
(1 − 𝛾2(𝜅))

4

{

m��(𝜃) +
2m�(𝜃){C(𝜃)fΘ(𝜃)}

�

C(𝜃)fΘ(𝜃)

}

+ o(1 − 𝛾2(𝜅)),

���[m̂(𝜃;𝜅)] =

�

1 + 2
∑∞

�=1
𝛾2
�
(𝜅)

�

2𝜋nC2(𝜃)fΘ(𝜃)

�

f 2
c
(𝜃)s2

1
(𝜃) + f 2

s
(𝜃)s2

2
(𝜃) − 2fc(𝜃)fs(𝜃)c(𝜃)

�

+ o

�
∑∞

�=1
𝛾2
�
(𝜅)

n

�

.
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which is a symmetric density function, with maximum at 0 and a smoothing param-
eter h > 0 called the bandwidth. Also define the quantities �j(K) = ∫ xjK(x)dx and 
v(K) = ∫ K2(x)dx , and recall that K is a kth-order kernel if �0(K) = 1 , �j(K) = 0 for 
j = (1,… , k − 1) , and �k(K) ≠ 0.

The asymptotic properties are collected in the following

Result 2  Given the ℝ × [0, 2�)-valued random sample (X1,Δ1),… , (Xn,Δn) , con-
sider the estimator given by (5), equipped with a linear kernel Kh as the weight func-
tion. If 

	 (i)	 Kh is a second order kernel such that h → 0 and nh → ∞ as n → ∞;
	 (ii)	 the design density fX and the conditional expectations m1 and m2 are twice 

continuously differentiable in a neighbourhood of x,

then, for any interior point x of the support of fX,

and

Remark 2  Condition i) of Result 2 is a basic requirement and is satisfied by com-
mon second order kernels such as the Uniform, Epanechnikov, Biweight, Triweight, 
Gaussian ones.

Analogously to the previous case, a local linear version of estimator m̂ can be 
obtained using a local linear weight in defining the sample statistics ĝj , j ∈ (1, 2) 
as detailed in Di Marzio et al. (2012a).

3.2 � Linear response

Consider the case where = [0, 2�) and = ℝ , and denote, respectively, the pre-
dictor and the response variables as Ψ and Y. Given the random sample 
(Ψ1, Y1),… , (Ψn, Yn) , assume the regression model

(7)Kh(x) =
1

h
K
(

x

h

)

,

�[m̂(x;h)] − m(x) =
h2𝜇2(K)

2

(

m��(x) +
2m�(x){C(x)f (x)}�

C(x)f (x)

)

+ o(h2),

���[m̂(x;h)] =
v(K)

C2(x)f (x)nh

{f 2
s
(x)s2

2
(x) + f 2

c
(x)s2

1
(x) − 2fs(x)fc(x)c(x)} + o

(

1

nh

)

.

(8)Yi = m(Ψi) + �(Ψi)�i,
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where the �i s are i.i.d. real-random variables with zero mean and unit variance, and 
�2(⋅) is the conditional variance of Y.

A kernel regression estimator for m at � ∈ [0, 2�) is defined as

with K� being a circular kernel.
Some asymptotic properties are collected in the following

Result 3  Given the [0, 2�) ×ℝ-valued random sample (Ψ1,Y1),… , (Ψn,Yn) , con-
sider the estimator given by (9). If assumption i) of Result 1 holds, and 

	 (i)	 the second derivative of the regression function m is continuous,
	 (ii)	 the conditional variance �2(⋅) is continuous, and the density fΨ is continuously 

differentiable,

then

and

More generally, a class of nonparametric regression estimators outlined for the 
case of a linear response and circular predictor has been described in detail by Di 
Marzio et al. (2009).

4 � Circular kernel regression with errors‑in‑variables

Now we consider the errors-in-variables context, where the predictor variable is 
observed with errors. Specifically, suppose that we are interested in estimating 
nonparametrically the regression of Y on X, denoted as m, and that our data are 
realizations from variables Z = X + � and Y, say (z1, y1),… , (zn, yn) . A general 
model for this case could be

for i = 1,… , n , where X and Y respectively refer to the predictor and response vari-
able, �i s are realizations of the random error term � , and �i s are realizations of the 

(9)m̂(𝜓 ;𝜅) =

∑n

i=1
K𝜅(Ψi − 𝜓)Yi

∑n

i=1
K𝜅(Ψi − 𝜓)

,

�[m̂(𝜓 ;𝜅)] − m(𝜓) =
(1 − 𝛾2(𝜅))

4

{

m��(𝜓) +
2m�(𝜓)f �

Ψ
(𝜓)

fΨ(𝜓)

}

+ o(1 − 𝛾2(𝜅)),

���[m̂(𝜓 ;𝜅)] =

�

1 + 2
∑∞

�=1
𝛾2
�
(𝜅)

�

2𝜋nfΨ(𝜓)
𝜎2(𝜓) + o

�
∑∞

�=1
𝛾2
�
(𝜅)

n

�

.

yi = m(xi) + �i

zi = xi + �i
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random measurement error � . The unobserved variable X is always referred to as 
the latent or true variable. The usual assumptions include that � is independent from 
both X and � , and that the distribution of � is unknown but has mean 0 and constant 
variance, while the distribution of � is known. Let fZ , fX and f� respectively denote 
the probability density function of Z, X and � . Basic theoretical considerations sug-
gest that fZ is obtained from the convolution between fX and f� , i.e.

where F� denotes the distribution function of � . As a consequence, the estimators of 
the error-free model are clearly not consistent.

A deconvolution approach can be used to obtain accurate estimators for m. We 
start by expressing the above relationship using the characteristic functions

where �Z , �X and �� denote the characteristic functions of Z, X and � , respectively. 
Assuming that �� is known, and �Z can be estimated on the basis of sample data, the 
quantity of interest can be identified by the ratio

The problem arises from the fact that ��(t) vanishes as t → ∞ . Hence, plugging the 
estimate 𝜑̂Z in Eq. (10) may not yield a consistent estimate of �X , because even very 
small overestimates of ∣ �Z ∣ are magnified by the arbitrarily large factor 1∕�� . This 
is the well-known ill-defined inverse problem. The scenario is exacerbated if the 
error density is supersmooth because this makes the characteristic function tend to 
zero very fast as t → ∞ . The solution is represented by the so-called kernel decon-
volution estimator proposed by Stefanski and Carroll (1990), which uses a kernel 
whose Fourier transform has a compact domain. This yields a compactly supported 
estimate 𝜑̂Z , and, consequently, 𝜑̂Z will vanish before small values of ��(t) cause the 
ratio to diverge. A more general perspective suggests to use a damping factor, i.e. to 
multiply 𝜑̂Z by a function that steadily goes to zero. Usually this function is the Fou-
rier transform of an ordinary kernel W� . Consequently, using the inversion theorem 
(1), the deconvolution kernel will be

where �W is the Fourier transform of the kernel W�.
The description of our strategy will be implemented in the next sections to obtain 

errors-in-variables estimators for the cases when the predictor and/or response have a 
circular nature.

fZ(z) = ∫
∞

−∞

fX(z − �)dF�(�),

�Z = �X��,

(10)�X =
�Z

��

.

(11)W̃𝜈(x) =
1

2𝜋 ∫ exp(−itx)
𝜑W (t)

𝜑𝜀(t∕𝜈)
dt,
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4.1 � Circular response

We are interested in estimating a regression function m as in Eq. (4), but now we only 
observe the sample (Φ1,Δ1),… , (Φn,Δn) of i.i.d. observations,

with Δi s obtained according to model (3), and Φi s being independent copies of the 
random variable

where Ψi s are independent copies of the latent variable Ψ whose density function fΨ 
is defined on a generic domain  , and � is a random measurement error assumed to 
be independent of (Ψ, �) , with a known density function f� which is symmetric 
around zero. We also assume that f� , fΨ and fΦ are square integrable densities.

On the basis of the deconvolution approach, a local estimator for m at � ∈ can be 
defined as

where the functions g̃j , j ∈ (1, 2), have the same structure as ĝj in Eq. (6),
but employ the deconvolution kernel (11) in place of the weight function W�.

4.1.1 � Circular predictor

Consider the case where = [0, 2�) and denote the predictor as Θ . Also, let f� be a 
circular density admitting an absolutely convergent Fourier series representation. A 
nonparametric estimator for m at � ∈ [0, 2�) , denoted by m̃(𝜃;𝜅) , can be obtained by 
employing circular deconvolution kernels in formula (13). Therefore, recalling that 
the characteristic function of a periodic density takes values only for integer num-
bers, using the inversion formula (2), and considering that for a symmetric function 
�� = 0 for any � , we have

with smoothing parameter 𝜅 > 0 , where ��(�) and ��(��) , for � ∈ ℤ , respectively 
are the � th Fourier coefficient of the periodic weight function K� and the error 
density f� whose concentration is �� . The estimator is well defined when the error 
density has nonvanishing Fourier coefficients, ��(�) is not identically zero and 
∑∞

�=1
∣ 𝛾�(𝜅)∕𝜆�(𝜅𝜀) ∣< ∞ for all (�, ��) ∈ ℝ

2
+
 , which imply that both K� and K̃𝜅 are 

square integrable functions.
Some asymptotic properties are collected in the following

Result 4  Given the [0, 2�) × [0, 2�)-valued random sample (Φ1,Δ1),… , (Φn,Δn) , 
consider the estimator m̃(𝜃;𝜅) , � ∈ [0, 2�) . If the assumptions of Result 1 hold, then

(12)Φ = (Ψ + �)���(2�),

(13)m̃(𝜓 ;𝜈) = �����(g̃1(𝜓 ;𝜈), g̃2(𝜓 ;𝜈)),

(14)K̃𝜅(𝜃) =
1

2𝜋

{

1 + 2

∞
∑

�=1

𝛾�(𝜅)

𝜆�(𝜅𝜀)
cos(�𝜃)

}

,



1226	 M. Di Marzio et al.

1 3

and

Proof  See Appendix. 	�  ◻

We notice that the measurement error does not affect the bias of estimator m̃ , 
which is identical to the error-free case, while the variance is considerably larger. 
This result will hold for the deconvolution estimators described in the next sections 
too.

Remark 3  Estimator (13) can also be obtained by using the unbiased score approach, 
which is based on the idea that it suffices to impose the constraint that g̃j , for 
j ∈ (1, 2) , employ an unknown weight function Lk such that

i.e.

By working in the Fourier domain, it can be seen that L𝜅(𝜃) = K̃𝜅(𝜃).

4.1.2 � Linear predictor

Now, we consider the case where = ℝ , and denote the predictor variable as X. We 
assume that the measurement errors come from a known, symmetric density f� with 
variance �2 , and the characteristic function ��(t) ≠ 0 for all t.

A kernel regression estimator for m at x ∈ ℝ , denoted by m̃(x;h) , is defined by 
employing in estimator (13) a linear deconvolution kernel

with a smoothing parameter h > 0 , where �K(t) = ∫ exp(itx)K(x)dx is the Fourier 
transform of the kernel Kh defined in formula (7). In this case we assume that �K is 
not identically zero and ∫ ∣ 𝜑K(t)∕𝜑𝜀(t∕h) ∣ dt < ∞ for all h > 0 , which imply that 
∣ �K ∣ , �2

K
 and �2

K
∕ ∣ ��(⋅∕h) ∣ are all integrable.

�[m̃(𝜃;𝜅)] − m(𝜃) =
(1 − 𝛾2(𝜅))

4

{

m��(𝜃) +
2m�(𝜃){C(𝜃)fΘ(𝜃)}

�

C(𝜃)fΘ(𝜃)

}

+ o(1 − 𝛾2(𝜅)),

���[m̃(𝜃;𝜅)] =

�

1 + 2
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

�

2𝜋nC2(𝜃)fΘ(𝜃)
�

f 2
c
(𝜃)s2

1
(𝜃) + f 2

s
(𝜃)s2

2
(𝜃) − 2fc(𝜃)fs(𝜃)c(𝜃)

�

+

+ o

�
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

n

�

.

�[g̃j(𝜃;𝜅) ∣ Θ1,… ,Θn,Δ1,… ,Δn] = ĝj(𝜃;𝜅),

�[L�(Φi − �) ∣ Θi] = K�(Θi − �).

(15)K̃h(x) =
1

2𝜋 ∫ exp(−itx)
𝜑K(t)

𝜑𝜀(t∕h)
dt,
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As for the asymptotic properties we have the following

Result 5  Given the ℝ × [0, 2�)-valued random sample (X1,Δ1),… , (Xn,Δn) , con-
sider the estimator m̃(x;h) , x ∈ ℝ . If the assumptions of Result 2 hold, then, for any 
interior point x of the support of fX,

and

Proof  See Appendix. 	�  ◻

Remark 4  If fX is assumed to have a limited support, say [a,  b], where 
−∞ < a < b < +∞ , then a different bias and variance hold when 
x ∈ [a, a + h] ∪ [b − h, b] . For this special case we need to adapt the boundary the-
ory described in Di Marzio et al. (2012a) by employing a deconvolution kernel (15).

4.2 � Linear response

We are now interested in the dependence of the real-valued response Y on the 
circular predictor Ψ , when the random sample (Φ1, Y1),… , (Φn, Yn) , modelled 
according Eqs.  (8) and (12) is available. Here the �i s are i.i.d. circular random 
variables with zero mean direction and finite concentration, and are independent 
of the (Ψi, �i)’s.

The local constant estimator for m is defined by

where K̃𝜅 is a circular deconvolution kernel defined in formula (14).
As for the asymptotic properties we have the following

Result 6  Given the [0, 2�) ×ℝ-valued random sample (Φ1, Y1),… , (Φn, Yn) , con-
sider the estimator m̃(𝜓 ;𝜅) , � ∈ [0, 2�) . If assumption i) of Result 1, and assump-
tions i) and ii) of Result 3 hold, then

�[m̃(x;h)] − m(x) =
h2𝜇2(K)

2

(

m��(x) +
2m�(x){C(x)f (x)}�

C(x)f (x)

)

+ o(h2),

���[m̃(x;h)] =
∫ ∣ 𝜑K(t) ∣

2∣ 𝜑𝜀(𝜍t∕h) ∣
−2 dt

2𝜋nhC2(x)fX(x)

{f 2
s
(x)s2

2
(x) + f 2

c
(x)s2

1
(x) − 2fs(x)fc(x)c(x)}

+ o
(

1

nh

)

.

(16)m̃(𝜓 ;𝜅) =

∑n

i=1
K̃𝜅(Φi − 𝜓)Yi

∑n

i=1
K̃𝜅(Φi − 𝜓)

,

�[m̃(𝜓 ;𝜅)] − m(𝜓) =
(1 − 𝛾2(𝜅))

4

{

m��(𝜓) +
2m�(𝜓)f �

Ψ
(𝜓)

fΨ(𝜓)

}

+ o(1 − 𝛾2(𝜅)),
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and

Proof  See Appendix. 	�  ◻

Remark 5  We notice that, as in the Euclidean setting, the measurement error has no 
effect on the asymptotic bias of the estimator, which, when the predictor observed 
with error is circular (linear respectively), depends only on the second moment of 
the classical kernel K� ( Kh resp.). The asymptotic variance, similarly to the Euclid-
ean setting, depends on the Fourier coefficients (characteristic function resp.) of the 
error density appearing in roughness of the deconvolution kernel K̃𝜅 ( K̃h resp.).

Concerning the distribution of the estimators, asymptotic results can be obtained 
following the same approach of Delaigle et al. (2009), where some regularity con-
ditions, directly applicable for our linear predictor case, are provided. In particu-
lar, using their assumptions about the kernel, the design density, the moments of 
the response and the error density – with the adaptations for the circular predictor 
case – the asymptotic normality of the estimators could be established following the 
same lines of theorems 1 and 2 of Delaigle et al. (2009). In fact, in the simulations 
of the next section we observed that the distribution of the estimates in correspond-
ence of high design density is bell-shaped, closely recalling a Gaussian one.

5 � Simulations

Our overall goal is to compare the performance of the standard Nadaraya-Watson 
regression estimator (SNW) with the proposed deconvolution one (DNW). Note that 
we will use “local constant” estimators only in these examples. We choose to avoid 
the task of smoothing degree selection in the estimates, consequently our results 
illustrate the potential of each method, with the caveat that the best performance is 
obtained conditional on an optimally selected smoothing degree. Our motivation for 
this is that we have not presented any data driven rule for smoothing selection, and 
so it appears preferable to avoid the situation in which the adoption of a sub-optimal 
rule then hides the strict merits of the estimators.

We consider these three simulation scenarios: 

	 (i)	 the circular-circular (C–C) case where the regression function m is modelled 
as 

 the measurement and regression errors are assumed to follow, respectively, a 
wrapped Laplace (wL) and von Mises (vM) distribution, i.e., for i = 1,… , n , 
�i ∼ wL(0, 0.2) and �i ∼ vM(0, 5) , Θi come from a von Mises density with 

���[m̃(𝜓 ;𝜅)] =

�

1 + 2
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

�

2𝜋nfΨ(𝜓)
𝜎2(𝜓) + o

�
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

n

�

.

m(�) = (1 + 2 cos(� + 3 sin(�)))���(2�), � ∈ [0, 2�),



1229

1 3

Kernel regression for errors‑in‑variables problems in the…

mean � and concentration parameter 0.01, and a von Mises density is used as 
the kernel;

	 (ii)	 the circular-linear (C–L) case where we assume that 

 the measurement and regression errors follow, respectively, a wrapped 
Laplace and Normal distribution, i.e. �i ∼ wL(0, 0.2) and �i ∼ N(0, 0.22) , for 
i = 1,… , n , Θi ∼ vM(�, 0.01) , and the employed weight function is the von 
Mises density;

	 (iii)	 the linear-circular (L–C) case where we use for m the model 

 the measurement and regression errors follow, respectively, a Laplace and 
von Mises distribution, i.e. �i ∼ L(0, 0.2) and �i ∼ vM(0, 4) , for i = 1,… , n , 
Xi ∼ N(6, 22) , and the standard Normal distribution is employed as the 
weight function.

An illustration of above regression models is shown in Fig.  1. In both the sce-
narios i) and ii) in the summation of Eq.  (14) we used a truncation at � = 10 . 
Here � does not play the role of a smoothing parameter, but it is necessary to set 
it in order to ensure a perfect description of the chosen kernel through its Fou-
rier coefficients. We have prudentially chosen � = 10 because this value largely 
guarantees an adequate representation of the deconvolution kernel in all of our 
simulation case studies.

Obviously, to study the effect of the measurement errors, it’s possible to con-
sider additional scenarios with different concentration (dispersion) parameters 
for the error model. However, we notice that when this latter goes to infinity 
(zero) we can ignore the error in the analysis, therefore the errors-in-variables 
estimator gives the same results as the standard kernel regression estimator. This 
is easily seen considering that in this case �� → 1 for any � . In contrast, when 
it approaches zero (infinity), the target regression model becomes particularly 
hard to estimate because the error makes it unidentifiable. Additional simulative 
results are reported in the Supplementary Material.

m(�) = 1 + 2 cos(� + 3 sin(�)), � ∈ [0, 2�),

m(x) = (10 + 0.05x2)���(2�), x ∈ ℝ,

Fig. 1   From left: C–C, C–L and L–C regression models
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In a first experiment we use the best possible smoothing degree for each sam-
ple, obtained as minimizer of the averaged squared error (ASE) along a grid of 
size M describing the design density support. Due to the nature of response vari-
ables, ASE has two definitions. For the bth sample, b ∈ 1,… ,B , in the L–C and 
C–C cases it is defined as

where � ∈ {h, �} , with sj ∈ {xj, �j} being a grid element, and (1 − cos(� − �)) is the 
usual angular distance between circular locations � and � . While, for the C–L case 
ASE is defined as

where �j is a grid element. For both n = 200 and n = 500 we have drawn B = 500 
samples. Averaging over samples leads to the following global performance index 
(see, for example, Hart (1997), p. 86)

where � ∈ {h, �} . We show MASE as a function of � , and the corresponding minima 
in Fig. 2 and Table 1, respectively. We note that the deconvolution estimator gives a 
clear advantage, while both methods improve as the sample size increases.

Interestingly, the figure shows that deconvolution method tends to be uniformly 
superior for large n and the same choice of smoothing parameter, and this appears 
to be reassuring if we consider that a proper data driven smoothing selector still 
does not exist. However, the MASE curves allow also a kind of sensibility analy-
sis, meaning that the curvatures of the deconvolution MASE s are generally much 
more pronounced than in the naive case. This suggests that an hypothetical selec-
tion method would be doomed to high variability.

5.1 � Mis‑specification of the measurement error

In this section we consider the case of a wrongly imposed measurement error model. 
In a first experiment data are corrupted by adding a supersmooth error and an ordi-
nary smooth model is assumed, while in a second experiment we consider the oppo-
site scenario. We have ensured that the concentration (or variability) of the error 
sample is very similar to that one of the assumed model in order to isolate the mis-
specification effect. Results are reported in Table 2. In panel A (B), in the C–C and 
C–L cases data are corrupted by a von Mises (wrapped Laplace) measurement error, 
while it is assumed a wrapped Laplace (von Mises) noise model. In the L–C case 

ASEb(𝜈) =
1

M

M
∑

j=1

(1 − cos(m(sj) − m̃b(sj;𝜈))),

ASEb(𝜅) =
1

M

M
∑

j=1

(m(𝜃j) − m̃b(𝜃j;𝜅))
2,

MASE(�) =
1

B

B
∑

b=1

ASEb(�),
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Fig. 2   MASE curves of SNW (continuous) and DNW (dashed) estimators over a grid of smoothing values for 
the C–C (top), C–L (middle), and L–C (bottom) scenarios. Empty circles indicate the minima of the curves
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data are corrupted by a Normal (Laplace) error where a Laplace (Normal) distribu-
tion is assumed.

From Panel A we see that, if we wrongly assume a (wrapped) Laplace model, 
results are still reasonable, because we obtain positively biased estimates of the 
higher order coefficients, and this does not strongly affect the stability of DNW esti-
mator, once considered that such estimates appear in the denominators of the decon-
volution kernels. The opposite scenario clearly yields poorer performance, as seen 
in Panel B, because assuming a supersmooth error density leads to negatively biased 
estimates of the higher order coefficients hampering the stability of DNW estimator. 
As a result, an advice arises of, if in doubt, assume a smooth error model.

6 � Pollution and surface wind data

The amount of pollution faced by a particular location will depend on a variety of 
factors. In this section we consider the response variable to be the amount of carbon 
monoxide (CO), and the explanatory variable to be the wind direction. In this case 
if the source of the pollution is upwind of the sensor, then a higher amount of pollu-
tion is likely and vice versa. The data were obtained from the Texas Commission on 
Environmental Quality who have many monitoring sites. Figure 3 shows the loca-
tions of sites which are close to Houston.

Table 1   Minimum values of 
MASE s over 500 samples of 
size n for SNW and DNW 
estimators

Model n SNW DNW

C–C 200 0.064 0.058
500 0.016 0.014

C–L 200 0.160 0.131
500 0.125 0.105

L–C 200 0.123 0.102
500 0.070 0.067

Table 2   Minimum values of 
MASE s over 500 samples of 
size n for SNW and DNW 
estimators when the error is 
wrongly imposed

Panel A Panel B

Model n SNW DNW SNW DNW

C–C 200 0.078 0.071 0.064 0.063
500 0.020 0.017 0.016 0.015

C–L 200 0.172 0.142 0.160 0.161
500 0.134 0.114 0.125 0.115

L–C 200 0.155 0.131 0.123 0.123
500 0.115 0.111 0.070 0.070
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We have selected a site near Houston (“North Loop”) in Harris County at Lati-
tude: 29.81o North and Longitude: −95.39o West using data from 2018.1 The data is 
collected hourly, but we have calculated the average daily wind direction (using the 
directional average), and the average daily CO (in parts per million). We note that on 
6 (out of 365) days the wind direction had two peaks, and in such cases the average 
is not so meaningful. But this is a small proportion (less than 2%) of the days and is 
unlikely to change our conclusions. These daily averages were “thinned” to reduce 
serial correlation resulting in 183 observations from alternate days. A technical 
treatment of correlation in circular data has been done by Di Marzio et al. (2012b). 
It is argued that, for a fixed sample size, the variance of an estimator increases with 
the correlation and it is often the case that the autocorrelation structure determines 
the optimal smoothing degree.

As a first benchmark we initially fit a parametric model in which CO (y) is related 
to wind direction ( � ) using a sine-cosine model

Fig. 3   Active monitoring sites close to Houston, Texas. Data from Houston North Loop is selected for 
our illustration. Extracted using the GeoTAM Map Viewer at https://​www.​tceq.​texas.​gov/​airqu​ality/​
monops/​sites/​air-​mon-​sites

1  https://​www.​tceq.​texas.​gov/

https://www.tceq.texas.gov/airquality/monops/sites/air-mon-sites
https://www.tceq.texas.gov/airquality/monops/sites/air-mon-sites
https://www.tceq.texas.gov/
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This gives fitted values 𝛽0 = 0.568, 𝛽1 = −0.173, 𝛽2 = 0.074 , with the prediction 
curve plotted with the data in Fig. 4. It is clear that the CO pollution is highest when 
the wind is coming from the south (2.73 radians).

As a second benchmark, we fit a standard circular-linear nonparametric regres-
sion, in which the measurements are treated as error free. The smoothing param-
eter (chosen by leave-one-out cross-validation) was selected as � = 7.77 for a von 
Mises kernel, and the resulting curve is shown is also shown in Fig. 4. For this 
model, the maximum CO occurs at 2.11 radians.

In this circular-linear case, we use a measurement error model for the observed 
wind direction which can be approximated by a wrapped Normal error with zero 
mean and concentration equal to 0.9. This choice was motivated, in part, by Di Mar-
zio et al. (2021) when dealing with surface wind data, but also influenced by a desire 
to note a difference from the error-free case (which is equivalent to taking � = 1 ). As 
suggested by simulation results, in the summation of Eq. (14) we used a truncation 
at � = 10 . This function depends only on � , since �� is determined by the wrapped 
Normal concentration parameter. The estimated CO is then given using Eq. (16), in 
which � was found by leave-one-out cross-validation to be 3.35. Naive cross-vali-
dation is sometimes used in practice although it does not have a sound theoretical 
foundation. The resulting curve is shown in Fig. 4, and is seen to be somewhat less 

yi = �0 + �1 sin �i + �2 cos �i + �i, i = 1,… , n.

Fig. 4   Carbon monoxide vs wind direction at Houston North Loop monitoring station—alternate daily 
averages for 2018. Parametric sin/cos model (red), fitted nonparametric errors in variables model (black) 
and standard circular-linear (no error model) kernel regression (dashed)
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smooth than the error-free model estimate. The nonparametric errors-in-variables 
model has residual sum of squares equal to 1.91, whereas the parametric model is 
slightly larger (2.40) and the error-free model very similar (1.99). The maximum 
estimated CO occurs at � = 2.17 for the errors-in-variables model.

7 � Discussion

In the paper we introduce a local constant fit for circular data when the sample 
is affected by a measurement error. Future research work will deal with the gen-
eralization of the proposed methodology to higher order interpolating polynomi-
als, the specification of more suitable smoothing degree selectors and the treat-
ment of the circular errors-in-variables regression problem with other methods, 
such as the low-order approximation or equivalence ones.

Appendix A

Proof of Result 4. By following the same lines as in the proof of Lemma 1 in Di 
Marzio et al. (2012a), and noting that, for a circular kernel K� , its second sin-
moment �2(K�) = ∫ sin2(�)K�(�)d� and roughness R(K�) = ∫ K2

�
(�)d� are equal 

to (1 − �2(�))∕2 and 
∑∞

�=1
�2
�
(�) , respectively, we obtain

for j ∈ (1, 2) , and

Then by applying the same arguments in the proof of Theorem 1 in Di Marzio et al. 
(2012a) gives the asymptotic bias and the asymptotic variance results. � □

Proof of Result 5. By reasoning as in the proof of Lemma 3 in Di Marzio et al. 
(2012a), and considering that x ∈ ℝ is an interior point of the support of fX , we 
obtain

�[g̃j(𝜃;𝜅)] = gj(𝜃) +
(1 − 𝛾2(𝜅))

4
g��
j
(𝜃) + o(1 − 𝛾2(𝜅)),

���[g̃j(𝜃;𝜅)] =

�

1 + 2
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

�

fΘ(𝜃)s
2
j
(𝜃)

2𝜋n

+ o

�
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

n

�

,

���[g̃1(𝜃;𝜅), g̃2(𝜃;𝜅)] =

�

1 + 2
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

�

fΘ(𝜃)c(𝜃)

2𝜋n

+ o

�
∑∞

�=1
𝛾2
�
(𝜅)∕𝜆2

�
(𝜅𝜀)

n

�

.
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for j ∈ (1, 2) , and

Then by applying the same arguments in the proof of Theorem 3 in Di Marzio et al. 
(2012a) gives the asymptotic bias and the asymptotic variance results. � □

Proof of Result 6. We obtain the asymptotic bias by reasoning as in the proof 
of Result 4. This result can be, additionally, derived by employing the unbiased 
score approach. The asymptotic variance follows from the same arguments as in 
the proof of Theorem 3 in Di Marzio et al. (2009), when considering the rough-
ness of a deconvolution kernel. � □

Supplementary Information  The online version of this article (https://​doi.​org/​10.​1007/​s10260-​023-​
00687-0) contains supplementary material, which is available to authorized users.

Acknowledgements  We thank two anonymous reviewers for their useful suggestions and comments, 
which we believe have notably improved the quality of the paper.

Funding  Open access funding provided by Università degli Studi G. D’Annunzio Chieti Pescara within 
the CRUI-CARE Agreement.  Supported by internal funds (University “G. d’Annunzio” of Chieti- Pes-
cara, Italy).

Data availability  Pollution data are freely available from the Texas Commission on Environmental Qual-
ity website at the url https://​www.​tceq.​texas.​gov/.

Declarations 

Conflict of interest  The authors declare that they have no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Carroll RJ, Delaigle A, Hall P (2007) Non-parametric regression estimation from data contaminated by a 
mixture of Berkson and classical errors. J R Stat Soc B 69:859–878

�[g̃j(x;h)] = gj(x) +
h2

2
𝜇2(K)g

��
j
(x) + o(h2),

���[g̃j(x;h)] =
∫ ∣ 𝜑K(t) ∣

2∣ 𝜑𝜀(𝜍t∕h) ∣
−2 dtfX(x)s

2
j
(x)

2𝜋nh
+ o

(

1

nh

)

,

���[g̃1(x;h), g̃2(x;h)] =
∫ ∣ 𝜑K(t) ∣

2∣ 𝜑𝜀(𝜍t∕h) ∣
−2 dtfX(x)c(x)

2𝜋nh
+ o

(

1

nh

)

.

https://doi.org/10.1007/s10260-023-00687-0
https://doi.org/10.1007/s10260-023-00687-0
https://www.tceq.texas.gov/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1237

1 3

Kernel regression for errors‑in‑variables problems in the…

Carroll RJ, Hall P (1988) Optimal rates of convergence for deconvolving a density. J Am Stat Assoc 
83:1184–1186

Carroll RJ, Hall P (2004) Low order approximations in deconvolution and regression with errors in vari-
ables. J R Stat Soc B 66:31–46

Carroll RJ, Maca JD, Ruppert D (1999) Nonparametric regression in the presence of measurement error. 
Biometrika 86:541–554

Carroll RJ, Ruppert D, Stefanski LA (1995) Measurement error in nonlinear models. Chapman and Hall, 
New York

Delaigle A, Fan J, Carroll RJ (2009) A design-adaptive local polynomial estimator for the errors-in-varia-
bles problem. J Am Stat Assoc 104:348–359

Di Marzio M, Fensore S, Panzera A, Taylor CC (2021) Density estimation for circular data observed with 
errors. Biometrics 78:248–260

Di Marzio M, Panzera A, Taylor CC (2009) Local polynomial regression for circular predictors. Stat 
Probab Lett 79:2066–2075

Di Marzio M, Panzera A, Taylor CC (2012) Non-parametric regression for circular responses. Scand J 
Stat 40:238–255

Di Marzio M, Panzera A, Taylor CC (2012) Non-parametric smoothing and prediction for nonlinear cir-
cular time series. J Time Ser Anal 33:620–630

Fan J, Truong YK (1993) Nonparametric regression with errors in variables. Ann Stat 21:1900–1925
Hart JD (1997) Nonparametric smoothing and lack-of-fit tests. Springer
Ley C, Verdebout T (2017) Modern directional statistics. Cambridge Chapman and Hall/CRC​
Ley C, Verdebout T (2018) Applied directional statistics. Modern methods and case studies. Cambridge 

Chapman and Hall/CRC​
Liu MC, Taylor RL (1989) A consistent nonparametric density estimator for the deconvolution problem. 

Can J Stat 17:427–438
Stefanski LA, Carroll LJ (1990) Deconvoluting kernel density estimators. Statistics 21:169–184

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Kernel regression for errors-in-variables problems in the circular domain
	Abstract
	1 Introduction
	2 Some preliminaries
	3 Circular kernel regression in the error-free case
	3.1 Circular response
	3.1.1 Circular predictor
	3.1.2 Linear predictor

	3.2 Linear response

	4 Circular kernel regression with errors-in-variables
	4.1 Circular response
	4.1.1 Circular predictor
	4.1.2 Linear predictor

	4.2 Linear response

	5 Simulations
	5.1 Mis-specification of the measurement error

	6 Pollution and surface wind data
	7 Discussion
	Appendix A
	Anchor 20
	Acknowledgements 
	References




