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ABSTRACT

Processing speed is a crucial ability that changes over the course of the lifespan. 

Training interventions on processing speed have shown promising effects and have 

been associated with improved cognitive functioning. While training-related changes 

in processing speed are often studied using reaction times (RTs) and error rates, these 

measures provide limited insight into the mechanisms underlying changes during 

training. The drift-diffusion model provides estimates of the cognitive processes 

underlying speeded decision tasks, such as the rate of evidence accumulation (drift 

rate), response strategies (boundary separation), as well as time for other processes 

such as stimulus encoding and motor response (non-decision time). In the current 

study, we analyzed existing data of an extensive multi-session training intervention 

(von Bastian & Oberauer, 2013) to disentangle changes in drift rate, boundary 

separation, and non-decision time during training of different speeded choice-RT 

tasks. During this training intervention, 30 participants performed 20 training sessions 

over the course of four weeks, completing three tasks each session: a face-matching, 

a pattern-matching, and a digit-matching task. Our results show that processing 

speed training increased drift rates throughout training. Boundary separation and 

non-decision time decreased mostly during the initial parts of training. This pattern 

of prolonged training-related changes in rate of evidence accumulation as well as 

early changes in response strategy and non-decision processes was observed across 

all three tasks. Future research should investigate how these training-related changes 

relate to improvements in cognitive functioning more broadly.

*Author affiliations can be found in the back matter of this article
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INTRODUCTION

People constantly make decisions based on the perceptual information around them. These 

decisions can occur naturally and rapidly, such as recognizing a friend on the street and 

greeting them before they have passed by. Before the decision is made to utter the friend’s 

name, perceptual information of this friend’s face and appearance is processed quickly enough 

to retrieve and then call out their name on time. The speed of processing perceptually available 

information, such as a familiar face or other information from our environment, differs 

between individuals and these differences are related to a range of individual differences in 

other cognitive abilities (e.g., Kail & Salthouse, 1994), including fluid intelligence (Sheppard & 

Vernon, 2008) and working memory (Schmiedek et al., 2007). Like other fluid cognitive abilities 

(Bialystok et al., 2012), processing speed changes over the course of the lifespan: it increases 

from childhood to adulthood and then decreases again from young to old adulthood (e.g., 

Salthouse & Kail, 1983).

In recent years, cognitive training interventions have been studied as a way of enhancing 

cognitive abilities, such as processing speed, and counteracting their age-related decline 

(Edwards et al., 2017, 2018; Simons et al., 2016; von Bastian et al., Belleville, et al., 2022). 

Whereas training interventions have targeted different cognitive domains with overall mixed 

results, training processing speed has shown promising effects and has been associated with 

improved cognitive functioning, improved everyday life functioning and even delayed onset of 

dementia (Edwards et al., 2017, 2018). To design training interventions that consistently show 

such far-reaching effects, it is important to understand which mechanisms facilitate these 

effects and induce changes already during training (von Bastian, Belleville, et al., 2022). The 

current study investigated the mechanisms underlying training-related changes in processing 

speed by examining the changes in the components of reaction time (RT) distributions estimated 

with the drift-diffusion model, using existing data of a multi-session training intervention (von 

Bastian & Oberauer, 2013). 

MEASURING PERFORMANCE IN SPEEDED DECISION TASKS

A common finding during cognitive training is that people improve in the trained tasks (e.g., 

von Bastian, Belleville, et al., 2022; Simons et al., 2016). These improvements are referred to as 

training effects, while improvements in tasks different from the trained tasks are called transfer 

effects. Processing speed can be assessed with simple tasks that require people to perceptually 

locate, classify, compare or merely detect stimuli presented to them. In a two-choice RT task, 

for example, participants are presented with one or more stimuli and two response options 

to choose from, such as viewing a face and categorizing it as familiar or not. Often, the 

presentation time of the stimuli is limited and participants are asked to respond both quickly 

and accurately. Performance on these speeded tasks is then measured by RTs and error rates 

with decreases in mean RT and error rate used as indicators for training effects. 

However, the use of RTs and error rates as performance measures for training-related 

improvements in processing speed tasks has several limitations. First, RT distributions are often 

skewed (e.g., Micceri, 1989). Therefore, commonly used metrics such as the mean do not 

capture the RT distribution well. Second, processing speed tasks are designed so that the task 

itself is easy and can be performed well by most people. Therefore, error rates typically show 

ceiling effects, resulting in limited variance and, thus, interpretability. Third, the theoretical 

interpretation of improvements in RTs and error rates is not informative with regards to the 

specific cognitive mechanisms affected by training. For example, RTs can be reduced not only 

by improving the efficiency in stimulus information processing, but also by enhancing the 

speed of motor responses and perceptual encoding (Pashler & Baylis, 1991; Strobach et al., 

2013). Finally, changes in RT can indicate improved task performance but also reflect strategic 

changes in speed-accuracy trade-offs. Whereas slow RTs can be the result of a more cautious 

response strategy favoring accuracy over speed, fast RTs can reflect favoring speed over 

accuracy (e.g., Schouten & Bekker, 1967; Wood & Jennings, 1976). Overall, while improved RTs 

and error rates are often used to measure training effects, these measures provide only limited 

information about the mechanisms underlying training-related change (see also von Bastian, 

Reinhartz, et al., 2022).
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ESTIMATING DECISION COMPONENTS WITH THE DRIFT-DIFFUSION MODEL

Cognitive models can provide more insight into response strategies and training-related 

mechanisms underlying changes in behavioral performance. A widely used cognitive 

computational model applicable to speeded decision tasks is the drift-diffusion model. The 

model is fit to the RT distribution and error rates simultaneously, thereby accounting for the 

speed-accuracy trade-off (Stafford et al., 2020), to estimate interpretable decision parameters 

(Ratcliff, 1978; Ratcliff & McKoon, 2008). Figure 1 illustrates the components of the decision-

making process in Ratcliff’s (1978) diffusion model. The model distinguishes the rate of a 

noisy evidence accumulation process from response strategies and processes unrelated to 

the decision itself, such as stimulus encoding and motor response (Ratcliff, 1978; Ratcliff & 

McKoon, 2008). 

In Ratcliff’s (1978) diffusion model, the evidence accumulation begins after the encoding 

of a presented stimulus, for example, a familiar or an unfamiliar face. The starting point of 

the evidence accumulation process reflects possible a priori biases towards either response 

option. In Figure 1, the starting point is located in the middle between the two response options 

reflecting no bias, while a bias would be indicated by a starting point shifted to one of the 

response options. The slope of the evidence accumulation process indicates how efficiently 

stimulus information is processed and is quantified as the drift rate (v). Reaching the threshold 

for either response option (e.g., that the presented face is familiar or unfamiliar) indicates that 

sufficient evidence has been accumulated to execute the decision. The distance between the two 

response thresholds is the boundary separation (a). The boundary separation reflects response 

caution and, thus, is an indicator for the speed-accuracy trade-off. The boundary separation 

can be wide, indicating high response caution, thus favoring accuracy and accumulating more 

evidence prior to a decision, or narrow, indicating low response caution, favoring speed and 

accumulating less evidence prior to a decision. Ultimately, when a decision has been made, a 

corresponding response has to be executed by, for example, pressing a response key. The non-

decision time (t
0
) captures the time for any other processes not directly related to the decision 

itself, for example, encoding the stimulus and executing the motor response.

TRAINING-RELATED CHANGES IN DECISION PARAMETERS

Previous studies have shown that repeatedly performing a task can affect evidence 

accumulation, response caution and, occasionally, non-decision processes. Several studies 

found that, when repeatedly performing the same speeded task for up to six sessions, the speed 

Figure 1 Illustration 

of the Drift-Diffusion 

Model. See main text for 

further information. From 

“Mechanisms of processing 

speed training and transfer 

effects across the adult 

lifespan: protocol of a multi-

site cognitive training study,” 

by von Bastian, C. C., Reinhartz, 

A., Udale, R. C., Grégoire, 

S., Essounni, M., Belleville, 

S., & Strobach, T. (2022). 

Mechanisms of processing 

speed training and transfer 

effects across the adult 

lifespan: Protocol of a multi-

site cognitive training study. 

BMC Psychology, 10, Article 

168. https://doi.org/10.1186/

s40359-022-00877-7. 

Copyright 2022 CC BY 4.0.
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of evidence accumulation increases (Dutilh et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 

2012; Petrov et al., 2011; Ratcliff et al., 2006; van Ravenzwaaij et al., 2014; Zhang & Rowe, 

2014). This indicates that training may improve the efficiency of information processing and 

suggests that increased drift rates are one factor underlying the decrease in response times 

that is consistently observed when repeatedly performing a task (Heathcote et al., 2000; Logan, 

1992; Newell & Rosenbloom, 1981). Another factor that contributes to the decrease in response 

times is a shift in response strategy after repeated task practice. While drift rates increase 

during brief periods of training, the boundary separation indeed often decreases (Dutilh et al., 

2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov et al., 2011; Ratcliff et al., 2006; Zhang 

& Rowe, 2014). Therefore, training can elicit a shift in response caution leading people to focus 

more on speed rather than accuracy. Training-related changes elicited in non-decision time 

are less consistent. Some studies have shown a decrease in this decision parameter (Dutilh et 

al., 2011; Dutilh et al., 2009; Petrov et al., 2011), while other studies suggest that repeatedly 

performing a task does not substantially affect perceptual and motor processing (Pashler & 

Baylis, 1991; Strobach et al., 2013). 

Training-related improvements in evidence accumulation combined with an increased focus 

on speed, as opposed to accuracy, can explain why decreased RTs after training are still often 

accompanied by increased accuracy (Liu & Watanabe, 2012; Petrov et al., 2011; Ratcliff et al., 

2006; Zhang & Rowe, 2014). More efficient information processing has been argued to counteract 

the decrease in response caution, thus, allowing for error rates to remain low. However, whether 

error rates decrease also depends on the type of feedback provided during task performance. 

For example, Dutilh and colleagues (2009) provided accuracy-related feedback to one half of 

their participants and speed-related feedback to the other half. The group focusing on accuracy 

made less errors already at the start of training and mainly improved in their RTs. The group 

focusing on speed showed the opposite pattern, with faster responses already at the start 

of training and mainly improving in accuracy. This demonstrates that the type of feedback 

provided when repeatedly performing a task influences not only the initial task performance 

but also the pattern of change during training. However, the type of feedback provided during 

training of speeded decision tasks has varied greatly in previous studies. While some studies 

have experimentally varied accuracy versus speed-related feedback (Dutilh et al., 2009; Zhang 

& Rowe, 2014), others have provided feedback either only for slow responses (Liu & Watanabe, 

2012, van Ravenzwaaij et al., 2014), for slow, fast, and incorrect responses (Dutilh et al., 2011; 

Ratcliff et al., 2006) or instead given bonus points for correct responses (Petrov et al., 2011). 

Therefore, it remains unclear how training affects drift-diffusion parameters when consistent 

feedback is given on all responses throughout training.

Moreover, previous studies investigating changes during training used only a single training task 

during their training. This might be problematic, because it remains unclear whether changes 

observed are task-specific or task-general (Shipstead et al., 2012; von Bastian et al., 2019). 

In addition, these studies mainly used only one of two types of perceptual discrimination 

tasks, that is, either dot-motion detection tasks (Liu & Watanabe, 2012; Petrov et al., 2011; 

van Ravenzwaaij et al., 2014; Zhang & Rowe, 2014) or verbal discrimination tasks (Dutilh et 

al., 2011; Dutilh et al., 2009; Ratcliff et al., 2006). The limited variability in speeded decision 

tasks limits the generalizability of previously reported training-related changes in decision 

parameters and raises the question whether the same effects emerge in a wider variety of 

decision tasks. A recent paper by Schmiedek and colleagues (2022) addressed this concern 

by analyzing the difference in performance on three different choice-RT tasks before and 

after an extensive 100-session training intervention. The results showed pre- to post-training 

increases in drift rate and decreases in boundary separation and non-decision time across 

these different tasks. However, Schmiedek et al. (2022) did not report on changes occurring 

during training. 

Further limitations of the previous studies investigating changes during training concern the 

duration of training and the number of participants included in the studies. While cognitive 

training interventions typically consist of 10 to 20 sessions performed over several weeks 

(von Bastian, Belleville, et al., 2022) and even up to 100 sessions (e.g., Schmiedek et al., 2010, 

2022), the training-related changes in decision parameters have only been investigated for six 

training sessions or less (Dutilh et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov 

et al., 2011; Ratcliff et al., 2006; van Ravenzwaaij et al., 2014; Zhang & Rowe, 2014). Also, in 
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most previous studies, sample sizes were small, ranging from 4 to 14 participants (Dutilh et al., 

2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Zhang & Rowe, 2014), increasing the risk of 

false-positive findings (Button et al., 2013). Changes in the drift-diffusion model parameters 

studied with accuracy-versus-speed group manipulations need to be interpreted with caution 

when, for example, groups consisted of only two participants each (Dutilh et al., 2009). Taken 

together, although the previous studies provide tentative evidence supporting changes in drift-

diffusion parameters when repeatedly performing a single task, it remains unclear how these 

decision-making components change during an extensive, prolonged training regime with 

varied decision tasks and performance-based, trial-by-trial feedback.

PRESENT STUDY

In the present study, we fit the drift-diffusion model to existing data of a previously published, 

multi-session processing speed training intervention (von Bastian & Oberauer, 2013). During 

this training intervention, 30 participants performed 20 training sessions over the course 

of four weeks, completing three different choice-RT tasks each session: a face-matching, a 

pattern-matching, and a digit-matching task. These tasks require evidence accumulation 

regarding whether two stimuli that are presented simultaneously are the same. Therefore, in 

our application, the diffusion model does not describe the processing of a single stimulus as 

in the original model by Ratcliff (1978). However, this model instead describes the decision-

making process on a more general level, which is similar to previous studies that used tasks 

with similar (e.g., dot-motion detection tasks; Liu & Watanabe, 2012; Petrov et al., 2011; van 

Ravenzwaaij et al., 2014; Zhang & Rowe, 2014; verbal discrimination tasks; Dutilh et al., 2011; 

Dutilh et al., 2009; Ratcliff et al., 2006; and other choice-RT tasks; Schmiedek et al., 2022) or 

even higher complexity, such as judging the correctness of mathematical equations (Lerche 

et al., 2020).

The use of three different tasks enables the comparison of training-related changes in different 

perceptual contexts and task difficulties. Each task consisted of 500 trials per session, thereby 

providing 30,000 trials per participant over the course of training and, thus, a considerably 

higher trial count compared to previous studies. Unlike previous studies, no specific speed- or 

accuracy-related manipulations were applied in the present study; participants were instructed 

to perform both accurately and quickly during all trials when deciding whether the two 

presented stimuli portrayed the same face, same pattern, or same series of digits. After each 

trial, feedback on the correctness of the participant’s response was provided. The presentation 

time of the stimuli was adjusted adaptively based on the participant’s performance. Therefore, 

by providing variability in tasks, consistent feedback, and adaptive training, this study’s training 

regime made use of components that are crucial to successful training (Schmidt & Bjork, 1992) 

and offers an ideal dataset to investigate the changes in training-related mechanisms during 

an extensive processing speed training. 

With this study, we examined whether decision parameters estimated by the drift-diffusion 

model show similar patterns during extensive training as previously found during brief training 

periods. Therefore, throughout the course of the 20 training sessions, we expected participants 

to increase in their efficiency of evidence accumulation, that is, their drift rate (Hypothesis 1). 

Furthermore, we expected a decrease in boundary separation over time, thereby indicating 

that participants decrease their response caution and increasingly emphasize speed over 

accuracy as their training progresses (Hypothesis 2). We did not expect to see such training-

related changes in non-decision time and assumed perceptual and motor processing to remain 

unaffected by extensive training (Hypothesis 3). Additionally, we aimed to understand whether 

training-related changes differed for the different choice-RT tasks included (speeded face-, 

digit-, and pattern-matching tasks). Therefore, we tested our hypotheses using the type of task 

as a predictive factor in our analyses.

METHODS

The present methods section provides information relevant to the processing speed training 

group of a previously published training study. For a full overview of the study design and 

results beyond this training group, the reader is referred to von Bastian and Oberauer (2013). 
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PARTICIPANTS

Participants of von Bastian and Oberauer (2013) were recruited for a “cognitive training study” 

at the University of Zurich via the university’s subject pool and using flyers. They were randomly 

assigned to 1 of 4 training groups practicing either different facets of working memory or 

practicing processing speed as an active control training compared to the working memory 

training groups. In the current study, we focus only on the active control group, which included 

30 young adults (21 female, 9 male, M age = 23.77 years, SD = 4.73 years). All participants 

gave informed written consent for participation prior to testing. After completion of the study, 

participants received monetary compensation (CHF 150) or course credits.

DESIGN 

Study participation consisted of 4 weeks of training, in which participants were asked to perform 

20 training sessions. Each session took about 30–40 minutes. Participants performed their 

training on their home computer via Tatool (von Bastian, Locher, & Ruflin, 2013). Therefore, 

participants could decide themselves when they preferred to perform their training. At the end 

of each training session, training data were automatically uploaded to a web server. Whereas 

self-administering training at home increases ecological validity, it can also lead to loss of 

experimental control. Several measures were taken to assure active and conscious execution 

of the training program, such as signing a participation agreement that training completion will 

be taken seriously, monitoring training data to detect irregularities, and maintaining regular 

email contact with the participants as well as providing technical support when needed. 

MATERIALS

Each training session consisted of three tasks with 500 trials each, in the following order: face-

matching, digit-matching and pattern-matching, with breaks offered between tasks. During 

these tasks, participants were presented with a pair of stimuli for which they had to decide 

whether the pair showed the same person (face matching), the same six-digit number (digit 

matching), or the same fractal pattern (pattern matching). The face stimuli were 12 pictures 

each from 84 people (42 female, 42 male) with different facial expressions or accessories, 

taken from the AR face database (Martinez & Benavente, 1998). The digit stimuli were six-

digit numbers presented in the same font. The pattern stimuli were 305 computer-generated 

squares of fractal patterns of various bright colors and shapes (see Figure 2 for some examples). 

During all tasks, participants were asked to respond as quickly and as accurately as possible 

to the stimulus pair by pressing the “A” key for a matching stimulus pair, and the “L” key for 

a non-matching pair. After every trial, participants received feedback about the correctness 

of their response with a green check, indicating they correctly identified the stimulus pair as 

either matching or non-matching and a red cross indicating an incorrect response. The trial 

type (matching vs. non-matching), the matching stimulus pairs, and the combinations of 

non-matching pairs were selected at random. The intertrial interval was 100 ms. The stimuli 

Figure 2 Examples of Fractal 

Patterns in the Pattern-

Matching Task.
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were displayed until the participant’s response was registered or until the maximum stimulus 

presentation was exceeded. All participants started training with a maximum stimulus 

presentation duration of 5000 ms. During training, this maximum stimulus presentation was 

reduced adaptively based on the participant’s performance in the preceding 40% of trials to 

increase the difficulty of the tasks and to motivate participants to continuously focus on both 

speed and accuracy (see von Bastian & Oberauer, 2013, for more details on the adaptive level 

algorithm). The increase in difficulty was minor, however, with the maximum response time set 

to the 99th percentile of the RTs of those trials completed after the last reduction.

RESULTS

DATA PREPARATION AND PARAMETER ESTIMATION

Missing Data

Training data were partially missing for five participants. For one participant, the entire 16th 

session was not recorded. For another participant only about half of the trials of the face-

matching task were recorded during the first session, and during four other sessions their 

pattern-matching data were incomplete, which was the final task in each session. Three other 

participants also had incomplete pattern-matching data, one of them for two sessions, the 

others for one session each. As in the previously published paper, the fully missing session was 

excluded from further analyses (von Bastian & Oberauer, 2013). Training sessions with partially 

missing data were subjected to the same data treatment procedures as fully recorded training 

sessions.

Data Treatment

Before fitting the drift-diffusion model to the training data, a number of factors were considered 

first. Based on the findings from a series of simulation studies by Lerche et al. (2017), when 

using Kolmogorov-Smirnov as optimization criterion to estimate a three-parameter model a 

minimum trial number of N = 125 is recommended to obtain robust estimates with at least low 

precision (see also Voss et al., 2013). This minimum N is recommended for data without fast 

and slow RT contaminants and with a minimum of 4% of each response type that, in our case, 

are correct and incorrect responses. Slow contaminants in particular hamper the estimation, 

especially of the boundary separation which would otherwise require at least 555 trials per 

participant, task, and session (Lerche et al., 2017). 

To remove fast and slow contaminants, we excluded all trials with RTs below 250 ms and 

those with RTs that were 2.5 median absolute deviations (MAD) above the median (Leys et 

al., 2013). We also explored other frequently used cut-offs (e.g., 2 SDs) but decided to use 

the more conservative 2.5 MADs to remove a larger number of slower contaminants. RT 

trimming was performed separately per task, participant, session, and response type (correct/

incorrect). Subsequently, we excluded entire training sessions if they contained less than 

the recommended 125 trials post-RT-trimming. We then checked that each session dataset 

contained a minimum of 4% trials for each response type. For all tasks, all recorded training 

sessions contained more than 4% correct responses. However, there were a number of sessions 

with less than 4% incorrect responses which were excluded. Finally, participants with less than 

half of the training sessions remaining post-trimming (<10 training sessions) were excluded 

from all further analyses. 

Table 1 provides an overview of the included numbers of trials, sessions, and participants. The 

total number of removed trials ranged from 4.91% for face matching (remaining participants 

n = 30), 12.96% for digit matching (remaining n = 29) and up to 38.75% for pattern matching 

(remaining n = 25), reflecting variations in task difficulty. We also considered removing trials 

after errors because people adjust their response behaviors in various ways post-error (for an 

overview, see Danielmeier & Ullsperger, 2011); however, trimming of post-error trials prior to 

the listed data treatment steps would have increased the number of removed trials to 17.84% 

for face matching, 23.01% for digit matching and even 44.67% for pattern matching. Since the 

inclusion of post-error trials did not qualitatively alter the results of the analyses, we decided to 

include post-error trials to maximize the number of trials for better estimation precision.
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Model Estimation and Fit

We estimated the drift rate (v), boundary separation (a), and non-decision time (t
0
) separately 

per task. For each task, parameters were estimated for participants and training sessions 

(accounting for the dependency between sessions using the “depends” fast-dm function) with 

a fixed starting point of 0.5 between the upper (1, correct response) and lower (0, incorrect 

response) threshold using the open-source fast-dm-30 software applying Kolmogorov-Smirnov 

as optimization criterion (Voss & Voss, 2007, 2008; Voss et al., 2015). Subsequently, using 

the fast-dm construct-samples tool (Voss & Voss, 2007, 2008; Voss et al., 2015), data were 

simulated for each task, participant, and the corresponding sessions separately, with the same 

number of trials as in the empirical session data. As illustrated in Figure 3, while only slightly 

overestimating RTs in the first quartile, the model fits the data well. Identical patterns of model 

fit were found for all tasks irrespective of stimuli and differences in the number of available 

data points post-trimming.

ANALYSIS OF TRAINING- AND TASK-RELATED EFFECTS

Linear Mixed-Effects (LME) models were used to analyze the training data with the lmer 

function from the lme4 package (Bates et al., 2015) in R (version 4.2.1; R Core Team, 2022). 

The models were specified with the dependent variable (mean RT to correct responses, error 

rate, drift rate, boundary separation, or non-decision time) predicted by training session (1 to 

20) and training task (face, digit, and pattern matching), with a random effect of participant 

on the intercept.1 Type III ANOVA test statistics were estimated for the LME models using the 

1 Models with additional random effects on the participant x session interaction (see Barr et al., 2013) were 

tested but did not converge, likely due to the complexity of the model structure not being supported by the 

statistical power (see Matuschek et al., 2017).

TASK

FACES DIGITS PATTERNS

Data Recorded (N)

Trials 299,260 299,000 296,799

Sessions 599 598 598

Participants 30 30 30

Data Treatment Steps (% Remaining Trials)

1. RT (<250 ms; >2.5 MAD) 95.09% 95.48% 94.84%

2. Sessions (<125 trials) – – 94.75%

3. Sessions (<4% errors) – 88.32% 64.61%

4. Participants (<10 sessions) – 87.04% 61.25%

Data Post-Treatment (N)

Trials 284,564 260,256 181,783

Sessions 599 545 385

Participants 30 29 25

Figure 3 Graphical Illustration 

of Model Fit as a Function 

of Errors and Reaction Time 

Quartiles.

Table 1 Overview of Trial, 

Session, and Participant Count 

per Task.

Note. This table summarizes 

the number of trials, sessions, 

and participants in each 

task before and after data 

treatment steps.
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lmerTest package (Kuznetsova et al., 2017). Satterthwaite’s degrees of freedom were used to 

estimate p-values for the effects of session, task, and their interaction. 

Reaction Times and Error Rates

Figure 4 illustrates performance in the training tasks over the course of 20 training sessions. 

For mean RT to correct responses, we found a significant main effect of session, F(19, 1440) 

= 72.49, p < .001, η
p

2 = 0.49, and of task, F(2, 1442) = 987.77, p < .001, η
p

2 = 0.58. Moreover, 

the interaction between session and task was significant, F(38, 1440) = 10.01, p < .001, 

η
p

2 = 0.21. Similarly, for error rates, the effect of session was also significant, F(19, 1440) = 5.80, 

p < .001, η
p

2 = 0.07, as was the effect of task, F(2, 1443) = 345.57, p < .001, η
p

2 = 0.32. However, 

the interaction between session and task was not significant, F(38, 1440) = 1.05, p = .391, 

η
p

2 = 0.03. For better comparability to the original analysis reported in von Bastian and Oberauer 

(2013), we ran the same set of analyses but including sessions with less than 4% error rates. 

The patterns of results were the same as for the reduced data set used in the present study, 

except that the interaction between session and task was then also a significant predictor of 

error rates, F(38, 1585) = 1.43, p = .045, η
p

2 = 0.03. 

Diffusion-Model Parameters

Figure 5 illustrates the changes in drift rate, boundary separation, and non-decision time over 

the course of the 20 training sessions. Drift rate increased over the course of the sessions, 

F(19, 1440) = 12.75, p < .001, η
p

2 = 0.14, and differed per task, F(2, 1445) = 826.48, p < .001, η
p

2 

= 0.53. Also, the interaction of task and session was significant, F(38, 1440) = 1.78, p = .003, 

η
p

2 = 0.04. In contrast to the drift rate, boundary separation decreased over the course of the 

sessions, F(19, 1440) = 82.63, p < .001, η
p

2 = 0.52. The effect of task on boundary separation 

was significant, F(2, 1443) = 300.17, p < .001, η
p

2 = 0.29, as well as the interaction between 

task and session, F(38, 1440) = 6.81, p < .001, η
p

2 = 0.15. Non-decision time also decreased as 

an effect of session, F(19, 1440) = 32.97, p < .001, η
p

2 = 0.30, and differed per task, F(2, 1441) 

= 1410.51, p < .001, η
p

2 = 0.66. Session and task also interacted with regards to non-decision 

time, F(38, 1440) = 3.73, p < .001, η
p

2 = 0.09. We ran the same estimation procedures while 

including the otherwise excluded sessions with less than 4% error rates, which also fit the 

Figure 4 Training Effects 

on Mean Reaction Times 

(RTs) and Error Rates in the 

Individual Matching Tasks. 

RTs are to correct responses 

only. The error bars denote 

approximated 95% confidence 

intervals for within-subjects 

comparisons calculated 

according to Cousineau (2005) 

and Morey (2008). Note that 

there are differences in the 

number of available data 

points per session and task 

due to the reported data 

treatment.
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data well. The patterns of results from these subsequent analyses were the same as for the 

estimated parameters using the reduced data set, except that the interaction between session 

and task was no longer a significant predictor of drift rate, F(38, 1703) = 1.23, p = .158. 

In summary, drift rates increased with training, while boundary separation and non-decision 

time decreased. These changes over the course of training were found across the individual 

participants, as shown in Figures A1-3 in the Appendix. Drift rates were highest for pattern-

matching, followed by digit-matching and face-matching. The reverse pattern emerged for 

boundary separation which was highest in the face-matching task and lowest in pattern-

matching, although this difference was most pronounced at the beginning of training. Non-

decision time remained lowest for pattern-matching throughout all training sessions. 

Model Selection

Previous research has shown that fitting more than necessary drift-diffusion model parameters 

can lead to trade-offs between these unconstrained parameters and, thereby, mimic 

experimental effects (Heathcote et al., 2015). Therefore, we systematically compared models 

differing in parameterization constraints. Specifically, we fixed either the drift rate, boundary 

separation, non-decision time, or a combination of these parameters to the median of all 

session means as estimated by the three-parameter model. Model comparisons confirmed 

that the three-parameter model fit our data best. The model fit visibly decreased when fixing 

one or two of the three parameters otherwise varying freely. The decrease in model fit was most 

pronounced when fixing the non-decision time. Fixing the drift rate or boundary separation also 

Figure 5 Training Effects on 

Diffusion-Model Parameters 

in the Individual Matching 

Tasks. The error bars denote 

approximated 95% confidence 

intervals for within-subjects 

comparisons calculated 

according to Cousineau (2005) 

and Morey (2008). Note that 

there are differences in the 

number of available data 

points per session and task 

due to the reported data 

treatment.
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impacted the model fit negatively, but to a lesser extent. Critically, analyses performed on 

these lesser-fitting models led to the same results, except that the interaction between session 

and task no longer significantly predicted drift rate when fixing non-decision time (either alone 

or in combination with boundary separation). An overview of the model comparisons as well as 

the model fit of the three-parameter model including sessions with less than 4% error trials, of 

which the results are reported in the previous section, is available at https://osf.io/kz67v.

DISCUSSION

The current study investigated the mechanisms underlying training-related changes in 

processing speed by examining changes in the components of RT distributions estimated with 

the drift-diffusion model. We analyzed existing data of an extensive multi-session training 

intervention (von Bastian & Oberauer, 2013) to disentangle changes in drift rate, boundary 

separation, and non-decision time during training of three different speeded choice-RT tasks 

administered with trial-by-trial feedback. Our results showed that these decision-making 

components changed over the course of 20 training sessions with drift rates increasing in all 

three tasks. Boundary separation and non-decision time decreased, especially at the beginning 

of training. Overall, the same patterns were observed across the three training tasks with 

changes in boundary separation and non-decision time being most pronounced during initial 

training periods, whereas the rate of evidence accumulation continued to improve until later 

training sessions. The use of multiple tasks during an extensive amount of training sessions 

strengthens the implications of our study and allows for conclusions about training-related 

changes with regards to different task stimuli beyond their RT and error effects in a cognitive 

training context.

Training-related increases in drift rates confirm our hypothesis that processing speed training can 

improve the efficiency of evidence accumulation. This finding is consistent with previous studies 

with up to six training sessions that reported increased efficiency of evidence accumulation 

during training (Dutilh et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov et al., 2011; 

Ratcliff et al., 2006; van Ravenzwaaij et al., 2014; Zhang & Rowe, 2014). Our results from a more 

extensive, 20-sessions training regime show that this improvement in evidence accumulation 

rate extends beyond a few initial sessions. In contrast, the decreases in boundary separation 

seem limited to initial training sessions. These findings are in line with previous research (Dutilh 

et al., 2011; Dutilh et al., 2009; Liu & Watanabe, 2012; Petrov et al., 2011; Ratcliff et al., 2006; 

Zhang & Rowe, 2014) and our expectation that boundary separation decreases with training, 

indicating that participants decrease their response caution and increasingly emphasize speed 

over accuracy as their training progresses. Moreover, we found that this adjustment towards 

favoring speed occurs in the early stages of training.

Contrary to our hypothesis that perceptual and motor processes remain unaffected by extensive 

training, we found a training-related decrease in non-decision time. This indicates that the 

drift-diffusion parameters estimated from our data were sensitive to detect adjustments in 

non-decision processes, such as stimulus encoding and motor responses, as observed in some 

studies before (Dutilh et al., 2011; Dutilh et al., 2009; Petrov et al., 2011). Our three-parameter 

diffusion model was sensitive to detect differences in non-decision processes. Moreover, non-

decision time as well as boundary separation and drift rate were crucial components that, 

when constrained to be the same across sessions, drastically reduced model fit. Similar to the 

changes in boundary separation, the decrease in non-decision time was most pronounced 

during the initial training sessions and then remained stable throughout the rest of training. 

Overall, training-related changes in drift-diffusion parameters were similar across the different 

training tasks, with relatively negligible variations between the tasks. 

The changes in drift-diffusion parameters shed light on the mechanisms underpinning the 

training-related changes typically observed in mean RTs. In general, participants sped up 

during training, as is to be expected when repeatedly performing the same tasks (Heathcote et 

al., 2000; Logan, 1992; Newell & Rosenbloom, 1981). Shorter RTs as a result of processing speed 

training can, thus, be explained by an increased efficiency of evidence accumulation as well as 

a decrease in response caution and non-decision processes. Typically – as in the present study 

– the training-related decrease in mean RTs is most pronounced during the first few training 

sessions and then seems to slow down. Our findings show that the steep decrease in the first 
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few training sessions is driven by changes in all three major drift-diffusion parameters (drift 

rate, boundary separation, and non-decision time). The three main parameters of the drift-

diffusion model are simultaneously changing during the initial part of training, all in manners 

that reduce RTs, that is, more efficient evidence accumulation, narrower boundary separation, 

and shorter non-decision time. 

In the current study, the decrease in RTs was accompanied by an increase in error rates (that is, 

decreased accuracy), suggesting a speed-accuracy trade-off. As training progresses participants 

increasingly favored speed over accuracy, as indicated by their decrease in boundary separation. 

Previous studies reported increases in accuracy even when the boundary separation decreased 

(and the rate of evidence accumulation increased; Dutilh et al., 2009; Liu & Watanabe, 2012; 

Petrov et al., 2011; Ratcliff et al., 2006; Zhang & Rowe, 2014). However, these former studies 

applied different types of feedback regarding either the speed or accuracy of task performance 

and were performed in laboratory settings. Therefore, they did not require participants to 

incorporate an extensive training regime into their day-to-day life at home which possibly 

motivated participants in the current study to focus more on speed than accuracy. Furthermore, 

in our study, participants already started their training with low error rates and were provided 

feedback on the accuracy of their responses throughout training. Therefore, participants will 

have received mainly positive feedback on their correctness, and therefore, may have focused 

more on improving their RTs, which led to a decrease in accuracy despite improved evidence 

accumulation rates. In another study providing only accuracy-related feedback as opposed to 

speed-related feedback, participants also started training with low error rates and improved 

their RTs but not their accuracy (Dutilh et al., 2009). 

While the overall pattern of results was highly similar across all three tasks, our results suggest 

that the pattern-matching task was easiest to perform, possibly followed by the digit-matching 

and the face-matching task. The face and digit stimuli as opposed to the pattern stimuli elicited 

the most pronounced training-related changes throughout the majority of observed measures 

and drift-diffusion parameters. Mean RTs and error rates were lowest for this task throughout 

the training regime and this difference in task difficulty was also visible in the drift-diffusion 

parameters. Drift rates were highest during pattern-matching, followed by digit-matching 

and then lowest during face-matching across all training sessions. In comparison, boundary 

separation and, especially, non-decision time was considerably lower for pattern stimuli than 

for face and digit stimuli. The difference in non-decision time throughout training might indicate 

that the pattern stimuli differed with regards to their non-decision processes, presumably their 

perceptual encoding (since motor processes were identical between the tasks). 

The observed patterns of change in drift-diffusion parameters across tasks may be explained 

by Chein and Schneider’s (2012) triarchic theory of learning. The early changes in non-decision 

time and boundary separation may represent the formation stage, in which processes of 

establishing new behavioral routines are established to learn how to approach and execute 

the task. In this stage, learning relies strongly on the metacognitive system and the use of 

strategies. In the next stage of learning, the metacognitive system is less involved and, instead, 

the cognitive control network is engaged to efficiently execute the new behavioral routines. 

Possibly, the more prolonged improvements in evidence accumulation reflect this second stage 

of learning. The final stage in Chein and Schneider’s (2012) model is the automatic execution 

stage, during which the behavioral routine becomes increasingly automatized.

LIMITATIONS AND OUTLOOK

The use of multiple tasks during an extensive amount of training sessions strengthens the 

implications of the current study and allows for conclusions about training-related changes 

with regards to different task stimuli beyond their initial training effects. However, direct 

comparisons between the three tasks must be interpreted with caution. First, the drift-diffusion 

parameters were generated separately per task which might limit the comparability of the 

exact values of the parameters between these tasks. This limitation does not, however, hold 

for the RT and error data which show effects equivalent to the parameters. Therefore, we 

can compare the parameters between tasks at least to some degree. Second, the difficulty 

of the training tasks was consistent with the order of the trained tasks within each training 

session. Thus, it is possible that there was a confounding effect between task difficulty and 
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task order during training: the most difficult task of face-matching was performed first, while 

the seemingly easiest task of pattern-matching was performed last and the digit-matching 

task in-between. This raises the question whether participants improved within individual 

training sessions which led them to perform best during the final pattern-matching task. Since 

the difference between tasks was present in all measures and drift-diffusion parameters, we 

cannot completely exclude an impact of this confound between task order and task difficulty. 

Given our results, we recommend that future training studies apply an extensive training 

regime with at least 10 training sessions and multiple training tasks in order to disentangle 

the differential effects of session and task. However, we also recommend accounting for 

differences in task difficulty and task order during training. Furthermore, it would be of great 

value to investigate how training-related changes relate to transfer effects on untrained 

tasks of similar or different cognitive domains. Few and only recent studies have applied 

drift-diffusion analyses to analyze transfer effects in working memory tasks (e.g., Chen 

et al., 2022; Schmiedek et al., 2022). Findings from these studies suggested that pre- to 

post-training effects in processing speed tasks (Schmiedek et al., 2022) are similar to those 

observed in our study during training. To study the associations between training-related 

change in drift-diffusion parameters and transfer effects, a certain number of trials is 

required, as discussed in the results section. Further, a substantial number of participants 

is required, as stable correlations are obtained with a minimum of 250 participants 

(Schönbrodt & Perugini, 2013). The present study does not include this substantial number 

and, therefore, we were not able to associate the parameter changes during training with 

transfer measures. 

Due to this study’s sample size, we were also not able to investigate individual differences 

during training and possible differences in training curves and effects. Overall, the stated 

training-related changes were found across individual participants, with potential for individual 

variation mainly in the drift rate (see Figures A1-3 in the Appendix). Future studies with larger 

statistical power are required to investigate such individual variation in drift-diffusion model 

parameters, ideally with Bayesian hierarchical approaches (e.g., Heathcote et al., 2019; Wiecki 

et al., 2013) which provide more flexibility in modeling individual differences over time. 

CONCLUSION

The results of the current study show that extensive training of processing speed tasks elicits 

changes in drift-diffusion parameters. Processing speed training improves the efficiency of 

evidence accumulation and this process of improving efficiency continues throughout multiple 

sessions of an extensive training regime. In comparison, changes in response strategy, as 

indicated by a decrease in response caution and emphasis on speed over accuracy, occur 

earlier and are limited to more initial parts of training. Non-decision processes, such as stimulus 

encoding and motor responses, also improve early-on during training and these improvements 

stabilize quickly during the first training sessions. This overall pattern of prolonged training-

related changes in rate of evidence accumulation as well as early changes in response strategy 

and non-decision processes is detectable across different tasks with different visual stimuli. 

Future research could shed light into whether and how these training-related changes during 

processing speed ultimately affect transfer to untrained tasks of other cognitive domains or 

assessing transfer to everyday life functioning. 
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