
This is a repository copy of Refuting misconceptions: computer tutors for fraction 
arithmetic.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/206221/

Version: Published Version

Article:

Di Lonardo Burr, S.M., Douglas, H., Vorobeva, M. et al. (1 more author) (2020) Refuting 
misconceptions: computer tutors for fraction arithmetic. Journal of Numerical Cognition, 6 
(3). pp. 355-377. ISSN 2363-8761 

https://doi.org/10.5964/jnc.v6i3.310

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Empirical Research

Refuting Misconceptions: Computer Tutors for Fraction Arithmetic

Sabrina M. Di Lonardo Burr* a, Heather Douglas a, Maria Vorobeva a, Kasia Muldner a

[a] Department of Cognitive Science, Carleton University, Ottawa, ON, Canada.

Abstract
Fractions, known to be difficult for both children and adults, are especially prone to misconceptions and erroneous strategy selection. The
present study investigated whether a computer tutor improves fraction arithmetic performance in adults and if supplementing problem
solving with erroneous examples is more beneficial than problem solving alone. Seventy-five undergraduates solved fraction arithmetic
problems using a computer tutoring system we designed. In a between-subjects design, 39 participants worked with a problem-solving tutor
that was supplemented with erroneous examples and 36 participants worked with a traditional problem-solving tutor. Both tutors provided
hints and feedback. Overall, participants improved after the tutoring interventions, but there were no significant differences in gains made
by the two conditions. For students with low prior knowledge about fraction arithmetic, the numerical gains were higher in the erroneous-
example group than the problem-solving group, but this effect was not significant. Thus, computer tutors are useful tools for improving
fraction knowledge. While erroneous examples may be particularly beneficial for students with low prior knowledge who may hold more
misconceptions, more research is needed to make this conclusion.
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Fraction skills are integral in science-based professions as well as less math-intensive jobs such as home
care (calculating dosages) and retail sales (calculating discounts). Sixty-eight percent of adults report using
fractions in their workplace (Handel, 2016). Fractions are also used during everyday activities like cooking (e.g.,
doubling or halving recipes that involve fractional amounts such as ¾ cups of flour) and helping children with
schoolwork. Importantly, fraction skills are needed to critically evaluate statistics and probabilities in the media.
For example, fraction knowledge is needed to recognize that 3 out of 4 dentists recommending a toothpaste is
a stronger endorsement than 7 out of 10 dentists. Because fractions are used at work and at home, fraction
competency is important for adults.

Although adults have been exposed to fractions at school, they continue to struggle with this challenging
domain (DeWolf et al., 2014; Schneider & Siegler, 2010; Tan, 2020). Notably, fraction arithmetic is an area of
difficulty. For example, in studies examining fraction knowledge amongst college students, students answered
over 20% of the fraction arithmetic questions incorrectly (Siegler & Lortie-Forgues, 2015; Stigler et al., 2010;
Tan, 2020). Thus, one goal of this work was to develop a computer tutor that provided guided practice for frac-
tion problems, with the aim of improving fraction arithmetic skills. Previous studies have found that computer
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tutors are an effective approach for delivering mathematics instruction in both middle- and high-school curricula
(e.g., Ritter, Anderson, et al., 2007; Corbett et al., 2000). Koedinger et al. (2000) report that compared to tradi-
tional mathematics courses, students in courses using the Cognitive Tutor (Algebra I, Algebra II, and Algebra
III) performed better on assessments of complex mathematical problem solving, standardized assessments of
basic mathematical skills, and were more likely to pass their university mathematics courses. At the university
level, computer tutors are beneficial for various mathematics concepts, including algebra (Ritter, Kulikowich, et
al., 2007; Stewart et al., 2005) and calculus (Ayub et al., 2010).

The present study investigates whether a fraction computer tutor improves fraction performance. A second
goal was to compare two types of instructional activities in terms of their impact on fraction performance. A
traditional activity corresponds to problem solving, where students are given problems to work on and guidance
for that process. However, problem solving alone induces a high cognitive load, which interferes with learning
(Cooper & Sweller, 1987; Sweller & Cooper, 1985). One way to address this is by supplementing problem
solving with worked examples (e.g., Atkinson et al., 2000; Chi et al., 1989; Große & Renkl, 2007; Sweller
& Cooper, 1985). A standard worked example consists of a problem statement and a step-by-step correct
derivation of the problem solution (Atkinson et al., 2000). Because the solution illustrated in the example is
correct, students can learn how the solution is derived, which will help them solve a similar problem (Cooper
& Sweller, 1987; Sweller & Cooper, 1985). A second less studied type of example is called an erroneous
example. Erroneous examples include incorrect steps (i.e., errors) in the solutions, which students are tasked
with finding and correcting (Adams et al., 2014).

A proposed benefit of erroneous examples relates to misconception refutation. Students at the beginning and
intermediate stages of cognitive skill acquisition have various misconceptions because their knowledge is not
yet complete or refined (VanLehn, 1999). Erroneous examples make the misconceptions explicit because they
are illustrated in their solutions – since students are asked to correct the error(s), their own misconceptions are
refuted in the process. In general, erroneous examples illustrate what not to do, providing an opportunity to
extend knowledge. Indeed, some studies show that erroneous examples improve understanding and problem
solving, while also promoting critical thinking (Borasi, 1996), reflection on misconceptions (Bransford et al.,
2000), and constructive behaviours like the generation of explanations for why a solution is incorrect (Durkin
& Rittle-Johnson, 2012). However, some educators have expressed concerns that including errors in examples
will make students more likely to make errors themselves (Tsamir & Tirosh, 2005). Furthermore, learning
through erroneous examples may place high demands on working memory (Große & Renkl, 2007). Working
memory is loaded because students must retrieve and hold the correct solution steps in working memory,
identify the incorrect step, provide an appropriate explanation for why that step is incorrect, and correct the
incorrect step. Thus, other studies have found no evidence that erroneous examples improve learning (Chen et
al., 2016; Huang, 2017; McLaren et al., 2016) or that erroneous examples are only beneficial for students with
particular levels of prior knowledge (e.g., Große & Renkl, 2007; Heemsoth & Heinze, 2014; Huang et al., 2008).

In sum, the goals of the present study were to investigate if a computer tutor for fraction arithmetic improved
adult fraction performance and to analyze whether supplementing problem solving with erroneous examples
improved learning over problem solving alone for students with low and high prior knowledge. Erroneous
examples and traditional problems were presented by a computer tutor we designed and implemented. The
tutor provided immediate feedback for correctness on solution entries and interactively prompted users to
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self-explain and correct example errors. We describe this tutor after describing the target domain, namely
fraction arithmetic.

The Target Domain: Fraction Arithmetic

Fraction arithmetic errors are well documented. In the current study we focused on two sources of arithmetic
errors: Errors attributed to natural number bias (a common fraction misconception; DeWolf & Vosniadou, 2015;
Ni & Zhou, 2005; Stafylidou & Vosniadou, 2004; Van Dooren et al., 2015) and errors based on gaps in prior
knowledge (Braithwaite et al., 2017; Braithwaite & Siegler, 2018b).

Errors Reflecting Natural Number Bias

One commonly observed source of errors in fraction arithmetic is natural number bias, which involves incorrect-
ly applying natural number reasoning to solve fractions problems (DeWolf & Vosniadou, 2015; Meert et al.,
2009; Ni & Zhou, 2005). For example, when adding or subtracting fraction quantities, students may view the
numerator and denominator independently and apply natural number reasoning to solve the problem. As a
result, students may add the numerators and denominators together and thus think 2

3
 + 3

4
 could equal 5

7
 or even

12 (Braithwaite et al., 2018; Bruce et al., 2013). Another example of misapplying natural number reasoning
involves multiplying fraction quantities. Students may incorrectly assume that the product will always be greater
than the factors (Vamvakoussi & Vosniadou, 2004). Thus, when multiplying 2

3
 × 4

5
 students may consider the

solution 8

15
 incorrect because it is smaller than either factor. Evidence indicates that although natural number

bias diminishes as fraction skills develop (Braithwaite & Siegler, 2018b; Rinne et al., 2017), many adults
continue to incorrectly apply natural number reasoning when comparing fraction quantities and when solving
fraction procedures (DeWolf & Vosniadou, 2015; Obersteiner et al., 2013; Vamvakoussi et al., 2012).

Two theoretical views have been proposed to account for natural number bias. The conceptual change view
posits that biased responses are related to weak conceptual knowledge thus improvement in fraction arithmetic
requires improving conceptual knowledge (DeWolf & Vosniadou, 2015; Ni & Zhou, 2005). The second view,
dual-processing, posits that natural number reasoning evokes an intuitive response to a fraction problem
(Vamvakoussi et al., 2012). Since intuitive responses are often incorrect, generating correct solutions requires
inhibition of intuitive natural number reasoning (for a discussion see Obersteiner et al., 2019). Consequently,
reflection on fraction concepts can help inhibit the intuitive response (Obersteiner et al., 2013; Vamvakoussi
et al., 2012). Accordingly, adults will benefit from reflecting on their responses. Importantly, a fraction tutor
can provide opportunities to learn (strengthen existing knowledge and/or form new knowledge), review, and
reflect. Thus, to reduce natural number bias we asked students to refute errors that corresponded to mistakes
produced by misleading natural number reasoning (see Table 1, Cases 1 and 3).

Errors Reflecting Prior Fraction Knowledge

In addition to errors resulting from natural number bias, fraction errors may be related to gaps in prior
knowledge. These gaps are the result of poorly encoded fraction concepts in the first place and/or due to
forgetting previously taught content. The degree of forgetting is related to the distribution and amount of
practice, with procedures that are not practiced frequently being more likely to be forgotten (Bahrick & Hall,
1991). To estimate how much practice students experienced, researchers have analyzed math textbooks. In
American math textbooks (Grades 3 to 8), there are fewer division questions compared to other operations.
Further, addition and subtraction of fractions include a similar number of questions involving equal and unequal
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denominators whereas multiplication and division of fractions disproportionality involve questions with unequal
denominators (Braithwaite et al., 2017; Braithwaite & Siegler, 2018a). Braithwaite et al. (2017) developed a
computational model of fraction arithmetic and tested it with a distribution of fraction problems that mirrored
the problem distributions in textbooks. Errors were categorized as execution- or strategy-based. The highest
error rate (amongst operations) was observed with division and characterized by an execution error where
the first fraction (instead of the second) was inverted and the two fractions multiplied (e.g., 2

3
 ÷ 4

5
 = 3

2
 × 4

5
).

Common strategy errors included applying addition strategies for multiplication and division problems with
equal denominators (e.g. 1

4
 × 3

4
 = 3

4
; 6
8
 ÷ 2

8
 = 3

8
) and choosing the larger denominator when adding unit fractions

with unequal denominators (e.g., 1

4
 + 1

8
 = 2

8
). Thus, in the current study we targeted less-practiced types of

fraction problems and problems where students make common strategy errors, including division in general as
well as addition and multiplication problems involving equal denominators (see Table 1, Cases 2, 4, 5, and 6).

In summary, fraction arithmetic is a suitable domain to assess both the effectiveness of a computer tutor and
the effectiveness of erroneous examples for learning and reviewing of mathematical content. Fractions skills
are important, but there are well-documented errors in adults’ fraction arithmetic. Some of these errors are
based on fraction misconceptions (i.e., natural number bias) and gaps in prior knowledge. However, adults
have prior experience with fraction procedures, thus they come with a basic foundation, allowing them to
reflect on their mistakes. Erroneous examples are designed to address fraction misconceptions and provide an
opportunity for reflection. Fraction arithmetic thus provides an appropriate testing ground for our work.

Erroneous Examples

The format of an erroneous example can vary, but a common approach outlined in Adams et al. (2014)
proposes the following guidelines: (1) the error in the example solution should be produced by a hypothetical
student to avoid embarrassing any student, (2) the error process should be interactive and engaging, prompting
students for explanations and feedback, and (3) the erroneous example should be sufficiently structured to
minimize cognitive load. An erroneous example following these guidelines is illustrated in Figure 1.

Table 1

Common Fraction Errors by Operation

Case Operation Denominator Error

1 Addition Common Adding both the numerators and denominators 1

4
 + 1

4
 = 2

8

2 Addition Different Adding the numerators, choosing the larger denominator 1

4
 + 1

8
 = 2

8

3 Subtraction Common & Different Subtracting both the numerators and denominators 4

5
− 1

3
 = 3

2

4 Multiplication Common Multiplying the numerators, keeping the denominator 2

7
 × 3

7
 = 6

7

5 Division Common Dividing the numerators, keeping the denominator 6

7
 ÷ 3

7
 = 2

7

6 Divisiona Common & Different Inverting the first fraction and then multiplying 2

5
 ÷ 3

7
 = 5

2
 × 3

7
 = 15

14

aError specific to adults.
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Figure 1. An erroneous example from our computer tutor illustrating the use of (i) a hypothetical student, (ii) an interactive
and engaging prompt, and (iii) a structure that minimizes cognitive load.

Note. The section labels are added here but are not part of the tutor interface.

Erroneous examples have been used successfully to refute misconceptions in various areas of mathematics
with students in middle and high school (Adams et al., 2014; Barbieri & Booth, 2016; Booth et al., 2013;
Durkin & Rittle-Johnson, 2012; McLaren et al., 2015; Tsovaltzi et al., 2012). To illustrate, Adams and colleagues
(2014) examined the effectiveness of an intelligent tutoring system that included erroneous examples designed
to address common decimal misconceptions. Sixth grade middle school children who were given erroneous
examples performed significantly better on a delayed post-test and were more accurate at judging whether their
post-test answers were correct than those who were given traditional examples. When students were divided
into low- and high-prior-knowledge groups, both groups had greater delayed post-test gains when they were
presented with erroneous examples compared to traditional examples, suggesting that erroneous examples are
effective for learners of varying prior-knowledge levels. Adams et al. concluded that by having students of all
knowledge levels identify, explain, and correct errors, students can gain a deeper level of understanding of
decimals.

In a replication of the Adams and colleagues (2014) study with a larger sample size, McLaren et al. (2015)
had middle school students (11-13 years of age) learn about decimals through an interactive computer tutor.
Students were either presented with problem solving supplemented with erroneous examples or standard
problems. Specifically, in the erroneous examples condition, students were presented with a worked-out solu-
tion that contained errors and had to identify and correct the errors and self-explain the correct solution. In
the standard condition, students were asked to solve problems by generating their solutions and self-explain
the correct solutions. Students in the erroneous-example group performed significantly better on the delayed
post-test, but not the immediate post-test, than students in the traditional problem-solving group. Mirroring
prior findings, there was no significant difference in the effectiveness of erroneous examples for low- and
high-prior-knowledge students.

Other studies have found more nuanced effects of erroneous examples. In particular, contrary to the findings
of Adams et al. (2014) and McLaren et al. (2015), some have reported that erroneous examples are only
beneficial for students with sufficient prior knowledge. For example, Heemsoth and Heinze (2014) taught Grade
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6 students how to multiply and divide fractions over the course of 11 lessons, either through standard correct
worked examples or erroneous examples. Though the erroneous-example group had a better understanding of
incorrect strategies and concepts, with respect to fraction knowledge, only students with high prior knowledge
benefited from erroneous examples. In contrast, low-prior-knowledge students benefitted more from standard
correct examples. Similar results were reported in a study with university students (Große & Renkl, 2007).
Specifically, university students were asked to explain both correct and erroneous examples presented via
paper-and-pencil in the domain of probability. High-prior-knowledge students showed increased learning from
the erroneous examples, while low-prior-knowledge students only learned from erroneous examples when the
errors were explicitly highlighted. Thus, the results from these studies suggest that erroneous examples support
learning only if students have a certain foundation of prior knowledge so that they can adequately reflect on
errors embedded in the example solutions and their own misconceptions.

It would, however, be premature to conclude that erroneous examples are only beneficial for high-prior-knowl-
edge-students, as the next study illustrates. Huang et al. (2008) designed a computer tutor for decimal con-
cepts. In their study, Grade 6 students either worked with traditional paper-and-pencil test sheets or with a
computer tutor, where they were asked to identify cognitive conflicts associated with their error. Similar to
erroneous examples, when students made an error, the tutor presented them with a cognitive conflict (i.e.,
a wrong idea is presented to the user to prompt him/her to examine the reasonableness of his/her answer).
The cognitive conflict was designed to help identify their error and clarify misconceptions. The intervention
was successful: The tutor group had greater gains from pre-test to post-test than the paper-and-pencil group.
Interestingly, within the computer tutor group, low-prior-knowledge students made greater gains than the high-
prior-knowledge students, which is the opposite pattern to what was found by the other studies described
above. In a study of decimal magnitudes paper-and-pencil tutors (Grades 4 and 5), Durkin and Rittle-Johnson
(2012) suggested that erroneous examples can be beneficial to low-prior-knowledge students if students are
presented with both correct and erroneous examples and asked to compare or contrast the examples. This
was the case in a computer study by Stark et al. (2011) with undergraduate medical students’ diagnostic
competence. In this study, low-prior-knowledge students benefitted from both erroneous and correct examples
when the examples were accompanied by elaborate feedback (Stark et al., 2011). Of note is that, with the
exception of Stark et al., studies reporting an effect of prior knowledge involved paper and pencil materials
rather than a computer tutor and so more work is needed to see if this effect transfers to a computer tutor
context.

A potential downside of erroneous examples relates to affect. Learning from erroneous examples may be a
more confusing and frustrating process, with higher confusion and frustration levels linked to poorer learning
outcomes (Richey, Andres-Bray, et al., 2019; Richey, McLaren, et al., 2019). Thus, the varied results obtained
in studies may reflect the difficulty of studying erroneous examples because many factors, including knowledge,
affect, and how the error is presented can influence the usefulness of erroneous examples.

In summary, there is some evidence that erroneous examples promote learning, but there is a lack of con-
sensus as to who will benefit from erroneous examples in comparison to traditional examples (i.e., low- vs.
high-prior-knowledge students). In general, factors like the target domain and the age of the participants
may influence the results and so more work is needed for a full understanding of when and how erroneous
examples impact learning. In the present study we explore the utility of erroneous examples to supplement
problem-solving with a computer tutor in the domain of fraction arithmetic.
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The Fraction Computer Tutor

The instructional materials used in this study were administered by two versions of a computer tutor we
built using the Cognitive Tutor Authoring Tool (CTAT; Aleven et al., 2009). This authoring tool supports the
construction of so-called example-tracing tutors, used in the present study. The construction of example-tracing
tutors does not require prior programming experience, making it accessible for both educators and researchers.
One advantage of this type of tutor is that it can provide personalized step-by-step feedback and help. It
accomplishes this by comparing student solutions against pre-stored correct and incorrect responses that are
created by a human author when the tutor is designed (Aleven et al., 2009). There are three key components
to the example-tracing tutor CTAT architecture: a) the front-end tutor interface that the student interacts with,
for instance to view the erroneous example or solve the target problem; b) the authoring interface used by
a human author to specify the problem steps, hints, and feedback (this is done during the tutor construction
phase, and not seen by the student interacting with the tutor); c) an online platform where all actions within the
tutor are stored and can be downloaded for subsequent analysis (Aleven et al., 2016). Both tutors created for
this study included problems for users to solve and provided feedback and hints; one of the tutors additionally
included erroneous examples.

We piloted initial versions of the tutor with both adults and children in order to obtain a range of feedback on
aesthetics, wording, and difficulty. Though the tutor was not tested with children in the present study, it was
designed so that it could be used by people of all ages who are learning or reviewing fraction concepts and
procedures. First, the tutor was piloted with five numerical cognition experts. Based on their feedback, the
examples were simplified, and the order of the example solution steps was made more explicit. Once these
changes were implemented, the tutor was piloted with three children between the ages of 8 and 10. Based on
their feedback, questions were made less wordy and aesthetics, such as the size of pictures, were adjusted.

Using the feedback from the pilots, we implemented two versions of the fraction tutor: An erroneous-example
(EE) tutor that supplemented problem solving with erroneous examples, and a problem-solving (PS) tutor
that did not include the erroneous example component. Both tutors contained the same six fraction word
problems, namely two single-digit addition fraction problems, one single-digit subtraction problem, one single
digit multiplication problem, and two single-digit division problems (see Figure 2 and Figure 3 for an example).
However, the presentation of the problems differed slightly because the EE tutor included erroneous example
components.

The erroneous example components for the EE tutor were based on the common fraction errors observed
in adults (Braithwaite et al., 2017; Tan, 2020) as previously discussed. Table 1 shows six common fraction
operation errors included in the six corresponding EE tutor activities - all were based on misconceptions
reported in the literature, such as treating numerators and denominators as separate entities and applying
addition/subtraction procedures to multiplication problems.

The EE tutor interface consisted of five sections and a Feedback Centre. As shown in Figure 2, Section 1
presented the problem description, while Section 2 corresponded to the first part of the erroneous example
component, conceptualized as an incorrect response to the problem made by a fictional character. The second
part of the erroneous example, shown in Section 3, asked users to identify the fictional character’s error by
choosing from a list of three options. This design aimed to promote active processing by asking users to identify
the misconception – by stating it was incorrect, this also refuted that concept. Section 4 asked users to solve
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the same fraction problem as was incorrectly solved in Section 2 by the fictional character. This gave users
the opportunity to apply the correct procedure, thereby further refuting the misconception. Finally, Section 5,
the Advice Centre, asked users to provide advice to the fictional character so that they could avoid making
the same mistake in the future. This step aimed to encourage users to transfer their knowledge for the correct
procedure to similar problems in the future. An additional component of the tutor, the Feedback Centre, will be
described after we present the PS tutor, as both tutors included this component.

The PS tutor was populated with the same fraction problems as the EE tutor, but the interface did not include
the erroneous example components (i.e., Sections 2 and 3, see Figure 3 for an example). In the Advice Centre,
instead of asking users to help the fictional character avoid the mistake in the future, users were asked to
identify the correct way to solve the problem. Thus, users of both tutors had the opportunity to identify the
correct fraction procedure necessary to solve similar future problems with respect to the underlying fraction
concept.

Both the EE tutor and the PS tutor provided immediate feedback on each user response by colouring correct
responses green and incorrect responses red. Both tutors included a Feedback Centre that was always visible
in the right panel on the screen (see Figure 2 and Figure 3), with on demand hints that users could access
by clicking the corresponding button. Hints were displayed in the Feedback Centre, as were system generated
messages, and the contents of these was the same in the two tutors (see Figure 4). The hints were designed
to address difficulties solvers might have at certain steps in their problem-solving, such as help finding common
denominators or providing brief explanations of procedures. Both versions of the tutor also occasionally gener-
ated encouraging messages, such as, “Good job! Now let’s give some advice to Samantha that she can use in
the future!”

Figure 2. Sample problem used in the Erroneous-Example Tutor, including (1) problem statement, (2) incorrect response by
fictional character, (3) identification of the character’s error, (4) problem-solving work area used to generate the correct
solution, (5) Advice Centre to solidify the general procedure, and (5) the Feedback Centre.

Note. The section labels are added here but are not part of the tutor interface.

Computer Tutor for Fraction Misconceptions 362

Journal of Numerical Cognition
2020, Vol. 6(3), 355–377
https://doi.org/10.5964/jnc.v6i3.310



Figure 3. Sample problem used in the Problem-Solving Tutor.

Note. The interface is the same as for the EE tutor shown in Figure 2 except that the erroneous example components are
absent here (i.e., Sections 2 and 3 in Figure 2).

Figure 4. Examples of hints provided to participants in the EE and PS Tutors.

Both the EE tutor and the PS tutor required that all items in a given exercise be answered correctly before the
user could move on to the next exercise (example and subsequent problem in the EE tutor; problem in the PS
tutor); all questions were completed in a set order in both tutors and the order was the same for both tutors. To
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move from one item to the next, participants pressed the “Done” button located in the Feedback Centre (see
Figure 2, Figure 3, and Figure 4). Users were prompted to move to the next question with a message in the
Feedback Centre that stated, “Click the Done button.” If users tried to move on to the next question prior to
producing a complete correct solution, they received the message “I’m sorry, but you are not done yet. Please
continue working.”

Present Study

The present study compared learning outcomes from the two versions of the computer tutor described above
– namely one that supplemented traditional problem solving with erroneous examples (EE tutor) and one that
consisted of only traditional problem solving (PS tutor). In both tutor versions participants received hints and
feedback. The target population was undergraduate students who had not taken any university-level math
courses. A prior study with undergraduate students found that erroneous examples were most effective for
students with some prior knowledge of the topic (Große & Renkl, 2007). Since our population had exposure
to fractions, erroneous examples are appropriate for this population - but whether it is a more beneficial
learning strategy over traditional problem solving is an open question investigated in the present work. We also
analysed the effect of erroneous examples for low- and high-prior-knowledge learners. Because there is a lack
of consensus surrounding the effectiveness of erroneous examples, we did not make directional hypotheses.
Instead, we asked the following questions:

Question I. Is a computer tutor an effective tool for improving fraction arithmetic in adults?

Question II. Does problem solving supplemented with erroneous examples lead to greater gains from
pre-test to post-test than problem solving without erroneous examples?

Question II. Does the effect of erroneous examples depend on prior knowledge level?

Method

Participants

Eighty-seven undergraduate students from a Canadian university participated in the study (Mage = 21.06 years,
SD = 5.15; 65.5% female). All participants spoke fluent English, with 61% identifying English as their first
language. The most common first languages other than English were Chinese (10%), French (7%), and Arabic
(5%). To avoid ceiling effects participants were not eligible to participate if they had current or previous enrol-
ment in any post-secondary level mathematics courses. The most common majors were Cognitive Science and
Psychology (46% of participants); other majors were predominantly Social Science programs. Most participants
were in Year 1 (41%) or Year 2 (31%) of university. The study was approved by the Carleton University
Research Ethics Board. Bonus course credit was provided as compensation for participation in the study.

Measures

Demographics

Basic demographic information was collected, including participant age, gender, and program of study.
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Fraction Operations

To measure learning, participants completed two fraction operation tests: A pre-test and a post-test. The
pre-test and post-test were paper-and-pencil tests designed for the present study. Both the pre- and post-test
consisted of 18 unique items: Four addition (e.g., 1

5
 + 2

5
), four subtraction (e.g., 7

8
 – 4

7
), four division (e.g., 3

5
 ÷

1

4
), and four multiplication (e.g., 5

6
 × 3

4
) questions, as well as two word problems that required the sequential

combination of operations. All questions consisted of single-digit numerators and denominators; total score was
the sum of correct responses. The pre-test and post-test used different numbers but were analogous because
they had the same problem structure. Participants had 20 minutes to complete the pre- and post-tests. The
maximum possible score on each test was 18. The pre-test, post-test, and images of each of the problems
presented in the fraction tutors can be found in the Supplementary Materials.

As part of a larger study, several other brief questionnaires about math attitudes and beliefs were administered
(i.e., Math Confidence Scale (Hendy et al., 2014), the Short Grit Scale (Duckworth & Quinn, 2009), the
Abbreviated Math Anxiety Scale (Hopko et al., 2003), the Mathematics Self-Concept, Self-Efficacy, and Anxiety
Scale (Lee, 2009)) but because we do not report on their analysis, we do not describe them here.

Design and Procedure

A between-subjects design was used with the two computer tutors (EE, PS) serving as the two experimental
conditions. Participants were assigned to one of the two conditions, alternating between EE and PS assignment
to ensure an even number of participants were in each condition. The procedure for both conditions was the
same.

The study took place in a laboratory; most experimental sessions included one participant, but several sessions
included two (who were seated at opposite ends of a large room). Prior to entering the lab participants were
unaware the study involved fractions (the title of the study on the online recruiting site was “Education with
AI” and participants were told the study required completing a series of problem-solving tasks). After informed
consent was obtained, participants were given 20 minutes to complete the fraction operation pre-test to assess
their initial fraction performance; they were not allowed to use any assistive tools (i.e., calculators) and could
not ask for help. Following this, participants completed several questionnaires (not reported in this study). They
then had 20 minutes to work through the six questions using either the EE or PS tutor. After finishing these
questions, participants were given 20 minutes to complete the fraction post-test. Finally, participants completed
a post-tutor attitudes and beliefs questionnaire (not reported). The entire study took between one and one and
a half hours to complete.

Results

Of the 87 participants recruited for the study, 75 were included in the analyses. Ten participants were excluded
because they obtained a perfect score on the pre-test and thus were at ceiling performance. Two other two
participants were excluded from the analysis (one had difficulty navigating the computer tutor and was unable
to finish the tutor intervention and the other participant’s data was lost). In total, there were 39 participants in
the erroneous-example group and 36 participants in the problem-solving group.
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The analyses related to our research questions were conducted using ANOVAs and t-tests. In addition to
reporting frequentist statistics, Bayes factors are also reported, allowing for an evaluation of the fit of the data
under the null and alternative hypotheses. Bayesian statistics offer advantages in terms of mathematical power
and in contrast to frequentist statistics, allow researchers to make claims about the likelihood of both the
null and alternative hypothesis given the evidence (Jarosz & Wiley, 2014). The Bayes factor, BF01, is “a ratio
that contrasts the likelihood of the data fitting under the null hypothesis with the likelihood of fitting under the
alternative hypothesis” (Jarosz & Wiley, 2014, p. 3). The inverse, BF10, puts the ratio in terms of the alternative
hypothesis. In the present study, when the Bayes factor is in favour of the null hypothesis, the BF01 is reported;
when in favour of the alternative hypothesis, the BF10 is reported. The interpretation of the strength of the
evidence for the null or alternative hypothesis is in accordance with Jeffreys' (1961) guidelines (see Table 4 of
Jarosz & Wiley, 2014).

Effect of Tutors on Learning

The descriptive statistics for the pre-test, post-test, and gain scores are in Figure 5. We first verified that there
were no group differences on pre-test scores between the erroneous-example (EE) group and problem-solving
(PS) group. This was the case, t(73) = 0.81, p = .42, d = 0.19, and thus we proceeded with the primary
analyses. The pre-test scores were around 10/18 for both conditions, indicating that participants’ a priori
knowledge of fractions was modest.

Figure 5. Mean fraction pre-test, post-test, and gain scores for the EE and PS groups (Max Score = 18).

Note. Error bars represent standard error of the mean.

To measure learning, we used the standard method of calculating gain scores (i.e., post-test score – pre-test
score). Collapsing across tutor groups, participants gained significantly from pre-test to post-test, t(74) = 7.73,
p < .001, d = 0.89, BF10 = 2.19e+08. A one-way ANOVA found no significant difference in gain scores between
the EE and PS groups, F(1, 73) = 0.92, p = .34, and the effect was very small, η2 = .01. The estimated
Bayes factor, BF01 = 2.82 indicates anecdotal support for the null hypothesis that the EE tutor did not provide
additional benefits in comparison to the PS tutor. In summary, the computer tutor improved learning (Research
Question I) but we did not find support that supplementing problem solving with erroneous examples resulted in
higher learning than using a traditional problem-solving tutor (Research Question II).
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Effect of Prior Knowledge

Previous studies have suggested that a student’s prior knowledge can influence how much they gain from
erroneous examples (e.g., Booth et al., 2013; Chen et al., 2016; Tsovaltzi et al., 2012). To test if this was
the case in our data, participants were divided using a median split of the pre-test scores (Mdn = 10). We
excluded from analysis participants with the median score and with scores right below and right above the
median scores (as these scores are close to the median they have the potential to obscure results and thus
removing them is advocated (Fulcher, 2005)): low-level-knowledge group (n = 32) and a high-level-knowledge
group (n = 35). Table 2 displays mean pre- and post-test scores, separated by tutor group (i.e., EE and PS) and
prior knowledge level (i.e., low and high).

Table 2

Mean Test Scores for Low-Level- and High-Level-Knowledge Learners, Separated by Tutor

Measure

Low-Level High-Level

EE (n = 17) PS (n = 15) EE (n = 16) PS (n = 19)

M SD M SD M SD M SD

Pre-test 4.88 2.76 5.40 2.47 14.88 1.78 14.79 1.65
Post-test 10.47 4.89 8.87 4.79 15.88 2.45 16.79 1.48
Gains 5.59 4.45 3.47 4.16 1.00 2.10 2.00 1.80

There was no significant difference between the EE and PS groups on pre-test scores for low-level-knowledge
participants, t(30) = 0.55, p = .58, d = 0.20 or for the high-level-knowledge participants, t(33) = 0.15, p = .88, d =
0.05.

To assess learning, gain scores (post-test – pre-test) were analyzed in a 2(knowledge level: low, high) by
2(tutor: erroneous example, problem solving) between-subjects ANOVA. Of primary interest is the interaction
between tutor type and knowledge level, since it informs on whether the effect of erroneous examples depends
on knowledge level (see Figure 6). The low-level-knowledge students made greater gains than the high-lev-
el-knowledge students in the EE group, but this interaction was not significant, F(1, 63) = 3.74, p = .058,
η2 = .05. The Bayes factor, BF10 = 1.44, indicates anecdotal evidence for the inclusion of the interaction in
the model. As shown in Figure 6, participants with low prior knowledge had higher mean gains from problem
solving supplemented with erroneous examples than from problem solving alone, while the opposite pattern
was true for participants with high prior knowledge and the difference in learning was smaller. However, we
acknowledge that this difference is not statistically significant. Thus, with respect to Research Question III, we
did not find evidence that for individuals with low prior knowledge, erroneous examples were more beneficial
than problem solving alone.

There was also a significant main effect of knowledge level, F(1, 63) = 14.08, p < .001, η2 = .18, which indicates
that low-level-knowledge participants made greater learning gains than high-level-knowledge participants. The
Bayes factor, BF10 = 66.60, indicates very strong support for the model that includes the effect of knowledge
level. There was no main effect of tutor, F(1, 63) = 0.48, p = .49, η2 = .00, and the Bayes factor, BF01 =
3.04, indicated substantial support for the null hypothesis that collapsed across knowledge levels, the two tutor
groups did not differ in learning gains.
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Error Type Analysis

Both versions of the tutor (EE, PS) were designed to provide instruction on procedures for fraction arithmetic.
An exploratory analysis was conducted to identify the types of errors participants made, to see if the tutors
reduced errors and to analyze if the tutor version reduced specific types of errors.

Figure 6. Mean fraction test gain scores for low-level and high-level fraction knowledge, separated by tutor condition.

Note. Error bars represent standard error of the mean.

We first flagged incorrect pre-test and post-test responses and then classified the errors based on the common
misconceptions (see Table 1) and a review of errors by two numerical cognition experts. Table 3 shows the
error classifications, broken down by tutor type (EE, PS) and operation. Classifiable errors fell into three main
categories: Conceptual errors, arithmetic errors, and blank responses (no answer provided). Conceptual errors
were the result of applying the incorrect procedure when trying to solve fraction arithmetic problems. For
example, participants may have added both the numerator and denominator for an addition problem instead of
finding a common denominator and only adding the numerators. Similarly, participants may have inverted and
multiplied for a multiplication problem because this is the correct procedure for a division problem. Arithmetic
errors were the result of incorrectly adding, subtracting, multiplying or dividing; they were not the direct result of
a fraction misconception. For example, a participant may have known to invert the second fraction and multiply
for a division problem, but when they multiplied, they obtained the incorrect response. Included in this category
were reduction errors. For example, if a participant obtained a correct response of 9

12
 but incorrectly reduced

the response to 2
3
.

The total number of conceptual errors did not significantly differ between the EE and PS groups on the pre-test
(109 vs. 107) or on the post-test (72 vs. 47), χ2(1, N = 335) = 3.11, p = .08. The number of arithmetic errors also
did not significantly differ for the EE and PS groups on the pre-test (48 vs. 78) or on the post-test (53 vs. 85),
χ2(1, N = 264) = 0.003, p = .96. Furthermore, the number of blank responses where participants did not provide
an answer at all did not significantly differ for the erroneous-example and problem-solving tutor groups on the
pre-test (96 vs. 60) or on the post-test (18 vs. 22), χ2(1, N = 196) = 3.58, p = .06.
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Table 3

Summary of Common Pre-Test and Post-Test Errors Across Each Operation for the Erroneous-Example and Problem-Solving Tutors

Error

Addition Subtraction Multiplication Division
Pre-test Post-test Pre-test Post-test Pre-test Post-test Pre-test Post-test
EE PS EE PS EE PS EE PS EE PS EE PS EE PS EE PS

Conceptual Error

Added/subtracted numerator and denominator 30 16 12 8 16 13 0 2 – – – – – – – –

Only multiplied denominator when finding common
denominator

0 4 3 5 0 3 3 7 – – – – – – – –

Used bigger denominator as denominator 1 1 0 0 3 1 2 0 – – – – – – – –

Found common denominator then multiplied/added/
subtracted/divided numerators

– – – – – – – – 15 4 11 11 14 10 6 11

Cross multiplied – – – – – – – – 7 29 1 5 – – – –

Inverted and multiplied – – – – – – – – 6 6 0 12 – – – –

Added numerator and multiplied denominator – – – – – – – – 2 1 0 6 – – – –

Inverted first fraction – – – – – – – – – – – – 2 4 0 4

Cross divided/ inverted and divided – – – – – – – – – – – – 7 12 9 0

Multiplied instead of divided – – – – – – – – – – – – 4 5 0 1

Total 31 21 15 13 19 17 5 9 30 40 12 34 27 31 15 16

Arithmetic Error

Reduction error 2 2 2 4 0 4 2 1 1 1 6 2 1 6 1 4

Arithmetic error 6 5 9 13 14 8 9 6 8 2 8 5 5 1 7 8

Miscellaneous 8 3 6 2 8 5 14 1 9 3 10 1 16 8 11 6

Total 16 10 17 19 22 17 25 8 18 6 24 8 22 15 19 18

Blank Response

Blank or “I don’t know” 0 4 3 0 6 9 6 6 0 28 4 3 54 55 9 9

Note. EE = erroneous-example tutor; PS = problem-solving tutor.

Importantly, when we totaled errors across both groups from pre-test to post-test, the number of conceptual
errors decreased (216 vs. 119), whereas the number of arithmetic errors did not (126 vs. 138), χ2(1, N = 598)
= 16.67, p < .001. Given that the tutor was designed to provide instruction and practice for fraction arithmetic
procedures, not arithmetic in general, we would not expect to see arithmetic improvements. The reduction in
conceptual errors suggests the computer tutor was effective at reducing fraction arithmetic misconceptions.
Along these lines, the number of questions that were unanswered (i.e., left blank or participants wrote, “I don’t
know”) significantly differed from pre-test to post-test, χ2(1, N = 186) = 60.41, p < .001. Thus, in addition to
making fewer conceptual errors at post-test, participants were also more likely to attempt a problem that they
previously did not know how to approach. Overall, the error analyses are informative as they show that both
versions of the tutor were effective in improving conceptual fraction knowledge.

Discussion

The goal of the present study was to investigate the utility of a computer tutor and erroneous examples in
the domain of fraction arithmetic. Fraction arithmetic was chosen because adults frequently require the use of
fractions in the workplace (Handel, 2016) and because both children and adults struggle with this challenging
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domain (DeWolf et al., 2014; Schneider & Siegler, 2010; Tan, 2020). Research with children and adults shows
that they make similar conceptual and procedural errors (Braithwaite et al., 2017; Tan, 2020), suggesting
that adults may not have correctly encoded fraction concepts. The study pre-test scores confirmed that the
adults in our sample find fraction arithmetic difficult, as the pre-test mean was just above 50%. Thus, although
participants were university students who all had learned fractions in their elementary school years, many
forgot and/or never mastered some fraction concepts.

With the goal of improving fraction understanding, we built two versions of a fraction tutor using CTAT, a plat-
form designed to support the construction of computer tutors. Unlike textbooks or worksheets, CTAT tutors are
capable of sophisticated tutoring behaviours (Aleven et al., 2009), including step-by-step assistance, real-time
feedback, and hints tailored to specific steps in the problem-solving solution. The motivation for including these
types of support comes from studies on human tutoring indicating that such tailored support may be beneficial
for supporting learning (although as reviewed in VanLehn (2011), it is still an open question as to the exact
effect of each type of support). In the past, such support was only available from human tutors. However,
human tutors are not always a viable option as there has been an increase in the number of students seeking
private after-school tutoring in recent years and private tutoring can be costly (Hart & Kempf, 2015). Computer
tutors address this limitation as they can be freely disseminated, particularly if they are online as is the case for
our tutor.

Although participants learned from their interaction with the fraction tutor, we did not find evidence that
supplementing problem solving with erroneous examples improved learning over traditional problem solving.
We used Bayesian analyses in addition to frequentist statistics to triangulate results from alternative analysis
methods. Bayesian statistics provided definitive evidence that the computer tutor led to significant learning
gains. However, neither frequentist nor Bayesian statistics provided strong evidence in favour of erroneous
examples. When all participants regardless of prior knowledge were considered, the effect size of erroneous
examples was small and the Bayes Factor in favour of the null model was 2.8 (i.e., the null model was 2.8
times as likely as the alternative model that included erroneous examples). A Bayes Factor (BF) of 1-3 is
considered anecdotal evidence for a given model (null or alternative), while a BF of 3-10 provides substantial
evidence. Our results are close to the boundary between these two thresholds. Even if the Bayesian analysis
provided substantial evidence, however, the small sample effect size suggests erroneous examples are not
adding much.

While to the best of our knowledge our work is the first to incorporate Bayesian statistics into analyses about
erroneous examples, in general our findings are in line with the findings of Adams et al. (2014) and McLaren et
al. (2015) who did not find immediate benefits of erroneous examples. They did, however, find that erroneous
examples led to greater learning gains on a delayed post-test. While we aimed to implement a delayed
post-test phase, very few participants returned for this phase, making it impossible to analyze delayed post-test
data. Another possible explanation for why we did not find erroneous examples to be more beneficial than
problem solving alone relates to the support delivered by the CTAT tutor. Both groups received feedback and
hints from the tutor. Feedback is generally beneficial, increasing learning gains (Shute, 2008) and has been
found to be beneficial for both erroneous and correct examples (Stark et al., 2011). Thus, providing feedback
and hints to both the EE and PS groups might have overshadowed any effects of erroneous examples,
accounting for why we did not find significant differences in learning.

Computer Tutor for Fraction Misconceptions 370

Journal of Numerical Cognition
2020, Vol. 6(3), 355–377
https://doi.org/10.5964/jnc.v6i3.310



Some have reported that erroneous examples increased learning only for students with certain prior knowl-
edge, although conflicting patterns have been reported. Some studies report that erroneous examples are only
beneficial for students with high prior knowledge (Große & Renkl, 2007; Heemsoth & Heinze, 2014), while other
studies found the opposite, namely that erroneous examples are more beneficial for students with low prior
knowledge (Huang et al., 2008; Stark et al., 2011). In the present study, low-prior-knowledge students made
greater gains than the high-prior-knowledge students in the EE group, but the difference was not statistically
significant and the Bayes statistics provided only anecdotal evidence for the interaction term, with a BF of 1.44.
It may be that erroneous examples are only beneficial for low-prior-knowledge students if the errors in the
examples are explicitly highlighted (Große & Renkl, 2007). In the present study, participants were required to
identify the error prior to moving to the problem-solving portion of the intervention, effectively highlighting the
error, so this does not explain the lack of a significant effect. We also did not find evidence that erroneous
examples were beneficial for participants with high prior knowledge. These individuals are less likely to have
fraction misconceptions, and thus erroneous examples did not provide benefits.

The exploratory error analysis focused on identifying fraction misconceptions and whether interacting with the
tutor reduced their frequency. Comparing the EE and PS versions of the fraction tutor, there were no significant
differences in the types of errors made on either the pre-test or post-test. The latter result was somewhat
surprising as the EE tutor explicitly illustrated conceptual errors and gave learners an opportunity to correct
them by identifying the proper procedure. For both groups, the number of conceptual errors decreased in the
post-test. Thus, while we did not find evidence that erroneous examples reduced errors more than standard
problem solving, interacting with the fraction tutor did reduce fraction arithmetic misconceptions. Furthermore,
the reduction in blank responses from pre-test to post-test means participants were more willing to try and
devise a solution. This is a positive result as in educational settings, a blank response often receives no marks
and cannot receive feedback to correct errors since no errors were recorded.

Educational Applications and Implications

The present study involved the domain of fraction arithmetic, something both children and adults struggle
with (Braithwaite et al., 2017; DeWolf et al., 2014; Schneider & Siegler, 2010; Tan, 2020). As with other
problem-solving domains, fraction skills can be improved with practice. However, traditional worksheets and
textbook problems do not provide tailored feedback and support. Our results show that a fraction computer
tutor helps promote learning of fraction concepts in adult participants. Since the tutor is online, it is easily
accessible by individuals who wish to review fraction concepts and can be used to supplement remedial math-
ematics education in traditional classrooms. Since adults and children have similar fraction misconceptions
(Braithwaite et al., 2017; Tan, 2020), the tutor may also be beneficial to younger students, but this requires
empirical validation.

One important consideration is the feasibility of designing a computer tutor. Building a computer tutor tradition-
ally has required technical expertise and many hours of programming. For the present study, we used CTAT
(Aleven et al., 2009) to build both versions of the fraction tutor. With CTAT, no programming experience is
required, making it feasible for teachers to design and implement their own computer tutor, tailored to the
instruction and needs of their students.
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Limitations and Future Work

In the present study, one test was used as a pre-test and a second test was used as a post-test. While
the tests were carefully designed so that similar magnitude numerators and denominators were selected,
these were not counterbalanced. The study also did not include a delayed post-test. Some previous studies
have found that the benefits of erroneous examples only appear on delayed post-tests (Adams et al., 2014;
McLaren et al., 2015). It is possible that the erroneous examples would lead to increased learning gains
because they encourage deeper processing of the material during learning (Adams et al., 2014). A related
consideration is the length of the intervention, which was relatively brief. Previous studies that found benefits
of erroneous examples on either immediate or delayed post-tests had longer interventions that were between
75-120 minutes in length (e.g., Große & Renkl, 2007; McLaren et al., 2012, 2015).

Another limitation relates to the design of the tutor. The erroneous-example group was not required to gen-
erate free-form responses to identify and correct the error in the example, instead selecting items from a
multiple-choice question. The latter strategy is standard in computer tutors (Conati & VanLehn, 2000) given
the challenge of automatically parsing free-form typed input. However, the effect of erroneous examples may
be strengthened when responses are generated rather than selected. With multiple-choice questions, there is
a risk that students will click responses until they obtain the correct answer (i.e., receive the green highlight)
and may not take the time to process the misconception. In future studies, open-ended questions in which
participants generate a response should be considered as this may improve learning.

Yet another consideration relates to the inclusion of additional conditions. Future studies could compare the
computer tutor conditions to paper-and-pencil erroneous example materials as well as paper-and-pencil prob-
lem-solving, to separate benefits of a computer tutor from benefits of the type of example. Future studies could
also include a “pure” control condition, in which participants would not receive an intervention, instead just
completing the pre-test, a non-math related task, and the post-test, to see if any gains occur simply from the
pre-test priming participants’ memory about fraction procedures.

Conclusion

The present study investigated the pedagogical value of a computer tutor for fraction arithmetic as well as the
utility of erroneous examples to supplement problem solving. Both versions of the fraction tutor were successful
as participants improved significantly from pre-test to post-test. In addition to standard frequentist statistics,
our results were supplemented with effect sizes and Bayesian statistics. Despite all these methods, we did not
find evidence that supplementing problem-solving activities with erroneous examples produced higher learning
compared to problem solving without examples. Additionally, although low-prior-knowledge students in the
erroneous-example condition had higher learning gains than in the problem-solving condition, this difference
was not significant. Given that to date there are relatively few studies on erroneous examples, and even fewer
with adults, there is a clear need for more work in this area.
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