
This is a repository copy of We cannot ignore the signs: the development of equivalence 
and arithmetic for students from grades 3 to 4.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/206202/

Version: Published Version

Article:

Xu, C. orcid.org/0000-0002-6702-3958, Li, H. orcid.org/0000-0002-5052-2742, Di Lonardo 
Burr, S. orcid.org/0000-0001-6338-9621 et al. (3 more authors) (2024) We cannot ignore 
the signs: the development of equivalence and arithmetic for students from grades 3 to 4. 
Journal of Cognition and Development, 25 (1). pp. 46-65. ISSN 1524-8372 

https://doi.org/10.1080/15248372.2023.2245507

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=hjcd20

Journal of Cognition and Development

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/hjcd20

We Cannot Ignore the Signs: The Development
of Equivalence and Arithmetic for Students from
Grades 3 to 4

Chang Xu, Hongxia Li, Sabrina Di Lonardo Burr, Jiwei Si, Jo-Anne LeFevre &
Xinfeng Zhuo

To cite this article: Chang Xu, Hongxia Li, Sabrina Di Lonardo Burr, Jiwei Si, Jo-Anne LeFevre
& Xinfeng Zhuo (10 Aug 2023): We Cannot Ignore the Signs: The Development of Equivalence
and Arithmetic for Students from Grades 3 to 4, Journal of Cognition and Development, DOI:
10.1080/15248372.2023.2245507

To link to this article:  https://doi.org/10.1080/15248372.2023.2245507

© 2023 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 10 Aug 2023.

Submit your article to this journal Article views: 387

View related articles View Crossmark data

This article has been awarded the Centre
for Open Science 'Open Data' badge.



We Cannot Ignore the Signs: The Development of Equivalence 
and Arithmetic for Students from Grades 3 to 4

Chang Xu b,c, Hongxia Li a, Sabrina Di Lonardo Burr d, Jiwei Si a, Jo-Anne LeFevre c 

and Xinfeng Zhuo a

aShandong Normal University, China; bQueen’s University Belfast, UK; cCarleton University, Canada; dUniversity 
of British Columbia, Canada

ABSTRACT

Students' understanding of the meaning of the equal sign develops 
slowly over the primary grades. In addition to updating their repre-
sentations of equations to recognize that the equal sign represents an 
equivalence relation rather than signaling an operation, students need 
to move beyond full computation to efficiently solve equivalence 
problems. In this study, we examined the longitudinal relation 
between arithmetic and equivalence for students who were capable 
of accurately solving arithmetic problems in different formats. Chinese 
students (N = 612; Mage = 9.0 years in Grade 3, 57% boys) completed 
measures of arithmetic fluency and equivalence fluency in Grade 3 and 
again in Grade 4. They also completed a non-verbal reasoning task in 
Grade 3. We tested a cross-lagged structural equation model to exam-
ine the reciprocal relations between arithmetic and equivalence flu-
ency. We found reciprocal relations between the development of 
arithmetic and equivalence fluency from Grades 3 to 4, with 
a greater influence of arithmetic on the development of equivalence 
than the reverse. Furthermore, non-verbal reasoning predicted the 
development of equivalence, but not the development of arithmetic. 
Based on our findings, we conclude that for Chinese students with 
prior basic understanding of equivalence, flexible access to arithmetic 
facts supports their development of equivalence fluency.

Equivalence is the concept that the quantities represented by expressions on both sides 
of the equal sign must be the same (Alibali, 1999; Powell, 2012; Sherman & Bisanz,  
2009). Although an understanding of equivalence is fundamental to mathematics, 
acquisition of this concept is difficult for many elementary school students (Carpenter 
& Levi, 2000; Kieran, 1981; McNeil & Alibali, 2005; Sherman & Bisanz, 2009; Yang, 
Huo, & Yan, 2014). In particular, during the early stages of learning arithmetic, 
a common misconception is that the equal sign is an operational symbol that means 
“the answer always [comes] right after the equal sign” (Carpenter, Franke, & Levi, 2003, 
p. 11). Once students accept that the equal sign represents an equivalence relation rather 
than signaling an operation, they can develop efficient strategies to solve a variety of 
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arithmetic problems without relying on full computation (e.g., 1036 + 4 + __ = 1036 + 12; 
Kindrat & Osana, 2018). We refer to students’ ability to solve equivalence problems both 
efficiently (i.e., quickly and accurately) and flexibly (i.e., applied to equations in different 
formats) as equivalence fluency. Equivalence fluency becomes particularly important 
when students subsequently learn algebra (Fyfe, Matthews, Amsel, McEldoon, & 
McNeil, 2018; Kindrat & Osana, 2018; Knuth, Stephens, McNeil, & Alibali, 2006; 
Matthews & Fuchs, 2020).

Most research on equivalence is focused on students’ acquisition of conceptual knowl-
edge and does not assess the fluency with which they use this knowledge to enhance 
mathematical performance. In contrast, in the present research we examined the reciprocal 
relations between arithmetic fluency and equivalence fluency. Arithmetic fluency was 
operationalized as the ability to efficiently solve standard arithmetic problems, in which 
operations only appear to the left of the equal sign (i.e., a + b = __), whereas equivalence 
fluency was operationalized as the ability to efficiently solve nonstandard arithmetic 
problems, in which operations appear on either both sides or to the right of the equal 
sign (e.g., a = b – __; a + __ = b; a – b = __ + c; Carpenter, Franke, & Levi, 2003; Powell,  
2012; Sherman & Bisanz, 2009). We focussed on Chinese students because the Chinese 
mathematics curriculum introduces the equal sign in relational contexts (i.e., the equal sign 
means “sameness” and “balance”) along with the introduction of addition and subtraction 
from Grade 1 onwards (Capraro, Ding, Matteson, Capraro, & Li, 2007; Li, Ding, Capraro, & 
Capraro, 2008). Given the close relation between arithmetic and equivalence, and the 
simultaneous introduction of and ongoing practice with these concepts for Chinese- 
educated students, we anticipated that improvements in one would lead to improvements 
in the other.

The role of equivalence in arithmetic equations

Knowledge of mathematical equivalence is fundamental to students’ development of 
arithmetic and algebraic skills (Alibali, 1999; Fyfe, Matthews, Amsel, McEldoon, & 
McNeil, 2018; Kieran, 1981; Matthews & Fuchs, 2020; McNeil, 2008; McNeil et al.,  
2012; McNeil, Hornburg, Devlin, Carrazza, & McKeever, 2019; Robinson, Price, & 
Demyen, 2018). In 2011, Rittle-Johnson and colleagues proposed a model that sum-
marized the developmental progression of students’ understanding of equivalence. 
According to their model, first, students hold a rigid operational view of the equal 
sign, seeing it as a signal to “do something”. Next, students transition to a flexible 

operational view of the equal sign; they still mainly hold an operational view but they 
will also accept a small portion of atypical (nonstandard) equations that are compa-
tible with the operational view of the equal sign (e.g., c = a + b or a = a). At the next 
level of understanding, students hold a basic relational view of the equal sign, 
implicitly understanding it as a relational symbol; however, they cannot provide 
conceptually accurate explanations for such problems. Finally, students develop 
a comparative relational view; they understand the equal sign as a relational symbol 
and can recognize and explain that performing the same operations on both sides 
maintains equivalence. These students can use compensatory strategies to solve chal-
lenging problems efficiently without needing to perform full computations. For exam-
ple, given the problem “18 + 35 = 17 + __”, they can solve it by reasoning that 18 is 1 
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more than 17, so the unknown must be 1 more than 35 (Rittle-Johnson, Matthews, 
Taylor, & McEldoon, 2011). On this view, comparative relational understanding of the 
equal sign supports students in decomposing and recomposing numbers flexibly when 
they solve arithmetic problems.

When students solve standard equations in which operations appear only on the left side 
of the equation, they do not need to understand the equal sign as a relational symbol, but 
only need to recognize it as an operational symbol (e.g., 4 + 9 = __; Sherman & Bisanz,  
2009). However, only having an operational understanding of the equal sign may hinder 
success when students encounter more complex equations that are in nonstandard forms 
(Kieran, 1981; Knuth, Stephens, McNeil, & Alibali, 2006). For example, nonstandard 
equations may have operations on both sides, or operations on the right side (Carpenter, 
Franke, & Levi, 2003). Consider the example of 2 + 5 = __ + 1: Students who have only an 
operational understanding of the equal sign may misinterpret the equal sign as “the answer 
comes next,” and proceed to add the numbers on the left side of the equation and ignore the 
numbers on the right side (i.e., 2 + 5 = 7). Alternatively, they may incorrectly restructure the 
equation by adding all three numbers on both sides of the equation (2 + 5 + 1 = 8). These 
misconceptions about the meaning of the equal sign may limit students’ ability to solve 
nonstandard equations that require reasoning skills (Kindrat & Osana, 2018; Sherman & 
Bisanz, 2009).

While there are many studies on equivalence in Western countries (e.g., Alibali, 1999; 
Fyfe, Matthews, Amsel, McEldoon, & McNeil, 2018; Kieran, 1981; Kindrat & Osana, 2018; 
Knuth, Stephens, McNeil, & Alibali, 2006; McNeil, 2008; McNeil et al., 2012; McNeil, 
Hornburg, Devlin, Carrazza, & McKeever, 2019; Robinson, Price, & Demyen, 2018; 
Sherman & Bisanz, 2009), only three studies have examined equivalence knowledge for 
Chinese students (Jones, Inglis, Gilmore, & Dowens, 2012; Li, Ding, Capraro, & Capraro,  
2008; Yang, Huo, & Yan, 2014). Yang, Huo, and Yan (2014) found that most Chinese 
students in Grades 3 to 5 made correct judgments for equivalent statements (e.g., true or 
false: 57 + 22 = 58 + 21). However, in Grade 3, most students used a computational strategy, 
adding numbers on the left (57 + 22 = 79) and right sides of the equation (58 + 21 = 79) to 
determine if the statement was true. In contrast, in Grades 4 and 5, many students used 
a compensatory strategy (e.g., 57 is 1 less than 58, and 22 is 1 more than 21, so the statement 
is true). Use of the compensatory strategy suggests that the older students were more likely 
to have a relational understanding of the equal sign. However, even in Grade 5, only about 
one-third of the students were able to state a relational interpretation of these statements 
(Yang, Huo, & Yan, 2014).

By Grade 6, Li, Ding, Capraro, and Capraro (2008) found that 98% of Chinese students, 
compared to only 28% of American students, correctly solved and provided conceptually 
accurate explanations for equivalence problems (e.g., 6 + 9 = __ + 4) and thus demonstrated 
both procedural and conceptual knowledge of equivalence. Similarly, Jones, Inglis, Gilmore, 
and Dowens (2012) found that 11- and 12-year-old Chinese students were much more likely 
to endorse relational interpretations of the equal sign than British students of the same age. 
Specifically, when asked to rate the “cleverness” of operational, sameness, and substitutive 
definitions of the equal sign, Chinese students gave higher cleverness ratings to the 
substitutive definitions, which required relational interpretations of the equal sign (e.g., 
the two sides can be exchanged) than British students. In contrast, British students gave 
higher cleverness ratings to the operational definitions (e.g., answer to the problem) than 
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Chinese students. In summary, these studies suggest that educational experiences dictate 
students’ learning of equivalence, with Chinese-educated students gaining Level 4 knowl-
edge much earlier than students educated in Western countries.

The development of procedural and conceptual understanding of mathematical equiva-
lence is closely tied to the type of education students receive (Li, Ding, Capraro, & Capraro,  
2008; Powell, 2012; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). Capraro, Ding, 
Matteson, Capraro, and Li (2007) examined three of the most popular sets of Chinese 
mathematics textbooks and found that all textbooks introduced the equal sign in relational 
contexts, for example, students are taught to substitute the words “sameness” and “balance” 
for the equal sign prior to the introduction of addition and subtraction. In a comparative 
analysis of teacher guides and student texts in China and the United States, Li, Ding, 
Capraro, and Capraro (2008) found that Chinese textbooks provided much more direct 
instruction on equivalence and the relational meaning of the equal sign than American 
textbooks. More specifically, teachers use concrete pictorial representations and life situa-
tions to help students develop an understanding of “the same as” before it is introduced in 
the arithmetic context (Li, Ding, Capraro, & Capraro, 2008). Subsequently, Chinese stu-
dents practice many nonstandard problems to enhance students’ understanding of the equal 
sign, including operations without equal signs (e.g., solve 8 + 5), using an arrow to replace 
the equal sign (e.g., 14–5–2 → __), learning to place numbers in the blank to make simple 
equations true (e.g., __ = 9, 5 = __) and to fill in missing numbers in more complex 
nonstandard contexts (e.g., __ + 2 = __; __ + 2 = __). The latter problems have an infinite 
number of solutions, requiring both relational understanding of the equal sign and flexible 
understanding of equivalence. The comprehensive instruction on the relational view of the 
equal sign that Chinese students receive may help them develop a relational understanding 
of equivalence. Overall, evidence from Chinese curricula and the findings from previous 
studies indicate that conceptual understanding of equivalence develops slowly over time but 
it is very sensitive to the curriculum.

The integration of arithmetic and equivalence knowledge

Students’ arithmetic skills develop in the early grades of elementary school in China 
(Ministry of Education, 2011). By Grade 3, Chinese students are expected to be able to 
fluently solve basic arithmetic problems. Over time, they use their fluency with arithmetic to 
quickly and accurately solve more complex arithmetic problems. Similarly, equivalence 
skills are also developing in Grade 3; however, full conceptual understanding does not occur 
for most students until the later grades of elementary school (Li, Ding, Capraro, & Capraro,  
2008; Yang, Huo, & Yan, 2014). To date, studies have separately investigated the develop-
ment of arithmetic and equivalence, however, to our knowledge none have explored the 
bidirectional development of these skills. Moreover, the equivalence literature has predo-
minately focused on accuracy (e.g., Alibali, 1999; Fyfe, Matthews, Amsel, McEldoon, & 
McNeil, 2018; Li, Ding, Capraro, & Capraro, 2008; Mathews & Fuchs, 202 0; McNeil, 2008; 
Robinson, Price, & Demyen, 2018; Yang, Huo, & Yan, 2014) and thus the development of 
equivalence fluency in relation to arithmetic fluency remains unknown.

Students with strong equivalence and arithmetic fluency can use these skills in combination 
to efficiently solve more complex equivalence problems (Osana & Kindrat, 2021). For example, 
to determine whether 65 + 36 = 67 + 38, instead of relying on full computation, students with 
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equivalence and arithmetic fluency can efficiently recognize that 67 is 2 more than 65 and 38 is 2 
more than 36 so it is not possible for this equation to be true (Osana & Kindrat, 2021). Fluency in 
equivalence and arithmetic is also important when students are challenged by arithmetic 
problems that take on various formats, such as __ = 5 + 3 and 7 = _ + 3 (McNeil, Fyfe, & 
Dunwiddie, 2015). Furthermore, fluency allows students to solve more complex arithmetic 
problems by decomposing and recomposing numbers in a flexible manner (e.g., 29 + 149 = 30  
+ 150–2; Kindrat & Osana, 2018). Given that both types of fluency play a role in solving 
arithmetic and equivalence problems, considering their bidirectional development is critical.

The role of reasoning skills in solving arithmetic and equivalence problems

Beyond the relations among different mathematics skills, domain-general skills, such as 
reasoning, are essential in the development of mathematics (see reviews in Miller Singley & 
Bunge, 2014; Morsanyi, Prado, & Richland, 2018). Reasoning skills help students to notice 
relations among numbers and expressions, simplify calculations, extract rules to generate 
new information, and extend procedures to novel problems (Alexander, Jablansky, Singer, 
& Dumas, 2016; Jacobs, Franke, Carpenter, Levi, & Battey, 2007). With respect to equiva-
lence, relational reasoning skills may allow students to coordinate quantities in 
a mathematical expression without full computation by transforming nonstandard pro-
blems into equivalent expressions (Kindrat & Osana, 2018). For example, with relational 
thinking, students can ignore 1938 in the equation 1938 + 5 + __ = 1938 + 11 to quickly 
determine that the answer is 6 because 5 + 6 = 11. Thus, reasoning skills may be particularly 
important for the development of equivalence fluency. For standard arithmetic, however, 
the process of acquiring basic number facts involves discovering, labeling, and internalizing 
number relations (Baroody, 1985). Development of fluent access to basic arithmetic opera-
tions reduces the role of relational thinking in solving arithmetic problems because students 
no longer need to infer new rules or search for novel number relations.

Current study

The goal of the present study was to examine the reciprocal relations between arithmetic 
fluency and equivalence fluency for Chinese students in Grade 3 and Grade 4. Consistent 
with previous studies (Carpenter, Franke, & Levi, 2003; Kieran, 1981; Knuth, Stephens, 
McNeil, & Alibali, 2006; Li, Ding, Capraro, & Capraro, 2008; McNeil, 2008), we used 
nonstandard arithmetic problems to measure equivalence. However, novel to the present 
study, we used speeded tasks to tap into equivalence fluency and arithmetic fluency. We 
asked two research questions: (a) How are equivalence fluency and arithmetic fluency 
related from Grade 3 to Grade 4? and (b) Do non-verbal reasoning skills predict individual 
differences in the development of arithmetic fluency and equivalence fluency?

Based on the assumption that the development of students’ arithmetic and 
equivalence skills are closely related, we hypothesized that there would be reciprocal 
relations between the two skills between Grades 3 and 4 (Hypothesis 1). Second, 
based on the assumption that students need arithmetic knowledge to solve problems 
in nonstandard formats, we predicted that arithmetic would more strongly predict 
the change in equivalence fluency than equivalence would predict the change in 
arithmetic fluency (Hypothesis 2). Third, we expect that recognizing relations among 
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numbers can help students choose efficient and flexible solutions to nonstandard 
problems. Thus, we hypothesized that non-verbal reasoning would predict the 
change in students’ equivalence fluency but would not predict change in their 
arithmetic fluency (Hypothesis 3).

Method

Participants

Approval from the Institutional Review board at Shandong Normal University and the 
local school board was obtained, followed by written consent from parents or guar-
dians. Monolingual Chinese students (N = 612; Mage = 9.0 years, SD = .59; 57% boys) 
were recruited near the end of the first semester in Grade 3. The sample was obtained 
from two public elementary schools (14 classrooms) from a suburban town with an 
economic level approximately at the national average (National Bureau of Statistics,  
2019). One year later, in Grade 4, the same group of students were assessed on the 
same measures (Mage = 9.8 years, SD = .58). In the present study, we did not collect 
information about the socioeconomic status of the sample. However, to provide 
a description of the sample, we estimated parent education levels obtained from 
other cohorts from the two participating schools (Li et al., 2021). Education levels 
for parents of the students in these two schools typically ranged from elementary 
school to a postgraduate degree, with a median education level of a high school degree 
for both fathers and mothers, representative of low- to middle-socioeconomic status in 
China.

Procedure

In both Grades 3 and 4, students were assessed in group sessions in their classroom during 
school hours. Two trained experimenters were present for all testing, with one experimenter 
focused on reading directions and monitoring time, while the other experimenter circulated 
through the classroom with the teacher, ensuring that students were following the instructions 
for the task. In Grade 3, students completed the Raven’s progressive matrices test in one 45- 
minute session. Also, in both Grade 3 and 4, students completed the Chinese-adapted version of 
the standardized Heidelberg Rechen Test (HRT; Haffner, Baro, & Resch, 2005; adapted from; 
Wu & Li, 2005), which included the arithmetic and equivalence measures, in a second 45- 
minute session. All students completed the tasks in the same order: addition, subtraction, 
multiplication, division, and equivalence. A brief break was provided between each task. In 
Grade 4, students also completed a number writing speed task at the beginning of the session as 
a control variable to account for individual differences in the speed with which students could 
write Arabic digits.

Data availability statement

To promote transparency and openness, anonymized data for the measures analyzed in the 
current paper and analysis code are freely available for download at [https://osf.io/t7fbj/].
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Measures

Non-verbal reasoning

In Grade 3, students completed a paper-and-pencil version of the Raven’s standard pro-
gressive matrices test (Raven, 1938) as a measure of non-verbal reasoning skills. Students 
were given 40 minutes to complete five sets of questions (12 questions within each set), with 
questions ordered by increasing difficulty. Each question consisted of a series of geometric 
figures with one element missing. Students were asked to find the missing element in 
a pattern among six options. Scoring was the total number of questions answered correctly 
(maximum = 60). In the present sample, the items showed good internal reliability, 
Cronbach’s α = .86.

Mathematics tasks

Paper-and pencil tests from the adapted version of the standardized HRT (Haffner, Baro, 
& Resch, 2005; adapted from; Wu & Li, 2005) were administered. In the present study, 
we use data from the arithmetic and equivalence measures because they were directly 
relevant to our research questions. Notably, to ensure the task was appropriate for the 
population of this study, as recommended by Wu and Li (2005), students were given less 
time to complete the arithmetic measures and some of the digits, but not the format, 
were changed for later items. The equivalence measure used was identical to the one 
used in the original HRT.

Standard arithmetic

Students completed addition, subtraction, multiplication, and division subtests in which 
operations appear only on the left side of the equation. For each operation, 40 questions 
were presented in two columns on a single page, with questions ordered by increasing 
difficulty. Students were given one minute to answer as many questions as possible, in 
order, beginning with the left column. Scoring was the total number of questions 
answered correctly (maximum = 40). These subtests have excellent reported test-retest 
reliabilities based on a large national assessment of Chinese students in Grades 1 
through 6 (addition = .89, subtraction = .86, multiplication = .98, division = .94; Wu & 
Li, 2005).

Addition

The left column consisted of problems with single- and double-digit addends (e.g., 2 + 5  
= __, 12 + 8 = __) with no sums greater than 20. The right column consisted of problems 
with single-, double-, and triple-digit addends (e.g., 7 + 13 = __, 24 + 49 = __, 267 + 432  
= __).

Subtraction

The left column consisted of problems with single- and double-digit minuends and sub-
trahends (e.g., 5–1 = __, 19–6 = __, 17–13 = __), with no minuends greater than 20. The 
right column consisted of problems with double- and triple-digit minuends, and single-, 
double- and triple-digit subtrahends (e.g., 17–9 = __, 32–15 = __, 130–28 = __, 732–421  
= __).
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Multiplication

The left column consisted of problems with single-digit multiplicands and multipliers (e.g., 
4 � 1 = __, 9 � 8 = __). The right column consisted of problems with single- and double- 
digit multiplicands and multipliers, all less than 20 (e.g., 17 � 11 = __, 18 � 6 = __).

Division

The left column consisted of problems with single-and double-digit dividends and single-digit 
divisors (e.g., 8 � 2 = __, 28 � 7 = __). These problems were complementary to the problems 
found on a 9 � 9 multiplication table. The right column consisted of problems with double- 
and triple-digit dividends and single-digit divisors (e.g., 54 � 9 = __, 450 � 15 = __).

Equivalence

Forty nonstandard addition, subtraction, and mixed operation equivalence questions 
were presented in two columns on a single page, with questions ordered by increasing 
difficulty. Questions consisted of a mixture of equations with a missing operand on the 
right side of the equal sign (e.g., 5 = 8 – __; 11 = __ + 6), equations with a missing 
operand on the left side of the equal sign (e.g., 6 + __ = 7; 12 – __ = 5), and equations 
with operations on both sides of the equal sign (e.g., 5–1 = __ + 2; 53 + 12 = __ − 30). 
Students were given one minute to fill in the missing numbers to make the statements 
true as quickly as possible, in order, beginning with the left column. Scoring was the 
total number of equivalence questions answered correctly (maximum = 40). The 
reported test-retest reliability for the equivalence task from the Chinese HRT was .76 
(Wu & Li, 2005).

Number writing speed

Given that the main tasks of interest in our study were all speeded based on paper and pencil 
tasks, students completed a number writing speed task in Grade 4 as a control variable for 
individual differences in the speed at which students can write down numbers. Students 
were given 30 seconds to copy Arabic digits in order as quickly as possible. A maximum of 
60 numbers ranging from 0 to 9 were presented in three columns. The score was the total 
number of digits students copied.

Results

Descriptive statistics

Descriptive statistics and correlations among variables are shown in Tables 1 and 2. Violin 
plots (see Figure 1) show the distribution of the data in each Grade for each measure. 
Although all measures were normally distributed, the patterns of distribution varied, with 
the distribution for multiplication showing less variability than those for addition, subtrac-
tion, division, and equivalence. Although retrieval of basic facts is the focus of arithmetic 
instruction in China, the memorization of the multiplication table is unique, as students are 
required to orally recite half of the operations up to 9 × 9 (small-operand-first entries only). 
Furthermore, most of the items on the test were from this memorized set whereas addition 
and subtraction included more complex items. For these reasons, the overall variability in 
multiplication was smaller compared to the other operations.

8 C. XU ET AL.



A few outliers (i.e., |z-scores| > 3.29), were found for the following tasks: Non-verbal 
reasoning (n = 5), addition in Grade 3 (n = 2) and Grade 4 (n = 1), subtraction in Grade 
3 (n = 1) and Grade 4 (n = 2), multiplication in Grade 3 (n = 6) and Grade 4 (n = 9), 
division in Grade 3 (n = 2) Grade 4 (n = 5), equivalence in Grade 3 (n = 1) and Grade 4 
(n = 5), and writing speed (n = 3). Sensitivity analyses with and without these outliers 
showed the same patterns of results, and thus all the data were included in the final 
analyses.

The mean scores (see Table 1) and the interquartile ranges, shown in Figure 1, suggest 
that most students were capable of solving all types of equivalence problems (i.e., equations 
with operands to the left of, right of, or on both sides of the equal sign). Thus, the variability 
in equivalence fluency likely reflects how flexibly students applied their arithmetic skills to 
solve these problems efficiently.

A few significant gender differences were present. In Grade 3, compared to girls, boys 
solved more addition (24.4 versus 23.6, t = 2.35, p = 0.019, d = .19) subtraction (24.4 versus 
23.6, t = 2.32, p = 0.021, d = .19), and multiplication (28.9 versus 28.3, t = 1.96, p = 0.051, d  

= .16) problems correctly. In Grade 4, boys solved more subtraction (25.5 versus 24.8, t =  
1.96, p = 0.050, d = .17) and multiplication (31.2 versus 30.4, t = 3.50, p = 0.001, d = .30) 

Table 1. Descriptive statistics and comparisons for measures in grade 3 (time 1) and grade 4 (time 2).

Grade 3 Grade 4 Comparisons

N M SD Skew Min Max N M SD Skew Min Max t df
Cohen’s 

d

Non-verbal 
Reasoning

612 40.54 7.17 −0.65 7 55 - - - - - - - - -

Addition 611 24.03 4.41 −0.05 2 40 569 26.32 4.21 −0.11 12 40 15.12 567 0.63
Subtraction 611 24.05 4.63 −0.12 2 40 570 25.18 4.67 −0.39 1 38 6.77 568 0.28
Multiplication 611 28.62 3.37 −1.94 3 40 568 30.87 2.83 −1.79 13 38 15.55 567 0.65
Division 611 22.49 6.07 −0.62 2 34 569 27.69 5.94 −1.03 1 39 26.30 568 1.10
Equivalence 612 20.16 5.62 −0.50 1 36 570 23.18 5.38 −0.72 2 35 15.88 569 0.67
Number Writing - - - - - - 570 44.41 10.76 −0.37 0 60 - - -

Maximum possible scores were 40 for the arithmetic measures and 60 for number writing speed. All pairwise t-tests 
comparing grade 3 to grade 4 performance were significant at p < 0.001.

Table 2. Correlations among measures in grade 3 (G3) and grade 4 (G4).

Grade 3 Grade 4

1 2 3 4 5 6 7 8 9 10 11

1. Non-verbal Reasoning G3 -
2. Addition G3 .27 -
3. Subtraction G3 .22 .77 -
4. Multiplication G3 .13 .47 .41 -
5. Division G3 .24 .65 .64 .43 -
6. Equivalence G3 .33 .49 .42 .38 .55 -
7. Addition G4 .24 .67 .63 .36 .56 .49 -
8. Subtraction G4 .29 .62 .66 .33 .55 .54 .71 -
9. Multiplication G4 .12 .44 .37 .40 .40 .41 .51 .51 -
10. Division G4 .21 .58 .56 .36 .70 .56 .67 .70 .55 -
11. Equivalence G4 .40 .57 .53 .32 .53 .66 .63 .66 .47 .65 -
12. Number Writing G4 .00 .30 .32 .18 .21 .07 .22 .22 .14 .17 .09

Shaded regions indicate within-grade correlations. Nonsignificant correlations are italicized. Except for the correlations of .12 
(p = 0.004) and .09 (p = 0.036), correlations were statistically significant at p < 0.001.
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problems correctly. There were no other significant gender differences (ps > 0.05). We note 
that these differences are trivial (i.e., small effect sizes, mean differences < 1 point) and that 
the statistical significance reflects the large sample size. Nevertheless, for further analyses, 
we controlled for gender.

Development of arithmetic and equivalence

All of the measures were significantly correlated, except for number writing speed 
with non-verbal reasoning and equivalence (see Table 2). Moreover, students 
improved from Grades 3 to 4 on the arithmetic and equivalence measures (see 
Table 1 for pairwise comparisons). Based on the significant correlations between 
standard arithmetic and equivalence and the improvement from Grades 3 to 4, we 
proceeded with cross-lagged analyses to further investigate the longitudinal relations 
between these measures.

Multilevel cross-lagged structural equation modelling

The goal of the present study was to investigate the development of standard arithmetic 
fluency (i.e., addition, subtraction, multiplication, division) and equivalence fluency from 
Grade 3 to Grade 4. Given that students were from 14 classrooms, we tested a multilevel 
cross-lagged structural equation model to account for the hierarchical nature of the dataset 
using Mplus (Muthén & Muthén, 1998). Model fit was examined using a combination of the 
chi-square goodness of fit test (p > 0.05), comparative fit index (CFI > 0.90), root mean 
square error of approximation (RMSEA < 0.06), Tucker-Lewis index (TLI > 0.90), and 
standardized root mean square residual (SRMR <.08; Hu & Bentler, 1999).

In Grade 3, for each variable, a low percentage of data (<0.2%) were missing (see 
Table 1). In Grade 4, 44 students dropped out of the study for personal reasons. Given 
the low attrition rate (7.2%) relative to the sample size, these missing cases were unlikely to 

Figure 1. Violin plots for standard arithmetic and equivalence in grade 3 (time 1) and grade 4 (time 2). 
The white dot is the median, and the black bar in the center of the plot shows the interquartile range.
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influence the interpretation of the results even if they were not missing at random (Enders,  
2010). First, sensitivity analyses were conducted to compare the results for analyses with all 
students (n = 612) versus only those with complete data (n = 569). The pattern of results was 
the same in both analyses and thus the final model was estimated by a full information 
maximum likelihood method where all available information is used in all observations to 
find the optimal combination of estimates for the missing parameters (Enders, 2010).

We examined the longitudinal relations between standard arithmetic and equivalence 
fluency from Grades 3 to 4. We hypothesized that there would be bidirectional relations 
between standard arithmetic and equivalence fluency (Hypothesis 1), controlling for stu-
dents’ number writing speed. We tested a multilevel cross-lagged structural equation model, 
specifying classroom as a random effect. First, an intercept-only model was fit which 
contained a classroom variable. The intra-class correlation coefficients were .10 (addition), 
.14 (subtraction), .13 (multiplication), .06 (division), .15 (equivalence) and .05 (non-verbal 
reasoning), indicating modest variability in performance in Grade 3 among the classrooms.

Second, we added a confirmatory factor analysis to the intercept-only model to test factor 
loadings for each of the arithmetic operations on latent standard arithmetic constructs in 
Grades 3 and 4. The model had good fit to the data, χ2(15) = 33.37, p = 0.004, SRMR = .021, 
CFI = .989, TLI = .976, RMSEA = .045. The factor loadings of each type of arithmetic 
operation on the latent variable were high (see Figure 2). The slightly lower factor loadings 

Figure 2. Multilevel cross-lagged structural equation model for standard arithmetic and equivalence 
fluency for students in grade 3 (Time 1) and grade 4 (Time 2).
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for multiplication reflect that there was less variability in this operation. These latent 
variables were subsequently labeled standard arithmetic.

Then, we constructed a cross-lagged path model between students’ standard arithmetic 
and equivalence fluency in Grades 3 and 4, controlling for number writing speed. Non- 
verbal reasoning in Grade 3 was modeled as a correlate and predictor of both standard 
arithmetic and equivalence variables in Grades 3 and 4, respectively. We compared models 
in which the two cross-lagged paths were either constrained to be equal or were freely 
estimated using the Satorra-Bentler scaled chi-square difference test (Satorra & Bentler,  
2010). The constrained model did not fit well, χ2(54) = 179.13, p < 0.001, SRMR = .057, CFI  
= .942, TLI = .906, RMSEA = .062. In contrast, the unconstrained model had acceptable fit 
to the data, χ2(53) = 120.47, p < 0.001, SRMR = .034, CFI = .969, TLI = .948, RMSEA = .046. 
Moreover, the cross-lagged path coefficients were significantly different between the con-
strained and unconstrained models, Δχ2(1) = 1923.75, p < 0.001, implying that the path 
from standard arithmetic in Grade 3 to equivalence in Grade 4 was significantly stronger 
than the path from equivalence in Grade 3 to standard arithmetic in Grade 4. Thus, the 
unconstrained model was retained for further interpretation (see Figure 2).

Consistent with Hypothesis 1, standard arithmetic in Grade 3 significantly predicted the 
improvement of equivalence from Grades 3 to 4. Equivalence in Grade 3 also predicted the 
improvement in standard arithmetic from Grades 3 to 4. Consistent with Hypothesis 2, the 
strength of the path coefficient from standard arithmetic to equivalence was stronger than 
the path coefficient from equivalence to standard arithmetic. Finally, consistent with 
Hypothesis 3, non-verbal reasoning was related to the development of equivalence fluency, 
but not to the development of standard arithmetic fluency, highlighting the specific role of 
non-verbal reasoning in solving equivalence problems.

Because the equivalence task only included additive operations (i.e., addition, subtrac-
tion, and mixed addition and subtraction), and considering the conceptual distinction 
between additive and multiplicative operations (e.g., Harel & Confrey, 1994; Robinson,  
2017; Steffe, 1992), in additional exploratory analyses, we used multi-level SEM to sepa-
rately test the bidirectional relations between the additive operations and equivalence, and 
between the multiplicative operations and equivalence. Similar to the original model, for the 
additive skills model we found reciprocal relations between the development of additive 
operations and equivalence fluency from Grades 3 to 4, with a greater influence of the 
additive operations on the development of equivalence than the reverse (see Figure 3). In 
contrast, for the multiplicative skills model, equivalence fluency in Grade 3 did not predict 
multiplicative skills in Grade 4 (see Figure 4). For both the additive and multiplicative 
models, non-verbal reasoning was related to the development of equivalence fluency. 
Overall, these additional analyses provide further evidence supporting the importance of 
students’ fluent access to arithmetic skills as a predictor of the development of equivalence 
fluency but also show that equivalence fluency may be operation specific.

Discussion

Understanding mathematical equivalence is fundamental to students’ mathematical devel-
opment (Fyfe, Matthews, Amsel, McEldoon, & McNeil, 2018; Kieran, 1981; Knuth, 
Stephens, McNeil, & Alibali, 2006; McNeil, 2008). Once students understand that the 
equal sign represents an equivalence relation, they can use this understanding to develop 
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flexible strategies to efficiently solve nonstandard equivalence problems. In the present 
study, we investigated the reciprocal relations and the role of reasoning skills in the 
development of arithmetic and equivalence fluency for Chinese students from Grades 3 
to 4.

Using a cross-lagged analytical framework, we found that arithmetic fluency in Grade 3 
predicted the change in Chinese students’ equivalence fluency from Grades 3 to 4 and vice 
versa, demonstrating that these two types of knowledge are reciprocally related. Consistent 
with previous work showing that, from Grades 3 to 4, Chinese students are continuing to 
develop equivalence knowledge (Yang, Huo, & Yan, 2014), we found bidirectional relations 
between arithmetic and equivalence. Thus, knowledge of one skill facilitates knowledge of 
the other.

Figure 3. Multilevel cross-lagged SEM model for standard additive and equivalence fluency for students 
in grade 3 (Time 1) and grade 4 (Time 2). The model had excellent fit to the data, χ2(17) = 23.271, p =  
0.141, SRMR = 0.034, CFI = 0.994, TLI = 0.986, RMSEA = 0.025. Numbers on the arrows are standardized 
coefficients. ***p < 0.001. Dashed lines represent non-significant paths. Number writing speed and 
gender were controlled for both the standard additive operations (βSpeed = .071, p = 0.033; βGender  

= -.009, p = 0.706) and equivalence (βSpeed = -.065, p = 0.051; βGender = -.020, p = 0.298) in grade 4. R2 

values for each outcome include variance predicted by the control measures.
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Although the two skills develop together, the size of the relation between arithmetic 
in Grade 3 and equivalence in Grade 4 was larger than between equivalence in Grade 
3 and arithmetic in Grade 4. In the present study, equivalence fluency was assessed 
using a nonstandard arithmetic task that included addition, subtraction, and mixed 
addition and subtraction problems. Thus, proficiency in standard additive arithmetic 
skills (addition and subtraction) serves as a prerequisite for solving nonstandard 
equivalence problems. Moreover, beyond operation-specific relations, our additional 
models revealed that both additive and multiplicative arithmetic skills significantly 
predicted the development of equivalence fluency. The process of solving mathema-
tical equivalence problems involves various subskills, such as encoding numbers and 
operators and carrying out calculations (McNeil, Hornburg, Fuhs, & Connor, 2017). 
When students have fluent access to basic arithmetic facts, they can free up space in 

Figure 4. Multilevel cross-lagged SEM model for standard multiplicative and equivalence fluency for 
students in grade 3 (Time 1) and grade 4 (Time 2). The model had good fit to the data, χ2(17) = 25.885, p  

= .077, SRMR = 0.035, CFI = 0.990, TLI =0 .977, RMSEA = 0.029. Numbers on the arrows are standardized 
coefficients. ***p < .001. Dashed lines represent non-significant paths. Number writing speed and gender 
were controlled for both the standard multiplicative (βSpeed = .003, p = .944; βGender = -.032, p = .097) and 
equivalence (βSpeed = -.034, p = .439; βGender = -.040, p = .072) in grade 4. R2 values for each outcome 
include variance predicted by the control measures.
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their working memory, allowing them to apply efficient strategies when performing 
calculations (Anderson, 2002). Moreover, students who generate a greater variety of 
equations that are equal to a given value (e.g., 4 can be represented as “3 + 1”, “2 + 2”, 
’5–1’, “2 � 2”, “8 � 2” and so on) show a better understanding of equivalence than 
children who generate fewer equations (Chesney et al., 2014). Establishing stronger 
interconnections among numbers may therefore enable students to use their knowl-
edge of arithmetic facts in novel situations, leading to efficient solutions for nonstan-
dard arithmetic problems presented in various formats (Chesney et al., 2014; Chesney, 
McNeil, Petersen, & Dunwiddie, 2018; McNeil et al., 2012). In the present study, the 
arithmetic fluency task consisted of problems of varying levels of difficulty. As such, 
performance on this task not only reflects students’ ability to efficiently retrieve 
number facts (e.g., 2 + 5 = __) but also their ability to use effective strategies to solve 
complex problems (e.g., 24 + 49 = __). Consistent with Chesney et al. (2014), our 
findings suggest that the strong predictive link between arithmetic and equivalence 
fluency may be attributed to students’ proficiency in retrieving or computing arith-
metic facts when tackling equivalence problems.

Interestingly, although arithmetic fluency in Grade 3 predicted equivalence fluency in 
Grade 4 for the additive and multiplicative models, equivalence fluency in Grade 3 only 
predicted arithmetic in Grade 4 in the additive model. In the present study, equivalence 
fluency was assessed using a nonstandard arithmetic task that required only addition and 
subtraction knowledge. Thus, one possibility is that the predictive link from equivalence to 
arithmetic is specific to the operations included in the equivalence task. This possibility is 
consistent with the view that specific arithmetic operations play an important role in 
students’ development of understanding arithmetic concepts (Robinson, Price, & 
Demyen, 2018). Another possibility is that the multiplicative model reflects the limited 
variability in multiplication fluency in both Grades 3 and 4. In China, students are expected 
to acquire multiplication (i.e., memorize the multiplication table up to 9 � 9) by Grade 3. 
Thus, because many students had high scores on the multiplication task, as evidenced by the 
skewed distribution, there may be little change in arithmetic fluency to predict in the 
multiplicative model. To gain further insights into the bidirectional relations between 
different types of arithmetic operations and equivalence problems, future research should 
incorporate both additive and multiplicative operations within the equivalence task. This 
approach will allow for a more comprehensive understanding of the specific relations 
between equivalence knowledge and arithmetic knowledge for each type of arithmetic 
operation.

We also found that non-verbal reasoning predicted the development of equivalence 
fluency from Grades 3 to 4, supporting the view that development of equivalence knowledge 
involves reasoning skills (Miller Singley & Bunge, 2014; Morsanyi, Prado, & Richland,  
2018). Reasoning skills may help students notice the connections between expressions on 
each side of the equation and assist them in mentally transforming the expressions to 
simplify calculation (Kindrat & Osana, 2018). In contrast, non-verbal reasoning did not 
predict the development of standard arithmetic fluency from Grades 3 to 4 (Peng et al.,  
2016), even though there were concurrent relations between reasoning and arithmetic 
fluency (Fuchs et al., 2006; Xu et al., 2021). In summary, these results highlight the specific 
role of non-verbal reasoning in the development of students’ ability to solve arithmetic 
problems presented in nonstandard formats.
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Educational implications

Our research is necessarily tied to the educational experiences of students in China. The 
differences in educational experiences for students in China versus Western countries are 
pervasive across the materials and methods used to teach arithmetic (Li & Huang, 2013). 
For example, in contrast to the mathematics textbooks in Western countries, Chinese 
mathematics textbooks introduce the equal sign in a context of number relations and 
teach students to interpret the equal sign as balancing two sides of the equation starting 
in Grade 1 (Capraro, Ding, Matteson, Capraro, & Li, 2007). Beyond textbooks, Chinese 
teachers provide more instruction on equivalence and Chinese students have more expo-
sure to nonstandard equations that promote the relational understanding of the equal sign 
compared to students in Western countries (Li, Ding, Capraro, & Capraro, 2008; Powell,  
2012). These differences are critical for the development of students’ knowledge of equiva-
lence (Knuth, Stephens, McNeil, & Alibali, 2006; Li, Ding, Capraro, & Capraro, 2008; 
Powell, 2012). Nevertheless, although Chinese students are exposed to intensive instruction 
and practice on equivalence as young as Grade 1, the comparative relational understanding 
of equivalence continues to develop throughout the elementary school years, such that most 
students do not have full knowledge of equivalence until Grade 6 (Jones, Inglis, Gilmore, & 
Dowens, 2012; Yang, Huo, & Yan, 2014).

One way to assist students in their development of challenging concepts such as 
equivalence is to ensure that they develop fluent access to related core knowledge, such as 
basic arithmetic facts. Mathematics education in China emphasizes the importance of 
developing an interconnected understanding of mathematics concepts and skills through 
repetition (Ministry of Education, 2011). Notably, the purpose of repetition is not to 
encourage students to memorize number facts mechanically through rehearsal strategies 
(i.e., rote learning). Instead, the purpose of repetition is to promote deepened understand-
ing by focusing on different aspects of the same question each time through problem 
variations (Dahlin & Watkins, 2000; Marton, Dall’ Alba, & Tse, 1996).

The present results support the view that flexible access to arithmetic facts will support 
students’ knowledge of equivalence (Kindrat & Osana, 2018). Conversely, developing 
equivalence fluency may also be important for selection of efficient procedures when 
students are solving arithmetic problems. Equivalence fluency could be developed through 
consistent exposure to various types of nonstandard equations that provide students with 
ample practice in solving nonstandard problems (Powell, 2012). For example, students 
could be exposed to operations without equal signs (e.g., a + b), simple equations (e.g., __ =  
a, b = __), and equations that are more complex in nonstandard contexts (e.g., a + __ = b +  
c), to enhance their understanding of the equal sign. Furthermore, emphasizing the con-
nections between closely related concepts will lead to students more frequently using 
flexible solutions on mathematics problems (Baroody, 1999; Kindrat & Osana, 2018; Ma,  
2010; Robinson, 2017).

Our finding that students’ reasoning skills predicted their ability to efficiently solve 
mathematics equivalence problems has educational implications. Because understanding 
of equivalence goes beyond applying algorithms to the problems by rote, educators can 
encourage students to use reasoning skills to identify relations among numbers and number 
operations (Jacobs, Franke, Carpenter, Levi, & Battey, 2007). For example, instead of 
immediately trying to perform an operation, students can consider the magnitude of values 
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on each side of the equal sign and determine whether there is a simpler solution (e.g., 
solving 181–25 = __ − 24 by recognizing that 25 and 24 are only one unit apart; Kindrat & 
Osana, 2018). Recognizing these relations may help students to move past the equal sign as 
an indicator that an answer must be provided and think of the equal sign as representing the 
balance between two sides of an equation.

Limitations and future research

In the present study, we assumed that Chinese students were using more efficient strategies 
to solve equivalence problems in Grade 4 than Grade 3, based on the total number of 
problems solved in a limited time period. However, to fully assess this claim, research is 
needed in which students solve various types of complex equivalence problems while both 
accuracy and response time on each individual trial are recorded and strategy use data is 
collected (Robinson, Dubé, & Beatch, 2017). Moreover, in the present study, only addition 
and subtraction problems were used to index students’ knowledge of equivalence. To 
improve construct validity, future studies should use multiple measures for measuring 
equivalence to determine if all the measures tap into the same underlying construct (e.g., 
a task that measures multiplication and division equivalence knowledge; Robinson, Price, & 
Demyen, 2018).

Conclusion

Despite a large corpus of research investigating the development of arithmetic and equiva-
lence, our study is the first to find reciprocal relations between these two types of mathe-
matics knowledge from Grades 3 to 4, with a greater influence of arithmetic on the 
development of equivalence than the reverse for Chinese students. Our findings suggest 
that in addition to strong domain-general reasoning skills, students need to acquire fluent 
access to basic arithmetic associations to facilitate their development of equivalence fluency.
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