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There has not been a satisfying numerical validation

of the theory of effective waves in random particulate

materials. Validation has been challenging because

the theoretical methods for effective waves have been

limited to random particulate media in infinite slabs

or half-spaces, which require a very large number of

particles to perform accurate numerical simulations.

This paper offers a solution by providing, from first

principles, a method to calculate effective waves for a

sphere filled with particles for a spherically symmetric

incident wave. We show that this case can excite

exactly the same effective wavenumbers, which are

the most important feature to validate for effective

waves. To check correctness, we also deduce an

integral equation method which does not assume the

effective wave solution. Our methods are, in principal,

valid for any frequency, particle volume fraction and

disordered pair-correlation. With the methods we

provide, it is now possible to validate, with a heavier

Monte Carlo simulation, the predictions from effective

wave theory.

1. Introduction
A particulate material is any material filled with

an arrangement of small particles in a homogeneous

2023 The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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background medium, often with a disordered distribution. Typically, the particles are modelled

by spheroids or ellipsoids. Examples of particulate materials include powders, slurries,

emulsions, certain types of porous materials (where the pores are the particles) and particulate

composites. These materials are common in industry, especially as precursor materials [1]. The

development of accurate and efficient mathematical models is a prerequisite for using waves,

such as sound and light, to measure these materials.

To get consistent predictions, and measurements, we need to model the average scattered

wave, and not just waves scattered from one configuration of particles. In practice, this average

is often achieved by averaging measurements over time or space. Without taking the average,

our predictions and measurements would depend on the exact configuration of particles, which

is often impossible to know. This average is assumed to be equivalent to an ensemble average

over particle positions and properties, which means the particle statistics is ergodic [2]. There is a

long history of developing theoretical frameworks to describe the average scattered wave, as well

as the average intensity, for a random set of particles [3]. These theoretical methods have been

adapted to electromagnetics and optics [2,4–7], and acoustics [8–10].

Plates filled with particles. So far attempts to numerically validate the theoretical methods have

focused on plates and half-spaces filled with particles. This is likely because these were the cases

which were best understood, from a theoretical standpoint. However, validating these scenarios

requires the simulation of waves scattering within an infinite number of particles [11,12], or use of

finite but very large numbers of particles as an approximation. Techniques from signal processing

can be applied [13], but these are still computationally expensive. Accordingly, we are not aware

of rigorous numerical validations of any of the average scattering theoretical methods that cover a

wide range of frequencies and particle volume fractions.

Spherical symmetry. A clear way to overcome the numerical challenges is to validate models in

which the particles occupy a bounded region, and therefore are finite in number. In this work,

we focus on a sphere filled with particles (figure 1), and specialize to spherical symmetry, as this

both simplifies the theoretical methods (that need validating), and will make any Monte Carlo

validation far simpler, which will be the subject of a future numerical paper. We also demonstrate

how validating this case serves to validate the effective dispersion equation of all cases. We note

that there has been previous work focused on spheres filled with particles, which matched Monte

Carlo simulations for very low volume fraction [14].

Statistical assumptions. All theoretical methods that apply beyond the low-frequency limit need

to make statistical assumptions, with the two most common being: (i) a particular particle pair-

correlation and (ii) a closure assumption, which is usually the Quasi-Crystalline Approximation

(QCA), see [15] for some details. The first for the particle pair-correlation can be verified

numerically without great difficultly [6]. The closure assumption, such as QCA, is very difficult

to numerically validate, and to our knowledge there has been no clear numerical validation.

By developing mathematical models that require a finite number of particles, and spherical

symmetry, we pave the way for a broad validation of QCA and other statistical assumptions.

Proving these models from first principles is the main goal of this paper.

Two mathematical methods. The main purpose of this paper is to provide two different

mathematical methods for the average waves scattered from a particulate material in the shape of

a sphere. Both methods are deduced from first principles to make clear exactly what assumptions

are used. The first method, called the integral method, only assumes QCA. The second method,

called the effective wave method, assumes both QCA and uses the effective wave assumption.

By providing these two methods, for spherical symmetry, it will be possible in future work to

validate the statistical assumptions by comparing with simulations of deterministic scattering

algorithms [16]. Both methods are specialized to spherical symmetry, as this leads to significant

simplifications, with the integral method being reduced to one dimension in space. Further,

comparing the integral method with the effective waves methods serves as a way to validate

the effective waves assumption, but note that there are proofs of the effective wave assumptions

for plane waves [17]. We present two such comparisons in this paper, just as a demonstration that

the equations are correct.
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Figure 1. The top two and the bottom left images show the total field (Re u) in the plane y = 0 (spherically symmetric incident

wave) for three random configurations of 160 particles confined within a large sphereRwith radius R= 20a (particle volume

fraction 2%). Particle intersectionswith the plane y = 0 are plotted using solid lines. The bottom right image shows the average

total field (Re 〈u〉) computed using Monte Carlo simulation with 250 random configurations. The aim of this paper is develop

theoretical methods to calculate the bottom right image.

Effective wavenumbers. At the core of the effective waves method is the effective wavenumber

k⋆. It is the parameter which depends on the particulate properties. One of the key contributions

of this paper is that we show that spherically symmetry has the same effective wavenumbers as a

plate filled with particles. Gower & Kristensson have shown [9] that the dispersion equation for

a plate filled with particles is also the same as the dispersion equation for any geometry. Thus by

numerically validating the case of spherical symmetry, we are in turn validating the dispersion

equation for average waves in particulate materials in any geometry and with any source.

Testing exotic behaviour. Beyond just developing a method which can be easily validated

numerically, the methods we develop here can also be used to test any disordered pair correlations

and types of particles. Pair-correlations can have a dramatic effect, such as forming localized

states [18], bandgaps [19] or lead to transparency [20]. Whereas different types of particles, such

as resonators [21,22] or mixing multi-species [15], can also lead to strong scattering.

Both pair-correlations, and different types of particles, can be studied through theoretical

methods that calculate the ensemble average. The methods we present capture all these effects

and can quickly be evaluated to explore the parameter space, or verify exotic behaviour.

For example, the effective wavenumbers dictate whether there is a bandgap or a window of

transparency. That is, effective wavenumbers dictate when waves propagate or do not. Ultimately,

it is worth numerically validating any exotic effect, by comparing with deterministic scattering

which can now be easily achieved given the methods presented in this paper.

This paper. In §2, we explain how we account for scattering from one configuration of particles,

with particles of a finite size. We then present the integral equation governing the average of wave

scattering over all particle configurations, and introduce the main statistical assumptions.
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In §3, we present, in a condensed self-contained form, the equations needed to solve the full

integral equation with spherical symmetry in §3a, and the equations needed to solve the effective

wave approximation for the same scenario in §3b.

In §4, we give some numerical results of both the methods, integral and effective wave, just

to confirm correctness for broad frequency ranges. The software1 for both methods is available

at [23]. We also show results for an exotic pair-correlation: a form of hyperuniform disorder. The

rest of the paper serves to formally derive the methods and check correctness.

In §5, we derive how to use spherical symmetry to reduce the fields that appear in the overall

governing equation. In §§6 and 7, we apply the result of spherical symmetry to deduce the integral

and effective wave method, respectively. In §8, we summarize some results of the paper and

indicate future directions.

2. The average governing equations

(a) A collection of particles

We begin with a brief introduction to the deterministic many-particle scattering problem. We refer

to [8,9,24] for the full details and references.

Consider J particles, where the ith particle is centred at the location ri.
2 For simplicity,

we assume that all particles are identical and have radius a, although our results apply to

multi-species or polydisperse materials with only minor adjustments. We will remark on the

adjustments needed for our key results. The particles are located in a homogeneous, isotropic

media with wavenumber k, which is either a real number or a complex number with a positive

imaginary part.

We consider that scalar waves u(r) can propagate in homogeneous media which satisfy the

wave equation

∇2u(r) + k2u(r) = 0.

One such example would be acoustic waves, where u(r) is the pressure. Specifying which type of

scalar wave depends on the boundary conditions used for each particle, which in term is specified

through the T-matrix given below.

We make use of scalar spherical waves:

un(kr) = h
(1)
ℓ (kr)Yn(r̂), (outgoing spherical waves)

and vn(kr) = jℓ(kr)Yn(r̂), (regular spherical waves)

⎫

⎬

⎭

(2.1)

where r = |r|, and n denotes a multi index n = (ℓ, m), with ℓ = 0, 1, 2, 3 . . . and m = −ℓ, −ℓ +
1, . . . , −1, 0, 1, . . . , ℓ. Here h

(1)
ℓ (z) and jℓ(z) denote the spherical Hankel and Bessel functions,

respectively, and Yn are the spherical harmonic basis functions that are orthonormal with respect

to the standard inner product on the unit sphere [25]. See [9] for the definition of spherical

harmonics we use, together with the main properties.

For a source located outside of all particles, we can write the total field u(r) as a sum of the

incident wave uin(r) and all scattered waves in the form [26]

u(r) = uin(r) + usc(r), usc(r) =
J

∑

i=1

∑

n

f i
nun(kr − kri), (2.2)

where we assumed |r − ri| > a for i = 1, 2, . . . , J. The f i
n will be determined by applying the

boundary conditions on all particles. The field
∑

n f i
nun(kr − kri) is the wave scattered from

particle-i, and n = (ℓ, m) is implicitly summed over all admissible values.

1With examples given in https://juliawavescattering.github.io/EffectiveWaves.jl/dev/manual/sphere/.

2Throughout this paper, vector-valued quantities are denoted in italic boldface and vectors of unit length have a ‘hat’ or caret

( )̂ over the symbol.
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Typically, we assume the source that generated the incident wave uin is outside of the material,

given by the region R. Let the centre of the sphere R be the origin of r, then the regularity of

incident wave implies that uin(r) for r ∈R is a smooth field, and therefore can be expanded in

terms of regular spherical waves in the form:

uin(r) =
∑

Anvn(kr),

as there cannot be any singularity of uin(r) for r close to the origin, the above cannot contain any

outgoing waves of the form un.

As our aim is to have spherical symmetry (after ensemble averaging), to achieve this we keep

only the spherically symmetric term in the expansion for the incident wave:

uin(r) = Ainv0(kr), (spherically symmetric incident wave), (2.3)

where Ain is the amplitude of the incident wave.

By applying the boundary conditions to every particle, or using a T-matrix, we can form

a linear system to solve for the f i
n [8,9,24,26]. This equation can be solved directly, but the

computational cost is high for a large number of particles3.

For methods that aim to characterize the particles, the computational cost becomes acute

because the average field is needed, which requires repeated simulations. Using methods that

directly compute the average field greatly reduces the computational cost.

To describe the response of each particle, and its boundary conditions, we use the T-matrix,

and consider that all particles are identical, so they all share the same T-matrix. For example,

for acoustics and a homogeneous spherical particle the T-matrix is diagonal with diagonal

entries [8]:

T(ℓ,m),(ℓ,m) = −
γ j′ℓ(ka)jℓ(koa) − jℓ(ka)j′ℓ(koa)

γ h
(1)′
ℓ (ka)jℓ(koa) − h

(1)
ℓ (ka)j′ℓ(koa)

=: T(ℓ,m), (2.4)

where γ = ρok/(ρko), a is the particle radius, ρ is the background density, while ρo and ko are the

density and wavenumber of the particle.

We note that for spherically symmetric particles, or for the average T-matrix of a particle that

has been averaged over all orientations, we have that T(ℓ,m) = T(ℓ,0) for every m [9,31,32]. As a

shorthand, we define Tℓ := T(ℓ,0). For the methods in this paper, we require that T(ℓ,m) = T(ℓ,0).

(b) Ensemble average

Consider the case in which all particles are confined within a large sphere R with radius R, which

is centred at the origin (figure 2). When ensemble averaging, we fix the particle volume fraction,

and average over all possible particle positions. The centre rj of the jth particle is confined within

a sphere Ra with radius R − a. This guarantees that the whole particle is confined within R.

The governing equation for the ensemble average of f i
n, with no approximation, is [9]

〈 fn〉(r1) = TℓAinV(0,0)n(kr1)

+ Tℓ

∑

n′

∫
Ra

Un′n(kr1 − kr2)〈 fn′ 〉(r2, r1)g(r1, r2)n(r2) dr2, (2.5)

for all r1 ∈Ra and admissible n, where we used (2.3), and the Unn′ and Vnn′ are translation matrices

of the spherical waves un and vn, respectively (see appendix A). In the above, we used the notation

〈 fn〉(r1) := 〈 f 1
n 〉(r1) and 〈 fn〉(r2, r2) := 〈 f 2

n 〉(r2, r1),

where the function 〈 fn′ 〉(r1) is the ensemble average of f 1
n′ over all particle positions, while holding

r1 fixed, while 〈 fn′ 〉(r2, r1) is the ensemble average of f 2
n′ while holding r1 and r2 fixed. See [9] for

3Nevertheless, there are several software packages making substantial progress, e.g. MSTM (Multiple Sphere T-Matrix) [27,28]
and other related approaches [29,30].

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

8
 D

ec
em

b
er

 2
0
2
3
 



6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20230444
..........................................................

0.25

0.20

0.15

0.10

0.05

0

–0.05

–0.10

–0.15

–0.20

–0.25

Figure 2. Visualization of a configuration of 160 particles confined within a large sphereR with radius R= 20a (particle

volume fraction 2%) and the corresponding total field (Re u).

details. We also introduced the particle number density n(r2) = Jp(r2) and the pair correlation

g(r1, r2) = p(r1, r2)

p(r1)p(r2)

J − 1

J
.

Here p(r1) is the probability density of finding particle 1 in a volume element dr1 centred at r1,

while p(r1, r2) is the probability density of finding particle 1 in a volume element dr1 centred at r1

and particle 2 in a volume element dr2 centred at r2.

The governing system (2.5) assumes a diagonal T-matrix associated with a spherical particle,

or particles that are equally likely to be oriented in any direction. For details on non-spherical and

polydisperse particles, see [9].

The ensemble average scattered field is then given by

〈usc(r)〉 =
∑

n

∫
Ra

〈 fn〉(r1)un(kr − kr1)n(r1) dr1. (2.6)

Statistical assumptions. To use equation (2.5) to determine 〈 fn〉(r1) we need to know the pair

correlation g(r1, r2) and the conditional average field 〈 fn′ 〉(r2, r1). The most common approach for

the conditional field is to approximate 〈 fn′ 〉(r2, r1) by its conditional average in r1, the so-called

Quasi-Crystalline Approximation (QCA):

〈 fn′ 〉(r2, r1) ≈ 〈 fn′ 〉(r2). (2.7)

We refer to [15] for a brief discussion on the topic.

When choosing the pair-correlation g(r1, r2) there are some restrictions: the particles are only

distinguished by their position, so that g(r2; r1) = g(r1; r2), and as p is a probability density, we

have that ∫
Ra

p(r2) dr2 = 1 and

∫
Ra

g(r1; r2)p(r2) dr2 = 1. (2.8)

A common approximation, which is very accurate when r1 is away from the boundary of Ra,

is that p(ri) is approximately a constant, which combined with (2.8) gives

p(r1) = 1

|Ra|
= 3

4π (R − a)3
, for r1 ∈Ra, (2.9)

where |Ra| is the volume of Ra.
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There are two essential properties for the pair-correlation for disordered particle positions:

g(r2, r1) = 0 for |r1 − r2| < a12 (2.10)

and

g(r2, r1) = 1 for |r1 − r2| > b12, (2.11)

where a12 is the minimum allowed distance between the particle centres r1 and r2, and when

the distance between any two particle centres is greater than b12, then those particles become

uncorrelated. See [4] for a review on correlated disordered media. We give examples of pair-

correlations in §4 which shows numerical results.

Paper goal. The focus of this paper is to reduce (2.5) by using spherical symmetry. The result will

be a one-dimensional integral equation, called the Integral method, and a semi-analytic approach

called the Effective wave method. To solve the resulting equations, we still need to make use of QCA

(2.7). Nevertheless, the simplified governing equation we deduce makes it simpler to study the

effects and accuracy of QCA.

3. The spherically symmetric governing equations
Numerically solving (2.5) even for n = (ℓ, m) with ℓ = 0, . . . , 5 can be prohibitively expensive in

three dimensions. We will use spherical symmetry to render the solution of (2.5) tractable. This

is particularly important when, as arises in many applications, the goal is to solve for a wide

range of frequencies, and for multi-species particles. See [9] for equations related to multi-species

particulates.

In this section, we give all the main results of this paper, which can be used to solve for 〈 fn〉(r1),

which in turn can be used to get the average scattered field (2.6). All the proofs necessary to obtain

these results are given in §§5–7.

Let (r1, θ1, φ1) be the radial distance, polar angle, and azimuthal angle of r1. From spherical

symmetry and the governing equation (2.5), we prove the reduced representations

g(r1, r2) =
∑

ℓ1

2ℓ1 + 1

4π
gℓ1 (r1, r2)Pℓ1 (r̂1 · r̂2), (3.1)

〈 f(ℓ,m)〉(r1) = Fℓ(r1)Y∗
(ℓ,m)(θ1, φ1) (3.2)

and 〈 f(ℓ,m)〉(r2, r1) =
∑

n2n3

c(ℓ,m)n2n3

c(ℓ,0)(ℓ2,0)(ℓ3,0)
Fℓℓ2ℓ3 (r2, r1)Y∗

n2
(θ2, φ2)Y∗

n3
(θ1, φ1), (3.3)

where n2 = (ℓ2, m2), n3 = (ℓ3, m3), r̂1 = r1/|r1|, the star ◦∗ denotes the conjugate of ◦, and the

cnn2n3 = c(ℓ,m)n2n3
are real numbers which can be expressed in terms of the Wigner 3j symbols

(A 7).

(a) The integral method

In §6, we show that substituting the representations above into (2.5), together with (2.7), (2.10)

and (2.11), leads to the following governing equation for the function Fℓ(r1):

Fℓ(r1) =
√

4πTℓAinjℓ(kr1)(−1)ℓ + Tℓ

∑

ℓ2

∫R−a

0
Cℓℓ2 (r1, r2)Fℓ2 (r2) dr2, (3.4)

where

Cℓℓ2 (r1, r2) := r2
2n(r2)χℓℓ2 (r1, r2)4π (−1)ℓ(2ℓ2 + 1), (3.5)
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for |r1 − r2| > b12, and

Cℓℓ2 (r1, r2) := r2
2n(r2)

∑

n1=(ℓ1,m1)

∑

ℓ4ℓ5ℓ6m2

χℓ5ℓ6 (r1, r2)gℓ1 (r1, r2)
(−1)ℓ4 iℓ−ℓ5−ℓ6−ℓ2

(4π )2

× c(ℓ,0)n1(ℓ5,−m1)cn1n2(ℓ6,m1−m2)c(ℓ,0)n2(ℓ4,−m2)c(ℓ4,m2)(ℓ5,m1)(ℓ6,m2−m1), (3.6)

for |r1 − r2| ≤ b12. Here

χℓ5ℓ6 (r1, r2) = (−1)ℓ6

⎧

⎨

⎩

h
(1)
ℓ6

(kr2)jℓ5 (kr1) for r1 < r2,

h
(1)
ℓ5

(kr1)jℓ6 (kr2) for r1 > r2.

We can numerically solve (3.4) for Fℓ1 (r1) after choosing a pair-correlation g(r1, r2), which

determines the gℓ1 (r1, r2).

After numerically obtaining the field Fℓ(r1), we can then calculate the average scattered field

(2.6) by substituting n(r1) = n(r1) due to isotropy, and using (3.2) to obtain

〈usc(r)〉 = Fu(0,0)(kr), (3.7)

where

F =
∫R−a

0

∑

ℓ

(−1)ℓ(2ℓ + 1)Fℓ(r1)jℓ(kr1)r2
1n(r1) dr1. (3.8)

The proof of this result is given in §6.

(b) The Effective wave method

An alternative formulation starts by using the representation

〈 fn〉(r1) =
∑

p=1

fp,n(r1), where ∇2fp,n(r1) + k2
pfp,n(r1) = 0. (3.9)

Here the wavenumbers kp, known as the effective wavenumbers, need to be determined.

For most frequencies, volume fractions, and material parameters, only the p = 1 term in the

representation is needed to obtain accurate results [17,33]. Specifically, frequencies and properties

that lead to very strong scattering can trigger more than one effective wavenumber [34]. We also

note that the other effective wavenumbers (p > 1) form a type of boundary layer, so if the radius

of the material R is too small, the other effective wavenumbers could affect the transmitted field

[17,34].

When we retain only the first p = 1 term in (3.9), the methods to solve for 〈 fn〉(r1) are much

simpler than numerically solving (3.4). In this paper, we demonstrate how to solve the spherically

symmetric problem for just one effective wavenumber k⋆ = k1, so that

∇2〈 fn〉(r1) + k2
⋆〈 fn〉(r1) = 0. (3.10)

To further simplify the equations, we use:

g(r2, r1) = 1 + δg(r2, r1) for a12 ≤ |r1 − r2| ≤ b12, (3.11)

and

n(r1) = n (some constant), (3.12)

where the second equation assumes that the particle number density is constant in space.

Details on the proofs in this section are provided in §7. The result of combining (3.10), (3.2),

and [9, eqn (5.1)] leads to the representation

〈 f(ℓ,m)〉(r1) = (−1)mFℓv(ℓ,−m)(k⋆r1), (the effective wave approximation) (3.13)

where Fℓ and k⋆ remain to be determined.
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Substituting the above form into [9, eqn (5.6)], which represents the general dispersion

equation, we obtain a simpler dispersion equation:

Sℓ + Tℓ

∑

ℓ′

Gℓℓ′ Sℓ′ = 0, (the eigensystem), (3.14)

where Sℓ = i−ℓ
√

2ℓ + 1Fℓ and

Gℓℓ′ = n
∑

ℓ3

c(ℓ′,0)(ℓ,0)(ℓ3,0)Kℓ3 i−ℓ3
√

4π (2ℓ3 + 1), (3.15)

Kℓ3 = a12
Nℓ3 (ka12, k⋆a12)

k2
⋆ − k2

− Wℓ, (3.16)

Nℓ3 (x, y) = xh
(1)′
ℓ (x)jℓ(y) − yh

(1)
ℓ (x)j′ℓ(y) (3.17)

and Wℓ =
∫ b12

a12

hℓ(kr)jℓ(k⋆r)δg(r)r2 dr. (3.18)

Equation (3.14) is exactly the same as the eigensystem for plane-waves with azimuthal

symmetry given by [9, eqn (5.16)], which implies that the effective wavenumber k⋆ is the same.

This means that the same wavenumbers, and the same statistical assumptions, for any geometry,

can be tested here in the spherical symmetry case.

To calculate k⋆ we formulate a dispersion equation from (3.14) in the form

det M(k⋆) = 0 where Mℓℓ′ (k⋆) = δℓℓ′ + TℓGℓℓ′ . (the dispersion equation) (3.19)

Once we have calculated k⋆, we can calculate the direction of the vector Fℓ by returning to (3.14)

and solving for Fℓ. To determine the amplitude of the vector Fℓ we substitute the above form into

[9, eqn (6.3)] to obtain an extra equation

∑

ℓ′

2ℓ′ + 1

(−1)ℓ
′

R − a

k2 − k2
⋆

Nl′ (kR − ka, k⋆R − k⋆a)Fℓ′ = Ain√
4π

. (boundary conditions) (3.20)

Finally, we can directly calculate the average scattered wave (2.6) by using [9, eqn (6.6)], followed

by (3.13) and (A 5), which leads to the scattering coefficient

F =
√

4πn
R − a

k2
⋆ − k2

∑

ℓ

(2ℓ + 1)(−1)ℓFℓMℓ(k(R − a1), k⋆(R − a1)), (3.21)

with Mℓ(x, y) = xj′ℓ(x)jℓ(y) − yjℓ(x)j′ℓ(y). The average scattered wave is then given by

〈usc(r)〉 = F u(0,0)(kr), for r > R. (average scattered field) (3.22)

4. Numerical results
Here we show numerical results for both the Integral method, given in §3a, and the Effective wave

method, given in §3b. The software4 for both is available at [23].

The aim of this section is to show that both methods can use a variety of pair-correlations, and

that the two methods match for many choices of parameters. Our goal is not to do an extensive

exploration over the parameter space. The main conclusions of this section are:

— Changing the pair-correlation can have a dramatic affect on the average scattered wave.

For example, by creating a lower frequency resonance. The methods of this paper let us

4With examples given in https://juliawavescattering.github.io/EffectiveWaves.jl/dev/manual/sphere/.
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quickly and easily explore the properties of these exotic materials and any disordered

pair-correlation.

— The Integral method, summarized in §3a, uses a Fourier series for the pair-correlation,

which leads to an error called Gibbs phenomenon. It was found (see below) that this

error had no effect on the results shown.

— The Effective wave method §3b is very close to the more intensive Integral method except

in the regions where only one effective wavenumber is excited. This is fully expected as

the only difference between the two methods is that the Integral method accounts for all

the effective wavenumbers. See [17,33] for details on this.

We present the numerical results in terms of the far-field average scattered wave:

〈u∞〉 = lim
r→∞

re−ikr〈usc(r)〉 = − iF√
4πk

, (4.1)

where F is given by (3.8) for the integral method and by (3.21) for the effective wave method.

For this section we consider an acoustic wave, with wavespeed and mass density c = ρ = 1.

The radius of the containing sphere R is R = 5, the radius of the particles a = 1.0, and the T-matrix

of each particle is given by (2.4). We consider two types of boundary conditions:

Tℓ = − jℓ(ka)

h
(1)
ℓ (ka)

, (Dirichlet boundary conditions) (4.2)

and

Tℓ = −
j′ℓ(ka)

h
(1)′
ℓ (ka)

. (Neumann boundary conditions) (4.3)

Isotropic pair-correlations. The first step is to choose a pair-correlation. For spherical particles,

with isotropic distribution, in an infinite medium, the pair-correlation is a function of only the

inter-particle distance5:

g(r1, r2) = g(|r1 − r2|). (4.4)

For finite materials the above is an approximation, but is often very accurate [6]. We will use the

above for our numerical results below, but note that the methods developed in this paper apply

to any pair-correlation that can be written as a function g := g(r1, r2, θ12), where θ12 is the angle

between r1 and r2.

The pair-correlation’s coefficients. To use the Integral method, we need to calculate the gℓ1 (r1, r2)

that appear in (3.1). Note that the representation (3.1) is a type of Fourier series, as r̂1 · r̂2 =
cos θ12, and therefore Pℓ1 (cos θ12) are trigonometric functions. As pair-correlation functions are

discontinuous, this means that (3.1) can have significant errors near the discontinuities, i.e. Gibbs

phenomenon.6

Hole-correction. Gibbs phenomenon is easy to see for the pair-correlation called hole-correction,

which states that

g(|r1 − r2|) =
{

0 |r1 − r2| ≤ a12,

1 |r1 − r2| > a12.
(4.5)

See figure 3 for an example of how particles can be distributed for hole-correction.

The result of using the representation (3.1) for hole-correction is shown in figure 4. Though as

the pair-correlation only appears within integrals, the point-wise error shown in figure 4 is not

a significant concern. In the results presented we increased the number of terms in the Fourier

series until the results converged, which was typically around order ℓ1 ≤ 20, with ℓ1 appearing

in (3.1). Note that the Effective wave method accounts for the pair-correlation through the term

(3.18) and does not need to represent the pair-correlation with a Fourier series.

5Excuse our abuse of notation where we use g to represent two different functions.

6See https://en.wikipedia.org/wiki/Gibbs_phenomenon for details.
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(a) (b)

Figure 3. (a) An example of randomly distributed particles with only very short range correlation which is well approximated

by Hole correction (4.5) or the Percus Yevick approximation [35]. (b) A distribution of particles that are locally periodic, with a

randomperturbation, and become uncorrelated as the inter-particle distance increases. This distribution is approximately given

by a Hyperuniform disordered pair-correlation of the form figure 6. Adapted from Vynck et al. [4].
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Figure 4. The two graphs compare the representation (3.1), when truncating the series, with the exact pair-correlation when

using Hole-correction. The order refers to themaximum value for ℓ1 used in (3.1). In both graphs, we fix r2 = 2 and the particle

radius a= 1. In (a), r1 = 2 and we vary cos θ12, and can clearly see Gibbs phenomenon near the discontinuity. In (b), we fix

θ12 = 0 and vary r1.
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Figure 5. The figures show the far-field pattern for impenetrable Neumann (Dirichlet) particles on the a (b) with 15% volume

fraction. The pair-correlation used is Hole-correction (4.5).

Figure 5 shows the far-field average scattered wave (4.1) of using the Hole-correction pair-

correlation for both methods. Figure 5a uses impenetrable solid particles that have an infinite

mass density, whereas (b) uses impenetrable void particles that have zero mass density. The results

follow the same trends discussed in [33]: the particles with zero mass density excite more than just

one effective wave, that is the sum in (3.9) needs to include more than just one term to more closely
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Figure 6. (a) We show one form of a Hyperuniform disordered pair-correlation: there is a preferred inter particle distance

of about |r1 − r2| ≈ 3.3, but particles become uncorrelated |r1 − r2| > 6.0. (b) The average far-field scattered wave for

impenetrable Neumann particles with 20% volume fraction, where all lines use the Hyperuniform pair-correlation, except the

dotted green line which uses the Hole-correlation pair-correlation.

match the Integral method (figure 5b) which accounts for all the terms in the sum in (3.9). On the

other hand, as confirmed by figure 5a, a medium filled with sound hard particles tends to only

excite the first effective wave p = 1, which is why the two methods match.

Hyperuniform disordered example. For an overview of different types of pair-correlations for

disordered materials, see Vynck et al. [4]. For an example of how particles can be distributed

for hyperuniform disordered materials, see figure 3.

To illustrate that our methods work for any choice of pair-correlation, we investigate one

type of Hyperuniform disorder7 with Neumann-type particles. For these types of materials the

particles are strongly correlated to their neighbours, having a preferred inter-particle distance, but

as the distance between any two particles increases they become uncorrelated. The example we

use is shown in figure 6a, where we can see that particles prefer to be a distance of |r1 − r2| = 3.3

apart, but become uncorrelated around of |r1 − r2| = 6.0.

The result of using the Hyperuniform disordered pair-correlation is shown in figure 6b, which

is also compared with the Integral method when using the Hole-correction (HC) pair correlation

(4.5) (dotted green line). When compared with HC, the Hyperuniform material clearly exhibits a

strong scattering between 0.6 < ka < 0.8. This could indicate a resonance phenomenon with a large

internal field, or could be like a bandgap with very little transmission. In the case of a bandgap

very little of the incident wave is converted into a transmitted wave, so as a consequence, the

incident wave is almost completely scattered [19]. To check whether the result shown in figure 6

is a bandgap, we turn to the dispersion diagram, which does not contain a stop band in this

frequency range, which indicates that the result shown in figure 6 is a resonance of the whole

region R.

The discrepancy between the Integral and Effective wave method shown in the region 0.6 <

ka < 0.8 of figure 6 are again due to the Effective wave method only keeping the first term in the

sum (3.9), whereas the Integral method includes all terms in the sum. It seems that in resonance

more than one effective wave tends to be excited, but this requires further research to confirm.

5. Deducing spherical symmetry representations
The rest of this paper is dedicated to deducing the two methods: the Integral method in §3a and

the Effective wave method in §3b. Some of the steps involved are challenging, so to help clarity we

prove two theorems in this section whose results will be used many times in subsequent sections.

7In this work, we will not focus on which pair-correlations can be exactly realized by specific configurations of particles. This
numerical section is just to demonstrate both the methods we developed.
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The simplest symmetries to deduce, which are due to isotropy of the particle distribution, are

those of the probability function and pair-correlation:

p(r1) = p(Pr1) and g(r1, r2) = g(Pr1, Pr2), (5.1)

for any rotation matrix P ∈ R
3×3. Let (rj, θj, φj) be the spherical coordinates of rj, where θj is the

polar angle and φj is the azimuthal angle. The consequence of the first equation is that p(r1) =
p(r1), that is, it does not depend on θ1 or φ1. Use of the second symmetry (5.1) to deduce the

representation (3.1) is demonstrated in §a after the proof of the theorems below.

Proving symmetry reductions for the functions 〈 fn〉, shown in (3.2)–(3.3), is more complicated

because the index n in 〈 fn〉(r1), and 〈 fn〉(r1, r1), depends on the orientation of the coordinate

system. However, we will demonstrate that the symmetries for these fields can be written in a

scalar form, which will allow us to use theorems 5.1 and 5.2.

The proofs below use the rotation formula for the spherical harmonics,

Yn(Pr̂1) =
ℓ

∑

m′=−ℓ

Y(ℓ,m′)(r̂1)Dℓ
m′m(α, β, γ ), (5.2)

where P is any rotation matrix and where Dℓ
m′m is the Wigner D-matrix [25, Section 4.1]. Here α,

β and γ are the Euler angles corresponding to this rotation,8 which are defined in [25, Section

1.3]. We often omit the Euler angles when they are the same for every appearance of the Wigner

D-matrix.

Theorem 5.1.

Let h(·, ·) be a scalar-valued function that admits an expansion in spherical harmonics of the form

h(r̂1, r̂2) =
∑

n1n2

hn1n2 Yn1 (r̂1)Yn2 (r̂2)

for any unit vectors r̂1, r̂2. If, for every rotation matrix P, we have h(r̂1, r̂2) = h(Pr̂1, Pr̂2) then

h(ℓ1,m1)(ℓ2,m2) = δm1,−m2δℓ1,ℓ2 (−1)m1 h(ℓ1,0)(ℓ1,0). (5.3)

Proof. Using a spherical harmonic expansion, we have

h(r̂1, r̂2) =h(Pr̂1, Pr̂2) =
∑

n3n4

hn3n4 Yn3 (Pr̂1)Yn4 (Pr̂2).

Using the rotation formula (5.2) yields
∑

n3n4

hn3n4 Yn3 (r̂1)Yn4 (r̂2) =
∑

n3=(ℓ3,m3)
n4=(ℓ4,m4)

hn3n4 ·
∑

m′
3m′

4

Y(ℓ3,m′
3)(r̂1)Dℓ3

m′
3m3

Y(ℓ4,m′
4)(r̂2)Dℓ4

m′
4m4

,

where the Euler angles of the Wigner D-matrix associated with P are implicit and we omit them

for brevity.

Taking the inner products over the unit sphere with Yn1 = Y(ℓ1,m1) and Yn2 = Y(ℓ2,m2) with

respect to r̂1 and r̂2, respectively, and using the orthogonality of the spherical harmonics, leads to

hn1n2 =
∑

m3m4

h(ℓ1,m3)(ℓ2,m4)D
ℓ1
m1m3

Dℓ2
m2m4

. (5.4)

Next, we integrate over all the Euler angles of the above Wigner-D matrices, and use (A 15) to

obtain

hn1n2 = δm1,−m2δℓ1,ℓ2

(−1)m1

2ℓ1 + 1

∑

m3

h(ℓ1,m3)(ℓ1,−m3)(−1)m3 . (5.5)

8In [25, Section 1.3], the Euler angles are defined as rotations of the frame (passive rotations), and not of vectors. For example,
if P rotates vectors around the z-axis such that φ → φ + φ0, then this is equivalent to choosing α = −φ0 and β = γ = 0. For this
reason, some authors would use P

−1 where we have used P.
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To rewrite the above in a more useful form, we take m2 = m1 = 0 and ℓ2 = ℓ1 to arrive at

h(ℓ1,0)(ℓ1,0) = 1

2ℓ1 + 1

∑

m3

h(ℓ1,m3)(ℓ1,−m3)(−1)m3 ,

which substituted in the right side of (5.5) leads to (5.3). To complete the proof, we see that (5.3) is

the solution to (5.4), which can be shown by substituting the above into (5.4) and then using the

property (A 14). �

Theorem 5.2.

Let h(·, ·, ·) be a scalar-valued function that admits an expansion in spherical harmonics of the form

h(r̂1, r̂2, r̂3) =
∑

n1n2n3

hn1n2n3 Yn1 (r̂1)Yn2 (r̂2)Yn3 (r̂3) (5.6)

for any unit vectors r̂1, r̂2, r̂3. Then h(r̂1, r̂2, r̂3) = h(Pr̂1, Pr̂2, Pr̂3) for every rotation matrix P holds if

and only if
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

hn1n2n3 = 0, when {ℓ1ℓ2ℓ3} = 0,

hn1n2n3

⎛

⎝

ℓ1 ℓ2 ℓ3

0 0 0

⎞

⎠ =

⎛

⎝

ℓ1 ℓ2 ℓ3

m1 m2 m3

⎞

⎠ h(ℓ1,0)(ℓ2,0)(ℓ3,0), otherwise.
(5.7)

Proof. First we start by defining the triangular delta

{ℓ1ℓ2ℓ3} =
{

1 if |ℓ1 − ℓ2| ≤ ℓ3 ≤ |ℓ1 + ℓ2|,
0 else.

An argument similar to that employed in the proof of theorem 5.1 leads to

h(ℓ1,m1)(ℓ2,m2)(ℓ3,m3) =
(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

∑

m′
1m′

2m′
3

h(ℓ1,m′
1)(ℓ2,m′

2)(ℓ3,m′
3)

(

ℓ1 ℓ2 ℓ3

m′
1 m′

2 m′
3

)

. (5.8)

Note that if {ℓ1ℓ2ℓ3} = 0, then both Wigner 3j symbols appearing above are zero and therefore

hn1n2n3 = 0. Now we suppose that {ℓ1ℓ2ℓ3} �= 0, and choose m1 = m2 = m3 = 0 to obtain

h(ℓ1,0)(ℓ2,0)(ℓ3,0) =
(

ℓ1 ℓ2 ℓ3

0 0 0

)

∑

m′
1m′

2m′
3

h(ℓ1,m′
1)(ℓ2,m′

2)(ℓ3,m′
3)

(

ℓ1 ℓ2 ℓ3

m′
1 m′

2 m′
3

)

. (5.9)

Multiplying both sides by
(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

gives

h(ℓ1,0)(ℓ2,0)(ℓ3,0)

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)

=
(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)(

ℓ1 ℓ2 ℓ3

0 0 0

)

∑

m′
1m′

2m′
3

h(ℓ1,m′
1)(ℓ2,m′

2)(ℓ3,m′
3)

(

ℓ1 ℓ2 ℓ3

m′
1 m′

2 m′
3

)

. (5.10)

Multiplying (5.8) by
(

ℓ1 ℓ2 ℓ3
m1 m2 m3

)

and substituting (5.10) into the right-hand side leads to (5.7).

To complete the proof, we show that using (5.7) leads to (5.8). By substituting (5.7) into the

right side of (5.8), and using the orthogonality relation (A 10) we obtain the left side of (5.8). �

(a) Spherical symmetry of the pair-correlation

We can now apply the theorem 5.1 to the pair correlation g(r1, r2) defined in (5.1). Because

g is a square integrable function in the angular variables with fixed r1 and r2, it admits the
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representation

g(r1, r2) =
∑

n1n2

gn1n2 (r1, r2)Yn1 (r̂1)Yn2 (r̂2).

For every fixed radial distances r1 and r2, we can apply theorem 5.1 to obtain gn1n2 (r1, r2) =
δm1,−m2δℓ1,ℓ2 (−1)m1 g(ℓ1,0)(ℓ1,0)(r1, r2). Substitute this into the representation above gives

g(r1, r2) =
∑

ℓ1

gℓ1 (r1, r2)

ℓ1
∑

m1=−ℓ1

Y(ℓ1,m1)(r̂1)Y∗
(ℓ1,m1)(r̂2) (5.11)

where we used (−1)m1 Y(ℓ1,−m1)(r̂2) = Y∗
n1

(r̂2) and defined gℓ1 := g(ℓ1,0)(ℓ1,0).

Using the addition theorem for the Legendre Polynomials [36, ch. 8] yields the alternative form

(3.1), which is clearly invariant when applying the same rotation to r̂1 and r̂2.

(b) Spherical symmetry of fn
It was shown in [9, Section 3.4] with an informal method how to deduce restrictions on the field

〈 fn〉(r1) imposed by symmetries. The same informal method suggests the symmetries (5.14) and

(5.15), and below we provide a rigorous proof.

Let us define, for univariate or bivariate functions h, the operation ◦P in the form

hP
n(r1) :=

ℓ
∑

m′=−ℓ

Dℓ
mm′ h(ℓ,m′)(Pr1) (5.12)

and

hP
n(r2, r1) :=

ℓ
∑

m′=−ℓ

Dℓ
mm′ h(ℓ,m′)(Pr2, Pr1). (5.13)

Theorem 5.3.

Assume the governing equation (2.5) has a unique solution after making a closure approximation, such

as the quasi-crystalline approximation (2.7), and that the material is statistically isotropic. Then

〈 fn〉(r1) = 〈 f P
n 〉(r1) (5.14)

and

〈 fn〉(r2, r1) = 〈 f P
n 〉(r2, r1), (5.15)

for every r1, r2, and all Euler angles α, β and γ of Dℓ
mm′ . Note we have made an abuse of notation such

that 〈 fn〉P = 〈 f P
n 〉.

Proof. To start, the statistical isotropy of the particles implies that p(Pr1) = p(r1) and g(Pr1, Pr2) =
g(r1, r2), for every rotation matrix P and points r1 and r2.

Let us use the following shorthand:

Kn′n[h](r1) =
∫
R

Un′n(kr1 − kr2)h(r2, r1)g(r1, r2)n(r2) dr2, (5.16)

then the governing equation (2.5) becomes

〈 fn〉(r1) = TℓAinV(0,0)n(kr1) + Tℓ

∑

n′

Kn′n[〈 fn′ 〉](r1). (5.17)

We must show that

〈 f P

(ℓ,m)〉(r1) = TℓAinV(0,0)(ℓ,m)(kr1) + Tℓ

∑

n′

Kn′(ℓ,m)[〈 f P
n′ 〉](r1). (5.18)

Equations (5.14) and (5.15) then follow as a consequence of uniqueness of 〈 fn〉.9

9The system (5.17) only has a solution when using a closure assumption such as (2.7). Our proof holds for any closure
assumption that leads to unique solutions.
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To show (5.18), we substitute r1 for Pr1 in (2.5), and multiply both sides by the rotation Dℓ
m′′m

and sum over m to obtain

〈 f P

(ℓ,m′′)〉(r1) = TℓAin

ℓ
∑

m=−ℓ

Dℓ
m′′mV(0,0)n(kPr1) + Tℓ

∑

n′

ℓ
∑

m=−ℓ

Dℓ
m′′mKn′n[〈 fn′〉](Pr1). (5.19)

The left side already matches the left side of (5.18). In appendix B, we show that the first term

on the right side matches the corresponding term in (5.17), and in appendix C we show that the

second term on the right side matches the corresponding term in (5.17), which completes the

proof. �

6. Deducing the integral equations
In this section, we use the symmetries (3.1) and (3.2) to reduce the governing system (2.5) to a

one-dimensional integral equation that can be efficiently solved using numerical methods.

Substituting (2.7), (3.1) and (3.2) into system (2.5) leads to

Fℓ(r1)Y∗
(ℓ,m)(r̂1) = TℓAinV(0,0)(ℓ,m)(kr1) + Tℓ

∑

n2

Kn2(ℓ,m)[〈 fn2 〉](r1), (6.1)

where we can simplify

∑

(ℓ2,m2)

K(ℓ2,m2)n[〈 f(ℓ2,m2)〉](r1)

=
∑

(ℓ1,m1)(ℓ2,m2)

Y∗
n1

(r̂1)

∫
Ra

U(ℓ2,m2)n(kr1 − kr2)Y(ℓ1,m1)(r̂2)

× Y∗
(ℓ2,m2)(r̂2)Fℓ2 (r2)gℓ1 (r1, r2)n(r2) dr2

=
∑

(ℓ1,m1)
(ℓ2,m2)

∑

(ℓ4,m4)
(ℓ5,m5)

∑

(ℓ6,m6)

Y∗
(ℓ1,m1)(r̂1)Y∗

(ℓ5,m5)(r̂1)

∫
Ra

Y(ℓ1,m1)(r̂2)Y∗
(ℓ2,m2)(r̂2)Y∗

(ℓ6,m6)(r̂2)

× c(ℓ2,m2)n(ℓ4,−m4)c(ℓ4,m4)(ℓ5,m5)(ℓ6,m6)(−1)m4χℓ5ℓ6 (r1, r2)Fℓ2 (r2)

× gℓ1 (r1, r2)n(r2) dr2

=
∑

(ℓ1,m1)
(ℓ2,m2)

∑

(ℓ4,m4)
(ℓ5,m5)

∑

(ℓ6,m6)

Y∗
(ℓ1,m1)(r̂1)Y∗

(ℓ5,m5)(r̂1)

∫R−a2

0
r2

2 dr2iℓ1−ℓ6−ℓ2 (4π )−1

× (−1)m4 c(ℓ1,m1)(ℓ2,m2)(ℓ6,m6)c(ℓ2,m2)n(ℓ4,−m4)c(ℓ4,m4)(ℓ5,m5)(ℓ6,m6)χℓ5ℓ6 (r1, r2)

× Fℓ2 (r2)gℓ1 (r1, r2)n(r2), (6.2)

where we used (2.7) and, in the penultimate line, used (A 1) and (A 3) to obtain

Un2n(kr1 − kr2) =
∑

n4

cn2nn4 un4 (kr1 − kr2)

=
∑

n4(ℓ5,m5)

cn2n(ℓ4,m4)

[

(−1)ℓ4+ℓ5χr1<r2U(ℓ4,m4)(ℓ5,m5)(kr2)v(ℓ5,m5)(kr1)

+ (−1)ℓ5χr1>r2U(ℓ4,m4)(ℓ5,m5)(kr1)v(ℓ5,m5)(kr2)
]

=
∑

(ℓ4,m4)(ℓ5,m5)
(ℓ6,m6)

cn2n(ℓ4,m4)c(ℓ4,−m4)(ℓ5,m5)(ℓ6,m6)(−1)m4 Y∗
(ℓ6,m6)(r̂2)Y∗

(ℓ5,m5)(r̂1)χℓ5ℓ6 (r1, r2),

(6.3)

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

8
 D

ec
em

b
er

 2
0
2
3
 



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A

479:20230444
..........................................................

where we used the definition

χℓ5ℓ6 (r1, r2) = χr1<r2 (−1)ℓ6 h
(1)
ℓ6

(kr2)jℓ5 (kr1) + χr1>r2 (−1)ℓ6 h
(1)
ℓ5

(kr1)jℓ6 (kr2),

and χr1>r2 = 1 if r1 > r2, otherwise it is zero.

To further simplify, we use (A 3) to write

V(0,0)(ℓ,m)(kr1) =
√

4πAin(−1)ℓjℓ(kr1)Y∗
(ℓ,m)(r̂1), (6.4)

and then go back to (6.1), multiply both sides by Yn0 (r̂1), and integrate over dΩ1 to obtain

Fℓ(r1)δn,n0 =
√

4πTℓAin(−1)ℓjℓ(kr1)δn,n0 + Tℓ

∫
∑

n′

Kn′n[〈 fn′ 〉](r1)Yn0 (r̂1) dΩ1, (6.5)

where, after using (A 4), we have

∫
∑

n′

Kn′n[〈 fn′ 〉](r1)Yn0 (r̂1) dΩ1 =
∑

(ℓ1,m1)
(ℓ2,m2)

∑

(ℓ4,m4)
(ℓ5,m5)

∑

(ℓ6,m6)

∫R−a2

0
r2

2 iℓ0−ℓ5−ℓ6−ℓ2 (−1)m4 (4π )−2

× cn0n1n5 cn1n2n6 cn2n(ℓ4,−m4)cn4n5n6

× χℓ5ℓ6 (r1, r2)Fℓ2 (r2)gℓ1 (r1, r2)n(r2) dr2, (6.6)

where we used the convention nj = (ℓj, mj) to save space.

Owing to symmetry, the above must simplify. In appendix F, we demonstrate this in detail to

obtain (F 5), which leads to

∫
∑

n′

Kn′(l,m)[〈 fn′ 〉](r1)Yn0 (r̂1) dΩ1 = δ(l,m),n0

∫
∑

n′

Kn′(ℓ,0)[〈 fn′ 〉](r1)Y(ℓ,0)(r̂1) dΩ1. (6.7)

The proof of the above holds for any choice of Fℓ2 (r2) and gℓ1 (r1, r2). Owing to this, combining

(6.6) and (6.7) suggests that

∑

m1m2m4m5m6

(−1)m4 cn0n1n5 cn1n2n6 cn2n(ℓ4,−m4)cn4n5n6

= δn,n0

∑

m1m2m4m5m6

(−1)m4 c(ℓ,0)n1n5
cn1n2n6 cn2(ℓ,0)(ℓ4,−m4)cn4n5n6

= δn,n0

∑

m1m2

(−1)m2 c(ℓ,0)n1(ℓ5,−m1)cn1n2(ℓ6,m1−m2)cn2(ℓ,0)(ℓ4,m2)c(ℓ4,m2)(ℓ5,m1)(ℓ6,m2−m1). (6.8)

The identity (6.8) does not seem to be a typical orthogonality result of Wigner 3j symbols so

we have verified it numerically. Returning to (6.5), and using the above, we reach our governing

integral equation (3.4).

Solving (3.4) can be made more efficient for random media by using (2.11), which leads to

gℓ1 (r1, r2) = 4πδℓ1,0 for |r1 − r2| > b12, and as a consequence:

Cℓℓ2 (r1, r2) = r2
2n(r2)χℓℓ2 (r1, r2)g0(r1, r2)

1

(4π )2

×
√

4π
∑

m2

c(ℓ2,−m2)(ℓ2,−m2)(0,0)(−1)ℓ
∑

ℓ4m4

cn2n4(ℓ,0)cn2n4(ℓ,0)

= r2
2n(r2)χℓℓ2 (r1, r2)4π (−1)ℓ(2ℓ2 + 1) for |r1 − r2| > b12. (6.9)
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7. Deducing the effective wave equations
Combining the assumption (3.10), we can perform an expansion of regular spherical waves:

〈 fn〉(r1) =
∑

n1

Fnn1vn1 (k⋆r1) (7.1)

and

〈 fn〉(r1, r2) =
∑

n1n2

F′
nn1n2

vn1 (k⋆r1)vn2 (k⋆r1), (7.2)

where Fnn1 and F′
nn1n2

are independent of r1. These expansions are known to converge when R is

a sphere [9].

Substituting (3.11)–(3.12) into the governing equation (2.5), and using (2.7), we can split the

integral on the right side into two parts:

〈 f(ℓ,m)〉(r1) = TℓV(0,0)(ℓ,m)(kr1) + Tℓn
∑

n′

∫
Ra

Un′(ℓ,m)(kr1 − kr2)〈 fn′ 〉(r2, r1) dr2

+ Tℓn
∑

n′

Kn′(ℓ,m)(r1). (7.3)

In [9, eqn (4.6)], all the terms above, except Kn′(ℓ,m)(r1), are greatly simplified using the assumption

(7.1). Here we will simplify the extra term Kn′(ℓ,m)(r1), which appears because a more general

pair-correlation is used.

By changing the variable of integration to r = r2 − r1, we obtain

Kn′n(r1) =
∫ b12

a12

∫ 2π

0
Un′n(−kr)〈 fn′ 〉(r + r1) dΩδg(r)r2 dr, (7.4)

where we used the solid angle dΩ = sin θ dθ dφ.

Using (7.1) and the definitions (A 3) we simplify (7.4) to obtain

Kn′n(r1) =
∑

n1n2n3

(−1)ℓ1 cn′nn1Vn2n3 (k⋆r1)Fn′n2

×
∫ b12

a12

[∫
Yn1 (r̂)Yn3 (r̂) dΩ

]

hℓ1 (kr)jℓ3 (k⋆r)δg(r)r2 dr

=
∑

n1n2n3

cnn′n3 cn1n2n3vn2 (k⋆r1)Fn′n1 Wℓ3 , (7.5)

where Wℓ3 is defined by (3.18), and again we use the notation nj = (ℓj, mj).

Because vn2 (k⋆r1) is the only term on the right-hand side that depends on r1, we conclude

that Kn′n(r1) satisfies ∇2Kn′n(r1) = −k2
⋆Kn′n(r1). Using this in [9, eqn (4.6)] leads us to modify that

equation to

Fnn2 + Tℓ

∑

n1n′

Gnn2,n1n′ Fn′n1 = 0, (the regular eigensystem), (7.6)

where

Gnn2,n1n′ = n
∑

n1n3n′

cnn′n3 cn1n2n3 Kℓ3 , (7.7)

and Kℓ is defined by (3.16).

(a) Spherical symmetry

The governing system (7.6) is valid for any incident wave, and does not make any assumptions

of symmetry. By assuming spherical symmetry, we can greatly simplify this system.
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If we assume that the incident wave is spherically symmetric, and that the particles are

distributed isotropically, then the whole system becomes spherically symmetric. To that end, we

consider the incident wave

uin(r) = v0(kr) = j0(kr)√
4π

. (7.8)

Then equation (3.2) holds (see appendix D), and combining with (7.1) yields

Fnn2 = δℓ,ℓ2δm,−m2 (−1)mFℓ. (Spherical symmetry reduction) (7.9)

Substituting the above into (7.6) leads to

δℓ,ℓ2δm,−m2 (−1)mFℓ + Tℓ

∑

n′

Gnn2,(ℓ′,−m)n′ (−1)m′
Fℓ′ = 0, (7.10)

where
∑

m′

Gnn2,(ℓ′,−m)n′ (−1)m′ = n
∑

n3m′

cnn′n3 c(ℓ′,−m)n2n3
(−1)m′

Kℓ3 . (7.11)

Again, we have used notation of the kind n = (ℓ, m) for brevity. Our goal now is to use the

orthogonality relation (A 10) to simplify the above. In particular, we use the properties (A 8), (A 11)

and (A 12) to reach

cnn′n3 c(ℓ′,−m′)n2n3
(−1)m′ = cn3(ℓ′,−m′)ncn3(ℓ′,−m′)(ℓ2,−m2)(−1)ℓ3+m.

Then, using (A 10), we obtain

∑

m3m′

cn3(ℓ,−m′)ncn3(ℓ,−m′)(ℓ2,−m2) = 4πδℓ,ℓ2δm,−m2 (2ℓ3 + 1)(2ℓ′ + 1)

(

ℓ3 ℓ′ ℓ

0 0 0

)2

= δℓ,ℓ2δm,−m2 c(ℓ′,0)(ℓ,0)(ℓ3,0)i
−ℓ′+ℓ+ℓ3

√

4π (2ℓ3 + 1)(2ℓ′ + 1)

2ℓ + 1
. (7.12)

Defining Sℓ = i−ℓ
√

2ℓ + 1Fℓ, and substituting the above into (7.11) and (7.10) leads to the

dispersion equation (3.14).

The effective wavenumber k⋆ and a basis for the vectors Fℓ are obtained from the dispersion

equation (3.14). To fully determine the solution, we make use of [9, eqn (6.3)], which is like a

boundary condition. In particular, using (7.9) in [9, eqn (6.3)] leads to

δm2,−m

∑

n′n3

cn′n3ncn′n3(ℓ2,m)(−1)m+ℓ3 Zℓ′ = c(0,0)nn2
Ain, (7.13)

where we used the properties (A 8), (A 11) and (A 12), together with gn = δn,0Ain, which comes

from comparing the incident field term in [9, eqn (3.17)] with (2.5). The components Zℓ′ are given

by [9, eqn (6.4)]:

Zℓ′ = R − a

k2 − k2
⋆

Nl′ (kR − ka, k⋆R − k⋆a)Fℓ′n. (7.14)

Using the orthogonality property (7.12), followed by (A 6), we can rewrite (7.13) in the form

∑

ℓ′ℓ3

c(ℓ3,0)(ℓ,0)(ℓ′,0)i
−ℓ3+ℓ+ℓ′

√

4π (2ℓ3 + 1)(2ℓ′ + 1)√
2ℓ + 1

(−1)ℓ3 Zℓ′ =
√

4π(−1)ℓAin. (7.15)

Finally, we use the orthogonality relation [25, eqn (3.7.7)] to write

∑

ℓ3

c(ℓ3,0),(ℓ,0),(ℓ′,0)i
ℓ+ℓ′−ℓ3

√

4π (2ℓ3 + 1)(2ℓ′ + 1)√
2ℓ + 1

(−1)ℓ3 = 4π (2ℓ′ + 1)(−1)ℓ+ℓ′
, (7.16)

which when substituted into (7.15) leads to (3.20).
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8. Conclusion
This work lays the foundation for a complete numerical validation of effective wave theories

for particulate materials. By numerical validation, we mean using full Monte Carlo simulations

and then comparing the results with theoretical predictions, which have so far been extremely

challenging [11–14]. To overcome this challenge, we provide methods to calculate the ensemble

average scattering from a finite sphere filled with particles, which is accurate for broad frequency

range and volume fractions. Theoretical predictions for a finite sphere are far easier to verify with

Monte Carlo methods.

(a) Two theoretical methods

In this work, we provide two methods to calculate the ensemble average wave scattered from

a particulate material within a sphere that is excited by a spherically symmetric source. The

first method is called the Integral method and is given in §3a. It only makes use of the Quasi-

Crystalline approximation (QCA). The second method is called the Effective wave method,

given in §3b, and it further assumes that only one effective wave and wavenumber is excited.

By imposing spherical symmetry the methods are greatly simplified and are therefore easy to

evaluate, change the particle pair-correlation, and do parameter sweeps. The bulk of this paper

provides the proofs needed to establish both these methods in §§5–7.

(b) Validating effective wavenumbers

At first it may appear that the scenario of spherical symmetry is a very specific case that is

difficult to relate to the more useful scenarios of plane wave incident on a plate filled with

particles. However, we showed in this work that the same effective wavenumbers appear

for both the spherical symmetry case and the cases of plane wave incidence on a plate.

This means that numerically validating the methods for spherical symmetry also serves as a

validation of the prediction of the effective wavenumbers for all cases, see [9] for details. The

effective wavenumbers are often the most important features to numerically validate, as many

experimental methods are based on the effective wavenumbers [37–39].

Future directions. One clear next direction is to use Monte-Carlo simulations, which are

computationally more intense, to validate the methods provided here for particles within a

sphere. Such a validation could be the first broad frequency range, and highly accurate, validation

of effective wave theory and of the Quasi-Crystalline Approximation (QCA) which is the only

approximation used to reach the Integral method shown in §3a. To achieve this, one could

simulate the scattering from a finite number of particles within a sphere, and repeat this many

times for different particles configurations, where the average scattering from every configuration

could be compared to the theoretical methods presented here. Achieving this type of numerical

validation would be an important step forward in the field: it would indicate what frequency

ranges, and particle pair-correlations, can be used in effective theory. In turn this will inform

where the theory can be used for both characterization and design of disordered particulate

materials.
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Appendix A. Translation matrices
The translation properties of the spherical waves are instrumental for the formulation and the

solution of the scattering problem of many individual particles. These translation properties are

well known, and we refer to, e.g. [41,42] for details. Some of their properties are reviewed in this

appendix.

Let r′ = r + d, then the translation matrices for a translation d are [41]

vn(kr
′) =

∑

n′

Vnn′ (kd)vn′ (kr), for all d,

un(kr
′) =

∑

n′

Vnn′ (kd)un′ (kr), |r| > |d|

and un(kr
′) =

∑

n′

Unn′ (kd)vn′ (kr), |r| < |d|

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (A 1)

Translation in the opposite direction is identical to the Hermitian conjugate of the translation

matrices [43], i.e.

Vnn′ (−kd) = V
∗
n′n(k∗

d) = (−1)ℓ−ℓ′
Vnn′ (kd), Unn′ (−kd) = (−1)ℓ−ℓ′

Unn′ (kd). (A 2)

The translation matrix Vnn′ (kd) is identical to Unn′ (kd) but with h
(1)
λ (k|d|) replaced with jλ(k|d|).

Notice that the translation matrices Vnn′ (kd) and Unn′ (kd) have the form

Vnn′ (kd) =
∑

n1

cnn′n1vn1 (kd) and Unn′ (kd) =
∑

n1

cnn′n1 un1 (kd), (A 3)

where the summation over the multi-index n1 = {ℓ1, m1} effectively is over |ℓ − ℓ′| ≤ ℓ1 ≤ ℓ + ℓ′,
and m1 = m − m′. The explicit values of the coefficients cnn′n1 are

cnn′n1 = 4π iℓ
′−ℓ+ℓ1

∫
Ω

Yn(θ , φ)Y∗
n′ (θ , φ)Y∗

n1
(θ , φ) sin θ dθ dφ. (A 4)

From this definition, together with Unsöld’s theorem [44]

ℓ
∑

m=−ℓ

Y∗
(ℓ,m)(θ , φ)Y(ℓ,m)(θ , φ) = 2ℓ + 1

4π
,

and the orthogonality of the spherical harmonics it can be shown that
∑

m′

cnn′(ℓ′,−m′)(−1)m′ =
√

4π i2ℓ′−ℓδn,0(2ℓ′ + 1) (A 5)

and

c(0,0)nn2
=

√
4π(−1)ℓ+mδm2,−mδℓ2,ℓ. (A 6)

The coefficients cnn′n1 can also be written in terms of the Wigner 3-j symbol [25, (4.6.3), p. 63]

in the form

cnn′n′′ = iℓ
′−ℓ+ℓ′′

(−1)m
√

4π (2ℓ + 1)(2ℓ′ + 1)(2ℓ′′ + 1)

(

ℓ ℓ′ ℓ′′

0 0 0

) (

ℓ ℓ′ ℓ′′

m −m′ −m′′

)

. (A 7)
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Note that the coefficients cnn′n′′ are all real due to orthogonality in the azimuthal variable. Further

the cnn′n′′ are only non-zero when

m − m′ = m′′, |ℓ − ℓ′| ≤ ℓ′′ ≤ ℓ + ℓ′, ℓ + ℓ′ + ℓ′′ = even integer, (A 8)

and should only be evaluated for ℓ, ℓ′, ℓ′′ ≥ 0 and

− ℓ ≤ m ≤ ℓ, −ℓ′ ≤ m′ ≤ ℓ′, −ℓ′′ ≤ m′′ ≤ ℓ′′. (A 9)

The Wigner 3j have the following orthogonality relation:

(2ℓ3 + 1)
∑

m1m2

(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)(

ℓ1 ℓ2 ℓ′
3

m1 m2 m′
3

)

= δℓ3,ℓ′
3
δm3,m′

3
{ℓ1ℓ2ℓ3}, (A 10)

where {ℓ1ℓ2ℓ3} is the triangular delta.

The special case cnn(0,0) =
√

4π and the following properties are useful:

cnn′n′′ = cnn′′n′ = c(ℓ,−m)(ℓ′,−m′)(ℓ′′,−m′′), (A 11)

cnn′n′′ = (−1)m′′+ℓ′′
cn′n(ℓ′′,−m′′) = (−1)ℓ

′+m′
cn′′(ℓ′,−m′)n (A 12)

and
∑

n1

iℓ1 Yn1 (θ , φ)cn1n′n = 4π iℓ+ℓ′
Yn(θ , φ)Yn′ (θ , φ), (A 13)

where the last is the contraction rule, or the linearization formula [45]. For real θ and φ,

the linearization formula can be deduced by multiplying both sides of (A 13) by Y∗
n2

(r̂), then

integrating over r̂, and applying the definition (A 4).

The Wigner D-matrix are rotation matrices [25], so they satisfy

ℓ
∑

m1=−ℓ

Dℓ
m3m1

(α, β, γ )(Dℓ
m2m1

(α, β, γ ))∗ = δm3,m2 , (A 14)

because the Dℓ
m3m1

are rotation matrices. Note that the complex conjugate (Dℓ
m2m1

)∗ =
(−1)−m1−m2 Dℓ

(−m2)(−m1).

Integrating over the Euler angles leads to the useful identities

1

8π2

∫ 2π

0

∫π

0

∫ 2π

0
Dℓ3

m3m1
(α, β, γ )Dℓ

mm′ (α, β, γ ) sin β dα dβ dγ = δm,−m3δm′,−m1δℓ,ℓ3

(−1)m1+m3

2ℓ + 1
, (A 15)

and

1

8π2

∫ 2π

0

∫π

0

∫ 2π

0
Dℓ1

m1m′
1
Dℓ2

m2m′
2
Dℓ3

m3m′
3

sin β dα dβ dγ

=
(

ℓ1 ℓ2 ℓ3

m1 m2 m3

)(

ℓ1 ℓ2 ℓ3

m′
1 m′

2 m′
3

)

, (A 16)

which are equation (4.6.1) and (4.6.2) from [25].

Appendix B. Prove rotated incident wave
Here we prove that

ℓ
∑

m=−ℓ

Dℓ
m′′mV(0,0)n(kPr1) = V(0,0)(ℓ,m′′)(kr1). (B 1)

Using definition (A 3), and properties (A 11) and (A 12), we have

V(0,0)n(kPr1) =
∑

n1

c(0,0)nn1
vn1 (kPr1) =

∑

n1

c(0,0)nn1

∑

m2

v(ℓ1,m2)(kr1)Dℓ1
m2m1

(α, β, γ ). (B 2)
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Next we use c(0,0)n(ℓ1,m1) =
√

4π (−1)ℓ+mδm1,−mδℓ1,ℓ, which follows from (A 4), in the above to obtain

ℓ
∑

m=−ℓ

Dℓ
m′′mV(0,0)(ℓ,m)(kPr1) =

√
4π (−1)ℓ

∑

m2

v(ℓ,m2)(kr1)
ℓ

∑

m=−ℓ

Dℓ
m′′m(−1)mDℓ

m2(−m). (B 3)

By writing: (−1)mDℓ
m2(−m) = (−1)m2 Dℓ∗

(−m2)m, we can use

ℓ
∑

m=−ℓ

Dℓ
m′′m(−1)mDℓ

m2(−m) = (−1)m2δm′′,−m2 ,

because the Dℓ
m1m2

are rotation matrices. Substituting the above into (B 3) completes the proof of

(B 1) because

ℓ
∑

m=−ℓ

Dℓ
m′′mV(0,0)(ℓ,m)(kPr1) =

√
4π(−1)ℓ+m′′

v(ℓ,−m′′)(kr1) = V(0,0)(ℓ,m′′)(kr1). (B 4)

Appendix C. Prove rotated integral term
Here we prove that, for any square integrable function h, under the assumptions of theorem 5.3,

we have

ℓ′
∑

m′=−ℓ′

ℓ
∑

m=−ℓ

Dℓ
m′′mK(ℓ′,m′)(ℓ,m)[h(ℓ′,m′)](Pr1) =

ℓ′
∑

m′=−ℓ′

K(ℓ′,m′)(ℓ,m′′)[h
P

(ℓ′,m′)](r1). (C 1)

Expanding the left-hand side using (5.16), followed by a change of variables r2 �→ Pr2, and

using the invariance of n and g under rotations, gives

ℓ′
∑

m′=−ℓ′

ℓ
∑

m=−ℓ

Dℓ
m′′mK(ℓ′,m′)(ℓ,m)[h(ℓ′,m′)](Pr1)

=
∑

(ℓ1,m1)

ℓ′
∑

m′=−ℓ′

ℓ
∑

m=−ℓ

ℓ1
∑

m2=−ℓ1

∫
R

Dℓ
m′′mDℓ1

m2m1
c(ℓ′,m′)(ℓ,m)(ℓ1,m1)u(ℓ1,m2)(kr1 − kr2)

× h(ℓ′,m′)(Pr2, Pr1)g(r1, r2)n(r2) dr2, (C 2)

where we used (A 3) and (5.2) to substitute

U(ℓ′,m′)(ℓ,m)(kP(r1 − r2)) =
∑

(ℓ1,m1)

c(ℓ′,m′)(ℓ,m)(ℓ1,m1)u(ℓ1,m1)(P(r1 − r2))

=
∑

(ℓ,m)

c(ℓ′,m′)(ℓ,m)(ℓ1,m1)

ℓ1
∑

m2=−ℓ1

u(ℓ1,m2)(kr1 − kr2)Dℓ1
m2m1

. (C 3)

We can show that the term on the right of (C 1) equals (C 2) by opening it to obtain:

ℓ′
∑

m′=−ℓ′

Kn′(ℓ,m′′)[h
P
n′ ](r1) =

∑

n2

ℓ′
∑

m′=−ℓ′

ℓ′
∑

m1=−ℓ′

∫
R

Dℓ′
m′m1

c(ℓ′,m′)(ℓ,m′′)n2
un2 (kr1 − kr2)

× h(ℓ′,m1)(Pr2, Pr1)g(r1, r2)n(r2)dr2

=
∑

(ℓ1,m1)

ℓ′
∑

m′=−ℓ′

ℓ
∑

m=−ℓ

ℓ1
∑

m2=−ℓ1

∫
R

Dℓ
m′′mDℓ1

m2m1
c(ℓ′,m′)(ℓ,m)(ℓ1,m1)u(ℓ1,m2)(kr1 − kr2)

× h(ℓ′,m′)(Pr2, Pr1)g(r1, r2)n(r2) dr2, (C 4)
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as required, where in the first line we used (A 3), and in the second line we used

ℓ′
∑

m′=−ℓ′

Dℓ′
m′m1

cn′(ℓ,m′′)n2
=

ℓ
∑

m=−ℓ

ℓ2
∑

m′=−ℓ2

Dℓ
m′′mDℓ2

m2m′ c(ℓ,m1)n(ℓ2,m′), (C 5)

which follows from the identity

∑

m′

ℓ
∑

m=−ℓ

ℓ2
∑

m1=−ℓ2

cn′n(ℓ2,m1)(−1)m′
Dℓ′

m3(−m′)D
ℓ
m′′mDℓ2

m2m1
= c(ℓ′,−m3)(ℓ,m′′)n2

(−1)m3 , (C 6)

after multiplying both sides by (−1)m3 Dℓ′

−m3(m4) and summing over m3, and using the

orthogonality property (A 14). The above identity (C 6) is obtained by combining equations

(4.1.12), (4.2.5) and (4.3.3) from [25], together with definition (A 7).

Appendix D. Proof of the representation (3.2)
Here we use theorems 5.1 and 5.3 to prove the representation (3.2). Let h(r1, r2) :=
∑

n Yn(r̂2)〈 fn〉(r1). From theorem 5.3 and definition (5.2) we find that

h(r1, r2) =
∑

(ℓ,m)

ℓ
∑

m′=−ℓ

Y(ℓ,m)(r̂2)Dℓ
mm′〈 f(ℓ,m′)〉(Pr1)

=
∑

ℓ

ℓ
∑

m′=−ℓ

Y(ℓ,m′)(Pr̂2)〈 f(ℓ,m′)〉(Pr1) = h(Pr1, Pr2). (D 1)

From theorem 5.1, we have

h(r1, r2) =
∑

(ℓ,m)

h(ℓ,0)(ℓ,0)(r1)Y∗
(ℓ,m)(r̂1)Y(ℓ,m)(r̂2),

which, when compared with h(r1, r2) :=
∑

n Yn(r̂2)〈 fn〉(r1), leads to the representation (3.2).

Appendix E. Proof of the representation (3.3)
Here we use theorems 5.2 and 5.3 to prove the representation (3.3). Let h(r1, r2, r3) :=
∑

n Yn(r̂3)〈 fn〉(r1, r2). From theorem 5.3, we find that, similar to the two-argument case in the

section above,

h(r1, r2, r3) = h(Pr1, Pr2, Pr3). (E 1)

From theorem 5.2 and the properties (A 11) we obtain

h(r1, r2, r3) =
∑

(ℓ1,m1)
(ℓ2,m2)

∑

(ℓ3,m3)

h(ℓ1,0)(ℓ2,0)(ℓ3,0)(r1, r2)
c(ℓ1,m1)(ℓ2,m2)(ℓ3,m3)

c(ℓ1,0)(ℓ2,0)(ℓ3,0)

× Y(ℓ1,m1)(r̂1)Y∗
(ℓ2,m2)(r̂2)Y∗

(ℓ3,m3)(r̂3),

Comparing the above with the definition of h leads to the representation (3.3).

Appendix F. Reducing the integral term
In §6, we need the identity (F 4), where we used the shorthand (5.16). We can easily reduce this

term by using (C 1) and 〈 f P
n 〉(r2, r1) = 〈 fn〉(r2, r1).
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Assume we have some field that satisfies 〈 f P
n 〉(r2, r1) = 〈 fn〉(r2, r1) for every rotation P,

substituting this field into (C 1) leads to

ℓ′
∑

m′=−ℓ′

Kn′n[〈 fn′ 〉](r1) =
ℓ

∑

m′′=−ℓ

Dℓ
mm′′

ℓ′
∑

m′=−ℓ′

Kn′(ℓ,m′′)[〈 fn′ 〉](Pr1), (F 1)

where we swapped m and m′′ for every rotation matrix P. We can rewrite this by defining

kℓ′ (r1, r2) :=
∑

n

ℓ′
∑

m′=−ℓ′

Kn′n[〈 fn′ 〉](r1)Yn(r̂2), (F 2)

and multiplying both sides of (F 1) by Yn(r̂2) and summing over n to obtain

kℓ′ (r1, r2) = kℓ′ (Pr1, Pr2), (F 3)

where we used (5.2) on the right side. The above lets us use theorem 5.1 to write

kℓ′ (r1, r2) =
∑

n

kℓ′ℓ(r1)Y∗
n(r̂1)Yn(r̂2),

where kℓ′ℓ is a function which depends only on ℓ′ and ℓ. Comparing the above with (F 2), and

using the orthogonality of the spherical harmonics, leads us to

ℓ′
∑

m′=−ℓ′

Kn′n[〈 fn′〉](r1) = kℓ′ℓ(r1)Y∗
n(r̂1). (F 4)

To reach the version of this identity we need we multiply both sides by Yn0 (r̂1), integrate over

the solid angle dΩ1, and sum over ℓ′ to obtain
∫

∑

n′

Kn′n[〈 fn′ 〉](r1)Yn0 (r̂1)dΩ1 = kℓ(r1)δn,n0 , (F 5)

where kℓ(r1) :=
∑

ℓ′ kℓ′ℓ(r1).
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