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Summary 

Mouse models have been used extensively to study human coronary artery disease 

(CAD) or atherosclerosis and to test therapeutic targets. However, whether mouse and 

human share similar genetic factors and pathogenic mechanisms of atherosclerosis has 

not been thoroughly investigated in a data-driven manner. We conducted a cross-species 

comparison study to better understand atherosclerosis pathogenesis between species by 

leveraging multiomics data. Specifically, we compared genetically driven and thus CAD-

causal gene networks and pathways, by using human GWAS of CAD from the 

CARDIoGRAMplusC4D consortium and mouse GWAS of atherosclerosis from the Hybrid 

Mouse Diversity Panel (HMDP) followed by integration with functional multiomics human 

(STARNET and GTEx) and mouse (HMDP) databases. We found that mouse and human 

shared >75% of CAD causal pathways. Based on network topology, we then predicted 

key regulatory genes for both the shared pathways and species-specific pathways, which 

were further validated through the use of single cell data and the latest CAD GWAS. In 

sum, our results should serve as a much-needed guidance for which human CAD-causal 

pathways can or cannot be further evaluated for novel CAD therapies using mouse 

models. 

 

 

Key Words 

Coronary Artery Disease; Gene Networks; Cross-species Comparison; Multiomics; 
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INTRODUCTION 

Coronary artery disease (CAD) represents one of the leading causes of mortality 

worldwide (Tsao et al., 2022) and is the most common type of heart disease. CAD is 

primarily caused by atherosclerosis, or the buildup and hardening of plaque in the 

arteries, and can lead to arrhythmias, heart attack, and heart failure (Momiyama et al., 

2014). It is a complex disease that involves numerous genetic and environmental factors, 

including poor diet, lack of exercise and smoking (McCarthy et al., 2008). An individual’s 

risk of developing CAD may be reduced by lifestyle changes, medication, or surgery; 

however, our ability to mitigate CAD from the number one cause of death is still limited 

(Khera et al., 2016). Therefore, a more comprehensive understanding of CAD 

mechanisms will help develop new preventative and therapeutic strategies. 

 

Mouse models have been extensively used to study atherosclerosis mechanisms and to 

test therapeutic drugs (Von Scheidt et al., 2017; Xiangdong et al., 2011). There are many 

advantages to using mouse models, such as low maintenance cost, fast reproduction 

cycles, and the ability to control the environment and genetically manipulate their 

genomes. In addition, the mouse genome shares 95% of the protein coding genes with 

that of humans. However, there are important differences between the two species that 

make direct translation of findings from mice to humans less straightforward (Vandamme, 

2014). For example, mice tend to develop larger atherosclerotic lesions in the aorta and 

carotids, whilst in humans the most consequential plaque lesions develop in coronary 

arteries (Ma et al., 2012). Because of the extensive use of mouse models in both 

mechanistic studies and preclinical investigations of therapeutic targets and drugs, a 
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detailed understanding of the shared and distinct molecular mechanisms through a cross-

species comparison will have tremendous translational value in cardiovascular research.  

 

Previously, literature-based analyses revealed limited gene-level sharing between 

species but 70% sharing at the level of molecular pathways without considering the tissue 

context or gene regulatory networks (Von Scheidt et al., 2017). As literature-based 

findings can be biased (Stoeger et al., 2018), here we conduct a comprehensive data-

driven integrative study utilizing the ample multiomics data resources available to allow a 

tissue-specific, systems-level assessment of the key similarities and differences in CAD 

mechanisms between mouse and human. For each species, we focus on genetic and 

functional genomics datasets, including genome-wide association studies (GWAS) which 

uncover genetic risk loci, tissue-specific transcriptome data that reveal global gene 

expression and gene-gene coordination patterns, and tissue-specific expression 

quantitative trait loci (eQTLs) that reflect genetic regulation of gene expression. Instead 

of focusing on direct intersections of individual risk genes between species, our study 

builds on the “omnigenic” disease model that emphasizes pathway and gene network 

perturbations to make mechanistic comparisons between species (Boyle et al., 2017). 

Indeed, recent studies support the involvement of tissue-specific pathways and networks 

in CAD and other complex diseases (Blencowe et al., 2021; Krishnan et al., 2018; Kurt et 

al., 2018; Zhao et al., 2019a; Zhao et al., 2019b) and that cross-species comparison is 

more informative at the pathway level. Through multiomics integration, our study reveals 

both shared and species-specific pathways, networks, and key regulatory genes. Our 

findings will help inform on when mice models are appropriate for testing different aspects 
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of atherosclerosis and predict how well findings from mice will translate in human studies, 

ultimately increasing the likelihood of success in the design, development, and testing of 

new therapeutic agents for CAD.  

 

RESULTS 

Multiomics study design of CAD/Atherosclerosis 

To understand the similarities and differences in CAD/atherosclerosis pathways and 

candidate disease regulatory genes in human and mouse, we used Mergeomics, to 

integrate multiomics data including GWAS signals, tissue-specific eQTLs, and gene 

networks to predict causal CAD/atherosclerosis subnetworks and their potential regulator 

genes in each species (Figure 1). From the human side, we included CAD GWAS from 

the Coronary Artery Disease Genome-wide Replication and Meta-Analysis 

(CARDIoGRAMplusC4D) consortium and transcriptomes and eQTLs from vascular 

tissues and liver from the GTEx consortium and the STARNET study. From the mouse 

side, we used atherosclerosis GWAS from the Hybrid Mouse Diversity Panel (HMDP), 

which is comprised of over 100 inbred strains of mice, with three to four mice per sex 

(Bennett et al., 2015), and transcriptomes and eQTLs from aorta and liver tissues from 

the same mouse cohort. We first constructed co-expression networks using gene 

expression data from vascular and liver tissues from both species and identified co-

expression modules (clusters of co-expressed genes). We then mapped the CAD and 

atherosclerosis GWAS for human and mouse respectively, to genes using vascular and 

liver eQTLs. We used these mapped genes from GWAS to look for enrichment of gene 

sets (co-expression modules or canonical pathways), which will drive modules and 
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pathways that are more likely to be causal and perturbed by genetic risk variants. We 

then identified gene sets that were shared and unique to each species and mapped the 

CAD/atherosclerosis-associated gene sets onto Bayesian networks constructed from 

liver and vascular tissues. These networks contain gene-gene regulatory relationships, 

which allowed us to predict candidate key driver (KD) genes in these 

CAD/atherosclerosis-associated gene sets that are potentially causal (see Methods for 

details).  

  

Construction of tissue-specific co-expression networks  

We constructed co-expression networks from transcriptome data of 299 aortic artery, 173 

coronary artery, and 175 liver tissue samples from the GTEx study (Lonsdale et al., 2013) 

for human, and 554 aortas and 508 liver samples of mice from 101 HMDP strains using 

two network methods, namely, Weighted Gene Co-expression Network Analysis 

(WGCNA) (Langfelder and Horvath, 2008) and Multiscale Embedded Gene Co-

expression Network Analysis (MEGENA) (Song and Zhang, 2015). WGCNA and 

MEGENA cluster genes into modules based on the co-regulation structure of the genes 

using hierarchical clustering (details in Methods). Modules from both methods can be 

reciprocally conserved, however, their compactness and sizes are different, making these 

two methods complementary allowing for different levels of biological pathways to be 

captured, as shown in our previous study (Krishnan et al., 2018).  

 

From the human datasets, we identified 36 co-expression modules in the aortic artery, 21 

modules in the coronary artery, and 33 liver modules using WGCNA, whereas with 
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MEGENA we obtained 159, 168, and 168 modules, respectively. For mouse, we identified 

52 aorta co-expression modules and 55 liver modules using WGCNA, and 207 aorta and 

190 liver modules using MEGENA (Suppl Table S1). We pooled these co-expression 

modules along with 1823 canonical biological pathways from the Molecular Signatures 

Database (MSigDB) (Subramanian et al., 2005) to identify potential causal 

CAD/atherosclarosis processes in the next step using the Marker Set Enrichment 

Analysis (MSEA) function of Mergeomics. Here, co-expression modules represent 

functionally related genes defined by data-driven analysis, whereas MsigDB pathways 

capture functionally related genes through knowledge-driven categorization. They are 

complementary approaches to define genes sets containing functionally coherent genes, 

which can be combined to capture a potentially broader array of biology. 

 

Biological pathways and co-expression modules that exhibit genetic association 

with CAD 

Canonical biological pathways and co-expression modules from both species were 

pooled together, where each gene set (a pathway or module) contains functionally 

associated genes. We then mapped the GWAS data, which contains the potential causal 

signals, with the gene sets through species- and tissue-specific eQTLs to identify potential 

causal gene sets for CAD/atherosclerosis in each species and tissue. Instead of using 

only the top individual genome-wide significant signals in CAD GWAS, we used the whole 

spectrum of GWAS single nucleotide polymorphisms (SNPs) and their associated p-

values, which allowed us to consider moderate and subtle signals in addition to strong 

ones. GWAS SNPs were then mapped to genes through species- and tissue-specific 
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eQTLs which represent the functional association between genes and expression single 

nucleotide polymorphisms (eSNPs) examined in GWAS. For each gene set among the 

pooled pathways and modules, we mapped the member genes to eSNPs through 

vascular (aorta in mouse, aorta and coronary arteries in human) or non-vascular tissue 

(liver in both species) eQTLs by matching the tissue type between eQTLs and co-

expression modules. Then, we used the Marker Set Enrichment Analysis (MSEA) 

procedure from our Mergeomics tool (Ding et al., 2021; Shu et al., 2016) to test whether 

an eSNP set, which was mapped from a given gene set, is enriched for stronger disease 

GWAS signals, based on GWAS P value scores, compared to eSNP sets from random 

groups of genes (see Methods). 

 

Among the 1823 canonical pathways and 1089 coexpression modules (643 from vascular 

tissue, and 446 from non-vascular tissue from both species; Suppl Table S1), we found 

that human CAD GWAS signals from CARDIoGRAMplusC4D were significantly enriched 

in 47 pathways and 64 vascular tissue co-expression modules informed by vascular 

tissue eQTLs, whereas 59 pathways and 60 non-vascular (liver) modules were identified 

as CAD-associated by liver eQTLs (Suppl Table S2). Mouse atherosclerosis GWAS 

signals from HMDP were significantly enriched in 68 pathways and 81 vascular tissue 

modules through the aortic eQTLs, and 37 pathways and 49 liver modules through liver 

eQTLs. Some of the CAD-associated pathways or modules share their member genes 

and correspond to similar biological processes, thereby creating redundancies. To reduce 

redundancy, we combined significantly overlapping gene sets (p<0.05, >33% gene 

overlap; see Methods) into “supersets”, yielding 73 and 80 supersets from human and 
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mouse based on vascular tissue analysis, and 74 and 60 supersets from human and 

mouse based on liver analysis, respectively. Hence, each superset corresponds to one 

or more CAD/atherosclerosis-associated gene set (see Methods). These merged 

nonredundant supersets were found to retain enrichment for strong CAD or 

atherosclerosis-related genetic signals (Suppl Table S3).  

 

Shared pathways and co-expression modules between human and mouse 

We compared the CAD/atherosclerosis-associated supersets between mouse and 

human in each tissue separately. In addition to directly matching the pathways or modules 

by name or annotation, we also checked the overlap between the member genes of the 

supersets from both species. A two-sided Jaccard index overlap >50% or a one-sided 

overlap >90% was accepted as a match between species (see Methods). Since a 

superset that was found as CAD-associated in one of the species may cover >90% of the 

genes in more than one superset found in the other species, the number of the shared 

supersets from each of the species can differ. 

 

Between vascular and liver tissues, we observed shared CAD pathways between tissues 

and species (Figure 2). These include well known signals in atherosclerosis development 

including metabolism of lipids, lipoproteins, and proteins, extracellular matrix (ECM) 

organization, platelet activation/signaling/aggregation pathways, TCA cycle, and MAPK 

signaling.  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2023. ; https://doi.org/10.1101/2023.06.08.544148doi: bioRxiv preprint 



 10 

In the vascular tissue-driven analysis, 53 of the 73 human supersets (73%) and 60 of the 

80 mouse supersets (75%) were found to be matched or preserved between species 

(Suppl Table S3, Figure 2). The shared pathways in vascular tissues include those less 

known for their role in the vasculature including gluconeogenesis, RXR/VDR pathway, 

and branched chain amino acid (BCAA) catabolism. At the same time, we uncovered 

some more common terms such as cell cycle, vascular smooth muscle contractions, and 

metabolism of lipids and lipoproteins (Figure 2B). 

 

In the liver-based analysis, 56 of the 74 human supersets (76%) and 51 of the 60 mouse 

supersets (85%) were preserved between species (Suppl Table S3, Figure 2C). The 

shared pathways in the liver include well characterized terms such fatty acid metabolism, 

Jak-STAT, PPAR signaling, circadian rhythm, and immune related signals (Figure 2D).  

 

Species-specific CAD-associated mechanisms  

We also identified species-specific processes in individual tissues (Figure 2). Human-

specific pathways in vascular tissue analysis include a host of immune related signals 

(leukocyte transendothelial migration, viral myocarditis, and TLR-9 cascade) as well as 

intricate signaling cascades including GPCR and PDGF signaling, and more general 

terms such as diabetes pathway and metabolism pathways. Among these, leukocyte 

transendothelial migration and diabetes pathways were shared between species in liver 

(Figure 2, Suppl Table S3). In liver, human-specific CAD pathways include immune 

system terms (interferon alpha/beta signaling, BCR signaling, and MHC class II antigen 

presentation), carbohydrate and BCAA metabolism, lysosome, neurotrophin signaling, 
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and axon guidance pathways, among which BCAA and carbohydrate metabolism 

pathways were found to be shared between species in the vascular tissue-based 

analysis. 

 

Mouse-specific atherosclerosis mechanisms identified in the aorta include signaling by 

insulin receptor, EGFR, ERBB2, NGF, and TGF-beta signaling, axon guidance, VEGF 

and VEGFR pathways, and Tap63 and DeltaNp63 pathways (Suppl Table S2). Some of 

the mouse-specific atherosclerosis pathways found in the aorta were identified as 

common to both species in liver tissue such as fatty acid synthesis, Jak-STAT and Wnt 

signaling. In liver tissue, mouse-specific pathways include toll-like receptor signaling, 

amino acid metabolism (arginine, proline, glycine, serine, and threonine), phospholipid 

metabolism, metabolism of non-coding RNA, binding and uptake of ligands by scavenger 

receptors, and mitochondrial transcription pathways (Suppl Table S2). TLR signaling 

pathway was found to be mouse-specific in liver, whereas it was human-specific in 

vascular tissues. Similarly, pathways such as axon guidance and developmental biology 

were mouse-specific in aorta, but human-specific in liver. Hence, some of the 

atherosclerosis pathways can be shared between species in a manner that is not matched 

by tissue-type. 

 

Identifying key driver (KD) genes in CAD-associated supersets shared between 

mouse and human 

We identified KDs, which are potential key regulatory genes, within the CAD-associated 

gene sets using the Key Driver Analysis (KDA) in the Mergeomics pipeline (Ding et al., 
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2021; Shu et al., 2016). The KDA procedure maps the tissue-specific CAD-associated 

gene sets onto a tissue-matched gene regulatory network to predict KDs (see Methods). 

Our analysis utilized Bayesian Networks (BNs), which incorporate gene expression 

patterns with genetic information and causal inference. Hence, BNs can reveal causal 

regulatory relationships between genes and enable the identification of potential 

regulators within the CAD-associated genes, canonical pathways or annotated co-

expression modules. 

 

In vascular tissues, one of the top KDs for the shared CAD/atherosclerosis pathways 

between species is ZHX2, whose subnetwork neighbors are highly enriched for genes in 

a co-expression module annotated with RXR/VDR pathway, post translational protein 

modification, and endocytosis terms (Figure 3A). Other top ranked KDs include MYLK, 

FLNA, ACTA2, NCAM1, and FOXC1, which are associated with core matrisome, focal 

adhesion, and vascular smooth muscle contraction processes modules; CEP350, which 

is associated with a cell cycle, DNA replication, and B cell receptor activation module; 

ASB5, MYF6, CACNA1S, and AMPD1 for a cardiac muscle contraction-associated 

module; AGPAT1, which is associated with a module annotated with metabolism of 

nucleotides and aminoacyl tRNA biosynthesis; FLNA, CNN3, and MYL9, which are 

associated with an ECM related module; and lastly MTA2, which is associated with 

metabolism of carbohydrates, glycosaminoglycan degradation, and lysosome terms.  

 

For liver tissue, the predicted KDs for the shared causal atherosclerosis/CAD pathways 

between mouse and human (Figure 3B) include: NCKAP1L and INPP5D for a Rho 
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GTPase signaling module; ARNTL and TEF for circadian rhythm-related terms and 

pyrimidine metabolism modules; COL1A1 and COL6A3 for an ECM organization module; 

RAC2 and APBB1IP for a platelet activation signaling and aggregation module; and lastly 

SQLE and ACSS2 for a metabolism of lipids and lipoproteins module, which can be 

considered as a positive control pathway due to the critical role of circulating apoB 

lipoproteins in atherosclerosis and the central role of the liver in regulating their levels in 

both mice and humans.  

 

Because KDA cannot predict directionality of the effects of KDs on CAD risk, we examined 

the correlation between KDs and atherosclerosis-relevant traits in the atherosclerosis 

HMDP as a means to suggest directionality. We found numerous significant positive or 

negative correlations for the vascular tissue (Suppl Table S4). For example, KDs Agpat1 

and Zhx2 correlated positively with aortic lesion area, whereas Cnn3 correlated negatively 

with aortic lesion area. Similarly, when querying the liver KDs in the atherosclerosis 

HMDP liver tissue, we found Cidec is negatively correlated with aortic lesion area as well 

as numerous KDs including Inpp5d and Nckap1l positively correlated with aortic lesion 

area (Suppl Table S5).  

 

KDs for species-specific CAD supersets  

For human-specific vascular pathways, we identified FNBP4, MYSM1, GC, and HPX as 

the top KDs for a fibrin clot clotting cascade and chylomicron mediated lipid transport 

pathways module; PLCB2 and SYK for a leukocyte transendothelial migration module; 

and LCK and CCL5 for a cell adhesion module (Figure 4A). For human-specific liver 
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pathways, we identified MCM5 and MCM6 as KDs for a cell cycle module; MX1, ISG15, 

and IRF7 for an interferon alpha/beta signaling module; ACADM for a module annotated 

with BCAA degradation; and lastly, NNMT for an IL6/7 signaling module (Figure 4B).  

 

For mouse-specific vascular pathways, numerous KDs were identified: CLEC1A, DLL4, 

MYCT1, FLT1, and MYO5C for a VEGF/VEGFR pathway and axon guidance module; 

CEP350, MALAT1, and UTRN for a fatty acid synthesis and ERBB2 signaling pathway 

module; C2orf54, EHF, CRABP2, SLC46A2, and SOX2 for a Tap63 and DeltaNp63 

pathways module (Figure 4C). For the mouse-specific liver atherosclerosis pathways, 

PTPRB, KDR, OIT3, and CYP4B1 were found to be the top KDs for a VEGF/VEGFR 

module; TMEM43, MTMR11, PLEKHA1, and SCNN1A were the top KDs of amino acid 

metabolism pathways (arginine and proline metabolism, glycine, serine, threonine 

metabolism) and cardiac EGF pathway modules (Figure 4D).  

 

Examining the KD-trait correlations in HMDP showed many of these KDs are positively  

correlated (e.g., Dock2, Irf8, and Zap70) or negatively correlated (e.g., Utrn) with aortic 

lesion area in the atherosclerosis HMDP aorta tissue, or positively (e.g., Ifi44, Irf7, Mx1, 

Nnmt, and Rtp4) or negatively (e.g., Acadm and Ets2) correlated with aortic lesion area 

in the atherosclerosis HMDP liver (Suppl Table S4;S5).  

 

Comparison of KDs and pathways with known CAD/Atherosclerosis genes and 

processes in shared networks 
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Our analysis highlights a number of previously known CAD/atherosclerosis associated 

genes as KDs and commonly associated biological processes with CAD/atherosclerosis 

to be shared between species but also uncovers those less known or frequently 

associated to play a role in CAD development. For example, within vascular tissues 

(Figure 3A), we find a number of genes such as NCAM1, MYLK, and ACTA2, all of which 

have previously shown to have a link with CAD but with limited validation (Erbilgin et al., 

2018; Ghosh et al., 2015; Wang et al., 2007; Yuan, 2015). Within the shared 

CAD/atherosclerosis liver network between species (Figure 3B), APBB1IP, PTPRC, 

NCKAP1L and INPP5D were captured as potential novel KDs which again have not been 

strongly investigated, validated or implicated in CAD previously. However, the associated 

biological pathways of these key driver genes, including Rho GTPase signaling, 

hemostasis, and platelet activation and aggregation have all been repeatedly captured in 

CAD. Therefore, our analysis highlights novel regulators of these common 

CAD/atherosclerosis pathways. 

 

In silico validation of CAD-associated networks through the use of single cell 

transcriptome data  

To validate the potential regulatory role of the KDs on their surrounding subnetwork 

genes, and to pinpoint the potential cell types that they may be contributing through, we 

utilized mouse single-cell RNA-sequencing data from the aorta (Wirka et al., 2019) and 

liver tissues (Wang et al., 2021).  

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 20, 2023. ; https://doi.org/10.1101/2023.06.08.544148doi: bioRxiv preprint 



 16 

To validate our vascular tissue CAD/atherosclerosis networks (KDs and their direct edge 

connections), we compared ApoE-/- mouse aorta single-cell gene expressions at baseline 

condition and after the 8-week high-fat diet (HFD) treatment. We found that the 

subnetworks driven by the KDs ACTA2, FLNA MYLK, and MYL9 exhibited significant 

changes in expression between diet conditions in smooth muscle cells (SMCs) (Figure 

5A-D), thus highlighting the validity of the network structure for these subnetworks and 

potentially their contribution to CAD development via SMCs. This is further supported in 

the literature, as ACTA2 mutations in SMCs have been linked to occlusive vascular 

disease via increased SMC proliferation (Guo et al., 2009). Our findings at the cellular 

level within SMCs suggest the neighboring subnetwork genes of ACTA2 cooperate with 

this KD to contribute to atherogenesis and CAD progression. Also, in regard to the KD 

FLNA, interaction between G protein-coupled P2Y2 nucleotide receptor (P2Y2R) and 

FLNa, an actin-binding protein encoded by FLNA, promotes SMC spreading, a hallmark 

characteristic in atherosclerosis development (Yu et al., 2008). Lastly, modification of 

MLCK, encoded by KD MYLK has been shown to disrupt the ability of aortic SMCs to 

generate force, leading to compromised contractile function (Huang et al., 2018), which 

may play an important role in CAD. 

 

Due to the lack of single cell datasets for the liver for CAD studies, we utilized single cell 

data for a common comorbidity of CAD, non-alcoholic steatohepatitis (NASH), which is 

an advanced stage of non-alcoholic fatty liver disease involving liver inflammation and 

damage and linked to obesity, insulin resistance, and CAD. We found that the KD OIT3 

and its predicted surrounding network genes showed significant changes in expression 
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between healthy and NASH states across multiple cell types such as hepatic stellate cells, 

hepatocytes, mononuclear phagocytes, and T cells (Figure 5E-H).  

 

To ensure the observed gene expression changes in the KDs and their subnetwork genes 

validated above were not random in single cell data, we chose five random genes and 

their subnetwork genes as negative controls to test their expression changes between 

control and disease states. Indeed, these randomly selected genes did not show 

statistically significant changes.  

 

In silico validation of CAD-associated KD networks through the use of the latest 

CAD GWAS 

To test whether our CAD subnetworks predict new CAD GWAS loci, we overlaid hits from 

a more recent CAD GWAS (Tcheandjieu et al., 2022), which was not used in our analysis, 

as well as hits from prior CAD GWAS (p<5x10-8) onto the shared CAD subnetworks 

between species. We found that KDs FOXC1 in the shared vascular network and ARNTL 

in the shared liver CAD network were among GWAS hits. Additional GWAS hits in the 

shared cross-species CAD subnetworks were peripheral nodes (e.g. CETP, PLCG2, 

BASP1, MSR1, ST5, ASAP2) (Figure 3A;3B).  

 

DISCUSSION 

In order to understand the key similarities and differences between mouse and human in 

atherosclerosis/CAD-pathogenesis, we carried out a cross-species comparison of the 

genetically driven atherosclerosis/CAD mechanisms between mouse and human by 
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integrating multiomics data. We observed a high ratio of overlap between species in 

genetically driven pathways (~74% in aorta and ~80% in liver), which include established 

CAD processes (e.g. metabolism of lipid, lipoproteins and fatty acids), as well as more 

novel processes (e.g. asparagine N-linked glycosylation). Given the high ratio overlap 

between species for genetic pathways, we can highlight the importance of the in vivo 

mouse model for understanding human CAD. More importantly, our results shed light on 

when to utilize mouse models for translational benefit to humans by focusing on the 

shared pathways and networks, and when we should look to alternative animal models 

for processes which are not shared between mouse and human (Gistera et al., 2022). 

 

Our data-driven multiomics analysis confirmed a number of causal pathways that were 

previously reported to be shared between species in a previous study based on literature 

review: platelet activation and signaling, metabolism of lipid and lipoproteins, cholesterol 

biosynthesis, cell cycle pathways, focal adhesion, and Jak-STAT signaling (Von Scheidt 

et al., 2017). The previous study focused on CAD genes curated from the literature 

without considering the tissue context; here, our data-driven approach uniquely indicates 

that these shared pathways are involved in both vascular and non-vascular tissues in 

both species. Additionally, unlike the earlier studies, we incorporated CAD GWAS, 

thereby providing genetic evidence on how these pathways relating to plaque initiation, 

buildup, and thrombosis genetically drive CAD/atherosclerosis in both species. In addition 

to the replicated pathways, our data-driven approach also uniquely uncovered ECM, 

mitochondria function (oxidative phosphorylation, TCA cycle, respiratory electron 

transport), MAPK signaling, membrane trafficking, and notch signaling pathways to be 
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shared across tissues between species. Since these are shared between species, 

targeting them in mice may lead to similar results when studying cardiovascular diseases 

in humans. 

 

Our tissue-specific network analysis also revealed interesting tissue-specificity in the 

shared cross-species pathways. For instance, unique vascular tissue pathways include 

apoptosis, vascular smooth muscle contractions, and RXR/VDR pathways, all of which 

have been previously linked to CAD. We observed that some of the causal CAD pathways 

shared between species in a single tissue were identified as species-specific in the other 

tissue. For instance, BCAA catabolism pathway was found to be shared between mouse 

and human in vascular tissue, whereas it was also identified as human-specific in liver. 

Similarly, the leukocyte transendothelial migration pathway was shared between species 

in liver, whereas it was human-specific in vascular tissues. We also identified species-

specific pathways in each tissue individually. For instance, signaling by insulin receptor 

was found to be mouse-specific in aorta, but the diabetes pathway was impaired in both 

mouse and human liver. These results point to the importance of taking the tissue context 

into consideration when translating genes and pathways between mouse and human.  

 

After identifying potential causal atherosclerosis/CAD pathways, we identified the top KD 

genes of the shared and species-specific pathways in each tissue. ZHX2 was found to be 

one of the top KDs in an aorta coexpression module shared between mouse and human 

(Figure 4A). ZHX2 was previously identified as a candidate gene for CAD, and its 

proposed mechanism was through modulating macrophage apoptosis (Sen et al., 2014). 
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Since it was also shown to be a regulator of major genes behind lipoprotein metabolism 

(Gargalovic et al., 2010), it may also contribute to the development of atherosclerosis via 

lipid modulation. However, our network modeling indicates ZHX2 has additional functions 

related to RXR/VDR, protein modification, and endocytosis in vascular tissue. Thus, 

future experimental testing is warranted to further explore the diverse mechanisms 

through which ZHX2 modulates atherogenesis. In liver tissue, a notable KD for a cross-

species module involved in immune response and platelet function includes RAC2 

(Figure 3B). Previously, RAC2 was shown to prevent progressive calcification in 

experimental atherogenesis through the suppression of Rac1-dependent IL-1β, and in 

CAD patients it has been found that RAC2 expression was decreased while IL-1β 

expression is increased (Ceneri et al., 2017).  

 

Through our in silico single cell analyses in mouse aorta and liver, we also highlight 

various other KDs to be taken into further consideration. In the mouse aorta, changes in 

expression levels of genes within subnetworks of KDs ACTA2, FLNA, MYL9, and MYLK 

proved significantly robust in SMCs between control and a pro-atherogenic condition 

(Figure 5). In the liver, the KD OIT3 and its subnetwork genes showed robust changes in 

multiple cell types between NASH and control conditions. Previously, OIT3 has been 

suggested to contribute to hepatic triglyceride homeostasis and very-low-density 

lipoprotein secretion, and hepatic OIT3 levels have been shown to be elevated in mice 

fed with HFD (Wu et al., 2021). Targeting OIT3 may help treat both NASH and CAD. 

Importantly, the representation of our bulk aorta and liver tissue CAD networks within 

specific cell types helps provide support for the predicted gene networks interactions and 
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warrants future in vivo cell-type specific validation studies. In addition, through overlaying 

the latest human CAD GWAS hits onto our networks, we were able to highlight that our 

networks captured new GWAS hits such as KD ARNTL and peripheral network genes 

(e.g. ASAP2, ST5, MCF2L, CLDN5, TNS1, and C5) (Figure 2,3,4). Finding more GWAS 

hits to be peripheral nodes in the networks supports the notion that important regulators 

may not always harbor common variations due to evolutionary constraints. GWAS hits 

being found as peripheral hits is consistent with numerous prior studies (Blencowe et al., 

2021; Goh et al., 2007; Krishnan et al., 2018; Zhao et al., 2019a).  

 

We acknowledge the following limitations of this study. First, we did not use the most 

recent and largest GWAS dataset as our initial input for our analysis. This potentially puts 

us at risk of not capturing the full array of biology. However, despite our input GWAS 

dataset not being the most recent, as mentioned above, we were able to capture ARNTL 

as a key driver gene connected to two more recent CAD GWAS hits ASAP2 and ST5 

(Aragam et al., 2022; Koyama et al., 2020) and numerous other GWAS hits as network 

neighbors. Particularly, the identification of such genes acts as a form of validation of our 

network predictions and their importance in CAD pathogenesis. We also acknowledge 

that there are multiple approaches that can be used to map SNPs to genes beyond eQTLs 

such as splicing, protein, and epigenome QTLs (sQTLs, pQTLs, epiQTLs). Utilizing 

additional mapping methods as well integrating other omics layers such as metabolomics 

and plasma proteomics in the future will potentially highlight additional findings, which can 

complement our current tissue specific gene network/pathway results and possibly 

capture cross-tissue interactions mediated by secreted proteins and metabolites. In 
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addition, it is important to note in this study that we did not regress out sex effects and we 

only examined HMDP as the mouse model of atherosclerosis. Therefore, there may be 

other pathways and genes that have been identified to be human specific in this study 

because they are missed in HMDP but can be captured in other mouse models, such as 

PDGF signaling found in the ApoE-/- model (Kim et al., 2023). Along, with some pathways 

not being captured, we also highlight some interesting pathways being uncovered in 

vascular tissue, which have had little literature to support their role in atherosclerosis 

including gluconeogenesis and BCAA catabolism (Zhenyukh et al., 2018), we 

acknowledge that future studies will need to further investigate such pathway predictions 

but also note that these pathway terms have many shared genes with more commonly 

known processes such as the TCA cycle, which may be indicative of energy metabolism 

in the vasculature in CAD development. Lastly, we could not identify single cell datasets 

that matched the conditions of the human and mouse GWAS datasets used in our data 

driven approach. Nevertheless, the network structures of the CAD KD genes appeared 

to be robust in conditions relevant to CAD, such as high fat diet feeding in ApoE-/- and 

NASH mice.  

 

In summary, our comprehensive, data-driven, and integrative genomics study, highlights 

the similarities and differences in the molecular processes and key regulator genes 

involved in atherosclerosis and CAD between species. The incorporation of genetic 

information provides the potential causal nature of the pathways and regulators in CAD 

development. The novel insights highlighted here can enable the development of more 

effective therapies targeting the shared key regulator genes and pathways in light of their 
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translatability from mouse to humans. More importantly, we are also made aware of the 

CAD human biology not captured in our mouse model, where other animal models should 

be considered. Both the shared processes between mouse and human and the human-

specific processes warrant further investigation, and identifying non-mouse or additional 

mouse models that recapitulate the human-specific pathways is necessary for 

mechanistic and clinical translation.  

 

METHODS 

 

Atherosclerosis study of Hybrid Mouse Diversity Panel 

The Hybrid Mouse Diversity Panel (HMDP) study design for atherosclerosis was 

previously described (Bennett et al., 2015). Aortic lesion area phenotype was used as the 

hallmark of atherosclerosis. C57BL/6 mice carrying the human transgene for cholesteryl 

ester transfer protein were purchased from the Jackson Laboratory, and mice with the 

human apolipoprotein E-Leiden variant were obtained from Dr. Havekes (Van den 

Maagdenberg et al., 1993). These strains were interbred to generate double transgenic 

mice, which were then bred to female mice from ~100 inbred or recombinant inbred 

strains obtained from the Jackson Laboratory. Female mice from the 100 strains were 

first fed with a chow diet for 8 weeks, and then placed on a high fat high cholesterol diet 

(33% kcal fat, 1% kcal cholesterol) until 24 weeks of age (Research Diets D10042101). 

Mice were then sacrificed for tissue collection. All experimental procedures were 

approved by the UCLA animal research committee. 
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Atherosclerotic lesions in HMDP mice 

Proximal aortic lesion area had been carried out as previously described (Bennett et al., 

2015; Mehrabian et al., 1993; Shih et al., 2000). The aorta was cleaned with phosphate 

buffered solution and embedded in the optimal critical temperature compound. Oil Red O 

was used to stain frozen sections of 10 μm. Lesion area was quantified in each third 

section across the proximal aorta. The aortic lesion size was normalized using the Yeo-

Johnson approach (Yeo and Johnson, 2000). 

 

Gene expression analyses of aorta and liver tissues in HMDP 

Tissue collection process for the expression data from aorta and liver tissues that were 

used in our analysis was previously described (Bennett et al., 2015). Whole aorta was 

cleaned of peri-adventitial adipose and immediately frozen at the time of euthanasia. The 

liver tissues were precisely dissected, and a 50-μg section from the left lobe was snap-

frozen. Qiagen RNeasy kit was used to isolate total RNA for each tissue. Affymetrix HT-

MG_430 PM microarrays were used to determine the genome-wide expression profiles 

for each tissue of female mice from 101 strains for aorta (1 to 10 aorta samples per strain, 

366 samples in total) and 96 strains for liver (1 to 4 samples per strain, 220 samples in 

total) from the HMDP mice (Bennett et al., 2015). Additionally, we used gene expression 

data from an earlier HMDP study, which includes control mouse samples (Bennett et al., 

2010). From these control mice, 188 aorta and 288 liver samples were collected (Bennett 

et al., 2010). 
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Genome-wide association analysis of aortic lesion area and tissue-specific eQTLs 

in mice  

Genotypes for 625 mice from 95 inbred and recombinant inbred mouse strains were 

obtained from Jackson Laboratories using the Mouse Diversity Array (Yang et al., 2009). 

SNPs with poor quality were removed (Bennett et al., 2015). Then, the SNPs with a minor 

allele frequency (MAF) of <10% and a missing genotype frequency of >10% were 

removed, resulting in 212,765 SNPs for the downstream analysis. Genome-wide 

association mapping of the aortic lesion size was performed using factored spectrally 

transformed linear mixed models (FaST-LMM) based on a linear mixed model to correct 

for population structure (Bennett et al., 2015). Tissue-specific eQTLs were also calculated 

using FaST-LMM and the false discovery rate (FDR) was estimated by the q value 

approach (Storey and Tibshirani, 2003) to adjust for multiple testing. In our analysis, we 

incorporated aorta tissue eQTLs from the atherosclerosis study for HMDP (Ath-HMDP) 

with aortic tissue eQTLs of another HMDP study, which included chow diet fed (control) 

HMDP mice that do not have atherosclerosis (Bennett et al., 2010). Similarly, we 

incorporated liver tissue eQTLs from multiple HMDP studies, including Ath-HMDP, control 

HMDP mice (Bennett et al., 2010), and high fat/high sucrose-fed HMDP mice with non-

alcoholic fatty liver disease (NAFLD) (Parks et al., 2013; Parks et al., 2015). In our study, 

cis-eQTLs, which are located within ±1Mb of the genes’ transcription start and end sites, 

and trans-eQTLs, which are identified as all other eQTL associations, were used with an 

FDR<5% cutoff for both. For each HMDP study, FDR scores of the cis- and trans-eQTLs 

were calculated independently (for the FDR<5%, e.g. P<6.4×1E-3 for Ath-HMDP aorta 

cis-eQTLs, 6.7×1E-3 for Ath-HMDP liver cis-eQTLs, P<1.3×1E-5 for Ath-HMDP trans-
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eQTLs for both aorta and liver (Bennett et al., 2015); P<1.4×1E-3 and P<6.1×1E-6 for 

NAFLD-HMDP study cis-eQTLs and trans-eQTLs, respectively). Hence, we used a 

single, but stringent FDR<5% cutoff for all eQTL resources from multiple HMDP studies 

to provide consistent accuracy. In total, we used ~1.5million eQTL associations in aorta 

tissue and ~3million eQTL associations in liver. 

 

Human GWAS for coronary artery disease from the CARDIoGRAMplusC4D 

consortium 

The coronary artery disease genome-wide replication and meta-analysis 

(CARDIoGRAM) and the coronary artery disease genetics (C4D) consortium 

(CARDIoGRAMplusC4D) collaborated and combined genetic data from diverse large-

scale studies to determine risk loci for CAD and myocardial infarction (MI) in the human 

genome. In our analysis, we used the 1000 genomes-based GWAS from the 

CARDIoGRAMplusC4D, which is a meta-analysis of GWASs mainly based on European, 

South Asian, and East Asian descent, and imputed them through the 1000 Genomes 

phase 1 v3 training set with 38 million variants (Nikpay et al., 2015). In total, the GWAS 

includes 60,801 CAD cases, 123,504 control samples, and 9.4 million variants. 

 

Expression QTL data sets from the STARNET and GTEx 

We used two different gene expression data resources: one from Stockholm-Tartu 

Atherosclerosis Reverse Network Engineering Task (STARNET) (Franzén et al., 2016), 

and the other from the Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 

2013). We leveraged tissue-specific eQTLs from atherosclerotic aortic root (AOR), 
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atherosclerotic-lesion-free internal mammary artery (MAM), and liver tissues from the 

STARNET cohort, which consists of ~600 CAD patients of Caucasian descent. Data 

collection and processing for STARNET were previously described (Franzén et al., 2016). 

AOR, MAM, and liver tissue samples were collected from 539, 552 and 576 individuals in 

total, respectively (Franzén et al., 2016). Written informed consent was obtained from all 

patients. OmniExpress Exome array was used to genotype the DNA and >14 million 

variant calls were identified (6,245,505 variants with a MAF>5%). HiSeq 2000 platform 

was used to perform RNA-sequencing, Matrix eQTL R-package (Shabalin, 2012) was 

used to identify the tissue-specific eQTLs, cis-eQTLs were defined within a ±1Mb window 

from the center of the gene, trans-eQTLs were identified as all other eQTL associations, 

cis-eQTL P-values were identified through a permutation test (for FDR<5%, P=0.006 for 

AOR, P=0.004 for MAM, P=0.001 for liver), and trans-eQTL P-values were corrected for 

multiple testing through the Bonferroni correction in (Franzén et al., 2016). We used eQTL 

cutoff threshold FDR<5%.  

 

GTEx consortium provides a publicly available human tissue bank with an enormous 

amount of data encompassing the associations between genotype and tissue-specific 

gene expression patterns in 54 tissues (Lonsdale et al., 2013). In our analysis, we used 

tissue-specific transcriptome and eQTL data from coronary artery, aortic artery, and liver 

tissues from the GTEx biobank as these were the most relevant tissues in CAD. 

Transcriptome data was used to construct tissue-specific coexpression networks, and 

eQTLs were used in our integrative framework, Mergeomics (Shu et al., 2016), to map 

gene sets to the CAD-GWAS SNPs (see MSEA in Methods). HiSeq X, HiSeq 2000, 
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Illumina OMNI 5M and 2.5M arrays were used for genome sequencing. SNPs with a MAF 

≥ 1% were kept for downstream analysis. Illumina TrueSeq RNA sequencing and 

Affymetrix Human Gene 1.1 ST Expression Array (v3) were used for gene expression 

data. As detailed in Lonsdale et al 2013 (Lonsdale et al., 2013), RNA-sequencing data 

was aligned to the hg19/GRCh37 human reference genome using STAR v2.4.2a, based 

on the GENCODE-v19 annotation, and the GTEx pipeline was detailed in [47]. In the 

GTEx database, cis-eQTLs were identified within ±1Mb of the genes’ transcription start 

sites using the FastQTL tool (Ongen et al., 2016), which utilizes a linear regression model-

based hypothesis testing. P-values were adjusted using the q-value method (Storey and 

Tibshirani, 2003) and significant eQTL associations with an FDR<5% threshold were 

used for each tissue. AOR and MAM tissue eQTLs from STARNET were combined with 

the vascular tissue (i.e. coronary and aortic arteries) eQTLs from GTEx. Similarly, liver 

tissue eQTLs from STARNET and GTEx were combined to use in our liver-specific 

analysis. 

 

Reconstruction of tissue-specific co-expression networks from liver and vascular 

tissue transcriptome data  

Tissue-specific coexpression networks were constructed from aorta and liver gene 

expression data of the HMDP mice (Bennett et al., 2015; Bennett et al., 2010) and from 

aortic arteries, coronary arteries, and liver gene expression data from the GTEx biobank 

(Lonsdale et al., 2013), using two network approaches: Weighted Gene Co-expression 

Network Analysis (WGCNA) (Langfelder and Horvath, 2008) and Multiscale Embedded 

Gene Co-expression Network Analysis (MEGENA) (Song and Zhang, 2015). The power 
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of WGCNA for identifying biologically meaningful and relevant modules has been 

demonstrated in multiple studies. However, the resulting large-sized modules which can 

include thousands of genes, may include noise and distract our focus in downstream 

analysis. However, the other network method, MEGENA can define smaller and more 

coherent modules that are also biologically relevant, which overcomes the limitations of 

WGCNA. Additionally, each gene can be assigned into multiple modules by MEGENA, 

which overcomes another limitation of WGCNA and fits better with the known biology. In 

our study focusing on fatty liver disease, we showed these two methods complement 

each other while uncovering hidden parts of the biology that were missed by each method 

individually (Krishnan et al., 2018). Both network methods are based on hierarchical 

clustering to assign co-regulated genes into the same coexpression module. 

Agglomerative hierarchical clustering is used in WGCNA, whereas divisive clustering is 

used in MEGENA. Gene-clusters are identified by merging (in agglomerative) or splitting 

(in divisive) based on a distance measure (e.g. 1-|correlation|). In WGCNA, 1 minus 

topological overlap matrix (TOM), hence dissTOM=1-TOM, was used as the distance 

measure. TOM is based on the correlation score (edge weight) between two genes 

(nodes) but also considers the edge weights of common neighbors of these two nodes in 

the network. To calculate the distance between two clusters, average dissTOM score of 

all gene pairs (each pair includes one gene from each cluster, while comparing 2 clusters) 

is used. In MEGENA, a shortest path distance (SPD) based distance measure is used. 

To create compact modules, a nested k-medoids clustering, which defines k-best clusters 

at each step that minimizes the SPD within each cluster, is used. Nested k-medoids 

clustering is ran until no more compact child cluster can be defined. Unlike WGCNA, 
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MEGENA performs clustering in a multi-scale manner, which provides us an alternative 

set of modules at each scale despite using the same gene expression input. Multi-scale 

clustering assigns a gene into multiple modules from different scales. 

 

After identifying the WGCNA and MEGENA modules, we annotated each module with its 

functions by using the previously curated biological pathways taken from MSigDB 

database (Subramanian et al., 2005) that incorporates pathways from Biocarta, KEGG, 

and Reactome databases based on a hypergeometric test (one-tailed Fisher Exact test). 

Bonferroni correction was used to correct for multiple testing. Pathways with a corrected 

P<5% and sharing ≥ 5 genes with a given module were considered significant. The top 5 

significant pathways were used to annotate each module. For modules that did not have 

any significant annotation terms, a less stringent cutoff of raw P<5E-3 and ≥ 5 shared 

genes were used. These modules are differentiated with an asterisk (*) in Figures and 

Tables. 

 

Tissue-specific Bayesian network construction with RIMBANet 

Bayesian networks (BNs) represent a class of gene regulatory networks, which can 

demonstrate the directed causal relationships between genes by using genetic and gene 

expression information, as well as previously known regulatory relationships between 

genes. In the BNs, each edge is directed to a child node from a parent node, where the 

BN represents a multivariate probability distribution, and the state of each node is 

estimated by the states of its parent nodes. We leveraged the Reconstructing Integrative 
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Molecular Bayesian Networks (RIMBANet) tool (Zhu et al., 2012; Zhu et al., 2007; Zhu et 

al., 2008) to construct tissue-specific BNs using aorta and liver gene expression data from 

the HMDP study, focusing on atherosclerosis, which involved 366 aorta samples from 

101 mouse strains and 220 liver samples from 96 strains (Bennett et al., 2015) as well as 

human GTEx aorta, coronary artery and liver gene expression data. Since the 

computational cost and computing time of RIMBANet are both high, we selected the top 

5000 variable genes in the expression data to construct our networks. On average, it took 

~2 weeks to construct a BN with 5000 genes. The expression values of each gene across 

all samples were discretized into 3 clusters as lowly, mildly, and highly-expressed using 

k-means clustering (Alpaydin, 2010). The state transitions of each node were formulated 

with Markov chain based on the discretized gene expression data. RIMBANet aims to find 

a network, which can explain the observed (gene expression) data in the best way and 

aims to maximize a joint probability function on the network nodes given the data. Given 

the expression data D, the joint probability of a network model M, i.e. P(M|D), can be 

predicted as a function of the prior probability of model M without any observations, i.e. 

P(M), and the likelihood of observing data D given the model M, i.e. P(D|M). Thereby, 

. RIMBANet is based on Markov chain and because of the 

Markov equivalence concept, many of the edge directions in the network can be changed 

without affecting how well the model M fits the data D. There can be a large number of 

network models, which can explain the same observed data D equally well. Hence, it is 

necessary to narrow down the search-space while searching for the best-fitting network 

model. Using prior information based on the genetic data, eQTLs, tissue-specific 

transcription factor and target gene pairs can ensure narrowing the search space (e.g. a 

P M |D( ) ≈ P M( )×P D |M( )
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cis-acting gene is more likely to be a parent node of trans-acting genes coinciding on the 

same eSNP). Since it is not possible to calculate the joint probabilities of all possible 

network models given the expression data D, RIMBANet employs a down-sampling 

method, namely Monte Carlo Markov Chain (MCMC) simulation, identifies a certain 

number (1000) of plausible networks, and calculates the joint probabilities of these 

networks. Then, these 1000 sampled networks are combined to obtain a consensus 

network, e.g. if an edge from node-A to node-B exists in at least 30% of the 1000 

networks, this edge is kept in the ultimate consensus network. BNs are directed acyclic 

graphs (DAG) by nature; thereby, the consensus network should also be a DAG, which 

is ensured by removing the weakest edges in a cycle that impairs the DAG nature of the 

network. 

 

Mergeomics Pipeline for multi-omic integration 

Genetic (atherosclerosis GWAS in mouse, CAD-GWAS in human) and functional 

genomics data (eQTLs, coexpression modules) were integrated using our Mergeomics 

pipeline (Arneson et al., 2016; Shu et al., 2016). Canonical pathways and coexpression 

networks that are genetically associated with atherosclerosis-GWAS (in mouse) or CAD-

GWAS (in human) were identified in a species- and tissue-specific manner by using the 

Marker Set Enrichment Analysis (MSEA) procedure in Mergeomics. MSEA is used to map 

genes from each pathway (from Biocarta, KEGG, Reactome) or coexpression module 

(from MEGENA or WGCNA) to an eSNP set via eQTLs of the corresponding tissue of the 

corresponding species. As mentioned earlier, we used significant eQTL associations 

(FDR<5%) from each tissue and species, and trimmed eSNPs within the same linkage 
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disequilibrium (LD) block, by keeping only one eSNP for each LD block for each species 

individually. LD block data was obtained using the PLINK2 tool (Chang et al., 2015) for 

both HMDP mice and 1000Genome phase 1-based GWAS that was used in humans. The 

eSNP sets that were mapped from each pathway or module (i.e. gene set) through LD-

pruned eQTLs, were annotated with the P-values of corresponding SNPs from the 

disease-GWAS of corresponding species. Then, we used a modified chi-square statistic 

for the enrichment assessment, which is summarized across a range of quantile-based 

cutoffs for the GWAS, instead of depending on a single GWAS P-value cutoff. This test 

analyzes the significance of enrichment for stronger disease-GWAS P-values, by 

comparing the GWAS P-values of a given eSNP set against the eSNP sets that were 

mapped from randomly generated gene sets. Our MSEA approach is based on a set of 

quantile-based cutoffs and is not based on a single GWAS P-value cutoff; hence it avoids 

artefacts while producing more stable enrichment scores. The definition of the modified 

chi-square statistics used in the MSEA is: ,  where O and E are the 

numbers of the observed and estimated positive findings, respectively (i.e. findings above 

the i-th quantile point); n is the number of quantile points (10 points were identified ranging 

from the top 50% to top 99.9% signals based on the GWAS P-value rankings), and κ = 1 

is a stability parameter diminishing the artefacts for small eSNP sets with low expected 

counts. For the MSEA procedure, an FDR<5% cut-off was used, which is estimated by 

the Benjamini-Hochberg method (Benjamini and Hochberg, 1995) to identify significantly 

enriched gene sets for the disease-GWASs. 

 

c =
O
i
- E

i

E
i
+ki=1

n

å
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After identifying the significant disease-associated gene sets (pathways or modules) at 

FDR<5%, to reduce the redundancy in our findings, we merged the overlapping gene sets 

into non-overlapping supersets if they significantly shared their member genes, which is 

defined by a gene-overlapping ratio of >33% and Bonferroni corrected one-tailed Fisher’s 

exact test (FET) P<5%. In some cases, a coexpression module and a canonical pathway, 

or two different coexpression modules, which were annotated with the same biological 

term, were not merged since they did not significantly share their member genes; hence 

we kept them as independent gene sets though they were annotated with similar or the 

same terms.  

 

The second step of the Mergeomics pipeline, Weighted Key Driver Analysis (wKDA), was 

used to predict key regulator, or key driver (KD), genes within the CAD-associated 

supersets. The wKDA maps the member genes in each superset onto a tissue-specific 

gene regulatory network, which is a Bayesian network (BN) in our study. wKDA has been 

demonstrated to predict biologically meaningful KDs in our previous studies (Krishnan et 

al., 2018; Mäkinen et al., 2014; Zhao et al., 2016). In the current study, we first constructed 

aorta and liver tissue BNs, which include the causal and directed relationships between 

genes, using an established method RIMBANet (Zhu et al., 2012; Zhu et al., 2007; Zhu 

et al., 2008); then we mapped the CAD-associated supersets onto these BNs in a tissue-

specific manner using wKDA to identify the KDs of each superset. wKDA uses a modified 

chi-square statistic, as defined for the MSEA, to assess the enrichment of member genes 

of a given superset within the candidate KD’s neighborhood in the BN, compared to that 

of a random gene chosen from the same BN. Similar to MSEA, the Benjamini-Hochberg 
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method was used to correct P-values for the multiple hypothesis testing, and candidate 

genes with an FDR<5% were predicted as KDs of the genetic CAD supersets. KDs of 

each shared and species-specific CAD supersets were ranked based on their FDR scores 

and the top KDs were identified. Then, subnetworks of the top KDs were extracted in 

each tissue BN by collecting network-neighbors of the top KDs as illustrated in Figures 4 

and 5. We overlaid CAD GWAS hits into our subnetwork visualization where red border 

diamonds represent post 2017 CAD GWAS hits and pink border diamonds represent 

GWAS hits pre-CARDIOGRAM+C4D GWAS hits (pre 2017). Lastly, we queried the 

atherosclerosis HMDP aorta and liver tissues for significant (p-value<0.05) gene-clinical 

trait correlations for shared, human-specific, and mouse-specific KDs.  

 

Comparing the genetic CAD pathways and modules between mouse and human 

After identifying the putatively causal and genetic atherosclerosis and CAD-associated 

biological mechanisms using the MSEA, we compared our findings from mouse and 

human in a tissue-specific manner. To identify shared gene sets between species, we 

matched pathways and coexpression modules by name and annotation terms, as well as 

applying an overlap analysis to identify the common mechanisms. We calculated 2-sided 

(mutual) overlapping ratios between the CAD-associated mechanisms identified for 

mouse and human using the Jaccard index, , where n is the 

number of shared genes between supersets A and B, and |A| is the number of genes in 

set A. We also calculated 1-sided overlapping ratios as either or  to identify 

gene sets that are potentially a subset of a larger set, and we assumed the subsets to be 

JI =
A∩B

A∪B
=

n

A + B − n

n A n B
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shared between species, whose member genes are already covered by both sides. 

Additionally, we applied a hypergeometric test (one-tailed FET) between the CAD-

mechanisms identified for mouse and human. If a CAD superset from either mouse or 

human satisfied one of the following conditions when compared to a CAD superset 

identified for the other species, it was defined as a shared pathway: 

i) A two-sided overlap that is > 50% and a hypergeometric test adjusted P<5% or 

ii) A one-sided overlap that is > 90% and a hypergeometric test adjusted P<5%.  

Occasionally, multiple pathways in mouse were found to be a subset (1-sided overlap 

>90%) of a single pathway in human (or vice versa), or the 2-sided overlapping analysis 

identified a pathway in one species to be matched to multiple pathways in the other 

species. Hence, the number of common pathways differs in each of the species as shown 

in Figure 2 and Suppl Table S3.  

In silico validation of network structure through use of single cell datasets 

FASTQ files from each study (Wirka et al., 2019) for aorta, (Wang et al., 2021) for liver 

were aligned to the mouse or human reference genome using CellRanger Software from 

10x Genomics. Each dataset was analyzed using the R package Seurat version 4.0.3. 

The datasets were filtered for cells expressing fewer than 200 genes or greater than 7500 

genes to account for potential doublet events in which two separate cells are processed 

together. The number of genes, percentage of hemoglobin markers, and percentage of 

mitochondrial genes were observed to ensure quality control; cells containing >6% 

mitochondrial genes were considered of poor quality in liver and >15% for aorta and 

removed from the dataset. Gene expression values were normalized as feature counts 

for each cell were divided by the total counts for the cell and multiplied by a scale factor 
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of 10,000; this value was then natural log transformed using log1p. Top genes 

differentially expressed in each cell type cluster were identified by FindAllMarkers in 

Seurat and subsequently used for further analysis of the datasets. Principal component 

analysis was performed for dimensionality reduction, and Uniform Manifold 

Approximation and Projection (UMAP) was then used for two-dimensional visualization 

of the clusters. FASTQ files for aorta and for liver may be found in the Gene Expression 

Omnibus database respectively with the primary accession code GSE131780 and 

GSE166178. 
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Figures 

Figure 1: Overview of Study. 
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Figure 2: Shared and species-specific biological pathways. 
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Figure 3: Shared Networks between mice and humans. (A) Vascular (B) Non-

vascular. Red border diamonds represent recent CAD GWAS hits and pink border 

diamonds represent GWAS hits pre-CARDIOGRAM+C4D GWAS hits. 
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Figure 4: Species Specific Networks. (A) Human Vascular (B) Human Non-vascular 

(C) Mouse Vascular (D) Mouse Non-vascular. Red border diamonds represent recent 

CAD GWAS hits and pink border diamonds represent GWAS hits pre-

CARDIOGRAM+C4D GWAS hits.  
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Figure 5: In silico validation of KDs and their subnetwork genes and associated cell 

type. (A-D) Aorta KDs and subnetwork genes. (E-H) Liver OIT3 and subnetwork genes. 

Five end genes are randomly selected genes. * indicate p<0.05 
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