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Abstract

The reference point for developing any artefact is its specification; to develop software for-

mally, a formal specification is required. For sequential programs, pre and post conditions

(together with abstract objects) suffice; rely and guarantee conditions extend the scope of

formal development approaches to tackle concurrency. In addition, real-time systems need

ways of both requiring progress and relating that progress to some notion of time. This

paper extends rely-guarantee ideas to cope with specifications of—and assumptions about—

real-time schedulers. Furthermore it shows how the approach helps identify and specify

fault-tolerance aspects of such schedulers by systematically challenging the assumptions.

Keywords Real-time systems · Mixed criticality scheduling · Formal specification ·

Rely-guarantee conditions · Fault-tolerance

1 Introduction

Rely and guarantee conditions were originally conceived [25] as a way to achieve compo-

sitional design of shared-variable concurrent programs. It was subsequently shown [10, 19]

that rely conditions could be used to describe interfaces to external components. The cur-

rent paper extends this work to address systems that have real-time constraints–specifically

to address specifications that incorporate hard deadlines. In particular, scheduling requires

specifying behaviour with respect to time in the world outside the computer and the meeting

of deadlines requires rigid progress conditions for the scheduler to be specified.

Informally, scheduling must ensure that jobs will execute so that deadlines are met. This

overall objective can be divided into a planning phase and execution of run-time scheduler

software that dynamically allocates resources. Given the extensive literature on schedul-

ing, “planning” is almost always going to amount to selecting from a repertoire of known

scheduling algorithms.
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Formal Methods in System Design

Crucial inputs to planning are assumptions about arrival patterns and estimates of the

resources required by each job of the application. Only if these assumptions are met can

the run-time system be expected to adhere to the required deadlines; the assumptions thus

underlie run-time execution as well as informing the decisions made in planning.

In the non fault-tolerant case, most of the real work is undertaken during planning; there are

established algorithms with proven properties. This paper formalises the ideas for the special

case that the only resource to be considered is processor time and the chosen scheduling

approach is EDF (Earliest Deadline First).

A fault-tolerant system is one that can tolerate, to some degree, violation of assumptions.

But weaker assumptions must be articulated and recorded. The requirements on the run-

time scheduler for fault-tolerant behaviours are significantly more complicated than in the

non fault-tolerant case; their specification must be precise about the assumptions behind the

various degraded levels of behaviour.

Mixed-Criticality Scheduling [36] enhances the robustness of schedulers by distinguish-

ing different “criticality” levels for classes of jobs. Since Vestal’s [36] paper in 2007, a wide

range of protocols have been proposed and published [7]. The aim of this body of work is

to improve the survivability of systems by providing a variety of degraded behaviours that

can take effect if the system experiences overrunning execution times. Unfortunately the

models developed in this literature are usually not formally or precisely defined; they tend

to focus on the algorithmic properties of protocols and provide, at best, informal descrip-

tions of the actual required run-time behaviour of the defined scheduler. This paper extends

the Rely-Guarantee approach to cover the temporal properties of fault-tolerant, real-time,

Mixed-Criticality Systems (MCSs). From this foundation the rigorous implementation of the

necessary run-time schedulers can be developed.

1.1 Contribution

Two earlier papers [11, 30] explored the basic approach of using rely and guarantee conditions

to specify the run-time behaviour of a scheduler for a simple fixed priority-based real-time

MCS. Here, this framework is extended to address some key elements that were missing from

these initial studies. In particular:

– Both pre-run-time planning and run-time scheduling are addressed and their relationship

defined (see Sect. 3).

– Type invariants and relations are used to capture assumptions (see Sect. 4.1).

– External and internal definitions of time are employed together with a notion of precision

to formalise their relation (see Sect. 4.2).

– The deadlines of jobs and the passage of (external) time are used to require progress (this

removes the need for the practice of augmenting rely-guarantee conditions with some

form of temporal logic) (see Sect. 4.3).

– The EDF scheduling scheme is employed (see Sect. 5).

– Fault-tolerance is addressed by systematically challenging these invariants and assumptions—

and characterising weaker ones where appropriate (see Sect. 6).

1.2 Plan of paper

Section 2 describes the background work on rely and guarantee conditions; Sect. 3 outlines

basic aspects of planning and scheduling without considering fault tolerance. Section 4 sets
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about formalising a specification for the general case and a specific implementation (EDF) is

the focus in Sect. 5. The objective is to show how the chosen approach to formalism can both

identify aspects of robustness and be used to characterise fault-tolerance: this is the subject

of Sect. 6. The paper concludes with a section that summarises the results and relates them

to other publications.

2 The rely guarantee framework

Tony Hoare’s [21] paper is central to much of the work on program verification; moreover [22]

sets the scene for (formal) support of the design process itself. In VDM (Vienna Development

Method) [24], a move is made to post conditions that are relations between the initial and

final states of the specified component. Although this requires slightly more complicated

inference rules (see [3, 28]), relations are required for most non-trivial specifications and

this approach is used in VDM as well as, for example, Z [16, 39], B [1], Event-B [2] and

Alloy [23].

In all of the predicates that are relations (post, rely and guarantee conditions), undecorated

identifiers refer to the earlier state and primed identifiers apply to the later state, for example:

post-Sort(s, s′)
def
= is-ordered(s′) ∧ is-permutation(s′, s)

Pre and post conditions provide sufficient specifications for sequential programs. Based

on such a specification, a step of development that proposes an implementation consisting of

components that will–for example–execute sequentially can be justified solely in terms of the

specifications of those sub-components. Subsequently, the sub-components can be developed

with respect to their specifications and their designer(s) need not be concerned with either

their context or sibling components. The same can be said for decompositions that employ

any of the sequential programming constructs for which inference rules have been recorded.

This “posit and prove” development idea affords clear documentation even if the developer

has to backtrack. Technically, each of the programming language constructs can be shown

to be monotone with respect to an ordering where a component can be substituted that has

a weaker pre condition and/or a stronger post condition. This notion of compositionality is

relatively straightforward for sequential programs. Furthermore as is shown in [24, 28], the

posit-and-prove approach extends to the use of data abstraction and reification.

Achieving a suitable notion of compositionality for concurrent programming constructs

was bound to be challenging precisely because of the interference that is at the heart of concur-

rency. A pre condition indicates potential starting states but says nothing about the interference

that a developed implementation must tolerate; a post condition relates acceptable final states

to their initial counterparts but puts no limit on the intermediate state transitions.

With hindsight, it is obvious that the specification of a component that experiences

interference must include a specification of that interference. This is precisely what the Rely-

Guarantee approach does: [25]1 extends pre/post specifications with two extra predicates

which are pictured in Fig. 1 (where σ0 is a starting state of a computation whose subsequent

state transitions extend to the right, the transition from σi to σi+1 is an example of a transition

by the environment, in contrast the transition from σj to σj+1 is an example of a transition

1 Shorter, and more accessible descriptions include [26, 27]. An excellent discussion of compositionality

is contained in [14]. There is an extensive literature on Rely-Guarantee “thinking”—see [18] for references

and [17] for a description of an algebraic presentation of Rely-Guarantee ideas. Furthermore, combinations

with “Concurrent Separation Logic” are presented in [15, 35, 38].
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pre
︷︸︸︷

σ0 · · ·

rely
︷ ︸︸ ︷

σi σi+1 · · · σj σj+1
︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸

post

pre/rely are assumptions the developer is invited to make

guar/post are commitments that the code must achieve

Fig. 1 The four predicates forming a rely-guarantee specification

by the component (there could be many transitions of either sort during the execution of a

component) and σf is a final state).

Rely conditions are relations and can be usefully thought of as post conditions of inter-

fering steps. Thinking of them in this way makes clear that they must be relations. Typical

examples include that some variable changes monotonically (integers are trivial examples;

employing sets as data abstractions suggests more interesting examples such as subset order-

ing being preserved).

It is important to remember that pre conditions provide assumptions that developers can

make: they are invited to assume that their implementation will only have to achieve its post

condition when executed in a starting state that satisfies the pre condition. In exactly the same

vein, a developer is invited to assume that any state transition by the environment will be within

the relational rely relation of the component. In both cases, the onus is on any deployment

decision to ensure that the environment satisfies the assumptions. On many occasions, such

a deployment decision will involve proving that employing a piece of specified code in a

given context will ensure that the assumptions are satisfied. This is again the essence of a

posit-and-prove approach. Furthermore, it is for this reason that specifications of components

include guarantee conditions which state the maximum interference that an implementation

can inflict on its environment. As such, it is obvious that guarantee conditions must also

be relations. Because interference could make several steps (or none), rely and guarantee

conditions are required to be transitive and reflexive.

Although conceived as a decomposition approach for the development of concurrent

programs, it was realised that rely conditions could also be used to characterise the physical

environments in which software could be deployed. Going further [10, 19] showed how

the specification of the way in which a cyber-physical system should perform in a physical

environment could be used to derive the specification of its software control system. The

chosen rely conditions on the physical components need to be reviewed and approved by

those making the decision to deploy a system in a particular physical context.

The term obligations is used in this paper to emphasise that there are issues in addition to

rely and guarantee conditions. In particular, the preservation of state invariants that connect

with the progress of time (see Sect. 4.3 below) are important. Furthermore, the picture in

Fig. 1 needs to be understood in the presence of systems executing with real-time obligations

(again see Sect. 4.3).

Formal rules for proving the validity of a decomposition of a component into concurrent

threads (whilst satisfying its obligations) are not needed in the current paper; all that is used

is the intuitive idea that concurrent threads can co-exist providing their rely and guarantee
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relations match in the sense that–for each component–the combined guarantee conditions of

any environment components must stay within the rely condition of the specified component.

In what is undertaken below for MCS, rely and guarantee conditions pinpoint assumptions

and are used to check that those on scheduling algorithms match those on the jobs that are

to be scheduled.

The limited use of formal proofs fits with a message of “Rely-Guarantee thinking” which

might be trivialised to just saying “think about and record assumptions”. But the fact that

there are formal rules underneath the simplified message, means that formal proofs can be

added when considered necessary.

Of further relevance to the current paper is the fact that earlier applications led to the use of

nested obligations where different sets of rely and guarantee conditions describe alternative

behaviours. In fault-tolerant applications, strong rely conditions require optimal behaviour

characterised by strong guarantee conditions; weaker assumptions describe conditions that

might have to be tolerated when faults occur but these are paired with weaker—but still

useful—commitments for fault-tolerant behaviour. As is shown below in Sect. 6, changing

modes needs careful thought.

The original rely-guarantee publications did not incorporate progress assertions which can

state that something will eventually happen; these were addressed in [33, 34, 40] and are the

subject of current research by Ian Hayes and colleagues (see, for example, [20]). The obvious

way to tackle so-called “liveness” conditions might be thought to be “Temporal Logic” (for an

approachable description with good source references see [32]). Despite its name, temporal

logic does not really handle time; its modal operators facilitate specifying orders of events.

A novel approach to both time and liveness is outlined in [30] and is expanded on below in

Sect. 4.3.

3 Planning and scheduling

The entities that consume resource at run time are here referred to as Jobs. Real-Time Schedul-

ing normally categorises jobs into tasks. (See [12] for more discussion of tasks.) Tasks do not

terminate and reflect the fact that classes of jobs recur. In the current paper, jobs are assumed

to have types (see Sect. 3.1) and tasks can be thought of as handling all jobs of a certain type.

A pre-run-time planning phase is concerned with determining the feasibility of both the

resource demands of jobs and their inter-job arrival gap. Planning is also concerned with

designing (or choosing) a run-time scheduling algorithm that controls the execution of jobs.

Time progresses both during planning and run-time execution but it is useful to employ

different granularities for discussing the distinct phases; research on “timebands” [9] has

identified the disadvantages of trying to address disparate granularities on a single time axis.

In a real-time system, jobs have deadlines that must be guaranteed to be satisfied. A run-time

scheduler and the jobs to which it is allocating resource are items of software that execute

within an environment in which the passage of time is explicitly linked to the progress that

the jobs are making towards their deadlines.

This leads to the following framework for the planning and scheduling of a real-time

system:

Passage-of -Time ‖ Planning ; {Scheduler ‖ Job1 ‖ Job2 ‖ · · · ‖ Jobk}

Planning is a human-centred activity that may be subject to timing constraints measured

in days, weeks or even months; this process is important, but not the focus of this paper. Once
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planning has determined that jobs which fit expectations can be feasibly handled by a chosen

scheduling algorithm, then a Scheduler embodying that algorithm can be used to control a

collection of actual Jobs. Here the passage of time must be considered at a dramatically finer

grain, perhaps at the millisecond level or less. Neither the scheduler nor any of the jobs can

influence the passage of time. As time is progressing; a scheduler must allocate the resources

in the manner assumed during planning so that all jobs will terminate by their deadlines.

3.1 Formalising Planning

In this paper, each job has a type and it is assumed that a task handles jobs of the same type.

Static information that is assumed in Planning is contained in records of type JobType 2:

JobType :: D : Duration

C : Duration

· · ·

Where the D field contains the relative deadline of a job (the extent of time after the job starts

by which it should complete) and the C field contains the estimate of the maximum resource

that will be consumed (typically estimated “worst case execution time”).3 It is important to

notice that both of these durations relate to time in the world external to the computer.

In addition to the information about execution of Jobs, planning must also be based on

assumptions about the arrival times of Jobs. These assumptions are recorded as a predicate

A over the entire history of the run-time behaviour of the system (see
∑

in Sect. 4.2). This

could for example record the minimum gap between jobs for sporadic tasks or the maximum

jitter on periodic tasks.

For planning, A and C are assumptions whereas D is a requirement that informs the

selection of a run-time scheduling algorithm. A planner has to allow for task switching on

(worst-case) arrival patterns but this will be far shorter than the gaps between job arrivals.

Planners also need to be aware that internal computer clocks cannot precisely track time in

the external world but this discrepancy should also be small.

Criteria under which the assumptions establish schedulability are proven in [6, 13] (see

Sect. 7.3).

4 Formalising Schedulers (without fault-tolerance)

This section reviews general properties required of scheduling algorithms; Sect. 5 focusses

on one specific scheduling approach.

Resources are allocated at run-time by a scheduler; in the case considered here, processor

time is allocated to Jobs, In contrast to their use in reasoning about a “schedulability test”

during Planning, the assumptions C and A define the run-time conditions in which the

Scheduler must ensure that jobs complete by their deadlines.

A Scheduler runs for an indeterminate period of time so it is not sensible to record its

specification with a post condition. Similarly, the run-time code has to achieve its effect

only if each job consumes less time than its estimated worst-case execution time; this is

2 Modest use is made below of VDM notation about which there are many books (including [29]) plus an

international standard; comments are provided for less common notation. Here the record notation should be

obvious; constructor functions are of type mk-JobType: Duration×Duration×· · · → JobType; field selection

is written in a postfix style: jt ∈ JobType ⇒ jt.D ∈ Duration.

3 Further fields relating to fault tolerance are added in Sect. 6.
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an assumption about something that obtains only during the execution of the scheduler and

therefore cannot be defined in a pre condition.

The ideas outlined in Sect. 2 on adding rely and guarantee conditions to pre/post condition

specifications were conceived as a way of providing compositional proof rules for concur-

rency. It was later observed that rely conditions could characterise acceptable behaviour of

components that—rather than being developed—were external to the software being speci-

fied. In the case of cyber-physical systems, recording assumptions about physical components

provided a way of deriving the specifications of required control systems (see [10]); in fact,

that paper improved on [19] by employing the timeband ideas from [9]; aspects of these ideas

are employed below.

Since early publications such as [24], VDM has used post conditions that are predicates of

the initial and final states of a computation. Since rely and guarantee conditions characterise

interference, they are also written as relations. For example, x ≤ x′ would express the fact

that the value of a state variable named x should not decrease. As a rely condition, this

might be an assumption that the developer is invited to make; as a guarantee condition, it

would be a constraint that must be adhered to by the implementation. Notice how the role of

rely conditions as assumptions that the developer is invited to make mirrors the role of pre

conditions. Similarly, guarantee conditions play a role similar to post conditions in that they

must be respected by code execution.

The idea that pre and post conditions must be satisfactory for any deployment of a specified

component involves showing that the context is such that invocation will only occur in states

satisfying the pre condition and that any state satisfying the post relation will be satisfactory

for the contextual task. Exactly the same dichotomy applies to rely and guarantee conditions.

4.1 State of run-timemodel

Specifications of scheduling algorithms can be expressed in terms of a run-time state. Opera-

tions that cope with jobs arriving and finishing can then be specified as predicates over these

states. The fields of the following records are explained after its syntax is given:

State :: t : ClockValue

active : JobId
m

−→ JobInfo

run :
[

JobId
]

shared-ents : Id
m

−→ Val

mode : {Normal, Ft}

Scheduling software needs a way of tracking time: unfortunately, this cannot be a completely

precise meter of Time in the world external to the computer so the t field is shown as containing

a ClockValue. The relationship between t and external time is made precise in Sect. 4.2.

Schedulers do not control when Jobs start—this might for example happen in response

to interrupts. When a job does start, a JobInfo record appears in the active map of State

associated with the new JobId.4 These records have the following fields:

JobInfo :: type : JobType

d : ClockValue

e : Duration

Where the type field is set to the contents of the static JobType; the d field is set to the actual

deadline which is computed by adding the value in the D field of JobType to the time at which

4 VDM “mappings” m ∈ D
m

−→ R are finite constructed functions that can be thought of as sets of pairs from

D × R. Use is made below of a domain operator (dom m) that yields the current set of domain elements.
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the job starts (the current value of the t field of the State); the e field is used to record the

amount of resource (time) that the job has consumed.5

The third field of State records which job (if any) is actually running; a scheduler sets run

to a JobId that is in the domain of active to make the corresponding job execute.6

Jobs themselves perform actions that affect shared entities (shared-ents will at least contain

variables).

The mode field of State is explained and used in the discussion of fault tolerance in Sect. 6;

for now it is assumed that mode = Normal.

Rely and guarantee conditions are stated formally below but it is worth relating the general

ideas of these interference predicates to the objects defined here. A key planning assumption

about execution of a job is that it will consume no more execution time (e) than its estimated

worst-case execution time (C of JobType). This becomes a guarantee condition for each Job;

the Scheduler relies on this being the case for all jobs in active.

VDM allows for types to be restricted by (data type) invariants; the second conjunct of

the following invariant expresses a restriction about active and run:

inv-State : State → B

inv-State(st) △

st.mode = Normal ∧

(st.active = { } ∧ st.run = nil ∨ st.run ∈ dom st.active) ∧

∀j ∈ dom st.active · st.t ≤ st.active(j).d

The final conjunct of the inv-State predicate records the key scheduling condition of any

real-time system that no job should execute beyond its deadline (i.e. that it must complete

no later than its deadline). It is important to remember that objects are considered to satisfy

their invariants: not only does st ∈ State imply that inv-State(st) holds but any operation that

manipulates objects of State must preserve the invariant. Invariants thus limit the states that

satisfy rely and guarantee (as well as pre and post) conditions.

4.2 Time versus computer clocks

Deadlines and estimated execution times relate to the commonly accepted notion of time

in the physical world; software cannot detect this directly and can only read the internal

clock of the hardware on which it runs. To formalise this, the discussion here distinguishes

ClockValues from Time. (Typically, α with or without subscripts is used as a value in the

set Time.) The overall set of objects used in the description of scheduling are mathematical

functions from a dense Time set to the States defined in Sect. 4.1:
∑

= Time → State

Clearly, little can be achieved unless the ClockValues approximate Time and here a notion

from the research on time bands [9] is used, =ρ indicates that two values are equal to within

the precision, ρ, of the time band under discussion.

The relationship between α ∈ Time and t ∈ ClockValue is governed by T 7:

5 This value is at least useful as a ghost variable in the specifications below; it is only actually necessary to

maintain this value at run time for some scheduling algorithms.

6 Whether one or more jobs can run at the same time depends on the number of processors; here, only the

single processor case is handled but it is straightforward to change run so that it contains a (possibly empty)

set of JobIds.

7 Notice that T /E/A are mathematical functions rather than the VDM “mappings” used above.
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T :
∑

→ B

T (σ ) △

(∀α ∈ Time · σ(α).t =ρ α) ∧

(∀α1, α2 ∈ Time · α1 < α2 ⇒ σ(α1).t ≤ σ(α2).t)

The second conjunct of T ensures that the computer clock cannot go backwards! This is

necessary because the precision allows latitude: for two sufficiently close (less than ρ) points

in Time, their States might be identical; for two times more than ρ apart, the first conjunct of

T requires that the t fields of their States advance.

An execution-time scheduler can only make e advance by moving the appropriate JobId

to run. When a job is running, its execution time is advanced in accordance with8:

E :
∑

→ B

E(σ ) △

∀α1, α2 ∈ Time ·

∀j ∈ (domσ(α1).active ∩ domσ(α2).active) ·

((∀α | α1 ≤ α ≤ α2 · j = σ(α).run) ⇒

σ(α2)(j).e − σ(α1)(j).e =ρ α2 − α1) ∧

((∀α | α1 ≤ α ≤ α2 · j 
= σ(α).run) ⇒

σ(α2)(j).e = σ(α1)(j).e)

So, using A from Sect. 3.1, the definition of
∑

with its invariant is:

∑

= Time → State

where

inv-
∑

:
∑

→ B

inv-
∑

(σ ) △ A(σ ) ∧ T (σ ) ∧ E(σ )

4.3 Specifying progress

As indicated in Fig. 1, guarantee conditions limit what happens when the specified program

makes a state change. Specifying that progress must occur was not part of the initial rely-

guarantee approach. But it is of the essence of a scheduler that it must ensure progress of

jobs and this would traditionally be viewed as a liveness condition and perhaps be specified

using some form of temporal logic. However, the model of State used above, together with

the T part of the invariant on
∑

, forces t to advance with respect to Passage-of -Time and

this opens up an alternative way to require progress. By including time in the state values,

what are normally considered to be liveness conditions can be handled via invariants. The

overall scheduling requirement on State is expressed in the third part of the invariant shown

above on State:

8 If the run-time system has more than one processor and their speeds differ, an abstract notion such as amount

of work would have to be related to the differing processing speeds of the processors.
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inv-State(st) △

· · · ∧

∀j ∈ dom st.active · st.t ≤ st.active(j).d

Recalling the discussion in Sect. 4.1 about invariants, there is an obligation on Scheduler to

maintain inv-State (i.e. that all jobs terminate by their deadline) 9; it is a consequence of the

frames (which variables can be accessed by which operations) that only the scheduler can

maintain this invariant and that it can only do so indirectly: when the scheduler sets the state

variable run to contain the appropriate JobId it moves towards the completion of that job at

which point it will be removed from active.

5 Specifying EDF

There are several scheduling approaches that are claimed to meet the requirements set out in

Sect. 4: [12] provides informal specifications of “fixed priorities”, “least laxity” and “earliest

deadline first”. The third of these (EDF) is selected for detailed specification here. The

notion of correctness for any of the scheduling approach actually applies to the combination

of Planning and the run-time Scheduler. But there is an unusual twist in that this is not

a simple sequential combination of two operations since the former actually generates (or

selects) the latter.

Only the Scheduler can actually cause jobs to execute and meet their deadlines but the

argument that a specific scheduling algorithm—in this case EDF—will cope with the expected

job arrival pattern and estimated WCETs is the responsibility of the (human) scheduler.

Theorem 1 EDF works: providing the assumptions are satisfied at run time, a Scheduler

that ensures the Job with the earliest deadline is made to run (within ρs of any job arrival or

completion) will ensure that all jobs complete no later than their deadlines plus ρs.

Argument The justification that EDF will cope with a specific arrival pattern and collection

of estimated WCETs obviously depends on specific A and D/C for each JobType; in general

this calculation involves identification of the most pessimistic “critical instants” and the

most difficult arrival pattern (including the deadlines being so ordered as to maximise job

switching). A proof of conditions under which EDF scheduling suffices is in [31] and is

formalised in [13].

If the characteristics of the application are such that the preconditions of the EDF scheduler

are not satisfied (e.g. the WCETs turn out to be too large) then the Planning phase is aborted

and the system thus never starts its execution.

5.1 Invariant for EDF

EDF is a dynamic (run-time) scheduling approach that does what it says: an actual deadline

(d) is computed for each job on its arrival and the scheduler ensures that the job with the

earliest deadline is in run. This is expressed in the following invariant:

9 This is in addition to the specified guar-Scheduler.
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inv-EDF : State → B

inv-EDF(st) △

st.mode = Normal ∧

(st.run = nil ∨

∀j ∈ dom st.active · st.active(st.run).d ≤ st.active(j).d)

It is important to note that Theorem 1 confirms that Planning establishes that—under the

given workload assumptions—maintaining inv-EDF will preserve inv-State.

When the scheduler is created, inv-EDF is trivially established because there would be no

jobs in active. A qualification about this invariant is that the scheduler experiences job arrivals

and completions so the EDF requirement is treated as a “class invariant” on Scheduler which

is maintained by the methods of the class:

– Arrival: selects a fresh JobId and updates active by pairing that identifier with the JobInfo;

– Completion: removes the job from the active map.

Not only must inv-EDF be re-established by the end of either method call, this must be

achieved within the precision of the time band ρs (perhaps 100 microseconds) that was

assumed in planning.

5.2 Class andmethods for EDF

The overall requirements on the scheduler are given first followed by the specifications of its

two methods. There is no post condition for Scheduler because it is not meant to terminate.

Scheduler

ext rd t : ClockValue

wr active : JobId
m

−→ JobInfo

wr run :
[

JobId
]

pre active = { }

rely ∀j ∈ dom active′ · active′(j).e ≤ active′(j).type.C

guar ∀j ∈ (dom active ∩ dom active′) · active′(j).type = active(j).type

Notice that the constraints are on the primed value of active in the rely condition to mark

that the property must hold after activity of any other thread. Similarly, the relation between

before and after values of active(j) in the guarantee condition specifies that the scheduler

must not modify the type field of any active job. As has been made clear above, all states

must satisfy both inv-State and inv-EDF.

The specifications for the two methods of Scheduler are:

Arrival (jt: JobType)

ext wr active : JobId
m

−→ JobInfo

wr run :
[

JobId
]

rd t : ClockValue

post ∃j ∈ (JobId − dom active) ·

active′ = active ∪ {j �→ mk-JobInfo(jt, jt.D + t, 0)}
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Completion is triggered by a job when it finishes; the main point of the operation is to

re-establish inv-EDF by ensuring that the JobId of the job next closest to its deadline is

moved to run.

Completion (id: JobId)

ext wr active : JobId
m

−→ JobInfo

wr run :
[

JobId
]

pre id = run

post active′ = {id} −⊳ active

Turning to the obligations on jobs:

Job

ext rd t : ClockValue

rd job : JobInfo

wr shared-ents : Id
m

−→ Value

rely job′.type = job.type ∧ t′ ≤ job′.d

guar job′.e ≤ job.type.C

post work(shared-ents, shared-ents′)

Crucially, the guarantee condition obliges each job to stay within its estimated worst-case

execution time (and the transitive closure requires this to be true on job termination). The

undefined work predicate in the post condition of Job is a reminder that each job has work to

do that would result in changes to the shared entities—but specifying the detailed function

of individual job types is not of concern here.

5.3 Properties of EDF

In addition to Theorem 1, checking that the respective obligations of Scheduler and Jobs

match follows from two straightforward lemmas.

Lemma 2 The assumptions in rely-Job are satisfied.

Argument The conjuncts of rely-Job follow from guar-Scheduler (which rules out changes

to type) and inv-State which follows from inv-EDF by Theorem 1.

Lemma 3 The assumptions in rely-Scheduler are satisfied.

Argument The collection of active jobs obeying their estimated worst-case execution times

(WCET) ensures rely-Scheduler:

∀st, st′ ∈ State ·

(∀j ∈ dom st′.active · guar-Job(job, st′.active(j))) ⇒ rely-Scheduler(st, st′)

5.4 Implementation

The verification of programs with respect to pre/post conditions is well understood; further-

more [22] showed that such specifications could be used as the basis of a formal development
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process and tool support for approaches such as Event-B [2] has greatly increased the prac-

ticality of such activities. There is less experience with developments from specifications

employing rely and guarantee conditions so a few points are highlighted in this section.

There is no post condition for the scheduler because it is expected to run indefinitely

long. The obligations on the scheduler include maintaining the state invariant (inv-EDF) at

each step in its execution. The way that an implementation maintains inv-EDF is necessarily

indirect because the execution time (e) for each job is increased (via E) with respect to

Passage-of -Time. It is possible to view the quantification over all active jobs as a prompt

to get rid of jobs! Since guar-Scheduler limits access to active to creation and deletion

of jobs (i.e. it is not allowed to change JobInfo of running jobs), this can only be achieved

indirectly. A job removes itself from active when it has performed its function so the scheduler

must ensure that jobs make progress. Furthermore, progress must be timely because of the

requirement that, for all active jobs (j), t ≤ active(j).d. Facilitating job progress amounts to

making it run so that its used execution time (e) advances and E shows that this only happens

when run = j. Thus a key requirement for the Scheduler implementation is that it executes

frequently enough to preserve the invariant.

An obvious implementation strategy that would tackle satisfying the specification of the

scheduler would be to check deadlines each time a new job arrives or the running job com-

pletes.

Implementing jobs so that they satisfy their guarantee conditions is, in a sense, the reverse

of the true obligation: the input to Planning has to be reliable estimates of their WCET.

6 Fault-tolerance

Specifying the fault-tolerant behaviour of run-time scheduling is a key contribution of the

current paper. The approach is to question assumptions that are made for optimal performance

and to record weaker assumptions that characterise less desirable but safe behaviour.

A specification of a sequential program using pre and post conditions is satisfied by an

implementation that can do absolutely anything if its execution starts in a state that does

not satisfy the pre condition; the implementation would not only be accepted if it produced

random answers; it need not even terminate. As made clear above, rely conditions are also

assumptions that an implementer is invited to make about the deployment context of the

created artefact: if the rely condition is not satisfied by a state transition of the environment,

the implementation is free of any obligation to the post condition, the guarantee condition or

any invariant. One possibility is that the implementation does something useful but it is far

sounder engineering to specify–explicitly–layers of fault tolerant behaviour.

The key idea here is to address fault tolerance by questioning each of the clauses of the

(optimistic) assumptions. The example of jobs overrunning their estimated WCET is handled

in detail in the remainder of the current section; handling exceptions to the expected job arrival

pattern (A) is mentioned in Sect. 7.

When a specification contains layers of rely and guarantee conditions, an implementation

is required to respect all of the layers. Previous examples of specifying layers of fault tolerant

behaviours with nested rely and guarantee include [10].
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6.1 Dependability terminology

Fault tolerance is a large topic; the current paper employs the useful three-fold distinction

made in [4] between faults, errors and failures. Furthermore, the injunction to identify to which

systems the concepts are being applied is followed (a failure in one system can manifest itself

as a fault in another). Rather than repeat the general definitions in [4] of the three terms, their

use in the current context can be sketched as follows.

If a job overruns its estimated WCET, this constitutes a failure of the job but it is not

necessarily a failure of the overall system. As far as the (run-time) scheduler is concerned, a

fault has occurred that it might be possible to tolerate. The scheduler is in an error state that

might not result in it failing to meet its specification; for example, there might be enough

slack in the current load that the error state can be tolerated.

It is of course also possible that the situation cannot be recovered in that the job fault

propagates to a failure of the scheduler to meet its specification and some job(s) might not

complete by their deadlines. Much the same series of fault, error and failure instances can be

discerned with job arrival patterns that do not match A.

Schedulers can be designed to handle error states in various ways but the objective is

to avoid jobs (at least safety-critical ones) running past their deadlines. Choices about how

closely to monitor execution time govern how well fault-tolerance is achieved—see Sect. 6.2.

There is however another dimension of the fault, error, failure triage. When one system

creates another, a failure in the creating process can give rise to an error in the created object.

For example, a programming failure, that leaves a bug in a designed program, creates an error

that may never give rise to a failure. A similar chain can be seen in schedule planning which,

if not done properly, can result in a run-time scheduler that has errors that might result in

failures (for example, deadlines may be missed if the maximum allowed load on the system

does actually materialise).

6.2 ExceedingWCET

This sub-section reverts to the level of general run-time schedulers as in Sect. 4; this makes

it possible to outline how nested rely and guarantee conditions can be used to specify fault-

tolerance; the specifics of how EDF handles fault-tolerance are discussed in Sect. 6.4.

If at some point in time, the execution of a job fails by exceeding its estimated worst-case

execution time:

∃j ∈ dom active · active(j).e > active(j).type.C

a non-fault-tolerant scheduler that just aborted at that time would be deemed to meet the

specification in Sect. 4—but this is clearly not resilient. A simple attempt at a fault-tolerant

reaction might be to drop (or background) any offending job and this approach can be used

to illustrate the idea of layered rely-guarantee descriptions (but a more useful fault-tolerant

defence is developed below).

Dropping overrunning jobs could be specified using a weaker invariant (than that in

Sect. 4.1):
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inv-State-W : State → B

inv-State-W(st) △

st.mode = Normal ∧

(st.active = { } ∧ st.run = nil ∨ st.run ∈ dom st.active) ∧

∀j ∈ dom st.active ·

st.active(j).e ≤ st.active(j).type.C ⇒ st.t ≤ st.active(j).d

Remembering that—along with guar-Scheduler—preserving the invariant is an obligation

on the scheduler, this minimal change illustrates the idea of layers of specification: with

strong assumptions, the implementation must meet strong obligations; where only weaker

assumptions hold, the implementation has weaker obligations to fulfil.

A trivial lemma shows that the new invariant is a weakened form of the original:

Lemma 4 inv-State(st) ⇒ inv-State-W(st)

A valid implementation must meet both sets of requirements. (The issue of returning to

the more optimistic mode is discussed in Sect. 6.5 with a more interesting degree of fault

tolerance.)

In an EDF implementation, there would a problem that an overrunning job could continue

to absorb resources and force other jobs to miss their deadlines. The obvious solution is to

remove overrunning jobs from active but the next section describes a more nuanced fault-

tolerant implementation.

6.3 Levels of criticality

Mixed-Criticality Scheduling [36] enhances the robustness of schedulers by distinguishing

different levels of “criticality” for classes of jobs. A practical system might offer many levels

of criticality but the approach to handling mixed criticality can be illustrated with two (HI-crit

vs. LO-crit). Obviously, the intention is to give preference to HI-crit jobs and, when there is

insufficient resource, to do this at the expense of LO-crit jobs.

Unfortunately, it is insufficient to detect just before the deadline of a HI-crit job that a

LO-crit job with an earlier deadline has used resources that could have been more wisely

allocated to the job with higher criticality. The MCS way to avoid this trap is to associate

an early “virtual deadline” [5] with any HI-crit job: this is the value in the D field of their

JobType and is calculated during planning. An optional HI-crit object contains an additional

deadline allowance (AD) that, when added to the job’s current deadline, represents the actual

deadline requirement of the application. Furthermore, an extra (more conservative) estimated

WCET is included in HC (with HC > C). These two values are located in a HI-crit object;

the X field of JobType is nil for LO-crit jobs:

JobType :: D : Duration

C : Duration

X :
[

HI-crit
]

HI-crit :: AD : Duration

HC : Duration
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A useful predicate that simplifies some expressions below is:

is-hi : JobInfo → B

is-hi(job) △ job.type.X 
= nil

The final mode field of State in Sect. 4.1 distinguishes between Normal mode when

all jobs are scheduled and Ft mode during which LO-crit jobs are ignored (they could be

terminated or just backgrounded until there is spare capacity). So, in the fault-tolerant mode,

inv-State-FT only requires that all HI-crit jobs meet their deadlines:

inv-State-FT : State → B

inv-State-FT(st) △

inv-State(st) ∨

st.mode = Ft ∧

st.active 
= { } ∧ st.run ∈ dom st.active ∧ is-hi(st.active(st.run)) ∧

∀j ∈ dom st.active · is-hi(st.active(j)) ⇒ st.t ≤ st.active(j).d

Notice that the possibility of active = { } can be ignored because this would trigger return to

normal mode (see Sect. 6.5).

It is trivially true that:

Lemma 5 inv-State(st) ⇒ inv-State-FT(st)

6.4 EDF handling of exceedingWCET

Turning to how EDF behaves in fault-tolerant mode: as well as Theorem 1 still applying to

Normal mode operation, it must be true in Ft mode that:

Theorem 6 Fault-tolerant EDF works: providing the arrival assumption (A) is satisfied and

the HI-crit jobs execute within their HC estimated execution times, a Scheduler that ensures

the Job with the earliest deadline is made to run (within ρs of any job arrival or completion)

will ensure that the HI-crit jobs complete no later than their (real) deadlines plus ρs.

Argument As in Theorem 1, the justification that EDF will cope with a specific arrival pattern

and collection of extended WCETs requires a calculation that involves identification of the

most pessimistic “critical instants” and the most difficult arrival pattern.

The EDF invariant becomes:

inv-EDF-FT : State → B

inv-EDF-FT(st) △

inv-EDF(st) ∨

st.mode = Ft ∧

is-hi(st.active(st.run)) ∧

∀j ∈ dom st.active ·

is-hi(st.active(j)) ⇒ st.active(st.run).d ≤ st.active(j).d
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Lemma 7 Thanks to the use of the virtual deadline, it is again trivial that:

inv-EDF(st) ⇒ inv-EDF-FT(st)

In the fault-tolerant mode, guar-Job-FT only applies to HI-crit jobs and uses HC:

Job-FT

ext rd t : ClockValue

rd job : JobInfo

wr shared-ents : Id
m

−→ Value

rd mode : {Normal, Ft}

rely job′.type = job.type ∧ t′ ≤ job′.d

guar mode = Ft ∧ is-hi(job) ⇒ job′.e ≤ job.type.X.HC

post work(shared-ents, shared-ents′)

The overall scheduler class becomes:

Scheduler-FT

ext rd t : ClockValue

wr active : JobId
m

−→ JobInfo

wr run :
[

JobId
]

wr mode : {Normal, Ft}

pre active = { }

rely mode = Normal ∧

(∀j ∈ dom active′ · active′(j).e ≤ active′(j).type.C) ∨

mode = Ft ∧

(∀j ∈ dom active′ ·

is-hi(active(j)) ⇒ active′(j).e ≤ active′(j).type.X.HC)

guar ∀j ∈ (dom active ∩ dom active′) · active′(j).type = active(j).type

Moving on to the methods of the Scheduler-FT class. The Arrival-FT method in Normal

mode is as above; in Ft mode any arriving LO-crit jobs are ignored and the deadlines for

HI-crit jobs are set to the extra deadline.

Arrival-FT (jt: JobType)

ext wr active : JobId
m

−→ JobInfo

wr run :
[

JobId
]

rd t : ClockValue

rd mode : {Normal, Ft}

post mode = Normal ∧

(∃j ∈ (JobId − dom active) ·

active′ = active ∪ {j �→ mk-JobInfo(jt, jt.D + t, 0)}) ∨

mode = Ft ∧

(jt.X = nil ∧ active′ = active ∨

jt.X 
= nil ∧

∃j ∈ (JobId − dom active) ·

active′ =

active ∪ {j �→ mk-JobInfo(jt, (jt.D + jt.X.AD + t), 0)})
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The Completion method is unchanged (but could trigger Mode-up when the final job is

removed from active).

If a HI-crit job is in trouble, an EDF-FT implementation has to switch to Ft mode. There

are several ways in which an implementation could detect trouble: a last resort is to wait until

a HI-crit job hits its (virtual) deadline. Here, it is assumed that the mode switch occurs when

a HI-crit job overruns its optimistic estimate of WCET.

This could be triggered by adding to inv-EDF-FT a conjunct that:

st.mode = Normal ⇒ ∀j ∈ dom st.active · st.active(j).e ≤ st.active(j).type.C

This can be achieved either by removing LO-crit jobs from active or by switching modes as

follows: a new method is required for the Scheduler; this handles mode change from normal

to Ft mode10:

Mode-down

ext wr active : JobId
m

−→ JobInfo

wr mode : {Normal, Ft}

pre mode = Normal ∧

∃j ∈ dom active · is-hi(active(j)) ∧ active(j).e > active(j).type.C

post mode′ = Ft ∧

active′ =

{j �→ active(j) | j ∈ dom active ∧ ¬ is-hi(active(j))} ∪

{j �→ mk-JobInfo(jt, (d + jt.X.AD), e) |

j ∈ dom active ∧ is-hi(active(j)) ∧

active(j) = mk-JobInfo(jt, d, e)}

The post condition describes the most commonly adopted option of setting all HI-crit jobs to

use their extended deadlines and leaving the LO-crit jobs in active (but the invariant leaves

the freedom for them to be ignored); describing other options is straightforward.

It is worth repeating that a valid implementation of a layered rely-guarantee specification

must meet all of the layers. Thus, a fault-tolerant EDF-FT implementation is expected to

complete all jobs–whether HI-crit or LO-crit–by their deadlines if the optimistic assumptions

hold.

6.5 Reverting to normal mode

Having specified what should happen in one of the situations in which a fault-tolerant EDF

system recovers from a failure of a job to stay within its (optimistic) WCET, the question

naturally arises as to how to return to normal (or optimistic) mode. One example of a safe

situation is where there are no jobs executing:

Mode-up

ext rd active : JobId
m

−→ JobInfo

wr mode : {Normal, Ft}

pre active = { }

post mode′ = Normal

10 The implicit definitions of mappings in the post condition are a simple extension of implicit set specifications

such as {i | is-primed(i)}.
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There are weaker conditions such as only LO-crit jobs remaining but this one illustrates

how Mode-up might be specified.

7 Closing

7.1 Related results

Another place for fault tolerance can be identified by questioning what needs to be done

when the assumption about arrival times (A) is violated: its treatment requires more data to

be kept in the run-time state but would follow similar approach to that in Sect. 6.2.

As indicated above, there are alternatives to the EDF approach to scheduling (see [12]). If

the planning stage selects Fixed Priority scheduling, it is not necessary to compute the actual

deadline (d) at run-time. Another alternative is to arrange that the run-time scheduler ensures

that the job with least laxity until its deadline is the one chosen for execution. Although not

written out in detail, the approach to analysing these approaches appears to be similar to the

treatment of EDF in Sect. 6.

There are of course many other details of scheduling that could be investigated using the

models and proposed specification approach. For example with jobs sharing (i.e. concurrently

accessing) resources that must be accessed under mutual exclusion, various resource sharing

protocols exist such as allowing d to be less than t + D for short periods of time. Also one of

the locking mechanisms for shared variables, called the “deadline floor protocol” [8] would

need to change d.

7.2 Relation to earlier papers

The current paper continues the line of research reported in [11, 30] that seeks to get clear

specifications of fault-tolerant real-time scheduling; in particular there is an emphasis on

identifying assumptions made in the designs. The conference paper [11] focussed on the

scheduling issues whereas [30] contains the first use of the
∑

/State distinction to pin down

the distinction between the sets Time and ClockValue; both papers also had more discussion

than here on timeband ideas. 11

It is perhaps worth reviewing alternatives to some of the choices embodied in the current

paper. The limited use of timeband concepts [9] in the current version should not be taken

as our retreating from their importance. Whilst it is true that the notion of t =ρ α could be

replaced by t ∈ {β | α − ρ/2 ≤ β ≤ α + ρ/2}, this perpetuates the mistake of mapping

all times down to the finest time axis. Hopefully, the reader will see that at least discussing

the Passage-of -time during planning is better conducted at a much coarser granularity. The

current authors also prefer to think about notions of granularity such as =ρ as approximations

at a chosen granularity.

Turning to the use of rely and guarantee conditions, it is hopefully clear that standard

post conditions that are relations between notions such as State cannot cope with concurrent

changes. It would, of course, be possible to add “ghost variables” to the basic states and

express interaction in terms of histories of values. The current authors find that reasoning

about interference in terms of rely and guarantee conditions far preferable.

11 Not only is the current paper an extension of the earlier papers—most notably with respect to analysing the

fault tolerance—even large parts of the current text have been rewritten since the initial submission in response

to legitimate complaints from a referee that the order of presentation led to too many forward references.
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A final decision that might be questioned is that this paper eschews the use of any Temporal

Logic. As well as the arguments for rely-guarantee conditions in the previous paragraph, it

is worth remembering that so-called “Temporal Logics” do not deal with time in the sense

of Time as used in Sect. 4.2.

7.3 Related work

The research reported in [6, 13] is both supportive of the endeavours in the current paper and

interestingly different. For example [13] starts with the rallying call:

For a field that prides itself in the development and analysis techniques for safety-critical

systems—famously hard real-time systems—there recently has been an alarming num-

ber of errata correcting or retracting unsound schedulability analyses.

Their paper goes on to describe a framework for proofs that are mechanically checked using

Coq. The authors emphasise, moreover, the need for readability of the proofs to ensure that

they achieve what the user intended. This work is clearly relevant to our aims. Their target is

to prove conditions under which schedule planning will work whereas we have worked on

the specification of run-time schedulers—in particular on fault-tolerant aspects.

With respect to other differences between the two approaches [13] contains further exam-

ples including their handling of multi-processor implementations and their proof that, if any

schedule exists, an EDF schedule will work.

In a further quote from [13], they write:

In fact, it is relatively easy to (accidentally) build formal specifications and proofs that

are incomprehensible to non-experts.

We would echo this point and make clear that we are at the first of these stages: we wish

to look at the overall scheduling objective and to contribute understandable specifications.

One example is the distinction made above between planning and the run-time scheduler.

Furthermore, the emphasis in the current paper on recording assumptions using rely and

guarantee conditions offers a systematic way of investigating fault tolerance by considering

what actions can be added to the basic algorithms to limit the impact of violations of the

assumptions.

Having looked at some of the Prosa proof scripts, there is clearly considerable scope for

collaboration which the current authors intend to pursue once this paper is finalised.

The recent [37] also reports on use of Coq as an interactive theorem proving assistant. In

contrast to our approach, they start at the level of a program and lift their results towards an

overall specification. Their main result is to address (complete with available proof scripts)

the optimality of EDF.

Both [13, 37] are valuable contributions and there is clearly scope for potential collabo-

ration.

7.4 Concluding remarks

The objective in writing this paper was to employ existing ideas on the rely-guarantee

approach and extend them where necessary so that they can be used to specify the tem-

poral properties of real-time systems, and more generally Cyber-Physical systems with their

need for fault-tolerant behaviour and their support for Mixed-Critically (MC) applications.
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To achieve this it has been necessary to define a relationship between the external ‘passage of

time’ and an internal access to ‘clock time’. This relationship is then used to define invariants

and rely conditions that force the run-time scheduler to progress the application’s jobs so that

they will meet their deadlines.

Fault tolerance is addressed by challenging these invariants and forcing the system to

transition to a degraded mode which is defined by weaker assumptions and weaker guarantees.

The choice of which scheduling approach to employ and the application of the associated

schedulability analysis is undertaken in a distinct Planning phase. In this paper the EDF

scheme is chosen as an illustration and the EDF-VD extension for fault tolerance and MC

behaviour is applied. This leads to a formal specification of a run-time scheduler and a precise

definition of the assumptions applied during planning.
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