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A number of theoretical models have been developed in recent

years modelling epidemic spread in educational settings such

as universities, often as part of efforts to inform re-opening

strategies during the COVID-19 pandemic. However, these

studies have had differing conclusions as to the most effective

non-pharmaceutical interventions. They also largely assumed

permanent acquired immunity, meaning we have less

understanding of how disease dynamics will play out when

immunity wanes. Here, we complement these studies by

developing and analysing a general stochastic simulation model

of disease spread on a university campus where we allow

immunity to wane, exploring the effectiveness of different

interventions. We find that the two most effective interventions

to limit the severity of a disease outbreak are reducing extra-

household mixing and surveillance testing backed-up by a

moderate isolation period. We find that contact tracing only has

a limited effect, while reducing class sizes only has much effect

if extra-household mixing is already low. We identify a range

of measures that can not only limit an outbreak but prevent it

entirely, and also comment on the variation in measures of

severity that emerge from our stochastic simulations. We hope

that our model may help in designing effective strategies for

universities in future disease outbreaks.

1. Introduction
Understanding the dynamics of infectious disease spread continues

to be a major area of research. Modelling approaches have for nearly

a century used the classic compartmental susceptible–infected–

recovered (SIR) framework [1] to explore the possible dynamics in

a range of settings. In recent years, the COVID-19 pandemic led

to a huge growth in the field, with models often playing key roles

in management strategies decided by policy makers (see [2], and

articles in the same special issue). Commonly these studies went

© 2023 The Authors. Published by the Royal Society under the terms of the Creative

Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits

unrestricted use, provided the original author and source are credited.
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well beyond the classic compartment model, in particular incorporating spatial and social networks to

account for how an emerging infectious disease would probably spread through the population [3–6].

Incorporating such structures within populations are important since it is known networks with more

‘local’ interactions tend to lead to a lower epidemiological R0 [7,8], a common measure for determining

the speed of spread known as the reproductive ratio. Not only is this important for considering more

realistic predictions of epidemic time-courses, but it implies that non-pharmaceutical interventions which

limit an individual’s contacts are likely to play an important role in controlling an epidemic (e.g. [9,10]).

The focus of a number of modelling studies during the COVID-19 pandemic has been on educational

settings such as schools and university campuses [11–19]. These studies have taken a range of

methodological approaches, from deterministic to stochastic models, purely theoretical or fitted to data, and

with a focus on just one intervention measure or many. Their differing assumptions have led to varying

conclusions about the most effective non-pharmaceutical interventions to protect against epidemics. Most

commonly they show that a blended approach [12,20] is most effective, with asymptomatic/surveillance

testing with fast results often identified as a key element [11,12,16,19,20]. However, evidence for the

importance of mixing restrictions, especially in terms of class sizes, appears mixed [18,20].

While these recent studies have given us a good level of understanding of the spread of an

emerging infectious disease on a university campus, open questions remain. In particular, the majority

of these studies assumed that infection-acquired immunity was permanent, leaving an open question as

to how the dynamics will differ when immunity wanes, where endemic disease will be expected in the

long-run [21]. Here, we use a stochastic simulation algorithm to look at a range of intervention

measures against the spread of a novel infectious disease. Our focus is on the peak and total infected

numbers during a six-month period as well as estimates for the epidemiological R0. By using a

stochastic model, we are able to examine the variation in possible outcomes as well as headline

averages. We construct the model to be loosely representative of university campuses by assuming

household structures and daily classes. We do not attempt to parameterize our model to data or to link

it to any specific real-world outbreak such as COVID-19, but instead present it as an example of

a model structure that may be used in future outbreaks as a guide to management and

intervention strategies.

2. Methods
We developed a direct-method stochastic simulation algorithm [22] in Python to explore an

epidemic model, building on an earlier study [17]. Python code for the model can be accessed at

https://github.com/abestshef/campus_epidemic. The underlying epidemiological dynamics are

susceptible—exposed—infected—recovered—susceptible (SEIRS) with no births, deaths or

migration. We build an individual-based computational model where a population of 1000

individuals are initialized, with 980 initially susceptible and 20 infected, modelling the start of a

novel epidemic. Infection requires direct contact between an infected and susceptible individual. If

infection takes place, the individual initially becomes exposed, such that they cannot infect others

(but would show up as a positive case when tested—see below). After a latent period with

an average of 7 days, they go on to be fully infected. After an average of seven further days they

clear the disease and become recovered and immune. Immunity is not long-lasting, however, and

after an average of 120 days recovered individuals return to being susceptible. Note that with the

presence of waning immunity, we would expect the infection to ultimately reach an endemic

equilibrium if R0 > 1 rather than epidemic burn-out in the mean-field equivalent model. As per the

standard assumptions of the stochastic simulation alogrithm, transitions between compartments are

the outcome of Poission processes [22].

The 1000 individuals are divided into 100 households of 10. The majority of mixing is between these

10 housemates, but we allow some degree of random extra-household mixing, with a default of 5% of

interactions being extra-household. Individuals are also allocated to a single class that they attend

each day for 2 h (with the same class make-up every day). As a default, there are five classes of 200

individuals. Mixing within households and classes is assumed to be random for tractability, meaning

we do not include fine-grain data such as who sits next to who in classes. Thus in each location

(home or class), the infection term in the equivalent deterministic model is given by:
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where i denotes the specific household or class and we assume we only count non-isolating individuals.

Here, the first term gives the infections owing to random extra-household mixing and the second term

the infections owing to infections within the household/class.

We then explore the impact of various interventions. Firstly, extra-household mixing can be reduced

(for example owing to imposed restrictions). Secondly, the size of classes can be reduced. In addition, we

also allow for weekly surveillance testing of all individuals. These tests are assumed to be 95% accurate at

detecting positive cases (exposed and infected) and 99% accurate at determining negative cases

(susceptible and recovered). Results are assumed to be immediate. All those cases identified as

positive then isolate fully and perfectly from the rest of the population for a fixed number of days. We

also allow for contact tracing of positive cases, with a uniform random number of contacts, up to a

given maximum, from the identified individual’s household and class also told to isolate for the full

isolation period. Note that we do not include symptomatic testing in the model, only surveillance

testing. While not an intervention, we also examine the effect of the length of the immune period

before it wanes on the dynamics.

Pseudocode for the model is provided in appendix A. We run the model for 180 days and record the

time course of infection. Our primary focus in our analysis is on the peak number of infections (usually

during the initial epidemic wave) and the total number of infections over the time period.We also find an

estimate for the reproductive ratio, R0, by recording the actual number of infections generated by the

initial 20 cases. (We note alternative epidemiological measures such as attack rate could also be used,

but we choose R0 here given its wide use within the field.) We explore the impact of the different

intervention methods on these metrics, visualizing the output with violinplots to highlight the

distribution of outputs (along with boxplots, which additionally highlight the median and inter-

quartile range). We also use recent methods to visualize the ‘most central’ infected time-courses under

certain interventions [23]. This is achieved by repeatedly sampling a small number of the 100

simulated time-courses of the number infected. For each sample, the maximum and minimum

infected number at every time point are set as bounds. Every time-course is then compared to these

bounds, and any simulation that is entirely within the bounds has its ‘score’ increased by 1. The 50

time-courses with the top ‘scores’ are then taken as the ‘most central’ simulations.

3. Results

3.1. Overview: comparing interventions

We first compare the outcome when one intervention (or linked interventions) is introduced against a

default of no interventions. We compare the following cases:

(i) default—no interventions;

(ii) class size—the class sizes are reduced from 200 to 10;

(iii) mixing—extra-household mixing is reduced by 90% from the default;

(iv) test and isolate—90% of the population take weekly tests, with a 5-day isolation period for

positive cases and no contact tracing;

(v) test, trace and isolate (TTI)—90% of the population take weekly tests, with a more stringent 10-day

isolation period, and up to five contacts are traced; and

(vi) blended—a mixed intervention strategy, with class sizes reduced to 50, extra-household mixing

halved, 50% of the population testing with a 7-day isolation period and up to three contacts

traced.

The full distributions are shown in figure 1, with the medians also given in table 1. In the default case,

there is a large initial epidemic. It is noticeable that the high total infections means that many individuals

have been infected (at least) twice—a clear consequence of our assumption of waning immunity. All of

the single interventions have some effect on the severity of the outbreak, with the stronger measures often

preventing an epidemic and/or leading to a disease-free state. Reducing the class size on its own has only

a modest impact. Restricting extra-household mixing or the more limited testing and isolation strategy

are more effective, reducing both the peak and total infections such that there is no overlap in their

distributions with the default case. In fact, under both measures some outlier results occur where the

disease dies out. The more stringent TTI intervention has a strong impact, with many simulations

ending in the disease dying out. The distribution of peak and total infections for this stringent TTI
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regime is comparable with the blended approach with a range of intermediate interventions. In figure 2,

we show the time-courses for the 50% most central simulations for the default and blended interventions.

This highlights the large effect the interventions have on limiting and even preventing the outbreak.
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Figure 1. Comparison of intervention measures on (a) peak infections, (b) total infections in six months, and (c) estimated R0.

Default parameters: no mixing restrictions, class sizes 200, no testing.

Table 1. Comparison of median measures of disease severity for different intervention strategies.

intervention median peak median total median R0

default 25% 1709 4.7

class size 22% 1557 3.6

mixing 7.5% 874 2.1

weak TTI 9.5% 1007 1.35

strong TTI 2.5% 295 1.1

blended 2.9% 367 1.1
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It is noticeable in figure 1 that the values for R0 show considerable variation. In our default case, the

values of R0 vary from below 2 to more than 8, yet the distributions for the peak and total infections

appear quite limited. Further, the distributions for R0 under every intervention overlap with that of

the default ‘no intervention’ case, yet the distributions for peak and total infected are very different.

We believe this is driven by the fact that our estimates of R0 are derived from the actual numbers of

infections generated by the initial 20 cases, which might be a rather early point for making such

estimates in a real outbreak. This low base number probably leads to stochastic variation in how

many cases are generated.

3.2. Individual interventions

We now look at each intervention individually in greater depth. In the following investigations we

change our background case from ‘no interventions’ to ‘minimal interventions’—random mixing is

reduced by 20%, classes are at 100 (default was 200), 20% of the population test, and there is a 3 day

isolation and a maximum of one individual contact traced. This means we are assuming an

immediate public health response of low interventions across the board, and can look at how different

degrees of each intervention would impact the dynamics.

3.2.1. Mixing restrictions

Figure 3 demonstrates that mixing restrictions can have a significant impact on the epidemic. In

particular, in the extreme case of no mixing outside of households and classes, for our parameters,

there are no significant outbreaks of disease in any of the simulations (maxmimum peak 1.5% and

maximum total 68). Even an 80% reduction leads to many cases where no serious epidemic occurs

(25th quartile peak 3.2% and total 363), and a 60% reduction has no overlap in the distributions for

peak and total infections with the default 0% reduction case.

3.2.2. Class sizes

Reducing the class sizes appears to have only a modest impact on our measures of disease severity for the

default of minimal interventions. Figure 4a shows that the distributions between the largest and smallest

class sizes overlap for all measures. This is probably because in this case extra-household mixing remains

at a reasonably high level (a 20% decrease from the default), creating a more connected network that the

class size limits do not overcome. Figure 4b shows the corresponding plots when mixing has been

reduced by 80%. In this case, class sizes clearly do have an impact. Reducing the class size from 200

to 20 now reduces the median peak from 9.7% to 1.6% and the median total from 1029 to 178. Apart

from a single outlier at the largest class size, the distributions for peak and total infections do not

overlap with class sizes of 20 and smaller.
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Figure 2. Bounds of the 50% ‘most central’ time-courses for infection numbers for the default (no interventions) and blended

intervention strategy.
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3.2.3. Testing, tracing and isolation

The interventions of testing, tracing and isolation must be considered as a package, since at the extreme if

100% of the population test but there is no isolation period, the testing regime will have no effect. We first

look at the default case of minimal isolation (3 days) and contact tracing (1 day) for varying proportions of

the population testing, and then vary each of the secondary variables in isolation and together (figure 5).

In all cases, increasing the proportion of the population taking weekly tests decreases the peak and

total infections and R0. However, under the minimal tracing and isolation strategy this reduction is only

slight (figure 5a). From 0% to 100% testing the median peak reduces from 20.7% to 12.1%, the median

total from 1484 to 1117 and the median R0 from 3.7 to 1.7, with only the distributions for the peak

infected having no overlap between these extreme cases.

By contrast, when isolation is increased to 10 days a 100% testing regime reliably prevents any

significant outbreaks (maximum peak 2.8%, maximum total 280), with the median R0 < 1 (figure 5b).

Even when 60% test, there is no overlap in the distributions compared to when there is no testing,

and in fact there is no overlap with the no testing case in the peak distributions when just 40% test. It
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Figure 3. Comparison of different reductions in extra-household mixing on (a) peak infections, (b) total infections in six months,

and (c) estimated R0.
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is worth recalling from figure 1 that even a 5-day isolation period can be effective when combined with

high testing coverage.

Increasing the maximum number of contacts traced from 1 to 5 (with the isolation period returned to

3 days) has a small yet clear effect on reducing the epidemic (figure 5c). Now between the 0% and 100%

testing extremes, the median peak reduces from 20.9% to 11.7% and the median total from 1488 to 1107.

Comparing to the values from figure 5a, these reductions are small. However, now the peak distribution

when testing is 60% or higher does not overlap with the no testing case, but only the extreme 100%

testing distribution does not overlap with no testing for total infections.

Finally, when both isolation and contact tracing are at their higher level, now only 80% testing is

needed to reliably prevent significant outbreaks (maximum peak 3.9%, maximum total 425), with the

median R0 < 1 (figure 5d ). Even if 20% test, the peak distribution shows no overlap with the no

testing case. Comparing to figure 5b the increase in contacts traced makes a relatively modest

difference to the distributions, whereas compared to figure 5c the increase in isolation period has

made a significant difference.

In table 2, we summarize themedianmeasures for a subset of the intervention combinations in figure 5,

ranked in order of their effectiveness. We also present the most central time-courses for these choices in

figure 6. Together, these largely indicate that increasing testing is the most successful strategy, even with

minimal isolation and contact tracing. Increasing isolation can also have a substantial impact, especially

when combined with already high testing. For the parameters used here, solely increasing the number

of contacts traced but keeping everything else the same mostly has little effect. We can also note that

20% testing with a stronger package of isolation and contact tracing has a similar median to 80% testing

with the minimal package of interventions (table 2), but the most central time-courses only include

cases where there is no epidemic when there is greater testing (figure 6).

3.3. Waning immunity

While not an intervention strategy, an important component of our model is that acquired immunity is

lost after some time. Using our minimal intervention default, we have also analysed the model for
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Figure 4. Comparison of different reductions in class sizes on (a) peak infections, (b) total infections in six months, and (c)

estimated R0. Left: mixing is reduced by 20% from the default, right: mixing is reduced by 80% from the default.
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increased mean immune periods of 240 and 360 days. We also increased the runtime to 360 days to make

these results more meaningful. The results presented in figure 7 highlight that in fact the peak infections

and estimated R0 show little change for different lengths of immune period (median peaks vary from

19.1% to 18.7% and R0 from 3.25 to 3.4). This is because these values tend to form in the initial

epidemic phase, meaning that reinfections only make a small contribution. However, as might be

expected, the total infections rapidly decrease if immunity is maintained for longer (median values

more than halving from 2400 to 1030). It is also worth noting that by lengthening the simulation time,

the number of total infections for the default 120 day mean immune period is substantially higher

than seen in figures 3–5 but again the other two measurements remain similar.
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contact traced; (c) 3-day isolation and maximum five contacts traced; and (d) 10-day isolation and maximum five contacts traced.
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4. Discussion
We have used a stochastic simulation model to compare single and blended interventions to limit the

spread of an epidemic in a closed population such as a university campus. Our results suggest

that the two most effective intervention measures are (i) reduced extra-household mixing, and

(ii) surveillance testing backed up by at least a moderate isolation period. Decreasing the class size only

has a small effect under our model assumptions, as does increasing the number of contacts traced from

each positively identified case. Overall, our model would conclude that a combination of moderate

mixing restrictions and testing/isolation requirements would often be sufficient to not only limit

the extent of an initial epidemic, but also prevent the disease persisting even when immunity is not

long-lasting.

Given that as a default extra-household mixing only accounts for 5% of an individual’s contacts

outside of class in our model, it is notable how strong the impact of reducing mixing is. Picturing the

network that is created, since mixing is random, even a low level can mean the whole population is

still well connected, and an infectious disease can quickly spread. By contrast, under the more severe

mixing restrictions the network quickly becomes constrained to the households and classes, and the

speed of disease spread is substantially reduced. By contrast, the effectiveness of reducing class sizes

depends on the level of extra-household mixing. This is because the make-up of classes is fixed,

creating a less connected population than from our assumption of random mixing. Previous

modelling studies have considered mixing restrictions in a variety of ways, from limits on group sizes

[9,12], to reducing the total size of the university population [11] to smaller class sizes [17,20]. These

have all found that mixing restrictions reduce the severity of the epidemic but to different extents. The

importance of smaller class sizes seems particularly variable between studies. In their data-driven

Table 2. Comparison of median measures of disease severity for different combinations of testing, isolation and contact tracing.

testing isolation contacts median peak median total median R0

20% 3 1 19.2% 1417 3.3

20% 3 5 18.4% 1395 3.0

20% 10 1 16.4% 1308 2.9

20% 10 5 13.8% 1268 2.8

80% 3 1 14.0% 1187 2.1

80% 3 5 12.5% 1176 2.0

80% 10 1 2.7% 330 0.9

80% 10 5 2.0% 216 0.6
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model, Brooks-Pollock [20] found that reducing class sizes was the single most effective intervention of

the four tested, while the more general theoretical models of Best [17] and Borowiak et al. [15] also

showed that small class sizes can significantly impact an epidemic when there is otherwise limited

extra-household mixing. Yet in a data-driven study of influenza outbreaks in Japenese schools [18] it

was found that class sizes were only minimally associated with the rate of spread. Our work may

give some context to these differing results as it suggests that the effectiveness of smaller class sizes

depends on the underlying household and mixing assumptions. Overall, we expect that a mix of

reduced social mixing and reduced class sizes would prove effective to prevent individuals from

becoming too isolated while still maintaining some control over disease spread.

Testing, isolation and contact tracing must be considered as a package of strategies, since testing will

have no impact if there is no isolation and vice versa. As we might expect, increasing all three

interventions decreased the impact of the epidemic, but it is clear that an intermediate amount of

surveillance testing backed by a moderate isolation period can be effective in limiting infection

numbers, while a stronger package can reliably prevent an outbreak entirely. Interestingly, we found

that the outcomes were comparable when 80% of the population test but there are minimal isolation
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Figure 7. Comparison of different lengths of mean immune period on (a) the peak, (b) total infections, and (c) estimated R0, with

time-courses now extended to 360 days.

royalsocietypublishing.org/journal/rsos
R.
Soc.

Open
Sci.

10:
230899

10

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 2

8
 N

o
v
em

b
er

 2
0
2
3
 



and contact tracing measures to when 20% test but there are strong isolation and contact tracing

measures. We found that increasing the number of contacts traced made more minor differences than

increasing the proportion testing or lengthening the isolation period. This may be partly owing to the

fact that this figure is the maximum number traced, so the average number traced does not increase

as substantially. However, it could also suggest that a basic contact tracing mechanism is simply not

as effective at limiting future infections as other interventions considered. Previous studies similarly

found that asymptomatic/surveillance testing of the population can be one of the most effective

interventions [11,12,19], with Brook [12] further noting that such testing can reduce variation in the

daily case count, making epidemics more predictable. Our results on testing agree with this, but with

the exception that variation in numbers infected can increase close to the extinction boundary, partly

owing to our assumption of waning immunity making endemic disease the default outcome without

interventions. Our model assumed that results were returned immediately, with a picture of the rapid

lateral flow tests that have become common for COVID-19 testing in our minds. Previous studies that

specifically included a delay in results found that reducing the wait time could lead to much reduced

epidemics [11,12], and as such we would expect the introduction of a delay in our model to lead to

increases in infections.

Perhaps unsurprisingly, a blended package of the different interventions proves to be a good

approach to prevent the severity of an epidemic and/or stop a disease becoming endemic,

agreeing with previous modelling studies [12,20]. The precise restrictions needed will of course vary

depending on the features of the infection. Under our modelling assumptions, it would appear a rule

of thumb to restrict or even prevent an outbreak would be for reducing extra-household mixing

by around half alongside weekly surveillance testing of at least 50% of the population with positive

cases asked to isolate for 5–7 days. Reducing the class size and introducing contact tracing may also

be used for more significant outbreaks. We found that the greatest variability in outcomes occurred

with high levels of single interventions—for example reducing mixing by 80% or testing 80% of

students. In these cases, most simulations led to an intermediate severity of outbreak, but rare cases

occurred where the epidemic never took off. It may be, therefore, that university campuses are

fortunate in experiencing no epidemic with only limited controls. A recent study found that while

most higher education institutions in the United States enforced relatively low-cost non-

pharmaceutical interventions against COVID-19 such as mandating mask wearing indoors, only 20%

of those sampled instituted all of the interventions recommended by the Centers for Disease Control

and Prevention, including on-campus testing and restrictions on mixing [24]. Our work would suggest

that, while undoubtedly costly and with important considerations for wellbeing, the more measures

implemented the better for disease control. It would of course be essential to undertake cost-benefit

analyses of any proposed intervention strategies in the real world. While there may be wellbeing and

economic benefits to a broad range of medium interventions over one or two very strong ones

(complete mixing restrictions, for example), a more detailed analysis should confirm this. Similarly, it

is likely that high set-up costs make each intervention nonlinear in terms of financial cost. A number

of theoretical studies have explored optimal control of an epidemic subject to constraints such as

budget [25–27]. Such methods could be applied to our model to ascertain the ideal blend of

interventions under different budgets and targets.

We believe our model captures some key aspects of disease spread on a university campus—notably

the household structures and class assignments—and may therefore provide a reasonable first estimation

that could be of use when planning against future disease outbreaks. Our stochastic simulation approach

provides an additional layer of detail in being able to describe the likelihood of different time-courses

unlike a more simple, though tractable, deterministic model [7,28]. In particular, it has highlighted

how measures of R0 from very early case data may be variable owing to low numbers. In the extreme,

estimates of R0 = 2 were included in the distributions for both the worst-case ‘no intervention’ strategy

(resulting in at least 1500 total infections and more than 20% infected at the peak) and for the

‘blended’ strategy (resulting in fewer than 800 total infections and less than 7% infected at the peak).

As such, too early an estimate for R0 may not be a highly reliable guide to the ultimate impact of

the epidemic. Longer-term measures as more often used for real-world outbreaks are likely to show

less variability.

Our ambitions here are relatively modest; we do not present the model as being closely

parameterized to a particular epidemic (for example, COVID-19), but as a platform from which we

might start to make management decisions for future outbreaks. Of course, there are many

developments that may be explored for further realism. An important step should the model be used

to inform real-world intervention strategies would be to estimate the various rates of the model. Our
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values are perhaps on the high side—with the no-intervention default giving R0 values as high as 8.5 and

rapid loss of immunity—but this has allowed us to demonstrate how well packages of intervention

measures can limit an outbreak. Changes to the model structure could also be considered. For

example, we have assumed students belong to a single class, which we might expect to reduce

infections compared to if students attend different classes each day. By contrast, we assumed extra-

household mixing was entirely random, whereas the assumption of social groups might well reduce

infections, and the use of real-world contact data as in previous studies [5] could form the basis of

such a model. Further, we assumed random mixing of individuals within households and classes, and

no heterogeneity in household or class sizes. We also assumed that individuals have no innate

difference in their potential to infect, yet studies have shown that for many respiratory diseases

certain individuals act as ‘superspreaders’ [29]. However, it is unclear to what extent this is driven by

innate infectiousness of the individual or their mixing patterns. The mixing patterns generated in our

model will lead certain individuals to seed more infections than others, and it would be interesting to

explore how different underlying mixing assumptions influence the emergence of superspreading.

Finally, it is likely that many individuals engage in self-driven changes in behaviour owing to their

perception of infection risk [30], for example, we may assume some students deciding not to attend

classes or limit their extra-household mixing during periods of high prevalence. Including these or

other potential additions will only add to the power of modelling approaches to predict and inform

policy for disease outbreaks.
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Appendix A. Pseudsocode for the stochastic simulation algorithm
1. Initialize population of 1000 individuals.

(a) 10 randomly chosen individuals are infected, the remainder susceptible.

(b) Randomly allocate 10 individuals to each household.

(c) Randomly allocate c individuals to each class (with c set as 1000/[number of classes]).

(d) Set starting location to home.

2. If the current time is less than the maximum, proceed with main algorithm.

(a) Calculate sum of all rates (based on current location), ρsum.

(b) Calculate time-step from exponential distribution with mean 1/ρsum.

(c) If new time crosses to a new day:

— update isolation days remaining for any previously isolating individuals;

— if it is also a new week, test the given proportion of the (non-isolating) population at random.

Assume 95% if E and I individuals are correctly identified, and 1% of S and R types

incorrectly identified. Set the isolation period for these individuals;

— return to step 2a.

(d) If new time crosses class/household changeover time, update location and return to step 2a.

(e) Choose event based on relative rates:

— if recovery, choose random I individual to recover to R;

— if progression of latent infection, choose random E individual to move to full infection I;

— if waning immunity, choose random R individual to return to S;

— if random extra-household infection, choose random (non-isolating) S individual to move to E;

— if in-class or in-household infection, randomly sift through locations until one with both

non-isolating S and I are found. Move this S individual (randomly chosen if multiple) to

become E.

(f ) Update time and all densities.
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