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Abstract. We consider the weighted MAX–SAT problem with an additional constraint that at

most k variables can be set to true. We call this problem k–WMAX–SAT. This problem admits
a (1− 1

e
)-factor approximation algorithm in polynomial time [Sviridenko, Algorithmica 2001] and

it is proved that there is no (1 −

1
e
+ ϵ)-factor approximation algorithm in f(k) · no(k) time for

Maximum Coverage, the unweighted monotone version of k–WMAX–SAT [Manurangsi, SODA
2020]. Therefore, we study two restricted versions of the problem in the realm of parameterized
complexity.
1. When the input is an unweighted 2–CNF formula (the problem is called k–MAX–2SAT),

we design an efficient polynomial-size approximate kernelization scheme. That is, we design a
polynomial-time algorithm that given a 2–CNF formula ψ and ϵ > 0, compresses the input
instance to a 2–CNF formula ψ⋆ such that any c-approximate solution of ψ⋆ can be converted
to a c(1− ϵ)-approximate solution of ψ in polynomial time.

2. When the input is a planar CNF formula, i.e., the variable-clause incident graph is a planar
graph, we show the following results:
– There is an FPT algorithm for k–WMAX–SAT on planar CNF formulas that runs in

2O(k)
· (C + V ) time.

– There is a polynomial-time approximation scheme for k–WMAX–SAT on planar CNF

formulas that runs in time 2O( 1

ϵ
)
· k · (C + V ).

The above-mentioned C and V are the number of clauses and variables of the input formula
respectively.

Keywords: Parameterized Algorithms · MAX–SAT · MAX–2SAT.

1 Introduction

In this paper, we study the well-studied MAX–SAT problem with cardinality constraint. The weighted
version of the problem is formally defined as follows.

Weighted MAX–SAT with Cardinality Constraint (k–WMAX–SAT)
Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a CNF formula F , a weight function w : CF → R

+

and a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting variables of S to true and
other variables to false, maximizes the weight of the satisfied clauses.

k–MAX–SAT and its monotone version (a version in which negated literals are not allowed) Max-
imum Coverage are well studied both in the realm of approximation algorithms and parameterized
complexity. The input of Maximum Coverage is a family F of subsets of a universe U and a positive
integer k. The goal is to find S1, S2, . . . , Sk ∈ F that maximizes |S1 ∪ S2 ∪ · · · ∪ Sk|.

Maximum Coverage, and hence k–MAX–SAT are known to be NP-complete and W[2]-hard be-
cause Maximum Coverage is a more general case of the Dominating Set problem. A simple greedy
approximation algorithm for Maximum Coverage outputs a (1− 1

e )-approximate solution, where e is
the base of the natural logarithm. This greedy approximation algorithm is essentially optimal for Max-
imum Coverage [7]. Sviridenko [18] obtained a (1 − 1

e )-factor approximation in polynomial time for

k–WMAX–SAT. Recently, Manurangsi [14] showed that there is no f(k) · no(k) time algorithm that
can approximate Maximum Coverage within a factor of (1 − 1

e + ϵ) for any ϵ > 0 and any func-
tion f , assuming Gap Exponential Time Hypothesis (Gap-ETH). Thus, to obtain tractable results for
k–WMAX–SAT in the realm of parameterized complexity and approximation algorithms, we need to



2 F. Panolan and H. Yaghoubizade

restrict the input to different classes of formulas. We study cardinality constrained unweighted MAX–
SAT when the number of literals in each clause is at most 2. This problem is called k–MAX–2SAT.
The problem is formally defined below.

MAX–2SAT with Cardinality Constraint (k–MAX–2SAT)
Parameter: k
Input: A set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a positive integer k.
Objective: Find a subset S of variables such that |S| ≤ k and setting variables of S to true and
other variables to false, maximizes the number of the satisfied clauses.

k–MAX–2SAT and its monotone version Max–k–Vertex Cover (shortly Max k–VC) are exten-
sively studied [3,9,10,13,16,17]. The best-known polynomial-time approximation ratio for k–MAX–2SAT
is 0.75 [9]. Raghavendra and Tan [17] designed an α-approximation algorithm for some α > 0.92 that
runs in time npoly(n/k), where n is the number of variables in the input formula [13]. That is, this algo-
rithm runs in polynomial time when k is a constant fraction of V . Assuming Unique Games Conjecture
(UGC), it is NP-hard to approximate k–MAX–2SAT with a factor better than 0.929 [1].

The monotone variant of the problem, Max k–VC gives an interesting connection between approxi-
mate kernelization and approximation algorithms. Here, given a graph G, our objective is to find a vertex
subset S of size k such that the number of edges in G with at least one endpoint in S is maximized.
Max k–VC is W[1]-hard and Marx [15] designed the first FPT approximation scheme for the problem,
where k is the parameter. Lokshtanov et al. [12] showed that, indeed the steps of the algorithm by Marx
can be converted to get an efficient polynomial-size approximate kernelization scheme (EPSAKS). We
refer to Section 2 for the definition of approximate kernelization. Manurangsi [13] improved the kernel
size to O(k/ϵ) and the running time of FPT approximation scheme to (1/ϵ)O(k)nO(1) for Max k-VC.
Manurangsi applied the algorithm of Raghavendra and Tan [17] for k–MAX–2SAT on the linear size
approximate kernel to obtain an approximation factor of 0.92 for Max k–VC. Approximating Max
k–VC with a factor better than 0.929 is also NP-hard assuming UGC [1]. We prove that k–MAX–2SAT
admits an EPSAKS.

Theorem 1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a positive integer
k, there is an EPSAKS (efficient polynomial-size approximate kernelization scheme) for k–MAX–2SAT

such that the size of the output of the reduction algorithm is upper-bounded by O
(

k5

ϵ2

)

.

We also study k–WMAX–SAT when the input is a planar CNF formula, that is, the variable-clause
incident graph is a planar graph. Restricting MAX–SAT to planar formulas has been already considered
in the realm of approximation algorithms [11] [4]. We prove the following result for k–WMAX–SAT on
planar CNF formulas.

Theorem 2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is an FPT algorithm for k–WMAX–SAT that
runs in O(236k · k3 · |CF ∪ VF |) time.

Khanna and Motwani [11] already designed a PTAS for k–MAX–SAT (the unweighted version) on
planar formulas. Using a similar technique, we show that the weighted version k–WMAX–SAT also
admits a PTAS.

Theorem 3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is a polynomial-time approximation scheme that
runs in O( 1

ϵ2 · 2
36

ϵ · k · |CF ∪ VF |) time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1− ϵ) ·OPT(CF , w, k)

Here, OPT(CF , w, k) is the maximum total weight of clauses in CF that can be satisfied by an
assignment where at most k variables are set to true.

2 Preliminaries

Definition 1 (Conjunctive Normal Form (CNF)). A formula is said to be in Conjunctive Normal
Form (CNF) if it looks like C1 ∧ C2 ∧ · · · ∧ Ct where each Ci = (l1 ∨ l2 ∨ · · · ∨ lti) is called a clause and



On MAX–SAT with Cardinality Constraint 3

each li is called a literal. A literal is either a variable, called positive literal, or the negation of a variable,
called negative literal.

A formula is said to be in 2–Conjunctive Normal Form (2–CNF) if it is in CNF and all of its clauses
contain 2 literals.

We assume, without loss of generality, that for each variable v, at most one of the v and ¬v is
contained in a clause, no literal is repeated in a clause and all clauses are distinct.

For a CNF formula F , the set of clauses and the set of variables appeared in F are denoted by
CF = {C1, C2, . . . , Ct} and VF = {v1, v2, . . . , vn}, respectively.

2.1 Parameterized Complexity

For a parameterized maximization problem Π and a solution s to the instance (I, k) of Π, we denote the
value of s by Π(I, k, s), and the task is to find a solution with the maximum possible value. We state
the following definitions slightly modified from the Kernelization book [8].

Definition 2 (FPT optimization problem). A parameterized optimization problem Π is fixed-parameter
tractable (FPT) if there is an algorithm (called FPT algorithm) that solves Π, such that the running
time of the algorithm on instances of size n with parameter k is upper-bounded by f(k) · nO(1) for a
computable function f .

Definition 3 (α-approximate polynomial-time preprocessing algorithm). Let 0 < α ≤ 1 be
a real number and Π be a parameterized maximization problem. An α-approximate polynomial-time
preprocessing algorithm A for Π is a pair of polynomial-time algorithms. The first one is called the
reduction algorithm RA, and given an instance (I, k) of Π, it outputs another instance (I ′, k′) =
RA(I, k). The second algorithm is called the solution lifting algorithm. This algorithm takes an instance
(I, k) of Π, the output instance (I ′, k′) of the reduction algorithm, and a solution s′ to the instance (I ′, k′).
The solution lifting algorithm works in time polynomial in |I|, k, |I ′|, k′ and |s′|, and outputs a solution
s to (I, k) such that

Π(I, k, s)

OPT (I, k)
≥ α ·

Π(I ′, k′, s′)

OPT (I ′, k′)

Definition 4 (α-approximate kernelization). An α-approximate kernelization (α-approximate ker-
nel) is an α-approximate polynomial-time preprocessing algorithm A such that sizeA is upper-bounded by
a computable function g : N → N where sizeA is defined as follows:

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = RA(I, k) for any instance (I, k) of the problem}

If the upper-bound g(·) is a polynomial function of k, we say A is an α-approximate polynomial kernel.

Definition 5 (polynomial-size approximate kernelization scheme (PSAKS)). A polynomial-
size approximate kernelization scheme (PSAKS) for a parameterized maximization problem Π, is a family
of (1− ϵ)-approximate polynomial kernels for every 0 < ϵ < 1.

Definition 6 (Efficient PSAKS). An efficient PSAKS (EPSAKS) is a PSAKS such that for every
(1− ϵ)-approximate polynomial kernel A in that, sizeA(k) is upper-bounded by f( 1ϵ ) · k

c for a function f
and a constant c independent of I, k and ϵ.

2.2 Tree Decomposition and Tree-width

We state the following definitions and lemmas from the Parameterized Algorithms book [5].

Definition 7 (Tree decomposition). A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )),
where T is a tree whose every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the
following three conditions hold:

- Vertex coverage:
⋃

t∈V (T ) Xt = V (G), i.e., every vertex of G is in at least one bag.

- Edge coverage: For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both u
and v.

- Coherence: For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e., the set of nodes whose
corresponding bags contain u, induces a connected subtree of T .
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The width of tree decomposition T = (T, {Xt}t∈V (T )) equals maxt∈V (T ) |Xt| − 1.

Definition 8 (Tree-width). The tree-width of a graph G is the minimum possible width of a tree
decomposition of G.

Definition 9 (Nice tree decomposition). A tree decomposition T = (T, {Xt}t∈V (T )), rooted from
r ∈ V (T ), is called nice if the following conditions are satisfied:

– Xr = ∅ and Xl = ∅ for every leaf l of T .

– Every non-leaf node of T is of one of the following three types:

• Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some vertex
v /∈ Xt′ . We say that v is introduced at t.

• Forget node: a node t with exactly one child t′ such that Xt = Xt′ \{w} for some vertex w ∈ Xt′ .
We say that w is forgotten at t.

• Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

Lemma 1. If a graph G admits a tree decomposition of width at most d, then it also admits a nice tree
decomposition of width at most d. Moreover, given a tree decomposition T = (T, {Xt}t∈V (T )) of G of
width at most d, one can in time O(d2 ·max(|V (T )|, |V (G)|)) compute a nice tree decomposition of G of
width at most d that has O(d · |V (G)|) nodes.

3 EPSAKS for k–MAX–2SAT with Cardinality Constraint

In this section, we show that k–MAX–2SAT admits an EPSAKS. That is we prove Theorem 1.

There are two main observations used in the algorithm. First, since one can satisfy all clauses con-
taining at least one negative literal by setting all the variables to false, the optimal value is not less than
the number of clauses containing negative literals. Second, if a variable v appears positively in many
clauses, then one can satisfy all those clauses by setting v true and all the other variables false.

Let F be a 2–CNF formula with clause set CF and variable set VF . For a variable v ∈ VF , we
denote the number of clauses in the form of (v ∨ u), (v ∨ ¬u), (¬v ∨ u) and (¬v ∨ ¬u) by d++(v), d

−
+(v),

d+−(v) and d−−(v) respectively. For V ⊆ VF we denote the set of negation of variables in V with ¬V ,
i.e., ¬V = {¬s | s ∈ V }. Let PF = {p1, p2, . . . , pl} be the set of variables that appear only in clauses
containing two positive literals, i.e., in the form of (v ∨ u), and NF = VF \PF . We suppose, without loss
of generality, d++(p1) ≥ d++(p2) ≥ · · · ≥ d++(pl).

We now describe a (1− ϵ)-approximate polynomial-time preprocessing algorithm Aϵ for an arbitrary
ϵ.

Reduction Algorithm Rϵ: Rϵ takes the set of clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F

and a parameter k as input. Set λ to be equal to
4·(k2)

ϵ . Recall that PF = {p1, p2, . . . , pl} is the set of

variables that appear only in clauses containing two positive literals. Let P̃F = {p1, p2, . . . , pl̃} where

l̃ = min(l, k + kλ) and C̃F ⊆ CF be the set of clauses whose both variables are in PF \ P̃F . If both of the
following requirements are satisfied, Rϵ outputs (CF \ C̃F , k), otherwise it outputs ({C1}, k + 1).

(R1) There are < λ clauses with at least one negative literal.

(R2) d++(v) < λ for every variable v ∈ VF .

Solution Lifting Algorithm Lϵ: The algorithm takes (CF , k), the output of the reduction algorithm
(C′

F ′ , k′) and a set S′ of at most k′ variables appeared in F ′. If k′ = k, Lϵ outputs S = S′. Other-
wise, let VF = {v1, v2, . . . , vn} and without loss of generality suppose

d++(v1)− d+−(v1) ≥ d++(v2)− d+−(v2) ≥ · · · ≥ d++(vn)− d+−(vn)

Then the algorithm outputs

S = {v ∈ {v1, v2, . . . , vk} | d++(v)− d+−(v) > 0}
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We next show that Aϵ is a (1− ϵ)-approximate polynomial-time preprocessing algorithm. To do so, we
need to prove the following lemmas.

Lemma 2. Suppose d++(v) < λ for every v ∈ VF . Let S
∗ be an optimal solution for (CF , k) such that

S∗∩PF is lexicographically smallest with respect to p1, p2, . . . , pl. Then (S∗∩PF ) ⊆ P̃F = {p1, p2, . . . , pl̃}.

Proof. If l̃ = l, we have P̃F = PF . So (S∗ ∩ PF ) ⊆ PF = P̃F and we are done.
So suppose l̃ = k+kλ and for the sake of contradiction, suppose there is p ∈ (S∗∩PF ) such that p /∈ P̃F .
Define the set A as the following:

A = S∗ ∪ {v ∈ VF | ∃(v ∨ u) ∈ CF : u ∈ S∗}

Since |S∗| ≤ k and ∀v ∈ VF : d++(v) < λ, we have |A| < k + kλ. Therefore, there is a variable

q ∈ {p1, p2, . . . , pk+kλ} which is not in A, i.e., q ∈ P̃F \A.
Note that since p, q ∈ PF , p and q appear only in clauses with two positive literals, So we have

k–MAX–2SAT(CF , k, S
∗ \ {p} ∪ {q})

≥ k–MAX–2SAT(CF , k, S
∗)− d++(p) + d++(q) (since p ∈ PF and q /∈ A)

≥ k–MAX–2SAT(CF , k, S
∗) (since p /∈ P̃F and q ∈ P̃F )

= OPT(CF , k)

Therefore, S∗ \ {p} ∪ {q} is an optimal solution and since p /∈ P̃F but q ∈ P̃F , (S
∗ \ {p} ∪ {q}) ∩ PF is

lexicographically smaller than S∗ ∩ PF , which implies a contradiction.

Lemma 3. If d++(v) < λ for every v ∈ VF , then OPT(CF , k) = OPT(CF \ C̃F , k).

Proof. Since (CF \ C̃F ) ⊆ CF , we have OPT(CF , k) ≥ OPT(CF \ C̃F , k). For the other direction, let S∗ be
the optimal solution of (CF , k) described in the Lemma 2. By Lemma 2 we know S∗ ∩ (PF \ P̃F ) = ∅ and
therefore, by setting only variables of S∗ true, none of the clauses with both literals from PF \ P̃F , i.e.,
clauses in C̃F , gets satisfied. This implies

k–MAX–2SAT(CF , k, S
∗)

︸ ︷︷ ︸

=OPT(CF ,k)

= k–MAX–2SAT(CF \ C̃F , k, S
∗)

︸ ︷︷ ︸

≤OPT(CF\C̃F ,k)

which proves the lemma.

Lemma 4. Aϵ is a (1− ϵ)-approximate polynomial-time preprocessing algorithm.

Proof. Clearly, both Rϵ and Lϵ are polynomial algorithms. In the solution lifting algorithm, note that
C′
F ′ ⊆ CF and thus S′ ⊆ VF . This implies that the output of Lϵ is a subset of VF with size ≤ k and

therefore a solution to instance (CF , k) of k–MAX–2SAT.
We now show that

k–MAX–2SAT(CF , k, S)

OPT(CF , k)
≥ (1− ϵ) ·

k–MAX–2SAT(C′
F ′ , k′, S′)

OPT(C′
F ′ , k′)

We consider two cases:

1. The aforementioned requirements, (R1) and (R2) are satisfied.
In this case, Rϵ outputs (C′

F ′ , k′) = (CF \ C̃F , k) and since k = k′, Lϵ would output S = S′. Since
CF \ C̃F ⊆ CF , we have k–MAX–2SAT(CF , k, S

′) ≥ k–MAX–2SAT(CF \ C̃F , k, S
′) and by Lemma 3

k–MAX–2SAT(CF , k, S
′)

OPT(CF , k)
≥

k–MAX–2SAT(CF \ C̃F , k, S
′)

OPT(CF \ C̃F , k)
≥ (1− ϵ) ·

k–MAX–2SAT(CF \ C̃F , k, S
′)

OPT(CF \ C̃F , k)

Which completes the proof for the first case.
2. At least one of the requirements, (R1) and (R2) is not satisfied.

If (R1) is not satisfied we have k–MAX–2SAT(CF , k, ∅) ≥ λ. If (R2) is not satisfied, there is a
variable v ∈ VF such that d++(v) ≥ λ, thus k–MAX–2SAT(CF , k, {v}) ≥ λ. Therefore, in this case
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OPT(CF , k) ≥ λ. Note that for any solution S:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+−(v)− |{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}|

+

∑

v∈VF
d−−(v)

2
− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑

v∈S

d++(v)− |{(v ∨ u) | v, u ∈ S}|

And also:

|{(¬v ∨ u) | v ∈ S, u ∈ VF \ S}| =

(
∑

v∈S

d+−(v)− |{(¬v ∨ u) | v, u ∈ S}|

)

Which implies:

k–MAX–2SAT(CF , k, S) =
∑

v∈VF

d+−(v)−

(
∑

v∈S

d+−(v)− |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑

v∈VF
d−−(v)

2
− |{(¬v ∨ ¬u) | v, u ∈ S}|

+
∑

v∈S

d++(v)− |{(v ∨ u) | v, u ∈ S}| (1)

And since |S| ≤ k and all clauses are distinct, we have:

|{(¬v ∨ ¬u)|v, u ∈ S}| , |{(v ∨ u)|v, u ∈ S}| ≤

(
k

2

)

Therefore, considering equation (1) we have:

k–MAX–2SAT(CF , k, S)

≥
∑

v∈VF

d+−(v)−

(
∑

v∈S

d+−(v)− |{(¬v ∨ u) | v, u ∈ S}|

)

+

∑

v∈VF
d−−(v)

2
−

(
k

2

)

+
∑

v∈S

d++(v)−

(
k

2

)

=
∑

v∈VF

d+−(v) + |{(¬v ∨ u) | v, u ∈ S}|+

∑

v∈VF
d−−(v)

2
+

(
∑

v∈S

d++(v)−
∑

v∈S

d+−(v)

)

− 2 ·

(
k

2

)

(2)

Note that in this case Rϵ outputs (C′
F ′ , k′) = ({C1}, k + 1) and since k ̸= k′, Lϵ outputs S = {v ∈

{v1, v2, . . . , vk}|d
+
+(v)− d+−(v) > 0}. Let S∗ ⊆ VF be an optimal solution to (CF , k). Then we have:

∑

v∈S

d++(v)− d+−(v) ≥
∑

v∈S∗

d++(v)− d+−(v)

And considering inequality (2):

k–MAX–2SAT(CF , k, S)

≥
∑

v∈VF

d+−(v) + |{(¬v ∨ u)|v, u ∈ S}|+

∑

v∈VF
d−−(v)

2
+

(
∑

v∈S∗

d++(v)−
∑

v∈S∗

d+−(v)

)

− 2 ·

(
k

2

)

=
∑

v∈VF

d+−(v)−

(
∑

v∈S∗

d+−(v)− |{(¬v ∨ u)|v, u ∈ S∗}|

)

+(|{(¬v ∨ u)|v, u ∈ S}| − |{(¬v ∨ u)|v, u ∈ S∗}|) +

∑

v∈VF
d−−(v)

2
+
∑

v∈S∗

d++(v)− 2 ·

(
k

2

)

≥ k–MAX–2SAT(CF , k, S
∗) + (|{(¬v ∨ u)|v, u ∈ S}| − |{(¬v ∨ u)|v, u ∈ S∗}|)− 2 ·

(
k

2

)

≥ k–MAX–2SAT(CF , k, S
∗)− 4 ·

(
k

2

)

(since |{(¬v ∨ u)|v, u ∈ S∗}| ≤ 2 ·
(
k
2

)
)

= OPT(CF , k)− ϵλ (since S∗ is an optimal solution and λ =
4·(k2)

ϵ )
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Finally, since OPT(CF , k) ≥ λ we have:

k–MAX–2SAT(CF , k, S) ≥ OPT(CF , k)− ϵ ·OPT(CF , k) = (1− ϵ) ·OPT(CF , k)

Which implies k–MAX–2SAT(CF ,k,S)
OPT(CF ,k) ≥ (1 − ϵ) ≥ (1 − ϵ) ·

MAX–2SAT(C′

F′ ,k
′,S′)

OPT(C′

F′ ,k
′) and proves the second

case.

The next lemma states an upper-bound for sizeAϵ
(k).

Lemma 5. sizeAϵ
(k) is of O

(
k5

ϵ2

)

where sizeAϵ
(k) is defined in Definition 4.

Proof. Note that Rϵ returns either ({C1}, k+1) or (CF \ C̃F , k). In the first case sizeAϵ
(k) is of O(1) and

so we need to only consider the case of returning (CF \ C̃F , k). In this case, (R1) and (R2) are satisfied.
Since (R1) is satisfied, there are less than 2λ variables that appear in at least one clause with at least one
negative literal, i.e., |NF | < 2λ. Therefore, |NF ∪ P̃F | ≤ 2λ+ l̃ ≤ 2λ+ kλ+ k = O(kλ). (R1) and (R2)
together imply that d++(v)+ d−+(v)+ d+−(v)+ d−−(v) < d++(v)+λ < 2λ which means every variable v ∈ VF

appears in less than 2λ clauses of F . Therefore, |CF \ C̃F | is less than 2λ · |NF ∪ P̃F | = O(kλ2) = O
(

k5

ϵ2

)

.

We finally prove Theorem 1. For convenience, we restate the theorem here.

Theorem 1. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a 2–CNF formula F and a positive integer
k, there is an EPSAKS (efficient polynomial-size approximate kernelization scheme) for k–MAX–2SAT

such that the size of the output of the reduction algorithm is upper-bounded by O
(

k5

ϵ2

)

.

Proof. According to Definition 6, the proof is directly derived from Lemma 4 and Lemma 5.

4 k–WMAX–SAT with Cardinality Constraint on Planar Formulas

In this section, we present an FPT algorithm as well as a PTAS (Polynomial-time approximation scheme)
for k–WMAX–SAT on a special family of sparse CNF formulas that we will refer to as planar formulas.
We now describe this family of formulas.

For a CNF formula F , let GF = (CF ∪ VF , E− ∪E+) be a bipartite graph such that (Ci, vj) ∈ E+ if
Ci contains vj and (Ci, vj) ∈ E− if Ci contains ¬vj . We call F a planar CNF formula if GF is a planar
graph.

Both algorithms presented in this section are designed using Baker’s technique [2] and dynamic
programming on tree decomposition. First, we need the following lemmas.

Lemma 6 (Eppstein [6] ). Let planar graph G have diameter d. Then G has tree-width at most 3d−2,
and a tree-decomposition of G with such a width can be found in time O(d · |V (G)|).

Lemma 7. Let F be a planar CNF formula. Then there is an algorithm with running time O(23d · kd ·
|CF ∪ VF |) that takes CF = {C1, C2, . . . , Ct}, a weight function w : CF → R

+, a positive integer k, and a
tree decomposition of GF of width at most d with O(d · |V (GF )|) nodes as input and solves k–WMAX–
SAT, i.e., finds S ⊆ VF such that |S| ≤ k and setting variables of S to true and other variables to false
maximizes the weight of the satisfied clauses.

Proof. First, we construct a nice tree decomposition T = (T, {Xt}t∈V (T )) of width at most d with O(d ·
|V (GF )|) nodes in time O(d3 · |V (GF )|) using Lemma 1. Then, we use a dynamic programming routine.

For each t ∈ V (T ) let Vt ⊆ V (GF ) = CF ∪ VF be the union of all the bags present in the subtree of T
rooted at t, including Xt. For each t ∈ V (T ), S ⊆ (Xt ∩ VF ), C ⊆ (Xt ∩ CF ) and 0 ≤ i ≤ k define the
following:

dp[t, S, C, i] := Maximum possible weight of satisfied clauses in Vt if we set at most i variable

from Vt to true, set other variables of Vt to false and ignore variables of VF \ Vt

such that Ŝ ∩Xt = S and Ĉ ∩Xt = C where Ŝ is the set of true variables and

Ĉ is the set of satisfied clauses in Vt.

If we manage to compute values of dp, then since Xr = ∅, where r is the root of T , the answer would be
dp[r, ∅, ∅, k] and we can fill the dp array in a bottom-up manner and in the following way:
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- Leaf node: If t is a leaf, Xt = ∅ and we have dp[t, ∅, ∅, i] = 0 for all 0 ≤ i ≤ k. So in this case,
filling each cell of dp takes O(1) time.

- Introduce node: If t is an introduce node with child t′ that Xt = Xt′ ∪ {v}, we consider two cases
and fill the entries dp[t, S, C, i] in the following way.

1. v ∈ VF , i.e., v is a variable. Then C ′ ⊆ C might be the set of satisfied clauses of Xt′ , if it satisfies
one of the two below conditions:

(C1) All clauses in C \C ′ contain a positive literal of v, i.e., Setting v to true satisfies all clauses
in C \ C ′.

(C2) All clauses in C \C ′ contain a negative literal of v, i.e., setting v to false satisfies all clauses
in C \ C ′.

So we have:

dp[t, S, C, i] =

{
maxC′satisfies (C1) dp[t

′, S \ {v}, C ′, i− 1] + w(C \ C ′) if v ∈ S
maxC′satisfies (C2) dp[t

′, S, C ′, i] + w(C \ C ′) if v /∈ S

So in this case, filling one cell of dp takes O(2d) time.
2. v ∈ CF , i.e., v is a clause. Note that because of edge coverage and coherence properties, Var(v)∩

Vt = Var(v)∩Xt where Var(v) is the set of variables present in the clause v, either as a positive
or negative literal. So, there are two possibilities:

(P1) v ∈ C and v gets satisfied by setting all variables of S to true, Xt \ S to false and ignoring
variables of VF \Xt.

(P2) v /∈ C and v is not satisfied by setting all variables of S to true, Xt \ S to false and ignoring
variables of VF \Xt.

Therefore, we have:

dp[t, S, C, i] =







dp[t′, S, C \ {v}, i] + w(v) if (P1) is true
dp[t′, S, C, i] if (P2) is true
INVALID otherwise

So, in this case filling one cell of dp takes O(1) time.

Overall we can fill dp[t, S, C, i] for an introduce node t in O(2d) time.
- Forget node: If t is a forget node with child t′ that Xt = Xt′ \ {w}, we again consider two cases:

1. w ∈ VF , i.e., w is a variable. Note that w is either set to true or false and therefore:

dp[t, S, C, i] = max

{
dp[t′, S, C, i] setting w to false
dp[t′, S ∪ {w}, C, i] setting w to true

2. w ∈ CF , i.e., w is a clause.

dp[t, S, C, i] = max

{
dp[t′, S, C, i] w does not get satisfied
dp[t′, S, C ∪ {w}, i] w gets satisfied

Note that in this case filling one cell of dp takes O(1) time.
- Join node: If t is a join node with children t1 and t2 that Xt = Xt1 = Xt2 , we consider all
possibilities of S1, S2 and C1, C2:

dp[t, S, C, i] = max
S1∪S2=S, C1∪C2=C, |S1|≤j≤i

dp[t1, S1, C1, j]+dp[t2, S2, C2, i− j+ |S1∩S2|]−w(C1∩C2)

So in the case of join nodes, we can compute the value of each cell of dp in O(22d), because of 2d

possibilities for S1 ∪ C1 and at most 2d possibilities for S2 ∪ C2.

The total number of array’s cells is O(|V (T )| · 2d · k) and we can fill each cell in time O(22d), since by
Lemma 1 |V (T )| = O(d · |V (GF )|) = O(d · |CF ∪VF |) we can fill all the cells in time O(23d ·kd · |CF ∪VF |).
Again by Lemma 1, constructing T is done in time O(d3 · |CF ∪ VF | which gives us the overall runtime
of O(23d · kd · |CF ∪ VF |).

Finally, using the standard technique of backlinks, i.e., memorizing for every cell of dp how its value
was obtained, we can find an optimal solution, i.e., a subset S ⊆ VF such that |S| ≤ k and setting its
variables to true maximizes the weight of the satisfied clauses, within the same running time.



On MAX–SAT with Cardinality Constraint 9

4.1 FPT Algorithm

Here, we use Lemma 6 and Lemma 7 to show that k–WMAX–SAT on planar formulas is FPT. That is
we prove Theorem 2. For convenience, we restate the theorem here.

Theorem 2. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is an FPT algorithm for k–WMAX–SAT that
runs in O(236k · k3 · |CF ∪ VF |) time.

Proof. Construct GF and without loss of generality suppose the graph is connected. Then, do a breadth-
first search (BFS) on the graph starting from an arbitrary variable. Since GF is bipartite the first level
would contain variables, the second level would contain clauses, the third level would contain variables,
etc.

If the number of levels is more than 2k, for each 0 ≤ i label the level 2i+1, which contains variables,
with [i mod (k + 1)]. Note that since the number of levels is at least 2k + 1, we would use all the k + 1
different labels and therefore there should be a label that all of its variables are set to false in the optimal
answer. We consider all the k + 1 possibilities for this label and each time, set variables of one of the
k + 1 labels, say label l, to false. This makes some clauses satisfied, then we remove variables with label
l and also satisfied clauses to get a new graph GF,l. Each connected component of GF,l would contain
at most 2k + 1 levels and therefore its diameter is at most 4k. Using Lemma 6 a tree decomposition
of GF,l with width at most 12k can be found in time O(k · |VF ∪ CF |), and thus with O(k · |VF ∪ CF |)
nodes. Then using Lemma 7 we can solve k–WMAX–SAT on the CNF formula induced by GF,l in time
O(236k · k2 · |CF ∪ VF |). By doing so for every label 0 ≤ l < k + 1, we can find the optimal solution in
time O(236k · k3 · |CF ∪ VF |).

If the number of levels is at most 2k, we can use Lemma 6 and Lemma 7 on GF directly.

4.2 Polynomial-time Approximation Scheme

Now, we prove Theorem 3. For convenience, we restate the theorem here.

Theorem 3. Given a set of t clauses CF = {C1, C2, . . . , Ct} of a planar CNF formula F , a weight
function w : CF → R

+ and a positive integer k, there is a polynomial-time approximation scheme that
runs in O( 1

ϵ2 · 2
36

ϵ · k · |CF ∪ VF |) time and finds S ⊆ VF such that |S| ≤ k and

k–WMAX–SAT(CF , w, k, S) ≥ (1− ϵ) ·OPT(CF , w, k)

Proof. Fix an arbitrary 0 < ϵ ≤ 1, let d = ⌈ 1
ϵ ⌉ and suppose S∗ ⊆ VF is an optimal solution to k–WMAX–

SAT on (F , w, k), i.e., |S∗| ≤ k and setting variables of S∗ to true maximizes the weight of the satisfied
clauses. Also, let C∗ be the set of clauses that get satisfied by setting variables of S∗ to true. Construct
GF and without loss of generality suppose the graph is connected. Then, do a breadth-first search (BFS)
on the graph starting from an arbitrary clause.

If the number of levels is at least 2d, for each 0 ≤ i label the level 2i + 1, which contains clauses,
with [i mod d]. Let CF,l be the set of all clauses with label l. Note that since the number of levels is
at least 2d, we would use all the d different labels and therefore there should be a label l∗ such that

w(C∗ ∩ CF,l) ≤
w(C∗)

d = OPT(CF ,w,k)
d .

We consider all the d possibilities for l∗ and each time remove clauses with one of the labels, say label
l, to get a new graph GF,l. Each connected component of GF,l contains at most 2d levels, and therefore
its diameter is at most 4d.

Using Lemma 6 a tree decomposition of GF,l with width at most 12d can be found in time O(d ·
|VF ∪ CF |) and thus with O(d · |VF ∪ CF |) nodes. Then using Lemma 7 we can solve k–WMAX–SAT
on the CNF formula induced by GF,l in time O(236d · kd · |CF ∪ VF |). Let Sl be the optimal solution
of k–WMAX–SAT on the CNF formula induced by GF,l and let k–WMAX–SAT(C, w, k, S) be the
weight of satisfied clauses in C ⊆ CF if we set variables of S to true. Then we have the following for every
label 0 ≤ l < d:

k–WMAX–SAT(CF , w, k, Sl) ≥ k–WMAX–SAT(CF \ CF,l, w, k, Sl)

≥ k–WMAX–SATT(CF \ CF,l, w, k, S
∗)

= k–WMAX–SAT(CF , w, k, S
∗)− w(C∗ ∩ CF,l)

= OPT(CF , w, k)− w(C∗ ∩ CF,l)
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And for l∗ we also have:

k–WMAX–SAT(CF , w, k, Sl∗) ≥ OPT(CF , w, k)− w(C∗ ∩ CF,l∗)

≥ OPT(CF , w, k)−
OPT(CF , w, k)

d
≥ (1− ϵ) ·OPT(CF , w, k)

Therefore, by finding Sl for every label 0 ≤ l < d, we can find the optimal solution in time O( 1
ϵ2 ·

2
36

ϵ · k · |CF ∪ VF |).

5 Conclusion

In this work, we showed that k–MAX–2SAT admits an EPSAKS of size O(k
5

ϵ2 ). As the monotone variant

of the problem, Maximum k–Vertex Cover, admits an EPSAKS of size O(kϵ ) [13], which also works
for weighted graphs, is it possible to improve the kernel size for k–MAX–2SAT or design an EPSAKS
for its weighted version?

We also showed that k–WMAX–SAT on planar graphs admits an FPT algorithm as well as a PTAS.
Does this problem also admit a kernelization?
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