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Abstract: HF radar systems form part of many operational coastal monitoring systems providing near-

real-time surface currents for many useful applications. Although wave measurements have been

possible with these systems for many years, they have not yet been adopted widely for operational

monitoring because they have not been thought to be sufficiently accurate or reliable. However,

the value of such data is beginning to be appreciated, and this is motivating more work on wave

measurement with HF radar systems with many more papers on accuracy assessment and data

availability appearing in the literature. In this paper, the wave measurement capability, limitations,

and differences between different radar types are reviewed, and methods to assess accuracy are

discussed and applied to phased array HF radar data obtained from the University of Plymouth

WERA radars using the Seaview Software inversion method during April and November 2012

compared with directional buoy data. Good accuracy over a range of different wave parameters

will be demonstrated. Newly available single-radar inversions are shown to be less accurate than

dual-radar inversions, although they still provide useful data, and ways to improve performance are

discussed. Swell and wind–sea components in the directional spectra are identified, and qualitative

agreement with buoy peak parameters is demonstrated. Recommendations are given on statistical

methods for the validation of wave parameters.

Keywords: HF radar; coastal monitoring; surface waves; directional spectrum; significant wave

height; wave parameters; WERA; accuracy assessment; Celtic Sea

1. Introduction

Waves are routinely measured using wave buoys, and there are many of these around
the world’s coasts, with a few further offshore. These provide very useful information
for wave model and satellite algorithm development, calibration, and validation and also
more locally for activities such as shipping, sailing, coastal recreational activities, coastal
erosion, and sediment transport studies and to inform offshore engineering operations
such as oil and gas and wind farms. Waves interact with and are modified by currents and
bathymetry, and these interactions can become more complex closer to the coast, where
waters are shallower and coastal topography can be very variable. Buoys are usually
single-point measurements in particular areas of interest and cannot capture the likely
spatial variability in the wave field. Waves are also measured from satellites, which are able
to measure spatial variations in waves, but not usually with the time resolution needed
to resolve developments associated with local storms or sea breezes. HF radar systems,
which are normally located on the coast, measure the signal backscattered from ocean
waves from near their location to tens of kilometres offshore in near-real-time. This signal
carries information about surface currents because they change the phase speed of ocean
waves, which induces a Doppler shift in the signal, which can be easily measured. HF radar
systems measuring this property are now a routine part of many operational monitoring
systems around the world [1–4]. The signal also carries information about the ocean wave
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directional spectrum, but this part of the signal is weaker and extracting quantitative
measurements much more difficult. However, if this information can be obtained with
sufficient accuracy and reliability, it will add significant value to the spatial measurement
capabilities of these radars and provide many more applications for this technology.

The potential for wave measurement with HF radar was first established by Barrick
and Weber [5–7]. They developed a first- and second-order theory of electromagnetic
scattering from moving ocean waves, which led to non-linear integral equations relating
the ocean wave directional spectrum to the radar power (known as Doppler) spectrum.
The first-order signal provides surface current measurements. Wave measurements can
be obtained by inverting the second-order equations. There are two immediate problems:
how to ensure that the radar signal has sufficient signal-to-noise (at the locations where
wave measurement is required) to clearly identify the second-order part of the Doppler
spectrum; non-linear integral equations cannot be inverted accurately without imposing
additional conditions. The first problem has two parts: radar design and operating pa-
rameters; noise, interference, and propagation conditions. Although the latter need to be
considered in the radar design and parameter selection process, they will still influence
performance and cannot be completely designed away. Most HF radars in recent years use
FMCW modulation, either continuous (e.g., WERA [8], G-HFDR) or interrupted (FMICW,
e.g., SeaSonde [9], Pisces [10]), which minimises the impact of interference compared to
the pulsed radars used in earlier work. The signal from different ranges is determined
using an FFT [11]. FMICW allows the transmitter and receiver to be co-located (in the
continuous case, self-interference has to be avoided), and higher powers can be used to give
longer ranges, although maximum power levels are subject to radio frequency licensing
agreements. The operating frequency determines both the likely maximum range for both
wave and current measurements (low radio frequency, longer range, and vice versa, with
the maximum range at either frequency also reduced due to propagation losses in higher
seas) and also wave measurement ability (low radio frequencies can measure higher waves
and high frequencies lower waves) [12]. Other factors such as the physical footprint of the
radar system can be more important than wave measurement potential when deciding on a
radar system, particularly when the priority is for surface current measurement. So, many
systems in use around the world are so-called direction-finding radars of the SeaSonde
type. Direction finding is used to obtain the spatial distribution of surface currents, but
cannot be used for wave measurement. The inversion process is even more complicated
for these radars since the second-order equations are convolved with the broad-beam
antenna pattern obtained from a monopole and two loop antennas mounted on a single
pole. Wave measurement solutions assume that the wave spectrum is uniform around
constant range rings, which can be difficult to justify in coastal waters. So-called phased
array radars (WERA, G-HFDR, Pisces) use an array of antennas phased to provide data
in particular directions, and thus, backscatter from patches or cells (often of the order of
1 km × 1 km) in the coverage area can be identified; assuming these are small enough
so the directional spectrum is constant across the cell, the second-order equations apply
without additional complexity.

The methods to obtain wave measurements can essentially be divided into three main strands:

1. Empirical algorithms using buoy data and regression to obtain estimates for significant
wave height and, sometimes, additional parameters, e.g., [13–15];

2. Algorithms building on the work of Barrick [16] for the frequency spectrum and
Lipa [17,18] for narrow-band swell, both of which were based on a linearisation of the
equations to derive closed-form expressions [6];

3. Numerical inversion methods using model fitting [9] (the method normally used
with SeaSonde radars); regularisation [19,20]; singular-value decomposition [21];
Bayesian methods [22]; optimisation [23]; neural networks [24]; and constrained
iteration [25,26].

This paper will look at the performance of the constrained iteration numerical in-
version method, which is the method used in the software supplied by Seaview Sensing
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and is hereafter referred to as SV. This method has been tested at many different locations
with different radars and operating frequencies [27]. Two recent developments and a
paper [28] building on [16,17] (item 2 above) have motivated the new results presented in
this paper. The original Seaview software package was written to analyse data from two
radars looking at the same area of sea from different directions. Most early radars operated
in this way, and two radars are needed to measure surface current vectors. Wyatt [27,29]
showed that two radars are also required to accurately measure waves. This was less clear
in Barrick’s original work [6], although it was pointed out in [30] that his expression was
limited to the case of waves travelling perpendicular to the radar direction. As a result,
attempts to use Barrick’s formulation usually involve a calibration to match local buoy
wave heights, e.g., [31,32]. The SV software package has now been restructured to allow for
inversion using one to N radars (and also bistatic configurations, although this has yet to
be fully implemented and tested); so, a quantitative assessment of single-radar inversion
can be obtained, and the software can also be used in the context of radar networks, albeit
still being restricted to data with sufficient signal-to-noise . The second development is the
ability to separate and identify wind sea and swell components in directional spectra [33].
The SV method makes no assumptions about the shape of the directional spectrum over a
frequency band with an upper limit that depends primarily on the radio frequency. Beyond
this, a Pierson–Moskowitz spectrum is assumed with a sech2(β(θ − θw)) directional distri-
bution [34], where the parameters: β and wind (or short wave) direction, θw, are determined
from the radar data using a maximum likelihood method [35]. Bi- and multi-modal spectra,
in frequency and or direction, can be measured. The work presented in this paper used the
SV core inversion version 6.0_α13.

There is one empirically based parameter used in the SV method. This is used to
parameterise high-order non-linearities not accounted for in the Barrick equations, but
identified by [36,37]. This effect can be approximated by a wave-height-dependent scaling
of the first-order amplitude. The scaling used takes the form (1 − MH2

s k2
0/8) times the

amplitude of first-order peak, where k0 is the radar wavenumber and M is the empirically
determined parameter in the range [0, 1]. M = 0 implies no scaling. For dual-radar
inversions M = 0.3 is used since this gave the best results when tested with the November
data set discussed in this paper. The theory suggests that there should be a directional
impact on this scaling that has not yet been taken into account. This is more apparent with
single-radar inversions and is discussed in Section 3.2 below.

Al-Attabi et al. [28] (AlA) used Barrick’s method [16] for the wind–sea component
combined with a directional wave model, 0.5βsech2β(θ − θ( f )), where β is the spreading
parameter, which is assumed to depend on the wave frequency relative to the peak as
determined empirically by [34]. They determined the peak direction at each frequency,
θ( f ), from second-order Doppler ratios assuming a coss(θ − θ( f ))/2, where s = 2 is the
assumed constant spreading parameter. A similar model is used to estimate wind direction
from the ratio of the first-order peaks. They obtained the swell component using [18]. To
implement this approach, a swell–wind separation frequency is required. They used a
wave age formulation, which depends on an externally provided wind speed. If the wind
speed is not available, a fixed partition frequency of 0.12 Hz is used. The swell component
obtained is removed if its contribution to the Doppler spectrum relative to the wind–wave
contribution is less than a specified threshold, determined by trial and error. The methods
were applied to dual-radar data where these were available, otherwise to single-radar data.

AlA was tested using data from the University of Plymouth WERA radars [38,39]
during April 2012. The radars use a frequency of about 12.3 MHz. Previous tests of the
Seaview method have used data from the same system for November 2012 [27]. In this
paper, both data sets were analysed. The April data were used to compare with [28]. The
University of Plymouth radars are sited on the North coast of Cornwall, U.K., providing
metocean measurements in a region of the Celtic Sea of great current interest for wave
power and offshore floating wind power applications.
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The aim of this paper was to provide more evidence of the good accuracy and avail-
ability of detailed wave measurements using phased array radars with the SV method
to encourage greater use of this technology. In particular, the latest version of the soft-
ware package, 6.0_α13, both for dual- and, for the first time, for single-radar systems was
validated. Another aim was to promote the use of a range of statistics, not just, e.g., the cor-
relation and/or root-mean-squared difference, and clarity in the way these are calculated,
when assessing wave measurement performance and comparing with other methods.

In the next section, we present the data sets and discuss the statistical methods used
to evaluate the performance of the wave measurement methods. Section 3 presents the
results, followed by the discussion and conclusions.

2. Materials and Methods

2.1. Radar Data Quality and Availability

Seaview processing normally imposes a number of different quality controls, which
have been established as a result of many different deployments with different radars and
different operating frequencies [12]. In particular, a 15 dB second-order signal-to-noise
ratio was required before inverting for wave data. We note that [28] used a very low signal-
to-noise limit of 5 dB relative to their calculated noise level, which used [40] modified
to only use that part of the Doppler spectrum with frequencies | f | > 1.5 fb, where fb is
the Bragg frequency and the range is limited to the side of the smaller Bragg peak. This
modification was made to avoid spurious noise levels in high seas, but we determined
that [40] produces sensible noise levels in a range of different conditions without the need
for the modification. SV calculates the noise level using the 5th percentile level in the
spectrum, and in most cases that have been tested, this gives a slightly lower noise level
than [40] or its variation. However, for this comparison, we also imposed a SV 5 dB limit
at the inversion stage and removed all other quality requirements at the initial validation
stage apart from deleting buoy and radar wave measurements if the change in Hs over an
hour exceeds the CEFAS WAVENET despiking condition of 3 m [41]. Additional quality
requirements can be imposed at the validation stage, and the impact of these will be
discussed later. The SV noise levels at the buoy location for the PEN (radar 0) and PER
(radar 1) are shown in Figure 1. Note this only shows noise levels for cases that exceed the
5 dB level, but it can be seen that most of the time, they are in fact above 10 dB. There is a
period at the beginning with low signal-to-noise levels at PER. PER is also further from the
buoy (see the later maps to be referenced), so the signal-to-noise ratio is lower throughout.
A few Doppler spectra for this period were examined; there was little or no second-order
evident, and in some cases, significant interference was present. The Seaview results for the
case when we used data from both sites were poor in this period, as we will see. These poor
data can be removed by increasing the signal-to-noise requirement. Tables 1 and 2 show
data availability during both the April and the November periods. The data files refer to
those that contain inversions for currents and wind direction. If they also contain wave
data at the buoy location, they were included in the wave data count. It can be seen that
radar wave data availability was lower in April probably due to issues with the PER data.

The figures in Tables 1 and 2 are for data availability at the buoy position. The overall
data availability is presented in Figure 2, which shows more than 99% availability for
currents over most of the region and 80% for waves over the southern half of the region.
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Table 1. Data availability for April period for buoy, dual-, and single-radar inversions. Percentage

figures for the first two rows are with respect to the total possible during this period: 696 hourly,

buoy data measured every half hour. In the other two rows, the percentages are with respect to the

number of available data files.

Buoy Dual PEN PER

Radar spec 691/99% 692/99%
Data files 1392/100% 687/99% 687/99% 687/99%
Wave data 1353/97% 654/95% 678/99% 662/96%

CEFAS filter 1352/97% 653/95% 677/99% 644/94%

Figure 1. Second-order signal-to-noise ratio when greater than 5 dB at the buoy position. Red: radar

0 (PEN), blue: radar 1 (PER). The Seaview site code, whc, used here and elsewhere, refers to the radar

pair overlooking the Wave Hub site in the Celtic Sea.

Table 2. Data availability for November period for buoy, dual-, and single-radar inversions. In this

case, the maximum number of possible hourly radar measurements is 960.

Buoy Dual PEN PER

Radar spec 955/99% 958/99%
Data files 1920/100% 953/99% 953/99% 953/99%
Wave data 1899/99% 936/98% 949/99% 938/99%

CEFAS filter 1898/99% 929/98% 948/99% 922/97%

Figure 2. Availability of current (left) and wave (right) data. The buoy image marks its position.

Land is shown in green.
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2.2. Buoy Data

Data from a Seawatch Mini II directional wave buoy deployed at 5.61W, 50.31N within
the field of view of the radar were used in the comparison presented in this paper. The
location of the buoy is shown on the wave maps, which are shown later in this paper. The
data used in [28] were in the form of directional spectra, which were obtained from the
original data using a statistical model. The wave parameters were derived from these
data, and this may be the source of some uncertainty in their parameter estimates. The
spectral coefficients, S( f ), d( f ), a1( f ), b1( f ), a2( f ), b2( f ), or skewness( f ), and kurtosis( f ),
which should be more reliable, were not available, but, for the SV work reported here, they
and integrated parameters were calculated from the original heave, pitch, and roll data
using standard methods [42]. The directional spectra were determined from the Fourier
coefficients using a maximum likelihood method [43–45].

2.3. Statistical Methods

A number of papers have looked into the statistical measures that give the best
indication of comparability between wave measurement data sets. Many published papers
on HF radar wave measurement claim ‘good agreement’ between radar and buoy data
(often just significant wave height) without any baseline from which to judge what ‘good’
means. It is also the case that authors sometimes define their statistical measures differently
from others or use them without any definition. For example, Ref. [28,46] defined the
RMSE between model (or radar) data, Ri, and observations (buoy data), Oi, as:

RMSEM =

√

∑
N
i=1(Ri − Oi)2

N

and scatter index, SIM, as

SIM =

√

√

√

√

∑
N
i=1 |(Ri − R)− (Oi − O)|2

∑
N
i=1 O2

i

whereas [47] used

RMSEB =

√

∑
N
i=1 |(Ri − R)− (Oi − O)|2

N − 1

and

SIB =
RMSEB

O
.

In the results presented here, Seaview uses RMSEM and defines the scatter index as

SI =

√

1
N ∑

N
i=1 |(Ri − R)− (Oi − O)|2

O
=

√

N − 1

N
× SIB.

Regression lines are also used to assess accuracy, and AIA [28] included the slope as
one of their measures using a regression through the origin.

In order to compare different methods or results from different locations, full details
on the statistical methodology are needed.

The next question is which statistic is (or statistics are) needed to clearly identify
differences in performance. This issue is addressed in [46,47]. Mentaschi et al. [46] identified
problems with SI in the case of negative bias and suggested instead using the [48] index,
HH, defined as

HH =

√

∑
N
i=1(Ri − Oi)2

∑
N
i=1 RiOi

.
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Bryant et al. [47] proposed some performance scores to overcome the observation that
individual statistics are sometimes misleading. These are the Willmott performance index,
defined as

WPI = 1 −
∑

N
i=1 |Ri − Oi|

∑
N
i=1(|Ri − O|+ |Oi − O|)

and the one used by the Interactive Model Evaluation and Diagnostic System (IMEDS, [49]),
which is calculated as follows.

Xrms =

√

√

√

√

1

N

N

∑
i=1

O2
i

Erms =

√

√

√

√

1

N

N

∑
i=1

(Ri − Oi)2 = RMSEM

bias =
1

N

N

∑
i=1

(Ri − Oi)

prms = 1 −
Erms

Xrms
, pb = 1 −

|bias|

Xrms
, IMEDS =

prms + pb

2

Both WPI and IMEDS vary between 0 and 1, with 1 being a perfect score. These
indices are also presented later.

Another approach referred to in the literature [50–52] uses the mean and standard
deviation of the proportional difference.

pd =
Oi − Ri

(Oi + Ri)/2

An approach that has been used by Seaview is to calculate the statistics needed to plot
a Taylor diagram [53]. These are the rms centred difference and radar standard deviation,
both normalised, (N), by the observation standard deviation, defined as:

rmscN =

√

∑
N
i=1 |(Ri−R)−(Oi−O)|2

N
√

∑
N
i=1(Oi−O)2

N

SstdN =

√

∑
N
i=1 |(Ri−R)2

N
√

∑
N
i=1(Oi−O)2

N

and the centred correlation coefficient, i.e., the correlation coefficient between Ri − R and
Oi − O. This has proven to be a useful indicator of performance. These and the other
statistics were calculated using Python numpy.

All of the above can be used for non-directional statistics. For directional parameter
comparisons, we have recommended the use of vector correlation [54], referred to as
KVCORR, the phase difference, KPHASE (mean difference in angle), and the concentration,
CONC, [55], which measures the tightness of the difference distribution, larger numbers
implying better agreement. An alternative to [54] is [56], where the correlation coefficient,
HVCORR, was derived using a complex regression approach. In this method, the squared
magnitude of the correlation is the proportion of variance (of the buoy data in our case)
explained by the regression equation, so being a direct analogue of the correlation coefficient
for scalar variables. The phase difference, HPHASE, is also obtained from the complex
correlation. This method was used in the AlA evaluation.

The relative merits of all the above approaches will be discussed in Section 5.



Remote Sens. 2023, 15, 5536 8 of 27

3. Results

Comparisons of various wave parameters and spectral data between SV and the buoy
are presented here. Where available, the statistics are compared with those referred to in AlA.

3.1. Parameter Validations

In these comparisons, the frequency range used for both buoy and radar parame-
ters was 0.029–0.275 Hz, this being the maximum range for the dual-radar inversions.
Doppler returns corresponding to higher frequencies involve interactions between waves
of similar sizes, which are, therefore, outside the scope of this inversion method. AlA
used a maximum frequency of 0.35 Hz, but here, the higher frequencies use a modified
Barrick’s weighting function [6] and are, thus, more empirically based (and way beyond
the approximations made in Barrick’s analysis).

The comparison between SV and AlA for the April data is not perfect; the SV statistics
are based on the newly processed buoy data, whereas the AlA statistics use the original
buoy spectra.

3.1.1. Wave Height

SV normally provides significant wave height, Hs, obtained from the zeroth moment
of the frequency spectrum. AlA provided statistics for rms wave height Hrms. In order to
make a more-direct comparison, we used Hrms = Hs/1.4.

Figure 3 shows scatter plots of Hrms, Hs for the full data set and a time series of Hs for
the April period. Some of the statistics are included in the summary Table 3. Note that the
number of data included in the SV wave statistics for April is 635, which is 97.2% of the
available data. This compares with a figure of 626 quoted in [28], Table 5, the difference
being due to a few extra buoy measurement obtained by reprocessing that data set. A
time difference of 15 min was used to match radar and buoy data, and data gaps were not
always aligned. The Seaview statistics for the complete data set are given in Table 4. This
includes 1557 measurements or 98.4% of the available wave data.

Table 3. Comparative statistics for April dual-radar inversions for magnitude parameters, AlA values

in parentheses.

Parameter cc Slope SIM HH Bias WPI IMEDS

Hrms 0.92 (0.92) 0.98 (1.02) 0.20 (0.21) 0.20 (0.21) −0.03 (0.03) 0.83 0.89
fp 0.6 (0.63) 0.96 (0.85) 0.27 (0.24) 0.28 (0.27) 0 (−0.0) 0.66 0.86
f1 0.73 (0.55) 0.98 (0.55) 0.12 (0.15) 0.12 (0.24) 0 (−0.0) 0.68 0.94

Table 4. Statistics for all dual-radar inversions for magnitude parameters.

Parameter cc Slope SI SIM HH Bias WPI IMEDS

Hs 0.91 0.97 0.20 0.18 0.18 0 0.82 0.91
Tp 0.54 0.93 0.30 0.28 0.29 0.27 0.68 0.84
T1 0.80 0.98 0.11 0.11 0.11 0.08 0.73 0.94
Te 0.77 0.99 0.13 0.12 0.13 −0.02 0.74 0.94

Variations in swell parameters across the field of view of the radar were used to remove
spurious large-amplitude, but unrealistic swell features associated with noise or ship signals
close to the first-order Bragg peaks [33]. The median direction, median, and standard
deviation of the wavenumber of the largest partition at each cell were used. The swell Hs

shown is that of the largest swell component found after this filtering, which requires the
direction of a partition to be within 60◦ of the median direction and its wavenumber to
lie within twice the standard deviation from the median wavenumber. The wind wave
partition is identified as the one with the highest wavenumber with the direction within
60◦ of the radar-measured wind direction.



Remote Sens. 2023, 15, 5536 9 of 27

Figure 3. Upper plots: scatter plots and associated statistics for Hrms, Hs. Lower plot: April time

series of Hs and radar swell and wind–sea Hs.

3.1.2. Period/Frequency

Seaview normally provides the period parameters: peak, Tp, energy, Te, and first mo-
ment, T1, where the latter two are defined in terms of spectral moments mN =

∫

E( f ) f Nd f
as follows.

Te =
m−1

m0
, T1 =

m0

m1

AIA [28] presented the peak and mean frequency ( fp, f1), but did not define the mean.
For comparison, we assumed their mean is our 1/T1. The frequency plots for April are
shown in Figure 4. The scatter plots are for the full data set. The Te plots are limited to 15 s
for clarity, although a few measurements greater than this can be seen on the time series
plot. After time matching, there were only 2 buoy and 1 radar measurements greater than
15 s. These were included in the statistics. The inversion limit of 0.275 Hz reduced the
accuracy of the radar-measured T1 and f1. Te is a more reliable measure for the radar data
since it was dominated by the lower-frequency part of the spectrum.
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Figure 4. Scatter plots, associated statistics, and April time series for fp, f1. Lower plots show Te.

3.1.3. Directions

The direction statistics for the full data set and the time series for April are shown in
Figure 5 and Table 5, the latter showing both the SV and AlA statistics. The peak direction
plot also shows swell and wind–sea directions. The SV statistics for the complete data set
are given in Table 6.

Wind direction is also included. The SV estimates this based on [35]. This gives a wind
direction and directional spread factor. The latter, expressed as directional spreading in
degrees, is compared with the average buoy directional spread factor over three frequencies
about the Bragg frequency in Figure 6. The buoy data were noisier; the ranges were similar,
but the details were different. The relationship between this measure of spread, σ, to the s
used in [28] was σ2 = 1

1+s . The mean values in April found were 47.48 for the buoy and
46.98 for the radar corresponding to s values of 1.41 and 1.44 with ranges of 0.44–4.65 and
0.55–2.53, respectively. AlA assumed a constant value of 2.



Remote Sens. 2023, 15, 5536 11 of 27

Table 5. Comparative statistics for April dual-radar inversions for direction parameters, AlA values in ().

Parameter
Complex Correlation

HVCORR
Phase Angle HPHASE CONC

Peak Direction 0.64 (0.57) −5.77 (19) 3.44
Mean Direction 0.75 (0.72) −7.98 (15) 5.26
Wind Direction 0.8 (0.6) 0.25 (−4) 3.47

Table 6. Statistics for all dual-radar inversions for direction parameters.

Parameter KVCORR KPHASE HVCORR HPHASE CONC

Peak Direction 0.86 −4.48 0.66 −4.98 3.89
Mean Direction 0.9 −4.21 0.75 −5.46 5.24
Wind Direction 0.83 4.59 0.81 2.79 3.33

Figure 5. Scatter plots, associated statistics, and time series for mean, peak, and wind direction. The

direction of the wind wave component of the spectrum is shown on the wind direction time series

together with wind direction measured with an anemometer at the coast.
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Figure 6. Time series of spread parameter. (Top): April; (bottom): November.

3.2. Single-Radar Inversions

Dual-radar systems with the primary mission of current measurement may not have
much or any region of overlap suitable for dual-radar wave measurement. If accurate
measurements could be made from single-radar data, many of these systems could add
this to their portfolio of measurements. In addition, if one radar were to fail or become
subject to a strong local noise source, the ability to obtain single-radar wave measurements
would ensure better temporal continuity.

However a single-radar system does not have enough information to properly resolve
amplitude and direction ambiguities, as discussed in [27]. The SV method can be applied
to single-radar data, but the results demonstrate the expected limitations. One way to
overcome this limitation is to assume spatial homogeneity over a wider area than the
nominal spatial resolution of the radar and use data from different beams (in the case of a
phased array radar) and/or ranges (or equivalently, more than one cell on a measurement
grid) in the inversion process. This is the approach that is discussed in this paper. A
similar requirement for spatial homogeneity is needed to invert data from broad-beam
radars [9], in this case continuity around a fixed range in all directions. Another approach
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is to constrain the inversion using a wave model [57] or use data collected at the same cell,
at the same time, with different radio frequencies [58].

Previous work on single-radar metocean measurement [29] looked at the wind di-
rection measurement, which, even with a dual-radar, uses data from several cells. It was
shown that the left–right ambiguity that arises with this measurement, if made along a sin-
gle direction, could be resolved in some situations using neighbouring cells, but was not as
robust as the dual-measurement. Preliminary work on applying the full inversion method
to single-radar data was reported in [58]. It was concluded that the use of neighbouring
cells is not sufficient to fully constrain the inversion. Although that work claimed to have
used 25 neighbouring cells, it was later discovered that a bug in the software package
limited this to 1 cell, so there was no basis for the conclusion that had been made. The latest
version of the software corrects that bug. Using a cell and its immediate neighbours is not
sufficient because their Doppler spectra are correlated through the range-processing and
beam-forming operations. The results presented in this paper used, at each cell, it and the
eight cells at four-times the cell resolution. Tests at smaller separations using more cells
were carried out, but the results were not as good. Compared with dual-radar inversions,
using nine cells increased the time taken, which, if applied at every cell, is not currently
practical for operational use. The inversion was, therefore, limited to a subgrid of cells
using the four-times cell resolution. Parallelising the code is planned and will remove
this limitation.

For the single-radar inversions using the non-linear correction parameter M = 0.3 led
to the overestimation of the wave height for the Perranporth radar and underestimation
for Pendeen. These were likely to be manifestations of the theoretical directionality in the
missing non-linear term in Barrick’s equations. The dominant wave direction in the region
of measurement is from west or southwest and, thus, roughly at most locations towards
or away from the Perranporth radar (so mostly high non-linearity) and perpendicular
to the Pendeen radar look directions (low non-linearity). This suggests that M should
be increased for waves coming towards and away from the radar and decreased for the
perpendicular case. For Perranporth, we set M = 0.7, and at Pendeen, M = 0 based on
a few cases only. Accounting for directionality is likely to be particularly beneficial for
single-radar inversions, but requires the implementation of the full non-linear term.

The same statistics used for dual-radar measurement in Tables 4 and 6 are presented
for the single-radar measurements in Tables 7 and 8. The number of data files for the
dual- and for the two single-radars was 1640. Those containing waves at the buoy location
after applying the CEFAS condition were 1583 (96.5%), 1626 (99.1%), and 1567 (95.5%),
respectively. Since the PEN radar is nearer to the buoy site, the number of files was larger.
A higher proportion of PER wave measurements were removed by the CEFAS despiking.
The numbers included in the tables, i.e., those within 15 min of a buoy measurement, are
1557, 1600, and 1540, respectively.

Table 7. Statistics for single-radar inversions for magnitude parameters.

Site Parameter cc Slope SI SIM HH Bias WPI IMEDS

PEN Hs 0.87 0.88 0.26 0.23 0.27 0.25 0.73 0.82
Tp 0.46 0.81 0.31 0.30 0.36 1.4 0.63 0.77
T1 0.80 0.85 0.11 0.11 0.19 1.04 0.55 0.84
Te 0.79 0.88 0.12 0.12 0.17 0.88 0.64 0.87

PER Hs 0.73 1.22 0.39 0.35 0.4 −0.67 0.57 0.64
Tp 0.46 0.9 0.37 0.35 0.38 0.65 0.6 0.79
T1 0.65 0.84 0.14 0.14 0.22 1.1 0.5 0.82
Te 0.7 0.96 0.15 0.14 0.15 0.28 0.67 0.91
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Table 8. Statistics for single-radar inversions for direction parameters

Site Parameter KVCORR KPHASE HVCORR HPHASE CONC

PEN Peak direction 0.82 −10.28 0.67 −14.73 3.07
Mean direction 0.9 −9.9 0.82 −11.25 5.25
Wind direction 0.79 −0.04 0.77 −3.19 2.78

PER Peak direction 0.69 −0.11 0.34 20.79 1.93
Mean direction 0.78 −4.66 0.45 8.15 2.63
Wind direction 0.73 14.62 0.69 16.73 2.2

3.3. Spectra Comparisons

Figures 7 and 8 show the variation of the frequency and mean direction spectra with
time, showing good agreement between the dual-radar and buoy. Also shown are the
results of the two single-radar inversions. It can be seen that, while many of the main
features are identifiable in the single-radar data, the performance of the two cases was rather
different. This is consistent with the expected limitations of single-radar inversions [27]. At
the buoy location, the PEN radar is roughly aligned with waves propagating from/to 14◦N
and PER 84◦N. In both cases, it is difficult to accurately measure waves perpendicular to
these directions. So, looking at Figure 8, it can be seen that the events early in April and
in late November were picked up better by the PEN radar, whereas PER measured the
event in mid-April better. For most of the data, the peak direction was more aligned with
the PER radar, and as can be seen in Figure 7, the frequency spectra amplitudes were in
better agreement with the buoy. The single-radar frequency spectra extended to higher
frequencies than the dual-radar case, but the results at these higher frequencies were noisy
and not accurate in many cases. The PER frequency spectra seemed to be noisier than the
PEN or the dual ones.

Figure 7. Frequency spectra. (Left): Spring; (right): Autumn. Row 1: dual-radar; 2: buoy; 3: PEN

radar; 4: PER radar.
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To look in more detail at the differences between the single- and dual-radar inverted
spectra, Figure 9 shows the energy, direction, spread spectra, and directional wave spectra,
the latter plotted on a log scale, to compare a wide dynamic range. The data were from a
time during the Spring spectral peak seen in Figure 7. As was clear there, the single-radar
spectrum at Pendeen was lower in amplitude than the buoy spectrum, although the shape
and directionality were similar. The Perranporth spectrum showed a more-spread peak
and included an additional high-frequency component, also evident in Figure 7. The
underestimation in height for Pendeen was presumably due to the mean direction near
the peak of the spectra, which is roughly to the east. Figure 10 is a case when the spectral
peak was roughly to the south, and in this case, the Pendeen inversion was better than
that for Perranporth. The neighbours used were not fully able to compensate for this
directionality issue. The non-linear correction parameter was probably also playing a role
in these differences.

Figure 8. Mean direction spectra. (Left): Spring; (right): Autumn. Row 1: dual-radar; 2: buoy; 3: PEN

radar; 4: PER radar.
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Figure 9. 18th April 2012 @ 21:00. Energy, mean direction, and spread spectra (left), radar, buoy.

Directional spectra (right), radar top, buoy bottom; colour coding is log scaled. Row 1: dual-radar;

2: PEN left, PER right.

Figure 10. Cont.
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Figure 10. 4th April 2012 @ 12:00. Energy, mean direction, and spread spectra (left), radar, buoy.

Directional spectra (right), radar top, buoy bottom; colour coding is log scaled. Row 1: dual-radar;

2: PEN left, PER right.

4. Swell and Wind–Sea Partitions

The buoy data were not partitioned, but the peak direction and period can be used to
have some idea as to the validity of the radar directional wave spectra partition process.
Making the assumption that the wind wave component is always larger than lower ranked
swell components, the peak component was taken as the swell or wind–wave component
with the largest significant wave height. The period and direction of the centre of gravity
for each component and for the peak component are plotted in Figure 11 together with
the buoy values and radar measurements, which correspond to the peak frequency in
the directional spectrum. The peak partitions, identified with a black circle around the
colour-coded partition type, are mostly aligned with the buoy peaks with a few outliers,
which could indicate bimodality with similarly sized, but not equal peaks in the buoy and
radar data or occasional misidentification of the partition type. There were fewer peaks
identified using partitions (585 (92%) in April; 859 (94%) in November) compared with
the number of radar measurements of wave spectra at the buoy position (635 and 912,
respectively). Gaps in the coverage at the buoy position indicate times where, for swell,
partitioning failed to produce a spatially consistent swell component and/or, for wind, a
partition sufficiently aligned with the wind.

Maps showing swell and wind–sea components separately are presented in Figure 12.
Plotting these maps made it clear that the 5 dB second-order signal-to-noise criterion,
whilst not having a huge impact on accuracy at the buoy location, introduced noise in the
radar measurements at longer ranges. A 12 dB criterion was used for the mapping, as it
was found to get rid of most of the long-range noise. During the period of these maps
(and commonly at this location), swell is predominantly from the southwest, refracting
towards the coast in the shallower waters. Wind–sea is similar in wave height coming
from the north. Variations in spatial coverage with time are clear and are characteristic of
HF radar measurements, particularly of waves due to the sensitivity of the second-order
spectrum to noise and the interference of different kinds. Gaps in the coverage indicate
locations where waves were not measurable (radar data failed the quality criteria) or for
the same reasons referred to above.
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Figure 11. Time series of peak parameters as shown in the legend. (Top): April; (bottom): November.

Figure 12. Cont.
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Figure 12. Maps showing swell (left column) and wind–sea (black arrows) together with wind

direction (purple arrows) (right column).
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5. Discussion

This paper was originally motivated by the paper of Al-Attabi [28], which extended the
work of Barrick to provide a hybrid swell wind–sea method. That work is in the tradition
of simplified inversion methods, which avoid the complexity of inverting the integral
equations. One of our aims was to show that full integral inversion, as implemented in
the new version, 6.0_α13, of the Seaview Sensing software, continues to provide more-
accurate results, and the statistics in Tables 3 and 5 demonstrate that. In the process of
performing that comparison, it became clear that accurate specification of the statistics
used to evaluate performance is needed to ensure the comparison is consistent. Previous
work and a literature search revealed a number of different statistics used to evaluate
wave measurement and model performance, so the scope of this paper was extended to
see whether a particular statistic or set of statistics provided a more-reliable measure of
performance so that this can be recommended for future use. This is discussed below. We
also noted that noise levels are measured in different ways, and so, signal-to-noise criteria
are not always equivalent.

The comparisons between radar and buoy wave measurements presented in Section 3
used a 5 dB second-order signal-to-noise threshold for the radar data, as discussed in
Section 2.1. Additional quality criteria are normally applied by Seaview when displaying
data or assessing performance. These are listed in Table 9 together with their defaults.
The inversion residual measures the difference between the measured Doppler spectra
and the Doppler spectra obtained by integrating Barrick’s equations [6] using the wave
measurement obtained at each inversion iteration. This number decreases as the iteration
progresses until it is small enough that convergence is deemed to have been achieved.
Non-convergent behaviour indicates that the radar data quality is poor and the inversion
fails. The k0Hs criteria are derived from the ratio of the first-order Bragg frequency to the
peak frequency of a Pierson–Moskowitz spectrum corresponding to the radar-measured
significant wave height (PM fp = 1

0.729

√

( 0.0213
Hs

) [59]). If that ratio is less than one, corre-
sponding to k0Hs < 0.18, the radio frequency used is too low to measure wind waves. The
wave criterion uses a ratio threshold of 1.5, so there is a better chance that the first-order
Bragg peak is wind driven. The spectrum criterion is for a ratio of 2.0 and was found to
give more-accurate spectral parameters in earlier work [12].

Table 9. Radar metocean quality measures.

Quality Measure Description Seaview Setting

Signal-to-noise ratio, sn dB difference between 2nd-order peak and noise ≥15
Inversion residual, res Measure of the convergence of the integration <0.5

Wind, squalwind 1st-order peak wind sea, k0 Hs >0.08
Wave, squalwave k0 Hs >0.18

Spectrum, squalspec k0 Hs >0.32

The impact of increasing the second-order signal-to-noise, reducing the inversion
residual, and applying the k0Hs thresholds, separately and together, on the comparison
statistics for Hs and mean direction is shown in Figure 13. The results are not really
surprising. Tighter thresholds (roughly going down the lists in the figure) reduce the
amount of data available for comparison (N) and, in most cases, increase accuracy, i.e.,
reduce or increase the statistics as appropriate, although the variations in the numbers are
quite small. In the case of Hs, the correlation coefficient and the WPI statistic gave less-clear
evidence of increased accuracy. There is some evidence from pdmean and directional
phases that the biases actually increase, although the numbers are quite small. Similar
results were found for other parameters, as can be seen in Appendix A, although IMEDS
was less consistent in these cases. Figure 14 shows the Taylor diagram [60] for the different
quality measures. The best performance is obtained for cases where the radar variance is
the same as the buoy variance (normalised standard deviation 1), the normalised RMS
differences are as small as possible (RMSD on the plot), and the correlation coefficient is
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as high as possible. The black square indicates equality. The different quality thresholds’
cases are closely clustered, but the zoom on the right of the figure shows the improvement
of accuracy with increasing application of the thresholds. The advantage of the Taylor
diagram is that it combines information about the correlation, rms errors, and relative
variance and provides a clear performance indication. In this case, a 15 dB signal-to-noise
ratio, 0.5 residual, and k0Hs > 0.18 gave the best result. However, as noted in Figure 13,
this case significantly reduced the amount of available data without significantly increasing
the accuracy, so a lower signal-to-noise threshold, perhaps 10 or 12 dB, may be preferred by
users, in particular where long-range mapping is required, and a lower threshold than this
introduces noise at longer ranges (Section 4) and, so, is not recommended.

Figure 13. Impact of changing quality thresholds on Hs (top) and mean direction (bottom) compari-

son statistics.
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Figure 14. Hs Taylor Diagram using [60] with zoomed section on the right.

Taylor diagrams for the period parameters are shown in Figure 15. With the exception
of the peak period, which shows little variation, these show the same tendencies as Hs,
although slightly less clearly.

Figure 15. Period Taylor diagrams.

6. Conclusions

This paper is not the first one to present a validation of the SV wave inversion method
as was noted in the Introduction. Here, we extended the scope of such validations to
include swell and wind–sea partitions, single-radar inversions, and a comprehensive look
at the impact of different quality measures. The standard quality measures that have been
applied in earlier work were shown to still give the most-accurate results, but the analysis
presented suggests that they can be relaxed a little to increase coverage without seriously
impacting the accuracy.

The partitioning method to separate wind–sea from swell components in the direc-
tional spectrum was mostly successful with good qualitative agreement with the buoy
peak periods and directions. However, it is not always possible to identify swell and wind–
sea components satisfying the requirements outlined in Section 3.1.1, so there are fewer
swell/wind–sea partitions identified than available directional spectra. Some modifications
to the criteria will be investigated, but better radar data quality, or better signal processing
strategies to remove interference, sidelobe contamination, etc., are likely to be needed to
improve the partition processing.

The frequency and direction spectra shown in Figures 7 and 8 showed that single-
radar inversions do provide some useful information, but are not as accurate as dual-radar
inversions. The wave height correction parameter may be the source of some of the
differences. The development of a more-rigorous non-linear correction that includes the
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effect of directionality is needed. Increasing the speed of single-radar inversion, which uses
many neighbours and is, thus, slower than dual-radar inversion, is expected to be achieved
through parallelisation of the code.

A number of different statistical measures of accuracy were discussed. For amplitude
parameters, Taylor diagrams, combining the relative standard deviation, proportional rms
difference, and correlation coefficient, seem to give a more-reliable estimate of accuracy
relative to wave buoy measurements, and we encourage its use for wave measurement
validation, whatever the method used to obtain the wave measurements. The two direction
statistics for the correlation and angle difference behaved similarly, but the direct relation
between the correlation and explained variance in the Hanson [56] method is an advantage,
so is recommended. Concentration [55] is also a useful indicator of accuracy. A strong
recommendation is that authors provide or reference their formulae for the statistics used.

The motivation for many empirically based methods is to find simple solutions that
can be easily applied and are possibly more robust than full inversion methods, which
are seen to be too complicated. However, they do involve many assumptions in terms of
spectral shape and directional distributions, amongst others. No such assumptions are
made in the SV method, apart from the linearising model used for frequencies beyond the
inversion range, and, although numerically complex, once installed, it can be run through
a server with no manual intervention or as a simple command line. On an HP elitebook
laptop, the dual-radar inversion at each cell took about 11 ms, and the whole process took
about 40 s for a case with 2939 inverted cells. Near-real-time processing is achievable. In
comparison with the AlA method, similar numbers of inversions were made during April,
and the accuracy was higher.

This paper provided more evidence for more-widespread use of the wave measure-
ment capability of phased array radar systems. There are differences between buoy and
radar measurements, particularly evident in the directional spectra, e.g., Figures 9 and 10,
which can be attributed to a number of factors, e.g., limitations in the inversion method;
poorer-quality radar data; a difference between spatio-temporal (radar) and temporal
(buoy) measurements; and even errors in the buoy measurements. Real wave measurement
differences arising due to the obvious differences in the measurement methods between the
radar and buoy could be important, but since both estimate wave spectra, which assume
either spatio-temporal or temporal stationarity, we expect such differences to be small. The
main limitation in the inversion method referred to here is the approximation used for the
non-linear term. The implementation of the full non-linear expression is pending. HF radar
systems do require monitoring and are susceptible to deteriorations in performance due
to antenna or other hardware problems, which need to be quickly resolved to maintain
good-quality metocean measurements. The variability in spatial mapping coverage with
dual-radar systems (e.g., see Figure 12), due to variations in the signal-to-noise as a result
of hardware failure, external noise, interference, or environmental conditions, could be
compensated for in part using single-radar inversions, albeit accepting a further reduc-
tion in accuracy until that process can be made more robust by assuming more spatial
homogeneity (enabled by parallel processing) and by replacing the M approximation with
a more-robust formulation. Depending on the application, the availability of the spatial
mapping of wave parameters to complement widely used surface current mapping and the
easier maintenance of radar systems on land may outweigh the reduction in precision.
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Appendix A. Quality and Statistics

Figure A1. Cont.
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Figure A1. Impact of changing quality thresholds on T1, Tp, Te comparison statistics. See the

discussion for Figure 13.

Figure A2. Impact of changing quality thresholds on peak and wind direction comparison statistics.

See the discussion for Figure 13.
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