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A novel application of data-based time series methods is proposed in this study to help overcome barriers
to quantifying the impacts of Natural Flood Management measures from hydrological timeseries data which
hitherto have prevented accurate assessment of the effectiveness of interventions. To demonstrate the value
of this method, a transfer function noise model was fitted to stage data from a three year before-after-
control-impact style monitoring study of leaky dams in an upland catchment in North Yorkshire, England.
Using the data-based time series method, uncertainties associated with stage data were overcome. The models
were able to simulate the peaks of flood events on one stream to within +2 cm accuracy for 95% of
events recorded during the baseline monitoring period. These simulations are used in this study’s companion
paper to quantify leaky dam impacts on flood peak magnitude. The level of accuracy achieved in this study
provides proof of concept for application of the approach to data from other environments and natural flood
management interventions, which is crucial if natural flood management is to be used as a mainstream flood

risk management measure.

1. Introduction

Natural Flood Management (NFM) is an increasingly popular ap-
proach to flood risk management (Grabowski et al., 2019) which aims
to slow and store flood water in the landscape by restoring natural
hydrological and geomorphological processes (Forbes et al., 2015).
NFM measures provide multiple benefits alongside flood risk manage-
ment and include measures such as afforestation, soil management
practices, and leaky dams (Lane, 2017). Due to difficulties in obtaining
precise hydrological data both before and after NFM introduction,
a lack of robust, empirical evidence describing the effectiveness of
NFM measures at reducing downstream flood risk currently undermines
confidence in its efficacy and limits its adoption (Bark et al., 2021;
Waylen et al., 2018; Wingfield et al.,, 2019). Its implementation is,
nevertheless, encouraged across Europe (Commission of the European
Communities, 2009), forms part of flood risk management policy in the
UK (Environment Agency, 2010; Forbes et al., 2015), is incentivised in
agricultural policy (Defra et al.,, 2016), and is likely to form part of
future approaches to environmental land management in England and
Wales (Klaar et al., 2020). To increase confidence in the implementa-
tion of these approaches for flood risk management it is essential to
build a robust evidence base of the impacts of NFM measures (Cook
et al., 2016; Dadson et al., 2017; Ellis et al., 2021; Iacob et al., 2017;
Lane, 2017; Beven et al., 2022).
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Applying a Before After Control Impact (BACI) monitoring method-
ology to the collection of hydrological data has been identified as a way
to gather the evidence required to ‘mainstream’ NFM approaches (Ellis
et al.,, 2021). However, factors which contribute to uncertainty in
quantifying the impacts of NFM, such as difficulties in isolating impacts
of one type of NFM measure, capturing changes in effectiveness with
event magnitude, insufficiently long monitoring timescales, and com-
plexities of context and scale (Connelly et al., 2020) are not necessarily
overcome by using a BACI approach. There are two main challenges
with applying the BACI approach to the monitoring of NFM impacts on
flood peak magnitude. Firstly, the opportunistic nature of NFM projects
means there is a lack of lead time to collect long enough periods of
baseline data to account for the stochastic nature of floods (Connelly
et al.,, 2020; Ellis et al.,, 2021). For example, despite best efforts, a
paucity of high flow events observed during the monitoring period
hampered the empirical quantification of NFM impacts of two of the
three government funded pilot projects initiated in 2009 (Nisbet et al.,
2015; National Trust, 2015) and continues to affect the collection of
evidence from the £15 million worth of NFM projects funded by the UK
government in 2017 (Environment Agency, 2019). Furthermore, even
when sufficient flood events are recorded, the signal of an intervention
is often masked by the high levels of uncertainty typical of hydrological
data (Black et al., 2021; Gebrehiwot et al., 2019; Lane, 2017; Ellis
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et al., 2021). For example, although impacts on flood peak timing were
quantified, high levels of uncertainty in hydrological data prevented
the quantification of leaky dam impacts on flood peak magnitude in
a multi-scale experiment in Scotland, despite having a 9 year long,
comprehensive monitoring strategy (Black et al., 2021).

As a result of the difficulties associated with collecting hydrological
data there are few empirical studies which have successfully quantified
the impacts of leaky dams in upland watercourses on downstream
flood risk. Recent reviews of both the academic and ‘grey’ literature
identified few studies in which the impact of instream wood on the
flood hydrograph was successfully quantified (Addy and Wilkinson,
2019; Burgess-Gamble et al.,, 2017). In these studies the problems
presented by the stochastic nature of flood events were avoided by
generating artificial reservoir releases to emulate flood events (Keys
et al., 2018; Wenzel et al., 2014). The feasibility of such an approach
is, necessarily, limited to locations in which artificial flood releases can
be generated.

The majority of attempts to overcome the difficulties associated
with empirically quantifying leaky dam impacts have, therefore, been
made wusing numerical fluvial hydraulic and hydrological
models (Burgess-Gamble et al., 2017). These types of models rely
on a priori assumptions about the physical processes governing the
impacts of leaky dams. These processes are poorly understood (Dixon
et al., 2016; Lane, 2017) and the lack of quantitative validation data
means the representation of leaky dams in numerical hydraulic and
hydrological models remains heuristic (Addy and Wilkinson, 2019).

An alternative is to use empirical BACI data supported by an in-
ductive, ‘top-down’ data-based time series modelling approach, which
minimises the need for a priori assumptions. This approach, described
by Beven (2001) as ‘doing hydrology backwards’ uses statistical time
series modelling methods to infer model structure and parameter values
from empirical data (Young, 2003). Once the model structure and
parameters have been determined from the data the model represents
the dynamical properties of the system and can therefore be used to
make predictions of the values of the output series and its uncertainty
for unobserved periods (von Asmuth et al., 2002). This approach has
been used to quantify the thermal response of streams to changes in
both riparian vegetation (Gomi et al.,, 2006) and anthropogenic flow
regulation (Dickson et al., 2012), as well as to assess the effects of forest
treatments on streamflow (Watson et al., 2001).

Hydrological data typically possesses features such as seasonality,
non-stationarity, and autocorrelation (Beven and Westerberg, 2011).
Such features can be handled by the data-based time series approach
by choosing an appropriate model based on the statistical properties of
the data (Hipel and McLeod, 1994). Particularly, this type of modelling
requires the underlying processes which generate the time series to be
stationary, or in a state of ‘statistical equilibrium’ over time (Hipel and
McLeod, 1994). If the statistical properties of the time series changed
over time the inferences, forecasts or simulations generated using the
fitted model would not be valid unless the underlying non-stationarity
of the data was taken into account. To address this there is an array
of time series modelling approaches and techniques which account for
underlying non-stationarity. Artificial neural networks (Dorofki et al.,
2012; Piotrowski and Napiorkowski, 2013; Thirumalaiah and Deo,
1998), support vector machines (Han et al., 2007; Lin et al., 2006),
classification and regression trees (Noymanee and Theeramunkong,
2019; Yin et al., 2018) and transfer function models (Beven et al., 2008;
Leedal et al., 2010; Romanowicz et al., 2008; Young, 2003) have all
been applied to the modelling of hydrological data.

The transfer function noise (TFN) family of models are predom-
inantly used when a time series can be modelled by linearly trans-
forming one or more predictor time series and the resulting residuals
of that transformation are autocorrelated. TFN models are therefore
particularly well suited to modelling hydrological data (von Asmuth
et al.,, 2002). Watson et al. (2001) demonstrated how the approach
could be applied to paired catchment studies to address problems

typical of hydrological data which invalidate the assumptions of tra-
ditional statistical methods. TFN models are more widely applied in
the fields of systems engineering, econometrics and the social sci-
ences (Okiy et al., 2015) but have been used to model hydrological
data for several decades (e.g. Dooge, 1959; Jakeman et al., 1990;
Young, 1986). In hydrology, TFN models are most commonly used to
model rainfall-runoff relationships (e.g. Katimon et al., 2013; Ratto
et al.,, 2007; Young, 2003), but they have also been used to fill gaps
in hydrological records (Tencaliec et al., 2015), real-time level to level
forecasting (Leedal et al., 2010; Young, 2002), modelling groundwa-
ter fluctuations (von Asmuth et al.,, 2002) and to detect impacts on
hydrological processes (Dickson et al.,, 2012; Katimon et al., 2013;
O’Driscoll et al., 2016). Transfer functions have been shown to produce
simulations of peak event magnitude to a high level of accuracy: based
on upstream stage series a transfer function model was able to simulate
downstream stage on the River Severn to within 0.006 m to 0.139 m
(0.1%-3.7%) for varying lead times (between 2 and 14 h) at the peak
of an event (Romanowicz et al., 2008). They have been shown to
produce accurate simulations of stage (R2 = 0.94) even when fitted and
validated using only a short period (20 days) of data (Young, 2003).

Transfer function noise modelling and other top-down, data-based
time series modelling techniques, therefore, present an opportunity
to extract information from typically short periods of baseline data
collected before NFM interventions are installed. Successful application
of the approach would allow for comparison between pre and post-
intervention response of a stream even if directly comparable flood
hydrographs were not captured in both monitoring periods. Given the
difficulties in monitoring and processing hydrological data typically
collected in NFM projects (Arnott et al., 2018), such a method would
be a valuable tool to assess the efficacy of NFM interventions. This
research evaluates the role which data-based time series modelling
techniques could play in quantifying NFM impacts through application
of the approach to data collected during a BACI monitoring campaign in
three steep, upland streams. We assess whether linear TFN models are
able to simulate the pre-intervention level to level response of upland
streams during flood events to a sufficiently high degree of accuracy
to inform the baseline conditions prior to the installation of in-stream
NFM interventions. The models developed in this study were used in the
companion paper, (van Leeuwen et al., 2023), to show that leaky dams
in an upland stream significantly reduced the flood peak magnitude of
events with a return period of up to 1 year, by 10% on average. The
data based time series modelling approach allowed the effectiveness
of leaky dams to be quantified for 50 events with a return period up
to 6 years, giving novel insights about the variability of their impacts,
particularly during single and multi peaked events. Together with the
companion paper (van Leeuwen et al., 2023), this study demonstrates
the potential that data-based time series modelling has for building the
quantitative evidence base needed for NFM measures, such as leaky
dams, to become more mainstream.

2. Methodology
2.1. Site description

The study streams were located in the headwaters of the River Cover
(54.20045°N, —1.98617°E) on the Eastern flank of the Yorkshire Dales
National Park, North Yorkshire, England (Fig. 1). The climate is cool
and wet, with an average annual rainfall of 1270 mm (Environment
Agency rain gauging station 57 426 data 1988-2018). The headwaters
are formed of many small, parallel streams which flow into the River
Cover at an altitude of ~ 400 m AOD. The study focuses on three
of these streams, with a combined catchment area of 4.7 km?. The
watercourses are of type A in the Rosgen classification; steep, partially
entrenched and cascading with step-pool streams (Rosgen, 1994). Land
use in the catchment is pastoral agriculture on open, unimproved grass-
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Fig. 1. Location of the headwalters of the River Cover, Coverdale, North Yorkshire, UK, and the nearest Environment Agency operated rainfall gauge. The inset shows the location
of the studied streams within the Coverdale calchment and the positions of the water level gauges are indicated using black points.

Table 1
Stream characteristics.
Stream Gradient Catchment Monitored Mean
(m/m) area (km?) length (m) width (m)
1 0.13 1.1 280 2.6
2 (control) 0.11 1.9 260 3.0
3 0.09 1.7 250 2.7

land whilst the moorland is managed for grouse shooting. The streams
are representative of the type of sites in which the installation of leaky
dams has been proposed and completed in North Yorkshire (Yorkshire
Dales National Park Authority et al., 2017).

The hydrological characteristics of the streams are summarised
in Table 1. Stream catchment areas were calculated using a 30 m
resolution digital elevation model (NASA Shuttle Radar Topography
Mission (SRTM), 2013) in the global information system ArcMap, ver-
sion 10.6. The catchment areas were adjusted based on 5 m elevation
contours from the OS Terrain 5 dataset (Ordnance Survey (GB), 2016).
The monitored stream lengths were chosen to avoid including lateral
inflows within the monitored reaches.

2.2. Monitoring network

Water stage data, defined as water level above the gauge datum,
were collected following a Before After Control Impact (BACI) method-
ology as described by Smith (2002). Fig. 1 shows the control stream
(Stream 2) and two impact streams (Stream 1 and 3) in which leaky
dams were installed at the end of the baseline monitoring period.
Baseline data were collected between March 2017 and September 2018
for a total period of 13 to 18 months before leaky dams were placed in
the impact streams between September and October 2018. The length
of the baseline monitoring period varied between the streams because
of the timing at which the monitoring equipment and the leaky dams
could be installed on the streams. The design and locations of the
leaky dams are described in detail in van Leeuwen et al. (2023). Post-
intervention stage data were collected for a further 16 months between
October 2018 and February 2020.

Stage was monitored at one-minute intervals using In-Situ Inc.
(Redditch, UK) Rugged TROLL 100 non-vented pressure transducers

(+0.05% full scale accuracy) in stilling wells at the upstream and down-
stream extent of the study reaches on each stream (Fig. 1). The pressure
readings from the transducers were corrected for atmospheric pressure
using an In-Situ Inc. (Redditch, UK) Rugged BaroTROLL atmospheric
pressure gauge (+0.05% full scale accuracy) which was installed near
the bottom of stream 1, at a similar elevation to the water level pressure
transducers. The control stream was monitored throughout the baseline
and post-intervention monitoring periods without any interventions.

2.3. Data analysis

Stage data were quality assured, smoothed and aggregated from 1-
minute to 15-minute time-steps using R version 4.0.2 (R Core Team,
2020). To meet the condition of stationarity, stage data were trans-
formed by taking the first order difference after Box and Jenkins
(1976). The KPSS stationarity test (Kwiatkowski et al.,, 1992) and
ADF unit root test (Fuller, 1996) were performed on the differenced
upstream and downstream stage series, U* and D*, to verify that the
data were stationary as a result of the data transformation.

The analysis approach was guided by the characteristics of the
data and was similar to that taken by Dickson et al. (2012), Watson
et al. (2001) and Gomi et al. (2006) in analyses of water temperature
response to catchment modifications. Based on exploratory regression
and autocorrelation analysis of the differenced stage series, the deci-
sion was made to represent the relationship between upstream and
downstream stage by a linear transfer function noise (TFN) model.

Linear transfer functions mathematically describe the dynamic lin-
ear relationship between a given input and output. The transfer func-
tion, or dynamic component of the model, is similar to a multiple
linear regression, but one in which the predictive variables can include
one or more lagged versions of a variable. Autocorrelation in the
residual series, which would not meet the assumptions of independence
required in linear regression, is taken into account by fitting a time
series model to the residual series in the noise component of the model.
Hence, the transfer function model consisted of a dynamic component
and a noise component:

output = dynamic componeni + noise (1)

The dynamic component of the TFN model was a linear function in
which the forecast variable, D*, the first order difference of downstream
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stage, was regressed against the predictive variable, U*, the first order
difference of the upstream stage, and k number of lagged values of
U*; thereby representing how the input, (U*,), dynamically affects the
output, (D*):

D} =U+0,U} | +0,U" , + -+ 0,U", @
where v; to v, are the impulse response weights, which were inferred
from the data.

The residual series was represented using an autoregressive moving
average (ARMA) model, which is common practice for hydrological
data (Bell et al., 2001; Katimon et al., 2013; Yuan et al., 2009; Hipel and
McLeod, 1994). Based on examination of the autocorrelation function
and partial autocorrelation function of the residual series, the noise
term was represented using both autoregressive and moving average
terms. For the stationary noise series, N,, the ARMA model was of the
form:

P q
Ny= Y &N+ ) 00 +a (3)
i=1 i=1
where a, ~ N(0,6%) and where ¢, = (¢, ¢,....¢,) and 0, =
(#,.6,.....6,) are the vectors of model coefficients of order p and
g, which denote the number of autoregressive and moving average
parameters respectively, 9’ is the autoregressive or moving average
term between one and p or q respectively, and q, is the residual series.
To obtain estimates for the model parameters, a, was required to
be independent and normally distributed with zero mean and fixed
variance N(0,o2).

The two parts of the transfer function noise model were fitted si-
multaneously. The dynamic linear regression component of the model,
given by Eq. (2), and the ARMA noise model, given by Eq. (3), were
fitted by maximum likelihood estimation (MLE) using the package
forecast (v.8.12) (Hyndman and Khandakar, 2008) in R (v.4.0.2).

To fit a parsimonious model, the Minimum Akaike Information
Criterion Estimation (MAICE) procedure introduced by Akaike (1973)
was followed. The MAICE procedure is an adaptation of Box and
Jenkin’s model fitting procedure (Box and Jenkins, 1976) which uses
the Akaike Information Criterion (AIC) as an indicator of predictive
ability, which penalises for increasing the number of terms used, to
discriminate between models. The number of dynamic regressors, k,
was determined using a forward stepwise approach after Hyndman
and Athanasopoulos (2018), and the number of AR and MA terms was
determined by carrying out a search over the ARMA model order space
to identify the optimum combination of terms by minimising the AIC
score. The residuals of the model were checked for autocorrelation,
heteroscedasticity, and non-normal distribution.

2.4. Assessing model performance

The accuracy of the model predictions was assessed using a blocked
cross-validation approach. Based on the recommendations of Bergmeir
and Benitez (2012) & Roberts et al. (2017) multiple out of sample time
series were simulated by removing one ten-hour block of data from the
series at a time and testing the model trained on the remaining data on
the excluded block. The ten hour blocks of data had a 15 min time step
and were centred on the peak of high flow events.

The Hydrological Model Assessment and Development (HydroMAD)
v.0.9-26 R package (Andrews and Guillaume, 2018) was used to iden-
tify discrete storm events. A stage peak was considered a discrete high
flow event if it was part of a defined flow event with duration =60 min
and the upstream peak stage exceeded the mean stage recorded on the
stream. Events were classed as independent if they were separated by
at least 15 min of stage below or within 10% of baseflow stage.

The measures to describe the ability of the model to predict the
event peak magnitude were absolute peak error (PE) and peak error
percentage (PEP) given by Egs. (4) and (5), where f)pmk is the model
simulated peak magnitude, and D, is the observed peak magnitude,

in metres. The measures used to assess goodness of fit throughout
the event, rather than just at the peak, were root mean square error
(RMSE) and Nash-Sutcliffe Efficiency (NSE). Although the use of NSE
assumes that the errors are independent, it was used here because
of its wide application to assess the goodness of fit of hydrological
models (McCuen et al., 2006).

PE = Dy — Dyt )
(Dpeak = Dpear)
PEP = Pt ek (5)
Dpf:uk

2.5. Model uncertainty

Theoretical prediction intervals are usually calculated based on the
standard error of the innovation series and the residuals of the fitted
model (Chatfield, 2001; Lee and Scholtes, 2014). However, although
they are commonly used, it is widely accepted that theoretical predic-
tion intervals are almost always too narrow in practice because they
account only for the uncertainty due to random error (Hyndman et al.,
2002; Makridakis and Winkler, 1989) and may not provide adequate
cover if the assumptions of normal, independent and identically dis-
tributed residuals are not strictly met (Hyndman and Athanasopoulos,
2018). Therefore, a common alternative approach was used to calculate
prediction intervals based on the empirical out of sample forecasts
which account for random, parameter and model specification errors
whilst only assuming that the error distribution of future simulations is
similar to the error distribution of the out of sample simulations (Lee
and Scholtes, 2014; Williams and Goodman, 1971). Empirical pre-
diction intervals have been successfully applied in a wide range of
fields (Isengildina-Massa et al., 2011; Lee and Scholtes, 2014; Rayer
et al.,, 2009). After Williams and Goodman (1971), who introduced
the approach, the prediction interval at each forecasting timestep was
estimated using specified quantiles of the empirical error distribution
at that timestep. As the error for multiple step ahead simulations was
additive (Hyndman and Athanasopoulos, 2018) the simulation window
was centred on the peak of the event so that the event peak estimation
error was always calculated for the same timestep, (%), where N was
the number of simulation timesteps. The 95% prediction interval, and
the 80% prediction interval were calculated in this way. Although the
95% prediction interval is more stringent, the 80% prediction interval
was included because it is recommended for error distributions with
outliers, or ‘tail problems’ (Chatfield, 2001).

To assess the model’s overall performance at predicting event peak
magnitude for the range of events tested, the observed peak magnitudes
were linearly regressed against the simulated peak magnitudes and
the confidence interval of the relationship was calculated based on
the standard errors of the linear relationship. The confidence interval
describes the uncertainty associated with the regression coefficients,
which are parameters of the population (Hahn and Meeker, 1991). It
was therefore expected to be narrower than the prediction intervals,
which quantify the uncertainty associated with the prediction of an
individual data point. The NSEP (Eq. (6)), which has been widely used
to assess goodness of fit of hydrological models (McCuen et al., 2006),
was used to test the closeness of the relationship to the one-to-one line.
In Eq. (6), n is the total number of events and D « is the mean of the
observed values of peak magnitude.

SN Dok = Dpeat)”
YD peus — Do)

pea

NSE,=1- (6)

3. Results

The upstream and downstream baseline stage series collected on
the two impact streams and the control stream are shown in Fig. 2.
The downstream stage was highly cross-correlated to upstream stage
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Fig. 2. Upstream (U) and Downstream (D) stage series collected in the three study streams.

at lag zero (i.e. instantaneously) (CCF 0.97-0.99) on all three streams
reflecting the steep nature of the catchment. Seasonality was present
in all three streams with periods of lower baseflows in the summer
months, particularly in the summer of 2018, which was exceptionally
dry across the UK (Met Office, 2018). Apart from the summer of
2018, high flow events were recorded regularly throughout the baseline
monitoring period (Fig. 2). The highest stage peaks were recorded
during Storm Aileen (13 September 2017), ex-hurricane Ophelia (14
October 2017) and Storm Bronagh (20 September 2018).

High levels of uncertainty were identified in the stage data during
a thorough quality assurance process. Small, gradual changes in the
relationship between upstream and downstream stage of magnitude up
to + 0.05 m occurred frequently. These changes were constant over
the range of stage, for example, when there was a shift of 0.05 m
at baseflow there was also a shift of 0.05 m at the peak. They were,
therefore, assumed to be ‘datum errors’ brought about by a change in
the reference datum or flow conditions at the gauging station. Based on
field observations the most likely source of datum error was frequent
blockage of the gauging stations with material on the outside, and
sediment on the inside of the stilling well. By modelling the first order
difference of the stage data, rather than the absolute stage, the models
were made independent of these datum errors.

3.1. TFN model equations

The data for stream 1, stream 2 (control) and stream 3 were mod-
elled with six, five and four dynamic regression terms, respectively.
By testing all possible combinations of AR and MA terms for each
noise series the model with minimum AIC score was found to be the
ARMA (5, 3) model for stream 1, the ARMA (4, 2) model for stream
2 (control) and the ARMA (2, 3) model for stream 3, where ARMA (p,

q) refers to the number of autoregressive terms, p, and moving average
terms, g, of the ARMA model. The model for stream 1 included lag 0
to 3, lag 11 and lag 20, where each lag term refers to the number of
15 min timesteps by which the series was lagged. The model for stream
2 (control) included lag O to 4 and lag 11. The model for stream 3
included lag 0, 1, 3, and 4.

The terms and parameters of the TFN models describing baseflow
conditions in stream 1, stream 2 (control) and stream 3 are provided
in Table 2 along with their standard error. The close fit of the data
to the one-to-one line on the plots of fitted against observed values in
Fig. 3 show the good in-sample fit of the model to the data (RMSE
0.00097 m).

3.2. Simulations of downstream baseline stage during high flow events

Between 32 and 54 high flow events were identified in the data
on each of the streams. Different numbers of high flow events were
identified on the streams because of periods of missing data, and due
to the interventions being installed a month earlier on stream 3 than
stream 1. Each event was removed in turn and the model coefficients
were re-estimated on the remaining data. The downstream stage of the
‘hold out’ event was then simulated by providing the model with the
upstream stage series of the ‘hold out’ event. The simulated downstream
stage was compared to the downstream stage observed during the event
to assess the accuracy of the simulation. Overall, the model simulations
fit the observed stage well (NSE 0.976-0.996, Fig. 4). For example, for
an event in Autumn 2017 the models predicted peak stage to within
0.4 cm on the two impact streams, and under predicted peak stage by
1.0 cm on the control stream (Fig. 4) . These are fairly typical errors,
with the majority of events predicted to within 0.4 cm on stream 1, and
within 1 cm on streams 2 and 3 (Table 3).
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Fig. 3. Points of fitted downstream stage plotted against observed downstream stage with the one-to-one line for reference.

Table 2
Parsimonious TFN model parameter coefficients; coeff. = coefficient, s.e. = standard error in metres.
Paramelter Stream 1 Stream 2 (control) Stream 3
coefl. s.e coefl. s.e. coeff. s.e.
Transfer u* 0.687 0.005 0.430 0.003 0.583 0.003
Function U*a 0.332 0.005 0.198 0.003 0.039 0.004
Parameters U*a 0.165 0.005 0.114 0.003 - -
U* 5 0.102 0.005 0.083 0.003 0.040 0.004
U* - - 0.042 0.003 0.040 0.004
U* -0.014 0.004 - - - -
Ut —0.010 0.003 - - - -
AR terms N 0.893 0.083 1.035 0.039 1.147 0.040
Nyia 0.179 0.097 —0.196 0.050 —0.441 0.037
N5 —0.437 0.061 0.173 0.020 - -
N, 0.288 0.032 —0.062 0.008 - -
N5 -0.162 0.014 - - - -
MA terms A —0.554 0.083 —0.739 0.039 —0.865 0.039
Ay —0.654 0.074 —0.253 0.039 0.021 0.030
Ay 0.453 0.051 - - 0.229 0.011
Table 3
Distribution of Peak error (PE) and Percentage error in peak (PEP) on the three streams.
Stream 1 Stream 2 Stream 3
PE (m) PEP (%) PE (m) PEP (%) PE (m) PEP (%)
Median —0.001 -0.2 —0.002 -0.9 0.0003 0.1
Upper Quartile 0.003 0.9 0.002 0.5 0.011 39
Lower Quartile —0.004 -1.3 —0.010 -3.0 —0.007 -23
IQR 0.006 2.2 0.011 35 0.018 6.2
Maximum 0.012 35 0.038 9.2 0.037 10.0
Minimum —0.025 —4.4 —0.059 -11.4 —0.020 —8.5

The error in simulating event peak magnitude was < 0.03 m for
all but four of the simulated events across all three streams (Fig. 5).
On stream 1 the PE was smallest and was distributed evenly above
and below zero, indicating that the simulations were not biased. On
stream 2 (control) and stream 3 the range in PE and PEP was larger,
and although the median value of PE was close to zero, the majority of
event magnitudes were under predicted on stream 2 (control), and over
predicted on stream 3. Whilst the PEP was < 5% for all simulations on
stream 1, it was up to 11% on stream 2 (control) and 10% on stream 3
( Table 3). The interquartile range (IQR) of PEP was within 6%, for all
three streams, with the IQR on stream 1 being as low as 2% ( Table 3).

The observed event peak magnitude and the simulated event peak
magnitude were strongly correlated for stream 1 (NSE 0.994, Fig. 6)
with a residual standard error of 0.008 m. The simulated peak mag-
nitudes were both over and under predicted and were not affected by
the event peak magnitude (Fig. 6). On stream 2 (control), however,
PE was relatively small (RMSE 0.006 m) for events < 0.35 m but
increased to a RMSE of 0.027 m and 0.036 m for events with peak

magnitude > 0.35 m and > 0.40 m, respectively. For the largest events
the peak magnitude was under predicted more frequently than it was
over predicted, resulting in a linear relationship which lay below the
one-to-one line (NSE 0.97). There was a relationship between PE and
event magnitude on stream 3; events with peak magnitude < 0.25 m
were under predicted whilst events with peak magnitude > 0.25 m
were over predicted. Although the NSE was relatively high (0.98)
the coefficients of the linear regression reflect the bias in the model

simulations.

The empirical 80% and 95% prediction intervals at the peak of
the simulated events varied between streams ( Table 4). The empirical
prediction intervals indicated that the models were able to predict peak
magnitude to within +£0.02 m at the 80% prediction interval on the
control stream and stream 3, and at the 95% prediction interval on
stream 1 ( Table 4).
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Fig. 4. Observed (solid line) and simulated (dashed line) downstream stage during an
high flow event with 80% (dark blue shading) and 95% (light blue shading) empirical
prediction intervals. (For interpretation of the references to colour in this figure legend,
the reader is referred o the web version of this article.)

Table 4
Empirical prediction interval width at event peak; PI = prediction interval.
Lower Upper Lower Upper
95% PI 95% PI 80% PI 80% PI
Stream 1 —0.017 0.012 -0.011 0.008
Stream 2 (control) —0.051 0.027 -0.018 0.007
Stream 3 —0.016 0.032 —0.009 0.017

4. Discussion

Increasing the quantitative evidence base of NFM impacts on the
flood hydrograph is crucial for measures such as leaky dams if they
are to become more mainstream in flood risk and environmental land
management (Ellis et al., 2021). Efforts to address the lack of quan-
titative evidence of leaky dam impacts on flood peak magnitude have
been hampered by a lack of baseline data (Burgess-Gamble et al., 2017;
Ellis et al., 2021), lack of comparable events monitored before and after
the installation of leaky dams (National Trust, 2015), and high levels
of uncertainty in stage and/or discharge series (Lane, 2017; Connelly

et al., 2020). To grow the quantitative evidence base of NFM impacts
new approaches which are able to overcome these barriers are needed.
This study, together with van Leeuwen et al. (2023) signifies the value
of the data-based time series modelling approach for quantifying leaky
dam impacts on flood peak magnitude. This study demonstrates that
data-based time series modelling can be used to overcome the barriers
presented by poor quality, relatively short baseline data series.

4.1. Data quality

The finding that the collected stage data was highly uncertain is
not unique to this study; it has long been acknowledged that hy-
drological data is ‘messy’ (Beven and Westerberg, 2011). Although
uncertainty in the stage series can be one of the most significant sources
of error (Di Baldassarre and Montanari, 2009), stage datum errors
are often assumed to be negligible (Horner et al., 2018). Identifying
such errors necessitates a thorough quality assurance process which
requires sufficient resource allocation to post-processing of the data.
Frequent inspection, maintenance and calibration of gauging stations,
and the use of artificial gauging structures such as flumes or weirs,
could mitigate these problems but has further implications for resource
allocation to the monitoring of NFM schemes. This study has shown
that, for BACI data with levels of uncertainty which mask the signal
of NFM interventions, valuable information can be extracted by using
a data-based time series modelling approach. The study emphasises
that proper specialist resource is not only required to monitor NFM
measures (Arnott et al., 2018), but also to post-process and analyse the
data.

4.2. Model accuracy

The level of accuracy achieved by TFN models depends on many
factors including the quality of the input data, choice of model timestep
and model structure (Sene and Tilford, 2004), which makes comparison
between studies difficult. The accuracy of the models was therefore as-
sessed in terms of the intended purpose: detecting leaky dam impacts in
the observed post-intervention stage by providing accurate simulations
of baseline, pre-intervention stage for comparison. Identifying the level
of accuracy required for this presents difficulties as the impacts of leaky
dams in upland watercourses are not yet known (Burgess-Gamble et al.,
2017). However, it is known that wood placed in upland streams for
the purpose of river restoration reduced event peak magnitude by 8%
and 2.2% in steep watercourses (Keys et al., 2018; Wenzel et al., 2014)
and in lowland rivers peak magnitude reductions of 21% have been
observed for combined planform and large wood restoration (Kitts,
2010). The results of these previous studies imply that for the majority
of events on stream 1, the simulations are likely to be sufficiently
accurate (+ 1%) to detect leaky dam impacts on individual events.
Furthermore, by combining the simulations of all events and calculating
the confidence interval (0.02 m on average at the 95% confidence level)
of the relationship between observed and simulated stage it becomes
clear that there is a very high level of confidence in the ability of
the models to replicate downstream event peak magnitude on average,
particularly on stream 1.

4.3. Implications

Whilst there are many examples of high levels of predictive ability
achieved using transfer functions in hydrology, the majority of applica-
tions are in rainfall runoff modelling (see for example, Katimon et al.
(2013), Ratto et al. (2007) & Young (2003)). This study shows that it is
possible to achieve sufficiently high levels of accuracy in predictions of
the level-to-level response of small upland watercourses to detect leaky
dam impacts. Unlike previous application of the approach to detect
changes in long-term stream flow patterns (Watson et al., 2001), this
was achieved for high temporal resolution data and can therefore be
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used to detect impacts of small scale treatments, like leaky dams, on
individual high flow events.

Assuming the basic properties of the (differenced) baseline stage
data are constant over time and given adequate control data, any dif-
ferences in the simulated baseline response and observed intervention
response for an event can be attributed to the NFM interventions. No-
tably, baseline and post-intervention monitoring datasets are therefore
not required to contain events which are so similar that their responses
can be compared directly. This is a critical advancement because the
stochastic nature of flood events has precluded the assessment of

NFM impacts in several studies (Kitts, 2010; National Trust, 2015), or
provided evidence of only one or two comparable events (Nisbet et al.,
2015; Thomas and Nisbet, 2007; Wilkinson et al., 2010). By simulating
downstream baseline stage, the impact of interventions can be assessed
for every event in the post-intervention monitoring period, providing
replicates and allowing impacts to be assessed at a range of event
magnitudes. By using this approach the impacts of NFM measures may,
therefore, be more conclusively evaluated from both new and existing
datasets.
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The quantitative evidence base of leaky dam effectiveness, which
may be built by applying this approach, is needed to assess whether
leaky dams are a viable flood risk management technique in upland
catchments, during what types of flood events they are effective, and
to inform the design of natural flood management schemes. Hydraulic
and hydrological models are the tools which are commonly used to
make such assessments, but confidence in their outputs is currently
held back by a lack of empirical validation data (Addy and Wilkin-
son, 2019). This study demonstrates that the data-based time series
modelling approach has the potential to provide the empirical evidence
needed to validate the representation of leaky dams in such models. By
providing the data to validate local effects, confidence in the assessment
of catchment scale impacts is also increased, although problems of
scaling need to be addressed (Hankin et al., 2021; Lavers et al., 2022).
Alternatively, to avoid problems of scaling, a multi-local scale approach
has been suggested which focuses on multiple smaller catchments with
downstream communities at risk to quantify impacts within a larger
catchment (Hankin et al., 2021). The data-based time series modelling
approach can be readily applied to such catchments, as is demonstrated
in van Leeuwen et al. (2023).

4.4. Limitations and further work

In this study several notable high flow events were captured, but
baseline data which does not contain many high flow events cannot
be used to train a model to simulate high flow events. The problem of
capturing a range of events may, therefore, not always be overcome
by using this approach. However, Young (2003) showed for the case of
rainfall-runoff modelling that high levels of accuracy (R% = 0.94) can
be achieved using a model fitted and validated using only 20 days of
hourly observations. Hence, by using a data-based modelling approach
assessing the impacts of NFM measures, even where only very short
periods of baseline data are available, may become viable.

The results on stream 1 demonstrate the potential that linear TFN
models have for extracting information about peak magnitude from
highly uncertain baseline data (0.02 m accuracy at 95% prediction
interval). Further work is required to identify models which provide
a better fit for larger events on stream 2 (control) and stream 3
(0.02 m accuracy at 80% prediction interval). It is likely that the
lack of fit at higher event magnitudes is due to non-linearity in the
response (e.g. due to differences in the geometry of the gauging cross-
sections (Romanowicz et al.,, 2008)), which can be incorporated in
the TFN approach by including a non-linear transform to the data.
The DBM approach, for example, has been developed to model typ-
ically non-linear relationships between rainfall and runoff (Young,
2003) and has been successfully applied to model non-linear level to
level responses (Beven et al., 2008; Leedal et al., 2010; Romanowicz
et al., 2008; Young, 2002). Alternatively, a class of models which
accounts for non-constant variance, such as autoregressive conditional
heteroscedasticity (ARCH) models could be explored.

This study has shown that the data-based time series modelling
approach has the potential to extract information from new and existing
BACI data, therefore, it has the capacity to provide the quantitative
evidence base needed for NFM measures to become mainstream. To
achieve this, further work is required to assess the potential of using
data-based time series modelling technique to analyse BACI data from
a range of environments, NFM interventions and scales. As outlined
in van Leeuwen et al. (2023), application of the models to post-
intervention or ‘after’ data collected from this study site has already
provided a comprehensive dataset of leaky dam impacts on flood peak
magnitude.

5. Conclusion

Whilst previous research has focused on using either an empirical
approach or a deterministic modelling approach to detect NFM impacts
on downstream flood risk, the novel application of the approach in
this research demonstrates that where uncertainty masks the signal
of the intervention, a top-down data-based time series modelling ap-
proach can provide the tools needed to make a meaningful comparison
between empirical baseline and post-intervention data.

The linear TFN models were able to predict peak stage with 0.02 m
accuracy at the 95% prediction interval on stream 1, and with 0.02 m
accuracy at the 80% prediction interval on streams 2 and 3. Although
different types of time series models may be necessary to demonstrate
the full benefits of data-based time series modelling approaches, this
study provides evidence that, where the underlying data generating
processes are linear, linear TFN modelling can reproduce observed
stage hydrographs to a high degree of accuracy. Given the upstream
stage series, the baseline, pre-intervention response of a stream can
therefore be accurately simulated for any chosen high flow event.
Thus, for every flood peak observed after an NFM intervention is made
the baseline flood peak magnitude can be simulated for comparison
with a high degree of confidence. The impact of an NFM intervention
can thereby be quantified for the full range of events observed after
the interventions are installed. Hereby it is demonstrated that, by
using a data-based time series modelling approach, BACI data can be
used to assess the impact of NFM features such as leaky dams on
downstream flood peak magnitude. The impact can be assessed even
when lead times to collect baseline data are short, the data are highly
uncertain and comparable high flow events are not observed before and
after the interventions are installed. Data-based time series modelling
techniques, therefore, provide a promising solution to the problems
associated with quantifying the flood risk management benefits of NFM
interventions.
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