
This is a repository copy of Packaging cost-effectiveness models in R: a tutorial..

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/205780/

Version: Published Version

Article:

Smith, R. orcid.org/0000-0003-0245-3217, Mohammed, W. orcid.org/0000-0003-0370-
4903 and Schneider, P. orcid.org/0000-0003-3552-1087 (2023) Packaging cost-
effectiveness models in R: a tutorial. Wellcome Open Research, 8. 419. ISSN 2398-502X

https://doi.org/10.12688/wellcomeopenres.19656.1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

METHOD ARTICLE

Packaging cost-effectiveness models in R: A tutorial. [version

1; peer review: 2 approved with reservations]
Robert Smith 1,2, Wael Mohammed 1,2, Paul Schneider 1,2

1ScHARR, The University of Sheffield, Sheffield, England, S1 4DA, UK
2Dark Peak Analytics, Sheffield, UK

First published: 21 Sep 2023, 8:419
https://doi.org/10.12688/wellcomeopenres.19656.1
Latest published: 21 Sep 2023, 8:419
https://doi.org/10.12688/wellcomeopenres.19656.1

v1

Abstract
Background: The use of programming languages such as R in health
economics and decision science is increasing, and brings numerous
benefits including increasing model development efficiency,
improving transparency, and reducing human error. However, there is
limited guidance on how to best develop models using R. So far, no
clear consensus has emerged.
Methods: We present the advantages of creating health economic
models as R packages - structured collections of functions, data sets,
tests, and documentation. Assuming an intermediate understanding
of R, we provide a tutorial to demonstrate how to construct a basic R
package for health economic evaluation. All source code used in or
referenced by this paper is available under an open-source licence.
Case Study: We use the Sick Sicker Model as a case study applying the
steps from the tutorial to standardise model development,
documentation and aid review. This can improve the distribution of
code, thereby streamlining model development, and improving
methods in health economic evaluation.
Conclusion: R packages offer a valuable framework for enhancing the
quality and transparency of health economic evaluation models.
Embracing better, more standardised software development
practices, while fostering a collaborative culture, has the potential to
significantly improve the quality of health economic models, and,
ultimately, support better decision making in healthcare.

Keywords
HTA, R, Open-source, Health Economics

Open Peer Review

Approval Status

1 2

version 1
21 Sep 2023 view view

Isaac Corro Ramos , Erasmus University

Rotterdam, Rotterdam, The Netherlands

1.

Joe Moss , York Health Economics

Consortium, York, UK

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

https://wellcomeopenresearch.org/articles/8-419/v1
https://orcid.org/0000-0003-0245-3217
https://orcid.org/0000-0003-0370-4903
https://orcid.org/0000-0003-3552-1087
https://doi.org/10.12688/wellcomeopenres.19656.1
https://doi.org/10.12688/wellcomeopenres.19656.1
https://wellcomeopenresearch.org/articles/8-419/v1
https://wellcomeopenresearch.org/articles/8-419/v1#referee-response-67574
https://wellcomeopenresearch.org/articles/8-419/v1#referee-response-67576
https://orcid.org/0000-0002-1294-8187
https://orcid.org/0000-0002-1866-9752

Corresponding author: Robert Smith (rasmith3@sheffield.ac.uk)
Author roles: Smith R: Conceptualization, Data Curation, Formal Analysis, Investigation, Methodology, Project Administration,
Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Mohammed
W: Formal Analysis, Investigation, Methodology, Software, Validation, Writing – Review & Editing; Schneider P: Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization, Writing – Review & Editing
Competing interests: R.S. Is part of the Scientific Committee for R for HTA, an academic consortium whose main objective is to explore
the use of R for cost-effectiveness analysis. R.S., P.S. and W.M. work for Dark Peak Analytics Ltd; a company specialising in the application
of techniques similar to those discussed in this paper in epidemiology and health economic evaluation.
Grant information: R.S., W.M and P.S. are joint funded by the Wellcome Trust Doctoral Training Centre in Public Health Economics and
Decision Science [108903] and the University of Sheffield.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2023 Smith R et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Smith R, Mohammed W and Schneider P. Packaging cost-effectiveness models in R: A tutorial. [version 1;
peer review: 2 approved with reservations] Wellcome Open Research 2023, 8:419 https://doi.org/10.12688/wellcomeopenres.19656.1
First published: 21 Sep 2023, 8:419 https://doi.org/10.12688/wellcomeopenres.19656.1

Page 2 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

mailto:rasmith3@sheffield.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.19656.1
https://doi.org/10.12688/wellcomeopenres.19656.1

Introduction
Health economic models are increasingly used to inform deci-

sions about the allocation of resources in healthcare systems

and other government departments in an attempt to improve

population health1,2. It is imperative that these models are

robust, transparent and efficient to maintain and develop. At the

moment, building models in spreadsheet software is standard

practice3. However, with the increasing complexity of economic

evaluations and models, the use of programming languages,

especially R (RRID:SCR_001905) due to its strong statistical

analysis functionality and popularity in biomedical research, is

becoming more popular. Programming languages like R

offers numerous benefits over spreadsheet software in terms

of reducing errors, improving transparency, and facilitating

collaboration among health economists4.

However, in the absence of clear guidance, many health econo-

mists find themselves devising their own structures for model

development in R. The lack of standardisation has led to a

proliferation of different coding styles, making it difficult to

share model code, review, or replicate models, and to facilitate

collaboration Alarid-Escudero et al.5. Without a sound code

structure, models may become difficult to debug, modify, and

extend. In addition, the lack of agreed upon standards leads

to a lack of consistency in model development and reporting

which can lead to confusion and misinterpretation. Furthermore,

it can exacerbate the reluctance to share code among research-

ers, as found by Emerson et al.6 who report that many health

economists do “not want to confront the issue of publishing

their source code, or at the very least, may not view source

code publication as a priority” (p.1410). This may be due to

apprehension about errors, or because of a reluctance to share

code regarded as ‘messy’ or not conforming to other researchers’

standards.

R packages provide a standardised approach for model devel-

opment. packages serve as modular extensions that enhance

the capabilities of the base R software by providing functions,

data sets, and documentation7. They can be developed for

internal use within an organisation or shared as open-source

resources for the wider community, for example via the

Comprehensive R Archive Network (CRAN) or GitHub8,9. The

modular nature of R packages enables scalable and reproduc-

ible health economic evaluation models, which ultimately ben-

efits the health economics community as a whole and would

help to facilitate a growing demand for more transparent open-

source modelling10. Several packages exist to provide generic

functions for a range of health economic model types - notable

examples are the heemod and hesim packages11,12. These

packages do not contain a health economic model, but are

instead a set of tools to help health economists develop

their own specific models. The focus of this paper is on a

framework and methods required to build an R package for a

single health economic evaluation model.

A previous paper by Alarid-Escudero et al., 20195 outlined a pro-

posed health economic evaluation model structure in package

format, outlining the benefits of a standardised coding framework.

This paper adds to this work, by providing a tutorial on the proc-

ess of building a custom package from scratch, rather than

using a template. We also provide a case study where we adapt

the ‘Sick Sicker’ model, originally developed by Krijkamp

et al., 201813, into a package with a different structure to

Alarid-Escudero et al., 20195 but based on similar principles.

We have previously used this same model to demonstrate the

value of web-based user-interfaces14 to make models more usa-

ble and application programming interfaces and automation15

to reduce data sharing requirements and move towards

Living Health Technology Assessment (HTA).

The methods section of this paper includes both a justification

for the use of Health Economic Model packages and a tutorial

on building a simple R package for a model. The results sec-

tion includes a case study in which a health economic model

commonly used for teaching was built into an R package. The

paper concludes by discussing potential avenues for package

validation, and in particular the role that trusted experts and

institutions can play in endorsing certain packages, with the

goal of improving efficiency, quality, and transparency in the

field of health economics and decision science.

Methods
This section has two main parts. The first part discusses health

economic models in R, and the advantages of using packages

for the health economist, model reviewers and the wider

research community. The second part guides the reader through

the basics of building an R package for health economic

evaluation code.

The advantages of Health Economic Evaluation model
Packages
At its simplest, a health economic evaluation model can be

thought of as an algorithm which takes a set of inputs, for exam-

ple parameter inputs or even individual patient-level data, and

returns some results, for example total discounted costs and

quality-adjusted life years (QALYs). A schematic can be seen in

Figure 1 below.

The types of models built for health economic evaluation

vary in complexity from simple decision trees to agent based

models16. Except for the simplest models, which are typically

not programmed in R, the code base is typically larger than

for descriptive analysis or causal inference, requiring a large

number of calculations which are interlinked. In R, best

practice is to modularise the model into a set of functions,

each of which can be defined and tested separately17. These

functions can be used in sequence and/or nested inside one

another, as shown in Figure 2. The entire model can itself

be a single wrapper function which performs all of the steps

for a given set of parameters and returns a set of results

and/or figures and tables. This has previously been outlined

by Alarid-Escudero et al.5 who advocate the construction of

the model as a single function which “facilitates subsequent

components of model development and analysis, as these

processes will all call the same model function but pass

different parameter values and/or calculate different final

Page 3 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Figure 1. Health Economic Model as an algorithm taking inputs and returning results.

Figure 2. Schematic of a typical model structure taking raw data and user inputs and using a set of functions to return results
in the form of data, publication tables, and figures.

outcomes from the model outputs” (p.1332) and has been the

way in which we have interacted with models via application

programming interfaces (APIs) and web-interfaces14,15.

There is limited guidance on how to structure a health eco-

nomic model built in R, although efforts are underway by

regulatory agencies, including the National Institute for

Health and Care Excellence (NICE) and the Dutch National

Health Care Institute (ZIN), to identify best practices for

submissions including health economic models built using R.

A recent paper by Alarid-Escudero et al.5 provides one

framework, which some health economists have since used18,19,

but there remains no consensus. However, in our experience as

a minimum in a well constructed R model, functions tend to

be stored in a folder (generally “R/”), with other folders con-

taining the unit tests (checks to ensure functions work as

intended, as described in ‘Unit Testing’ below) and the data

(described in ‘Data’ below) required by the model. There

should also be documentation describing the overall modelling

approach and what each of the individual functions does,

and there is generally at least one folder for outputs such as

results data, figures or tables. Our previous work on automated

reporting has given an example folder structure where there is

an automated Rmarkdown/Quarto report included as in Smith

et al., 202215. In the Alarid-Escudero et al. framework there are

four separate output folders (Tables, Figures, Report, Outputs).

Figure 3 shows a minimal example of a folder structure for a

model built in R, appreciating that more complex models may

require more subfolders, for example containing model objects.

Those readers with experience developing Packages in R will

notice that the folder structure shown in Figure 3 above is very

similar to that of an R Package as shown in Figure 4 below.

This is not surprising since the R package structure has

emerged organically within the R software development com-

munity as a method of storing, documenting and sharing

code. Since good practice in health economic evaluation

modelling in R results in a folder structure that is very similar

Page 4 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Figure 3. A minimal example of a folder structure for a model built in R.

Figure 4. Basic R Package folder structure including tests and vignettes categorised by type of file - either Functions, Documents,
Data or Tests.

to an existing framework for software development in other

industries, health economic modellers should use the existing

Package structure, as outlined in Wickham7, as standard and add

additional folders (e.g. in the ‘Inst’ folder) if they are required.

In addition to the benefits of standardisation, ease of testing,

and documentation, using packages makes it easier for methods

(functions) from one model to be used by others. This can help

to ease convergence in modelling methods, improve model

building efficiency, and make review much easier. Those famil-

iar to R will have previously installed packages from CRAN

or GitHub, for example using the install.packages()

function provided in base R. By storing health economic evalu-

ation model code on software development platforms like

GitHub, it is easy for others to install the code to use specific

functions from one model in another. Figure 5 below shows

Page 5 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

how the code from the Model-1-Package could be used by the

Model-2-Package, Model-1-Package and Model-2-Package to

Model-3-Package and so on, significantly reducing model

development time and requiring the functions which are used

multiple times to be reviewed only once, reducing duplica-

tion of model review processes. The overall result is that

subsequent models have a smaller marginal effect on the

code-base since they utilise existing functions where possible.

Over time, some functions within the model packages may be

reviewed by a trusted body, and collated into a one or more

packages which bring together useful and related functions

(as shown in Figure 6). Some functions may be very generic,

such as the calcICER function, whereas other functions may

be field specific (e.g. testing functions for an infectious disease

cost-effectiveness model). This would be a large and ongo-

ing project, but one that could be undertaken by relatively

junior software engineers and overseen by health economists.

We believe that the benefits, in terms of the reduction in the

costs of developing and reviewing models over the long run,

would massively outweigh the relatively small immediate costs

of this exercise - since most of the coding will have already

been done in the individual models.

This has significant benefits for regulators, and those tasked

with reviewing health economic evaluation models, such as

Evidence Review Groups (ERGs) tasked by NICE to produce

a review of the economic evaluation model for a UK submis-

sion. When reviewing steps of a model which use functions

directly from the validated package, reviewers may have

more confidence that the function is working correctly. While

reviewers will still have to ensure that functions are applied

correctly, the increased confidence should significantly reduce

review time. The result is that future models will tend to

use the validated package since it is less likely to result in

negative feedback from reviewers. Figure 7 shows the develop-

ment of Model 7-9 which uses the regulator preferred package

simultaneously with little additional code development.

This process would continue iteratively, with improvements

and additions to the validated package made on an ongoing

basis as part of an open-source ecosystem as suggested by

Dasbach and Elbasha17.

To summarise, health economic evaluation models can be

thought of as algorithms that take inputs such as raw data and

parameters, and return results like total discounted costs and

QALYs. While these models range in complexity from sim-

ple decision trees to microsimulation or agent-based models,

there is a general movement towards increased complexity and

the use of script based programming languages like R. As R

increases in popularity it is important to have a shared frame-

work to standardise model structure. An existing framework

for software development already exists in R, the package.

By using R packages, health economic modellers can

standardise, test, document, and share code more efficiently,

potentially leading to the development of regulator-approved

or community-validated packages that can reduce model build

and review costs and increase quality in the long run. However,

this will require a considerable amount of training for health

economists who have not previously used R, or are new to

working in R and have not built their first package. The

remainder of this paper aims to address this gap.

Tutorial: The basics of R Packages for Health Economic
Evaluation
In this tutorial, we aim to provide a comprehensive introduc-

tion to the fundamental principles of R packages, specifically

Figure 5. Development of the health economic modelling code base over time, as 6 model packages are published
sequentially.

Page 6 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Figure 6. Development of a regulator preferred R Package collated from existing model functions.

Figure 7. Use of regulator preferred Package by subsequent models with lighter touch review required.

in the context of a health economic evaluation model. We start

by introducing the concepts intrinsic to R packages and elu-

cidate their relevance in health economic evaluations. Our

tutorial guides readers through a sequential and instructive

process that includes several key steps.

Firstly, we explain the basic structure of an R package’s skeleton,

detailing crucial components such as the DESCRIPTION,

NAMESPACE, and R folders and providing a guide on initi-

ating a new package in RStudio (RRID:SCR_000432) utilis-

ing the devtools (RRID:SCR_016961)20 and usethis21 packages.

Page 7 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Secondly, we delve into the organisation of functions and

data within the R package directory, highlighting the impor-

tance of code modularity and reusability. Thirdly, we under-

score the necessity of comprehensive documentation for

facilitating comprehension, communication, and transparency.

We introduce the R documentation system that leverages the

Roxygen2 package for function documentation generation

and discuss the use of vignettes for documenting higher-level

concepts, such as structural modelling assumptions22. Fourthly,

we focus on the significance of unit testing for ensuring the

precision and reliability of R packages, presenting the testthat

package as a resource for creating and executing unit tests

for package functions iteratively23. Lastly, we illustrate how

to construct (in RStudio) and install an R package locally and

explore multiple strategies for distributing packages, including

via platforms like CRAN or GitHub8.

This tutorial demonstrates how to create an R package named

HECONpack24 from scratch. HECONpack contains a single

function calcICER() that calculates the incremental

cost-effectiveness ratio (ICER) from baseline and intervention

costs and effects (QALYs). The tutorial shows how to set up

the package, use Roxygen2 comments to document the func-

tion, create a test suite using testthat and run checks to ensure

that HECONpack meets some standard software develop-

ment rules. It also includes instructions on how to add a

license and how to make some data available to users of the

HECONpack. It concludes by showing how others could install

the package from GitHub to use the function and data for

their own models.

This tutorial is targeted for those new to developing R packages,

or who would like to brush up on the basics. The content is

based on the book R packages: organize, test, document, and

share your code by Hadley Wickham7. The book is not specific

to health economics, but may serve as a useful point of refer-

ence. We provide links to specific sections of the open-access

online book throughout.

Defining the scope and objectives of the Package. Before cre-

ating a package, the objective of the package should be defined,

and it should be determined, whether alternative packages

already exist. If there is a close alternative it may be more effi-

cient to adapt an existing R package. The adaptations can then

be submitted to the original package author or maintainer for

inclusion in the original package.

The aim of the package we will create for this tutorial, the

HECONpack, is to allow users to calculate an ICER from a

set of four numbers, the costs and effects in both the baseline

and intervention scenarios. To achieve this, a single function

called calcICER will be created. In this example, we assume

that no relevant package exists (of course in reality many

other packages already have this functionality). More infor-

mation on when and why to set up an R package can be

found here.

Setting up the R Package skeleton. To create a new package,

the devtools library is required. It can be installed by running the

following command: install.packages("devtools").

The devtools package is designed to aid R package devel-

opment and management, providing useful functions and

tools20. It relies on the usethis package in the background

and will automatically load functions from that package

too. To load the devtools library into the R session, execute

library(devtools).

Now, a new package can be created using the create_Pack-

age function. For example, to create a package named

‘HECONpack‘ the following command is used: devtools::

create_package(path = "HECONpack"). This command

will generate a new R package skeleton in the specified

path, creating a project file named “HECONpack.Rproj”

in a folder called “HECONpack” at that path. The skeleton

provides an empty R package with a basic directory struc-

ture and some necessary files. It includes an R folder, a

DESCRIPTION and a NAMESPACE file as well as the R

project *.Rproj* file. Table 1 shows the structure of the newly

created folder.

More information on R projects can be found here and for

more guidance on package setup more generally please refer

to this link.

Incorporating our first function. Now we have a basic

Package structure with an R folder, we can create our first

function. To begin, we will create a new R script file called

Table 1. File structure created by devtools as a skeleton.

path type description

.Rbuildignore file files to ignore when building Package

DESCRIPTION file metadata, e.g. name and version.

NAMESPACE file from Roxygen, ensures names dependencies etc.

R/ directory R functions

Page 8 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

calcICER.R within the R folder of the directory. This can

be done using the code shown below:

usethis::use_r("calcICER")

In this example we are going to insert a single function into

the R script, but for larger packages we may want to store a

set of related functions in a single R script. The R code with

its accompanying Roxygen code (which used later to docu-

ment the function in a help file) is provided below. To replicate

this step, paste the code for the calcICER() function into the

newly created file . Finally, save the file.

#’ Calculate the Incremental Cost

#’ Effectiveness Ratio (ICER)

#’

#’ Calculates the incremental effect and

#’ incremental costs of an intervention

#’ compared to baseline and then uses the

#’ results to calculate the ICER.

#’

#’ @param e_int single value for effect

#’ (e.g. Total QALYs) in intervention group.

#’ @param e_base single value for effect

#’ (e.g. Total QALYs) in base group.

#’ @param c_int single value for cost

#’ (e.g. Total £) in intervention group.

#’ @param c_base single value for cost

#’ (e.g. Total £) in base group.

#’ @return an single value for the ICER.

#’ @importFrom assertthat assert_that

#’ @export

#’ @examples

#’ calcICER(e_int = 28.3,

#’ e_base = 22.5,

#’ c_int = 10000,

#’ c_base = 9200)

calcICER <- function(e_int,

 e_base,

 c_int,

 c_base) {

 # Check that all inputs are numeric

 assertthat::assert_that(

 is.numeric(c(e_int, e_base,

 c_int, c_base)),

 msg = "All inputs must be numeric."

)

 # calculate incremental costs and effects

 inc_e <- e_int - e_base

 inc_c <- c_int - c_base

 # calculate the ICER

 icer <- inc_c / inc_e

 return(icer)

}

As well as comprehensive documentation, it is good practice

to insert ’asserts’ which check the user specified input param-

eters to reduce execution errors and erroneous outputs. This

is implemented above using the ‘assertthat’ package in R25.

The assertthat::assert_that() checks that all

of the arguments are class numeric. Any violation of these

checks will halt the evaluation of the affected function, trig-

gering an informative message, in this case “All inputs must

be numeric values or vectors”, to help guide the user to fix the

problem. These checks should help other users avoid unexpected

behaviours or unknown errors.

Once the the calcICER function is added to the “calcICER.R”

file, all the package functions can be loaded into the R session

for further development by running:

devtools::load_all()

Alternatively, the RStudio keyboard shortcut Ctrl + Shift + L

on Windows, or Cmd + Shift + L on a Mac can be used, to

achieve the same effect. This command loads all the functions

from the package, enabling the health economist to work with

the functions quickly.

Documentation. Good documentation helps users understand

the purpose and usage of your package and its functions.

To generate the documentation for the package, the

devtools::document() function from the devtools

library can be executed. Alternatively, the RStudio keyboard

shortcut Ctrl + Shift + D on a Windows machine or Cmd +

Shift + D on a Mac can be used.

This command will automatically generate the necessary

documentation files, stored in the “man” folder. for the pack-

age based on the code and ‘Roxygen2‘ tags. These Roxygen

tags have been developed in such a way as to standardise code

documentation to make it easier to understand what each

function in a code base is doing and how they link together.

They consist of tags preceded by ’@’ that describe key ele-

ments of the function. Key tags include ’@title’ (general func-

tion purpose), ’@description’ (longer description of purpose),

’@param’ (input argument, each in turn), ’@return’ (outputs)

and ’@examples’ (example usage). These collectively provide

a thorough, structured overview of the function’s operations,

making it easier for users to review, use or adapt the package.

More information on documenting using Roxygen can be found

in the Roxygen2 R package documentation26.

Those using the package can see the documentation for

any function using the help() function in R. For exam-

ple help("calcICER") generates the help file shown in

Figure 8 below.

More information on documentation can be found here.

Checks. During the development process, it is useful to regu-

larly check that the R package structure, function documenta-

tion, and code conforms to R package development guidelines20.

To run checks on the package, the devtools::check()

function from the devtools library can be used. Identified issues

Page 9 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Figure 8. Help file for the calcICER function in R.

will be flagged, as errors, warnings, or notes, depending on

the severity of the problem. A log file is also generated, and

is referenced by any warnings and errors to provide a route

by which to investigate further. These issues should be

addressed to ensure that the package is functioning correctly and

adheres to the best practices. A successful check at this stage

is shown in Figure 9.

Licencing. The first time a check is run, it should flag a warn-

ing that there is no licence included in the package docu-

mentation. Licensing is an important aspect of package

development, as it defines the terms under which others can

use, modify, and distribute a package. One of the commonly

used licences is the MIT licence which allows users to freely

use, copy, modify, merge, publish, distribute, sublicense,

Figure 9. HECONpack check output in RStudio.

and/or sell copies of the software, provided that the original

copyright notice and disclaimer are included27.

To add the MIT License to the package (many others avail-

able), the usethis::use_mit_license() function can

be used. This command will create a LICENSE file in the

root folder of the package, containing the text of the MIT

Page 10 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

License. Additionally, it will update the LICENSE.md file

and the “License” field in the DESCRIPTION file of your

package, indicating the use of the MIT License.

Description. Now we have a working function that passes all

checks, we will add standard meta-data to the DESCRIPTION

file contained in the package. The DESCRIPTION file contains

essential metadata about the package, such as the package

name, version number, author name, and dependencies on

other packages. It is written in a specific format that can be

read by R and other software.

To update the DESCRIPTION file, located in the root folder of

the package, the contents of the file can be changed as needed.

Some common fields to update include:

•฀฀฀฀Package: The name of the package

•฀฀฀฀Version: The current version number of the Package

(e.g., "1.0.0").

•฀฀฀฀Title: A brief, human-readable description.

•฀฀฀฀Description: A more detailed description.

•฀฀฀฀Authors: The package author(s) and their roles.

•฀฀฀฀Licence: The licence under which the package is

distributed (e.g., "MIT").

•฀฀฀฀Depends or Imports: Any R Packages that the Package

depends on, listed with their minimum required version

numbers (e.g. dplyr >= 1.0.0).

This information is important for those trying to understand

your package and how it fits into the wider health economic

evaluation code base. More information on descriptions can be

found here.

Namespace. The NAMESPACE file specifies the dependen-

cies of the package and specifies the functions and data which

are to be made available to users once the package is loaded.

This file is generated automatically from the Roxygen2 com-

ments in the R code files using the devtools::document()

function. The NAMESPACE file is a crucial component of

package development, ensuring that users have access to the

intended functions and that internal functions remain hidden.

The file should not be edited manually. More information on

this file, and what it does, can be found here.

Unit testing. Unit testing is a method of software testing where

individual units or components of a software system are tested

to determine if they are fit for use. Unit tests are conducted

to verify that the code is operating as expected and identify

any bugs or errors that may have been introduced during the

development process. Writing unit tests is an essential aspect

of package development, as it ensures stability of the functions,

even as developers make changes to the code7.

The code below creates a testing file structure and some

example tests to insert. It starts by using the usethis::

use_test() function to create a new test file for your

function. This command will create a new test file named

“test-calcICER.R” within the “tests/testthat” folder of HECON-

pack. The test cases can be inserted in the newly created file

using testthat::test_that(). Two example tests

are included in the chunk below.

These tests check if the calcICER function returns the expected

results when given simple integer inputs and vector inputs,

respectively.

test_that("Simple integers work", {

 expect_equal(

 calcICER(e_int = 10,

 e_base = 0,

 c_int = 20,

 c_base = 10),

 expected = 1)

})

test_that("Vectors work", {

 expect_equal(

 calcICER(e_int = c(1,2,3),

 e_base = 0,

 c_int = 10000 * c(2,3,4),

 c_base = 0),

 expected = (10000 * c(2,3,4)) / c(1,2,3)

)

The following command runs all tests within the package’s

“tests/testthat” folder:

Alternatively, the RStudio keyboard shortcut Ctrl + Shift + T

on a Windows machine or Cmd + Shift + T on a Mac can be

used to run the tests.

The test results are displayed in the R console as below shown

in Figure 10, providing information on which tests passed

and which tests failed, or if any warnings were generated. This

information can be used to identify issues in the functions

and to make the necessary changes to the code.

Running tests is a best practice in software development, pro-

viding confidence in the quality of the code and allowing to

catch and fix issues early.

Figure 10. Testing output for single test file which includes
two tests which pass.

Page 11 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

More information on testing can be found here.

Data. The following steps show how to include example data

in the package. Firstly the example dataset is prepared as an R

object. In the code below, we create a data frame called ‘df_

res_example‘. We then use the usethis::use_data()

function to include the example dataset in HECONpack, as

shown below.

df_res_example <- data.frame(

 e_int = runif(n = 1000,

 min = 200,

 max = 1000),

 e_base= runif(n = 1000,

 min = 0,

 max = 500),

 c_int = runif(n = 1000,

 min = 10000,

 max = 100500),

 c_base = runif(n = 1000,

 min = 5000,

 max = 40000)

)

usethis::use_data(df_res_example)

Note that the provided data will be available to users of the

Package.

Vignettes. A vignette is a long-form guide that provides a

comprehensive overview of the package, its functions, and its

usage. Vignettes are an excellent way to help users understand

how to work with the package effectively.

The code below creates a vignette skeleton for HECONpack,

which can then be edited.

usethis::use_vignette("my-model-desription")

This command will create a new vignette file named “mymodel-

description.Rmd” within the ”vignettes” folder of the pack-

age. This R Markdown file serves as a vignette template, which

can be customised as needed. The vignette could provide

a comprehensive overview of the package, its functions, and

its usage, including examples and explanations. It is possible

to have multiple vignettes looking at different functionality.

When users build HECONpack it will be included in the final

package distribution.

In the long run, we could foresee the vignette being a comple-

ment to the technical health economic evaluation report, which

would be reviewed by an external reviewer, for example an

Economic Research Group at a University. The combination

of unit tests testing specific functions, and a technical report

vignette, defending methods used, should improve the quality

of submissions and reduce the time taken to review them.

Building and Installing. After completing all steps described

above, the project directory folder for HECONpack includes

several files and folders – see Table 2 below. To install the

package to make it available from within other projects

(but on the same computer), users can run:

devtools::install()

This then enables the user to call library("HECONpack")

to load the package functions and data as they would with any

other installed package. To disseminate the package to others,

alternative solutions are required.

Dissemination. There are multiple ways in which R packages

can be shared with others. The Comprehensive R Archive

Network (CRAN) is the official repository for R packages,

and it is the primary source from which most R uses download

packages. The CRAN Repository Policy and the Checklist

for CRAN submissions (r-project.org) describe the process of

submitting a package to CRAN.

The required formatting and preparing of a package for pub-

lication can be time consuming. Alternatively (or in addi-

tion), Packages can also be made available as code repositories,

hosted on software development platforms such as GitHub.

Hosting in this way is generally much simpler than the CRAN

submission process, and allows sharing of developmental

versions of packages.

The devtools package enables anyone with an internet con-

nection to install any R package contained in an open-source

repository on GitHub using the function devtools::install_

github(“account/package”). The code below shows how to

install HECONpack. The code first removes the ‘HECONpack‘

Table 2. File structure created by the end of this session.

path type description

inst/ directory installed files when user installs Package

man/ directory md files documenting for functions

data/ directory data available within Package

vignettes/ directory generally used to showcase Package functionality

tests/ directory unit tests designed to ensure code works as intended

Page 12 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

package if it is already installed (which it would be, follow-

ing the steps above). It then installs HECONpack from the

specified GitHub repository, in this case ’dark-peak-analytics/

HECONpack’.

remove.packages(pkgs="HECONpack")

devtools::install_github(

 "dark-peak-analytics/HECONpack"

)

The version of the package on GitHub will then be installed,

and its functions will be available for use. This method of

installation is more convenient and user friendly, encouraging

more users to explore and adopt the package. To submit changes

to the functionality of a package, a, so called, pull request

can be submitted to the HECONpack repository maintainer.

This facilitates a structured and transparent process, by which

developers from the community can suggest changes to existing

code repositories.

The process described here would be repeated iteratively as

the model is developed. There is no obligation to make code

open-source, the process could be conducted internally and

shared with specified individuals only, for example via private

GitHub repositories. Similarly, some components of the

model can be shared but not others. APIs could be used to keep

particularly sensitive algorithms confidential while allowing

users to obtain results from inputs provided15, and there is no

requirement to share data in the package - sensitive data

could be accessed from remote servers or provided separately

to a local machine. Dummy data could be included as an inter-

nal dataset within the package to allow users to interrogate

the model code.

Case study
We demonstrate the concepts introduced in the methods section

in a case study by using converting the well known Sick-Sicker

model into a standalone R Package, ’sicksickerPack’. More

details on the model can be found in Alarid-Escudero et al.28,

Krijkamp et al.13, but briefly, the Sick-Sicker model creates a

simulation involving a hypothetical cohort of healthy (H) peo-

ple susceptible to a disease with two stages of illness, ’Sick’

(S1) and ’Sicker’ (S2). Those with the illness are subject to

an elevated risk of death and a decline in quality of life (QoL)

compared to their healthy counterparts. The model simulates the

cost-effectiveness of a hypothetical treatment which enhances

the QoL for those in S1 but has no impact on the QoL for those

in the S2 state.

This case study aims to showcase how a health economist can

‘package’ a decision-model analytic model. We compare the

packaged model, available at https://github.com/dark-peak-

analytics/sicksickerPack to the version described in previous

publications14,15,28, briefly explaining both the process of build-

ing the R package and the functionality of the resulting

package.

The original model script contains the definition of the model

parameters transition matrix, the Markov trace estimation

and the calculation of the cost-effectiveness outcomes. In this

paper we aim to achieve the same goal as the published model

script and, as discussed earlier, to make it easier to review,

debug, improve, and reuse our code (functions) in developing

other decision-analytic models in R.

The package code is contained in several folders. As in the

tutorial above, R functions are contained in ‘R/’, documenta-

tion in ‘man/’ and unit tests in ‘tests/’. Dummy data, to be used

by those without access to sensitive data is contained in ‘data/’.

A ‘DOCUMENT’ file contains meta data about the package.

Figure 11 contains a schematic showing how the sicksickerPack

R Package works.

A user of the model would need to run run_sick-

Sicker_model(). This wrapper function is specific to the

Sick-Sicker model. When called, the function either uses data

specified by the user - for example dummy data that is included

as part of the package, Or fetches model parameters from a

remote server or API using get_model_params(), or uses

data specified by the user - for example dummy data that

can be included as part of the package. It then uses the other

model functions in the R folder to perform different steps

of the modelling process, as shown in the schematic below.

Those interested in the specific functions can find them in the

open-source code at https://github.com/dark-peak-analytics/sick-

sickerPack and archived at Mohammed et al.29.

The package contains sample data and parameters, which can

be used to run and assess the model. In addition, the function

can take a remote path (i.e. a url address), from which remote

data can be sourced. It also allows passing credentials, to enable

users to access password protected data sources. This can be

particularly useful in cases where the model functions are to be

separated from (sensitive) parameter information (e.g. prices,

survival data), to allow for external - or even public - model

review by third parties without the provision of sensitive data.

Independently of the ‘asserts’ within the functions them-

selves, designed to ensure that functions are not misused, unit

tests were written for each function to verify if the function

does meet a set defined criteria or rules. Each time the code

base is changed the tests can be re-run to ensure that the

changes do not inadvertently cause errors or have unintended

effects on other parts of the code. As a result, a well thought

through and thorough test-bed can give reviewers confidence

in the model code. This can reduce the burden of reviewing

models since reviewers may only need to ensure that the tests

provide adequate coverage, rather than create them themselves.

Discussion
In this paper, we presented the advantages of using R packages

for health economic evaluation models and provided a tutorial

for creating a basic R package. We also provided a case study

where an existing model (the Sick Sicker model) has been

converted into a stand-alone R package with documentation

and unit tests included. An interested party could install the

package from R, run the model with the dummy data, or the

sensitive data from the remote server if they have been

provided with the key, and see how each function works,

Page 13 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

and read a technical report contained in the vignette folder.

Throughout, we have argued that more widespread use of

R packages would enhance reproducibility, scalability, col-

laboration, and model validation in health economics and

decision science, ultimately benefiting the health economics

community as a whole.

The presented decision-analytic models’ modularisation and

packaging concepts go beyond the framework suggested by

Alarid-Escudero et al., 20195, by creating functions that are

applicable to a specific use-case but thinking about making

functions that are generic enough for other model builds, and

can therefore be reused in other projects and by other model-

lers. Furthermore, by including the option to use dummy data

contained in the package, as well as data stored on a remote

server (if the user has the key/password), the model is truly

independent of the data on which it relies, allowing experts in

health economic modelling and software development to review

the model without necessarily requiring access to sensitive data

(and all of the associated administrative burden).

By adopting R packages as a standard approach, health econo-

mists can build a large and ever-improving code base, thereby

reducing the cost and increasing the quality of health economic

evaluation30. Building a culture by which model code is

shared by default will help overcome the reluctance of some

to share their model code, addressing the finding of Emerson

et al.6 that many health economists do “not want to confront

the issue of publishing their source code, or at the very least,

may not view source code publication as a priority”. The

modular nature of R packages enables efficient updates and

integration with other tools, while the comprehensive docu-

mentation can aid transparency and facilitate peer review31.

This has the overall effect of more rapidly establishing and

disseminating best practices in health economic evaluation

methodologies.

There are several potential challenges to this approach. Firstly,

it is important to recognize that the successful adoption of R

packages in health economics relies on the trust and confidence

of health economists and statisticians in the packages they

use. Trusted experts and institutions could play a crucial role

in approving or preferring specific packages which may go

some way to providing legitimacy. The validation processes,

including peer review, certification, and open-source com-

munity validation, require ongoing effort and substantial

investment but is considered routine in other industries17.

Open source software is widely accepted and forms the foun-

dation for many crucial software applications including the

internet, online banking, automotive, and aerospace software

infrastructure. Because it is open to peer review and contri-

bution from the entire world, it tends to become more reli-

able and secure than commercial software32. Applying the same

methods to health economic evaluation is likely to improve

quality and transparency of decision models. Encouraging the

health economics community to contribute to opensource

projects, participate in peer reviews, and share their expertise will

be crucial in maximising the benefit of open-source software.

However, there is a danger that convergence on the use of

specific functions from existing packages will lead to meth-

odological complacency and homogeneity of approach where

it is not appropriate. This argument is made in technological

advances in all fields and is rarely actually observed. It is much

more likely that time freed by having more standardised,

Figure 11. Schematic showing how the sicksickerPack R Package works.

Page 14 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

routinely used methods will enable health economists to focus

on the specifics of that particular model. Another potential

limitation is concern over intellectual property, in both mod-

elling methods and data. While concerns about data can be

overcome15, the benefits to the health economics community

from the process described would be much smaller if model-

ling packages are not made open-source. Finally, and most

significantly, the benefits of this approach will not be fully

realised unless enough health economists are able to program

models in script-based programming languages like R and

Python. It is essential that training is provided to both stu-

dents of health economics, as is becoming commonplace at

University MSc programmes, and experts in industry and con-

sulting environments. We hope this paper and our previous

works all published open-access go some way to mitigating

this constraint.

Future research should focus on exploring avenues for package

validation, identifying best practices, and developing teaching

tools and resources to facilitate the adoption of R packages

in health economics.

Conclusions
This paper has demonstrated the benefits of using R pack-

ages in health economic evaluation models, highlighting their

potential to improve reproducibility, scalability, collaboration,

and model validation. We have provided a tutorial for creating

a basic package and a case study of converting an existing

model into a package. By embracing R packages as a standard

practice, the health economics community can streamline the

development process, enhance code quality, and facilitate

knowledge sharing.

As the adoption of R becomes more widespread in health eco-

nomics, it is crucial to ensure that the community maintains high

standards in coding practices, documentation, and validation.

Fostering a culture of collaboration, knowledge sharing,

and continuous improvement will be essential in achieving

these goals. Encouraging health economists to contribute to

open-source projects, participate in peer reviews, and share their

expertise will help to establish and disseminate best practices

in health economic evaluation methodologies. By embracing

packages and fostering a collaborative culture, the health eco-

nomics community can ensure the development of robust

and reliable models, ultimately informing better healthcare

decision-making and resource allocation. Future research

should focus on exploring avenues for package validation, iden-

tifying best practices, and developing tools and resources to

facilitate the adoption of packages in health economics.

Software availability
Source code for the case study sicksickerPack is available:

https://github.com/dark-peak-analytics/sicksickerPack

Archived source code for the case study sicksickerPack at

time of publication: https://doi.org/10.5281/zenodo.807558729

Source code for the tutorial package HECONpack is available:

https://github.com/dark-peak-analytics/HECONpack

Archived source code for the tutorial package HECONpack

at time of publication: https://doi.org/10.5281/zenodo.807558024

License: MIT

Acknowledgements
We thank the attendees of the R-HTA conference and

colleagues from ScHARR and Dark Peak Analytics for their

input.

References

1. Miller DL, Robinson MD, Claxton K, et al.: Health economic modelling in the
21st century: a scoping review of methods applications and challenges.
Lancet. 2019; 393(10187): 2234–2244.

2. Campbell M, Claxton AG, Sculpher MJ: The use of health economic models in
policy making: a systematic review. J Health Econ. 2016; 48: 1–26.

3. Coyle DA, Claxton AG, Sculpher MJ: Spreadsheet modelling in health
economics: a systematic review of methods and applications. Health Econ.
2020; 29(1): 1–18.

4. Baio G, Heath A: When simple becomes complicated: why excel should lose
its place at the top table. 2017; 4(1).
Publisher Full Text

5. Alarid-Escudero F, Krijkamp EM, Pechlivanoglou P, et al.: A need for change!
a coding framework for improving transparency in decision modeling.
Pharmacoeconomics. 2019; 37(11): 1329–1339.
PubMed Abstract | Publisher Full Text | Free Full Text

6. Emerson J, Bacon R, Kent A, et al.: Publication of decision model source code:
attitudes of health economics authors. Pharmacoeconomics. 2019; 37(11):
1409–1410.
PubMed Abstract | Publisher Full Text | Free Full Text

7. Wickham H: R packages: organize, test, document, and share your code. “

O’Reilly Media, Inc.”, 2015.
Reference Source

8. Hornik K: The comprehensive r archive network. Wiley Interdiscip Rev Comput
Stat. 2012; 4(4): 394–398.
Publisher Full Text

9. Mora-Cantallops M, Sánchez-Alonso S, García-Barriocanal E: A complex
network analysis of the comprehensive r archive network (cran) package
ecosystem. J Syst Softw. 2020; 170: 110744.
Publisher Full Text

10. Dunlop WCN, Mason N, Kenworthy J, et al.: Benefits, challenges and potential
strategies of open source health economic models. Pharmacoeconomics.
2017; 35(1): 125–128.
PubMed Abstract | Publisher Full Text | Free Full Text

11. Incerti D, Jansen JP: hesim: Health economic simulation modeling and
decision analysis. arXiv preprint arXiv: 2102.09437. 2021.
Publisher Full Text

12. Filipovic-Pierucci A, Zarca K, Durand-Zaleski I: Markov models for health
economic evaluation modelling in r with the heemod package. Value Health.
2016; 19(7): A369.
Publisher Full Text

Page 15 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

13. Krijkamp EM, Alarid-Escudero F, Enns EA, et al.: Microsimulation modeling for
health decision sciences using r a tutorial. Med Decis Making. 2018; 38(3):
400–422.
PubMed Abstract | Publisher Full Text | Free Full Text

14. Smith R, Schneider P: Making health economic models shiny: A tutorial
[version 2; peer review: 2 approved]. Wellcome Open Res. 2020; 5: 69.
PubMed Abstract | Publisher Full Text | Free Full Text

15. Smith RA, Schneider PP, Mohammed W: Living hta: Automating health
economic evaluation with r [version 2; peer review: 2 approved]. Wellcome
Open Res. 2022; 7: 194.
PubMed Abstract | Publisher Full Text | Free Full Text

16. Brennan A, Chick SE, Davies R: A taxonomy of model structures for economic
evaluation of health technologies. Health Econ. 2006; 15(12): 1295–1310.
PubMed Abstract | Publisher Full Text

17. Dasbach EJ, Elbasha EH: Verification of decision-analytic models for health
economic evaluations: an overview. Pharmacoeconomics. 2017; 35(7):
673–683.
PubMed Abstract | Publisher Full Text

18. van Alphen AMIA, van Hof KS, Gravesteijn BY, et al.: Minimising population
health loss in times of scarce surgical capacity: a modelling study for
surgical procedures performed in nonacademic hospitals. BMC Health Serv
Res. 2022; 22(1): 1456.
PubMed Abstract | Publisher Full Text | Free Full Text

19. Caulley L, Krijkamp E, Doyle MA, et al.: Cost-effectiveness of direct surgery
versus preoperative octreotide therapy for growth-hormone secreting
pituitary adenomas. Pituitary. 2022; 25(6): 868–881.
PubMed Abstract | Publisher Full Text | Free Full Text

20. Wickham H, Hester J, Chang W, et al.: Package ‘devtools’. 2022.

21. Wickham H, Bryan J, Barrett M, et al.: usethis: Automate Package and Project
Setup. R package version 2.2.1, 2023.
Reference Source

22. Wickham H, Danenberg P, Eugster M: roxygen2: in-line documentation for r.

r package version 6.0.1, 2017.
Reference Source

23. Wickham H: testthat: Get started with testing. R J. 2011; 3(1): 5–10.
Publisher Full Text

24. Smith R, Schneider P, Mohammed W: Heconpack. 2023.
http://www.doi.org/10.5281/zenodo.8075580

25. Wickham H: assertthat: Easy Pre and Post Assertions. R package
version 0.2.1, 2019.
Reference Source

26. Wickham H, Danenberg P, Csárdi G, et al.: roxygen2: In-Line Documentation
for R. R package version 7.2.3, 2022.
Reference Source

27. St Laurent AM: Understanding open source and free software licensing:
guide to navigating licensing issues in existing & new software. “ O’Reilly
Media, Inc.”, 2004.
Reference Source

28. Alarid-Escudero F, Krijkamp E, Enns EA, et al.: An introductory tutorial on
cohort state-transition models in r using a cost-effectiveness analysis
example. Med Decis Making. 2023; 43(1): 3–20.
PubMed Abstract | Publisher Full Text | Free Full Text

29. Mohammed W, Smith R, Schneider P: sick-sickerpack. 2023.
http://www.doi.org/10.5281/zenodo.8075587

30. Hatswell AJ, Chandler F: Sharing is caring: the case for company-level
collaboration in pharmacoeconomic modelling. Pharmacoeconomics. 2017;
35(8): 755–757.
PubMed Abstract | Publisher Full Text

31. Sampson CJ, Arnold R, Bryan S, et al.: Transparency in decision modelling:
what, why, who and how? Pharmacoeconomics. 2019; 37(11): 1355–1369.
PubMed Abstract | Publisher Full Text | Free Full Text

32. Hoepman JH, Jacobs B: Increased security through open source.
Communications of the ACM. 2007; 50(1): 79–83.
Publisher Full Text

Page 16 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 24 October 2023

https://doi.org/10.21956/wellcomeopenres.21773.r67576

© 2023 Moss J. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Joe Moss
York Health Economics Consortium, York, UK

Smith et al. have written a well-structured paper outlining the benefits of using R packages when
constructing health economic models. I agree with the underlying principle that open-source
coding would be invaluable to the industry. However, I think a few minor points need to be
addressed.

The 2nd and 3rd paragraphs of the package build tutorial feel very repetitive and I am
wondering if they could be merged in some way

1.

I believe the HECONpack should be linked (URL) in the main manuscript just like
sicksickerPack was when first introduced (instead of being linked at the end of the
manuscript). This would allow the reader to look at the package whilst following along with
the steps outlined. This may aid in the reproducibility of the methods.

2.

Whilst I agree that open-source coding should be what people strive for, the conclusions of
the paper suggest that it is down to the individual economists/statisticians who are holding
back. This may be the case in academia but it should be acknowledged that industrial
sponsors of economic projects own the intellectual property rights for any R code produced
in a project they fund. Therefore, not only will it require a shift in thinking at the individual
level it will also require a shift in thinking at an industrial level, but large companies are
unlikely to be willing to share code (for which they have paid for) for which they will share
publicly for their competitors to use and adapt (for little or no costs). I think it would be
good to also acknowledge this point as a limitation in the discussion.

3.

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use

Page 17 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

https://doi.org/10.21956/wellcomeopenres.21773.r67576
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1866-9752

by others?
Partly

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
No source data required

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Statistics; R; R shiny; Health Economics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Reviewer Report 09 October 2023

https://doi.org/10.21956/wellcomeopenres.21773.r67574

© 2023 Ramos I. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Isaac Corro Ramos
Erasmus University Rotterdam, Rotterdam, The Netherlands

The authors discuss the benefits of presenting health economic models as R packages. Such
benefits include improving reproducibility, collaboration, and model transparency and validation.
A tutorial for creating a basic package and a case study of an existing model converted into an R
package is provided. The paper is relevant for health economic modelers using R for that purpose.

Specific comments are provided below:

The manuscript could become more concise by deleting some parts that do not carry fundamental
information. A few suggestions for deleting text are given below:

Page 6, paragraph “To summarise […] this gap.”. Can be deleted since it is a repetition of
text presented in previous parts of the paper.

1.

Page 6-8, paragraphs “In this tutorial […] CRAN or GitHub.”. These paragraphs could be
deleted so that “Tutorial: The basics of R Packages for Health Economic Evaluation” starts at
“This tutorial demonstrates how to create an R package named”.

2.

Page 13, sentences “R functions […] about the package.” Could be deleted too.3.
Figures:○

Page 18 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

https://doi.org/10.21956/wellcomeopenres.21773.r67574
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-1294-8187

The resolution of the figures seems to be low in general. Please consider using high-
resolution figures where appropriate.

1.

Figure 1 does not represent what the text describes. An algorithm is often represented in
pseudo-code, while Figure 1 shows a graphical representation of a "conceptual" model.

2.

Page 4 says “Figure 3 above” but it is shown below. Please note there is no need to mention
above/below for figures/tables if they are properly referenced. If the authors prefer to do
so, please check the “above/below”.

3.

Figures 8 and 9 might be deleted since they are not very informative.4.

Please correct typographical errors throughout the paper since there are a few (all minor). In
addition:

Please consider using a different font type for R functions, packages, etc.1.
As the authors know, R is case-sensitive, so please carefully check the names provided, e.g.:
create_Package

2.

 Abstract: first sentence: I would argue that “increasing model development efficiency…”
depends on (possibly many) other factors, not only using R.

○

Page 3:○

Introduction first paragraph: where authors say that R is becoming more popular, it would
be nice to cite some R models published. For the pharma industry, for example, I don't think
this is still the case, since, in my experience, the majority of models are still developed in
spreadsheet software.

1.

Sentences “Without a sound […] standards.” I would argue that the text provided applies to
spreadsheet models too.

2.

Other than having packages on CRAN, please explain what is the advantage compared to
for example uploading all relevant files to GitHub as an R project (but not as a package).

3.

Please explain how the authors adapted the ‘Sick Sicker’ model, to what extent the structure
is different and what are similar principles.

4.

Please explain what is meant by “Except for the simplest models, which are typically not
programmed in R”.

5.

Page 4: Sentences “However […] or tables”. Please explain if this is what the authors are
proposing or if this is what the Alarid-Escudero paper is proposing.

○

Page 6: While I acknowledge the potential benefits of ERGs, in more than 10 years of
experience as an ERG member, I have seen just one model submitted by companies in R, all
other models were developed in spreadsheet software. Therefore, the impact on STA’s
might still be very limited. ERG groups on the other hand may be more inclined to program
in R. We have done it for example for NICE Diagnostic Assessments (see e.g., SeHCAT). DAPs
are reviewed after a few years, and sometimes by other ERGs, so here I see a more
immediate benefit. I’d like the authors to reflect on this if they consider it appropriate.

○

Page 12: Paragraph “In the long run […] review them”. I believe this is a very important
message. It may deserve a more prominent place in the paper, maybe at the end of the
conclusions/recommendations. Consider also making this a stronger point since the
majority of models being assessed by ERGs lack any technical documentation. This is one of
the recommendations in guidelines such as ISPOR TF on model transparency but in
practice, it seems that HE modelers have problems adhering to it.

○

Page 19 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

 Comments on the tutorial section:

○

Page 8: At command DevTools:: create_package(path = "HECONpack"). I got an Error:
'create_package' is not an exported object from 'namespace:devtools'. The code worked
when DevTools:: was removed. Please consider making readers aware of this. Less
experienced users might not try further and leave the tutorial here.

○

Page 8: when referring to “the” path, maybe for less experienced users the authors might
want to explain getwd() and setwd() commands.

○

Page 8: Table 1 - I also obtained a .gitignore txt document.

○

Page 8: the links in the sentence “More information on R projects can be found here and for
more guidance on package setup more generally please refer to this link” are both the same
and equal to the one previously mentioned. Please check.

○

Page 9: The assertthat::assert_that() checks that all of the arguments are class numeric.
Technically this is true because .numeric() is used afterwards. Please check.

○

Page 9: “For example help("calcICER") generates the help file shown in Figure 8 below”.
Following the steps in the tutorial, this step did not work: help("calcICER") returns No
documentation for ‘calcICER’ in specified packages and libraries: you could try ‘??calcICER’

○

Page 11: Please clarify whether the DESCRIPTION file is a text file that can be changed
manually.

○

Page 11, box with test_that code: The code is missing }) at the end.

○

Page 11: “The following command runs all tests within the package’s “tests/testthat” folder:”.
The box with the code is empty.

○

Page 11: “Alternatively, the RStudio keyboard shortcut Ctrl + Shift + T on a Windows machine
or Cmd + Shift + T on a Mac can be used to run the tests.”. There is also a button on RStudio
called Run Tests.

○

Page 12, box with df_res_example code: It might be good to clarify if this code needs to be
written in the RStudio console, in an R script, or whether it does not matter.

○

Page 12: “When users build HECONpack it will be included in the final package distribution”.
It might be good to clarify that this seems to work only after the package is created. If I
"Knit" the code now one would get an error.

○

Page 12: “This then enables the user to call the library("HECONpack") to load the package
functions and data as they would with any other installed package.” Following the steps in
the tutorial, the package seems to be loaded but R cannot find the function calcICER.

○

 Comments on the case study section: ○

Page 20 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

Page 13: “A user of the model would need to run…”. Before this point, I would expect the
authors to explain how can one download the code of the package from Git Hub, install it
on one's computer, and get it ready to use. Please consider adding this explanation to guide
readers through the process. In the same paragraph, I would suggest adding specific
numerical examples, either here or in an appendix.

○

Page 13: the paragraph starting “The package contains…” I would suggest giving examples
of how to do all the steps described. It is also unclear what “parameters” and “function” the
authors mean here. Please clarify.

○

Page 13: “Each time the code base is changed the tests can be re-run”. Can or should?

○

Page 13: Please revise the sentence “As a result, a well thought through and thorough test-
bed can give reviewers confidence in the model code.”

○

Comments on the Discussion section:

○

Page 13: “We also provided a case study where an existing model (the Sick Sicker model) has
been converted into a stand-alone R package with documentation and unit tests included.” I
think the authors have not shown this. They have shown the final "product" on Git Hub, but
they do not guide how this package was created. Showing this process could be useful for
readers if, for example, they want to create a new version of the package.

○

Page 14: “Furthermore […] burden”. This is important because sharing sensitive data is seen
as one of the barriers to the adoption of open-source models. As mentioned in a previous
comment, the authors could provide an example, so that readers can replicate and
understand how this process works. Likewise, in the conclusions “and a case study of
converting an existing model into a package”; I don’t think the authors have shown this.

○

Page 14: “Trusted experts and institutions could play a crucial role in approving or
preferring specific packages which may go some way to providing legitimacy.”. The authors
might refer here to the Dutch PharmacoEconomic guidelines developed by the Dutch
Healthcare Institute (ZIN) in which R is accepted as a valid software to program HE models,
but only some packages are accepted.
https://english.zorginstituutnederland.nl/publications/publications/2022/12/15/guideline-
for-building-cost-effectiveness-models-in-r

○

Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use
by others?
Partly

Page 21 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

If any results are presented, are all the source data underlying the results available to
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the
findings presented in the article?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Health econmics researcher with more than 10 years experience in modelling
and more than 15 years experience with R.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard, however I have
significant reservations, as outlined above.

Page 22 of 22

Wellcome Open Research 2023, 8:419 Last updated: 24 OCT 2023

