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SUMMARY
RNA sequencing in situ allows for whole-transcriptome characterization at high resolution, while retaining
spatial information. These data present an analytical challenge for bioinformatics—how to leverage spatial
information effectively? Properties of data with a spatial dimension require special handling, which neces-
sitate a different set of statistical and inferential considerations when compared to non-spatial data. The
geographical sciences primarily use spatial data and have developed methods to analye them. Here we
discuss the challenges associated with spatial analysis and examine how we can take advantage of prac-
tice from the geographical sciences to realize the full potential of spatial information in transcriptomic
datasets.
INTRODUCTION

To understand the basis of tissue function, it is crucial to map out

the spatial landscape and the molecular biology of the cells that

comprise the tissue.1 Since the 1960s, when the technique of in

situ hybridization (ISH) was established, further methods for de-

tecting RNA distribution and quantity in intact tissue have been

developed. Such methods typically target a specific transcript

or group of transcripts (a panel), relying on the binding of labelled

complementary probes to a sequence of interest to detect its

presence. Scaling these approaches from single transcripts to

the whole transcriptome has long been a desirable goal.2 Mod-

ern ISH technologies, such as single-molecule fluorescence in

situ hybridization (smFISH), allow the visualization of sub-cellular

transcript localization while retaining overall tissue structure in-

formation. The main limitation of these approaches has been in

the number of transcripts that can be targeted in a single exper-

iment, generally ranging from just one to a few thousand,3 but not

permitting the targeting of the whole transcriptome. This has

made it impossible to measure spatial gene expression in an

un-biased, hypothesis-free manner. However, recent develop-

ments with in situ hybridization techniques have improved the

number of transcript targets available. For example, MERFISH4

is an smFISH-based technology that currently offers panels of

up to 500 targets, which could theoretically be expanded to

10,000 by extending the probe length.3 STARmap5 uses SNAIL

(specific amplification of nucleic acids via intramolecular ligation)

probes to target 160–1,020 genes and is capable of retaining

three-dimensional positional information at a single-cell level.
Cell 186, Decem
This is an open access article und
Another example of increased coverage is GeoMX, which can

approach whole-transcriptome scale experiments, with the

‘‘Whole Transcriptome Atlas’’ offering 18,000 targets for human

tissues.6,7

The phenotype of a cell is, in large part, determined by its tran-

scriptome,8 and a cell is the foundational unit of a tissue. It there-

fore follows that technologies to provide an unbiased per-cell

transcriptome profile from a tissue are imperative to our under-

standing of tissue organization and functionality at the cellular

level. Single-cell RNA sequencing (scRNA-seq) has proven

invaluable as a method for generating relatively unbiased, hy-

pothesis-free data at single-cell resolution, without relying on

probe-based targeting of individual transcripts, unlike ISH-

based techniques. A wide range of scRNA-seq techniques

have been developed which take differing approaches to cell

isolation and RNA amplification which in turn affect the sensitivity

of a technique and the number of cells profiled.9 Common to all

scRNA-seq techniques, however, is the dissociation of cells

from one another at the beginning of the experiment, leading

to the loss of the spatial orientation and topological relationships

of cells in the experiment to one another.

Until recently, researchers could assay gene expression either

spatially (ISH-based techniques) or comprehensively (scRNA-

seq), but not both. Following the methods of the first published

spatial transcriptomics experiment,10 an intact tissue section is

placed on a specially prepared slide that has 100 mm spots of

poly-dT probes—capable of binding to the polyadenylated tail

of many RNA molecules. Each spot carries a unique spatial bar-

code. After the tissue is imaged, it is permeabilized and RNA
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Box 1. Glossary

Aggregation problem: a variation in the results will be observed when we use alternative combinations of areal units, even on the same scale.

Bandwidth: a parameter describing how localized a geographically weighted regression model is.

Curse of dimensionality: the higher the number of dimensions used, the more equidistant the observations are.

Geographically weighted regression (GWR): a method that takes spatial heterogeneity into account because it allows for the relationships

between the independent and the dependent variables to alter locally.

Global spatial autocorrelation measures: statistics assessing the degree of spatial autocorrelation for a variable in the whole dataset.

Hot and cold spots: aggregations in space of high (hot) or low (cold) values for a variable.

Interesting locations: a term used instead of ‘‘statistically significant’’ when considering pseudo-p-values in multivariate space.

Local indicators of multivariate spatial association (LIMSA): measure of the extent to which neighbors in multivariate space (i.e., spots with

gene expression profiles similar to each other) are also neighbors in geographical space.

Local indicators of spatial association (LISA): see local spatial autocorrelation measures

Local spatial autocorrelation measures: statistics assessing the degree of spatial autocorrelation for a variable in every location compared to

its neighbors.

Modifiable aerial unit problem (MAUP): the choice of spatial data aggregation scale will influence the statistical relationships and process un-

derstanding from analyses.

Multiscale GWR (MGWR): geographically weighted regression that operates in multiple scales by identifying the best bandwidth for each inde-

pendent variable.

Pseudo-p-value: a p value calculated from a normal distribution generated by computational permutations that must be treated with caution.

Scale problem: different results will be obtained when we aggregate the same set of data on different scales.

Spatial autocorrelation (SA): nearby observations tend to be similar, violating one of themajor assumptions of classical statistics—that of obser-

vation independence.

Negative SA: nearby values tend to be dissimilar.

Positive SA: nearby values tend to be similar.

Spatial heterogeneity: the factors associated with an outcome, and therefore the process, will vary in space. Also referred to as spatial non-sta-

tionarity.
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from the permeabilized tissue hybridizes to the spot that is

closest to it. Thus, it hybridizes to a spot that is more or less at

its physical location in the tissue. Subsequent RNA sequencing

can then be resolved to specific locations on the tissue image.

Spatial transcriptomics thus combines tissue imaging and

spatial resolution—effectively approaching the spatial resolution

of ISH-based technologies—with the comprehensive transcrip-

tome quantification abilities of RNA sequencing.11

Since the first spatial transcriptomics experiments in 2016,

there has been rapid development of sequencing-based

methods. For example, 103 Genomics Visium uses a smaller

spot size of 55 mm (compared to the initial 100 mm), while

Slide-Seq/V212,13 uses probes attached to 10 mm beads that

randomly assemble into a monolayer on the tissue slide. Ste-

reo-seq,14 which uses a DNA nanoball patterned array and in

situRNA capture, offers improved resolution of 500 nm,meaning

that sequencing-based spatial techniques can offer sub-cellular

resolution.

Modern spatial transcriptomics methods generate three

distinct but interrelated data types: (1) the image data, (2) the

expression data, and (3) the spatial orientation and location of

(2). A typical spatial transcriptomics analysis workflow (e.g.,

Orchestrating Spatially-Resolved Transcriptomics Analysis

with Bioconductor) tends to treat individual observations as

though they originate from single cell or mini-bulk RNA-seq ex-

periments and deals with them accordingly, while ignoring the

relative locations of the different observations. As we will

discuss, expression data and their spatial properties are en-

tangled to an extent that one cannot properly analye the former

without taking account of the latter, and so treating individual ob-

servations independently risks missing vital information.
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As spatial transcriptomics technologies become commercially

available, the number of publications using the approach is

steadily increasing. Current studies that utilize spatial transcrip-

tomics can be broadly categorized into three groups. First are

those that use the data for clustering, e.g., gene expression-

based clustering of sarcoidosis granuloma skin samples to

compare to single-cell clusters from the same tissue.15 Second

are those that consider specific cell/gene positioning, e.g., using

marker gene expression to identify the locations of astrocytes in

mouse brain samples.16 Finally there are those that consider dif-

ferential gene expression, e.g., finding changes in expression

between spatial clusters found in mouse models of heart

failure.17 In many of these experiments, the spatial information

is used to pre-determine particular locales of interest. The full po-

tential of the spatial content, however, lies in using the coordi-

nate information as an intrinsic part of the data to be analyed,

and these aforementioned approaches do not attempt this.

As we examine, the definition of these zones of interest can in

itself give rise to statistical problems related to the aggregation

of space.

By properly considering the issues of spatial data analysis,

studied extensively in disciplines such as geography and ecol-

ogy, and by treating space as a covariate, a new type of spatial

transcriptomics data analysis becomes available. This analysis

makes use of this additional dimension to further the understand-

ing of howgene expression is organized in space. In the following

sections, we will elucidate the ways in which spatial data are

different from othermolecular data, and look at theways inwhich

these differences can be managed and even exploited. A sum-

mary of the key terms we introduce here, particularly those

from the geographic sciences, is given in the glossary (Box 1).

https://lmweber.org/OSTA-book/index.html
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Figure 1. Conceptual illustration depicting the analogous problems encountered in the fields of geographical sciences and spatial tran-

scriptomics
An illustrative example conceptualizing the similarities of the three main problems that underpin both geographical and biological spatial data. From left to right:
geospatial and bio-spatial data can both be represented as maps on different scales. Geospatial data describe phenomena on a macro-scale, while bio-spatial
data describe phenomena on amicro-scale. Themodifiable aerial unit problem suggests caution when selecting analysis scales, since zoning and aggregation of
variables can lead to differing results. Spatial autocorrelation advises that observations in space tend to bemore similar to near ones than to distant ones. Finally,
spatial heterogeneity demonstrates that the relationship between variables is not always stable and can vary over space.
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KEY FEATURES OF SPATIAL DATA

Through decades of studying data that describe spatial prob-

lems, the geographic sciences have identified three main fea-

tures governing spatially resolved datasets (Figure 1). First, the

modifiable areal unit problem (MAUP, Box 1) arises from the

choice of spatial data aggregation scale that influences the sta-

tistical relationships and process understanding from analyses

(Figure 2). Second, spatial autocorrelation indicates that nearby

observations tend to be similar, violating one of the major as-

sumptions of classical statistics—that of observation indepen-

dence (Figure 3). Finally, spatial heterogeneity or spatial non-sta-

tionarity states that the factors associated with an outcome, and

therefore the process, will vary in space (Figure 4). Although the

illustrative figures in this section use Visium data to demonstrate

these phenomena, the concepts apply to all types of spatial tran-

scriptomics data.

Modifiable areal unit problem
The MAUP (Box 1) is a concept in geography which states that

the way we define and group geographic units can significantly

impact our analysis and conclusions.18 A spatial transcriptomics

experiment results in a map of a biological tissue, along with

associated information about the locations on that map (the

expression of a range of genes). Typically, this information is

analyed as regions, which could be anything from a single cell

to a large multicellular section of tissue. The MAUP tells us that

there is a scale effect19 on the results of the analysis we under-
take with these observations (Box 1). That means, if we change

the size of the regions on our map, we can get different results.

Common procedures for grouping regions in spatial transcrip-

tomics data, for example clustering or expert annotation, pro-

duce zones on our map. The MAUP also describes a zoning ef-

fect,20 where the boundaries that are set for each different region

can influence the analysis and the results even if the regions

themselves remain the same size. For instance, even slight var-

iations in the input for clustering can produce different cluster

layouts and these changing boundaries will affect downstream

analysis. For example, changing the criteria by which highly var-

iable genes are selected will necessarily influence the placement

of cluster boundaries, which will in turn affect differential gene

expression or marker gene selection. Figure 2 is a simple illustra-

tive example of how the MAUP can influence the analysis of

spatial transcriptomics data. This case shows how the aggre-

gating of measurements at different scales or zones can affect

the correlation of the expression of a pair of genes.

All analyses of spatial data are affected by the MAUP and the

spatial scale of analysis. At its core the MAUP proposes that sta-

tistical distributions, relationships, and trends exhibit different

properties when the same data are aggregated or combined

over different reporting units, at different spatial scales. It de-

scribes the process of distortion in calculations and differences

in outcomes caused by changes in statistical distributions,

where variance reduces with aggregation. Thus, variations in

statistical relationships are a result of the models generated

from these data.
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Figure 2. Demonstration of the effect of ag-

gregation on correlation, as described by

the modifiable areal unit problem (MAUP)
Different scales of aggregation change the corre-
lation between two variables—each panel sum-
marizes the same data points (3,610 observations
of two genes).
(A) (i) There is no aggregation (gray tissue) and (ii)
the expression of the two genes show positive
correlation (R = 0.18).
(B) (i) The data points are aggregated to a square
grid (light and dark blue) and the mean of each
variable was calculated for each of the 325 grid
cells and then the correlation was determined. (ii)
This aggregation results in a positive correlation of
0.29.
(C) (i) A zonation based on the biology of the tissue
was used to aggregate the data into 7 layers, and
variable means were calculated. (ii) This aggre-
gation scale resulted in a negative correlation of
�0.75. In this example, different aggregation
scales result in a changed relationship between
the variables (from positive to negative correla-
tion), but this does not always have to be the case
as the effects of the MAUP are non-nested and
non-hierarchical.
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The MAUP also interacts with spatial sampling and spatial

scale. The spatial scale includes the spatial support and the

spatial extent of analysis.21 Spatial support describes the area

occupied by each observation—the space on which an observa-

tion is made. The MAUP arises from (1) the spatial support of

spatial data and (2) the aggregation or interpolation of data to

particular scales. The spatial support of observations affects sta-

tistically determined relationships between them, such as statis-

tical models (e.g., regression or classification). In this way statis-

tical analyses of spatial data over different spatial supports will

result in different models, correlations, classifications, coeffi-

cient estimates, etc.22–26

Despite the MAUP being a core consideration, its effects are

rarely tested even in geographic research. It is also frequently

overlooked by the many disciplines now routinely using spatial

data. However, there are suggestions and demonstrated ap-

proaches for determining the impact of theMAUP and for appro-

priate scales of analyses.26 In brief, testing for the MAUP and an

appropriate sampling or aggregation scale involves the identifi-

cation of the spatial scales at which the investigated process is

stationary (stable) with respect to their variance, covariance,

and other moments. It is essential to be aware of these issues

when working with spatial data and to consider different ways

of aggregating or dividing data to better understand the potential

impact of the MAUP.

The MAUP and aggregation

The aggregation of observations into clusters (groups) based on

attributes is commonly undertaken in order to reduce the

complexity of the raw data and to provide convenient but

coherent objects for subsequent analyses. In geography, groups

may be driven by socioeconomic or environmental attributes,

while in biology they may be related to cell types or gene expres-

sion profiles. The nature of the information loss associated with

aggregation relates to the number of groups and their granu-

larity. Furthermore, as individual observations are allocated to
5680 Cell 186, December 21, 2023
groups based on their attributes, aggregated group properties

are summaries of sets of similar observations.

Aggregations over space are different. Here observations are

grouped by their location and not by their attributes. They are

spatially intersected with the aggregation areas and attributes

are re-aggregated, including updating counts and the re-calcu-

lation of rates (proportions, percentages), over each aggregation

area. Aggregation areas can be defined in a variety of ways, for

example as a spatial grid (Figure 2B), or for spatial transcriptom-

ics a biologically defined zone (analogous to, for example, an

administrative area in the geographical sciences) (Figure 2C).

These aggregation areas can be grouped together, based on

the observations contained in each area. If the area changes

for whatever reason, the observations contained will also

change, and thus the grouping is likely to change too.

The scale (area, size, extent) of the aggregation units drives the

specific manifestation of the MAUP. These manifestations are

critically unpredictable because the effects of the MAUP can

be non-nested, e.g., the boundaries of one aggregation unit

will not always perfectly align or enclose the boundaries of

another unit (compare Figures 2B and 2C). Furthermore, these

effects can also be non-hierarchical, e.g., smaller units are not

consistently aggregated into larger ones in a predictable

manner.26 The example shown in Figure 2 demonstrates that as-

pects of the MAUP apply to spatial transcriptomics data and

show that it is worth considering the potential biological implica-

tions of this important concept.

Biological relevance of the MAUP

In geography, observations are usually aggregated over pre-

defined areal units (such as census reporting areas) or defined

by the spatial resolution of remote sensing instruments. The un-

derlying processes that are captured by the observation are usu-

ally defined by the resolution of the aggregation, most evidently

in remote sensing but also in socio-economic constructs; a

classic example is the ‘‘neighborhood.’’ In biology, processes



Figure 3. Spatial autocorrelation highlights

regions of statistical similarity in gene-

wise expression
(A) A simulated example of spatial autocorrelation
(SA) for binary data associated with Moran’s I
statistics. The leftmost panel shows perfect
dispersion or dissimilarity, corresponding to a
Moran’s I of�1. The center panel shows a random
spatial distribution, corresponding to Moran’s I of
0. The rightmost panel shows perfect spatial
autocorrelation, clustering, or similarity, corre-
sponding to a Moran’s I of +1.
(B) Examples of SA from tissue measurements of
gene expression. (i) Positive SA (I = 0.8): notice
how high values cluster in one corner of the tissue
while low values are highly localized. (ii) The same
observations but randomly distributed over space
(I z 0). (iii) The local Moran’s Ii (LISA) for the
variable in (i). Here, the local statistic provides a
more detailed representation of SA over space,
revealing locations with high SA. Significant loca-
tions (p < 0.05) are highlighted with a white border.
(iv) The local significance of the local Moran’s Ii
(LISA) in (ii). Significant locations (p < 0.05) are
highlighted with a white border.
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are more tightly defined and structured. A tissue is constructed

of cells which for the purposes of partitioning and aggregation

can be considered indivisible. Therefore, when working with

spatially oriented biological data, it could be argued that the

scales chosen for data analysis are somewhat pre-defined by

the tissue structure itself, while recognizing that the understand-

ing of the process and how they manifest themselves will be

driven by this choice of analysis scale.

This implies that observed and aggregated biological pro-

cesses occur at different scales within a tissue and that the

choice of scale influences the resolution at which such pro-

cesses can be examined.27,28 As an example, the activation

state of an immune cell can be elucidated by studying its imme-

diate neighborhood.29 This implies that choosing the appropriate
scale for downstream analysis is vital

in understanding this activation state.

Ideally, the chosen scale covers the im-

mediate cellular neighborhood—as a

finer or coarser scale would result in a

different understanding of the state of

the immune cell. High-resolution tech-

niques such as Stereo-Seq14 naturally

invoke theMAUP, as the subcellular-level

observations need to be aggregated at

least at cell-level to facilitate analysis.

Whether this aggregation is achieved via

a grid-based system or an image-based

approach such as cell segmentation will

have considerable bearing on the results

of the analysis.

Spatial autocorrelation
The concept of spatial autocorrelation

(Box 1) has existed for many years. It is

captured in what has become known as
Tobler’s ‘‘first law of geography’’ which states that everything

is related to everything else, but near things are more related

than distant things.30 This reflects what we intuitively know about

theworld we live in—phenomena are clustered and not randomly

distributed—and implies some form of distance decay in obser-

vation values and that measurements of a phenomenon will be

correlated over space. This lack of observation independence

has to be accounted for with statistical models.

Several established tests for spatial autocorrelation exist for

measurements in a spatially resolved dataset which all have a

similar underlying operation. Essentially, they generate mea-

sures of similarity by comparing each observation value with

those in its neighborhood. The neighborhood may be defined

by a distance or some form of adjacency (1st order to nth order),
Cell 186, December 21, 2023 5681



Figure 4. Spatial heterogeneity revealed by varying local regression

coefficients across a spatial transcriptomics experiment
Geographically weighted regression (GWR) produces local (i.e., spatially
varying) coefficient estimates, in contrast to the fixed global ones from a
standard regression.
(A) The spatial variability of the estimate of the intercept in a GWR between the
expression of two genes. The intercept (the estimated average expression of
the response variable when the predictor variable is zero) varies across the
tissue and takes both positive and negative values. The table at the bottom of
the panel shows the intercept of the global linear model for the same com-
parison.
(B) The spatial variability in the coefficient of the same model as (A). Like the
intercept, the coefficient (the average change in the response variable for a 1
unit increase in the predictor variable) varies considerably across the tissue
and is rarely close to the global estimate (shown in the table at the foot of
the panel). Notice how the fixed coefficient values from the global model
(although statistically significant) mask the actual differences that were found
over space.
(C) A summary of the range of values produced by the GWR model. The
highlighted regions in (A) and (B) indicate the locations where significant local
relationships were found.
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and the spatial autocorrelation test may report local measures of

spatial autocorrelation or a global (whole map) one (Box 1) which

is essentially summarized from local measures (Box 1). For

example, in spatial transcriptomics, a global measure will indi-

cate whether a gene exhibits spatial autocorrelation or not

(Figure 3Bi), while a local measure will reveal the exact pattern

of said autocorrelation in space (Figure 3Biii). The advantages

of the local measures are that they indicate the locales of spatial

autocorrelation within the data, critically the local significance of

the spatial autocorrelation test. In order to understand the local

measures of spatial autocorrelation, we first need to consider

their global counterparts.

Global measures of spatial autocorrelation

Moran’s correlation coefficient,31 known as Moran’s I, is a univar-

iate measure of spatial autocorrelation (Figure 3A). It is the most

well-recognized and widely used spatial autocorrelation statistic.

I can take values between �1 and +1, where values near +1 indi-

cate strong positive spatial autocorrelation (Figure 3Bi) (Box 1),

values near �1 indicate strong negative spatial autocorrelation

(i.e., perfect dispersion) (Box 1), and values near zero suggest a

randomly dispersed variable (Figure 3Bii).

Alternative measures toMoran’s I includeGeary’sC32 andGe-

tis and Ord’s G statistic.33 Geary’s C takes only positive values,

where C = 1 means that there is a lack of spatial autocorrelation.

Values ofC approaching 0 show increasing positive spatial auto-

correlation, and C [ 1 is indicative of negative spatial autocor-

relation which suggests large differences between a location and

its neighbors. Thus, Geary’s C is inversely related to Moran’s I,

though as the measures are calculated differently (Table 1),

they are not directly related. Due to these differences in calcula-

tion, Moran’s I is more a global measure and more sensitive to

extreme values while Geary’s C is sensitive to differences be-

tween values in neighboring areas. The G statistic is ideal for

checking whether similar values co-locate as it only provides a

measure of positive spatial autocorrelation. It is more useful as

a local model of spatial autocorrelation, as discussed in the

next section.

Local measures of spatial autocorrelation

The global tests for spatial autocorrelation generate a single sta-

tistic that evaluates spatial autocorrelation in the whole dataset

and indicates the overall degree of spatial autocorrelation. How-

ever, some parts of the study may exhibit greater spatial auto-

correlation than is found in others. Identifying local patterns of

spatial autocorrelation can often be more informative. Each of

the global indicators of spatial autocorrelation mentioned above

has a local equivalent. Local indicators of spatial autocorrelation

(LISA)34 (Box 1) provide three kinds of information. First, the local

spatial autocorrelation measure for each observation gives an

indication of the degree of spatial clustering of values around

that observation. Second, the local indicators of spatial autocor-

relation provide a measure of local significance and third, pro-

vide a measure of the relative contribution made by each obser-

vation to the global spatial autocorrelation statistic (Figure 3B, iii

and iv).

As with the global statistics, a local Moran’s Ii is the most

widely used measure. Other local statistics include local

Geary’s Ci which is based on the squared value difference

between locations, and so fails to discriminate differences



Table 1. The mathematical formulas used for calculating spatial autocorrelation

SA Statistic Formula

Global Moran’s I
I =

nPn
i = 1

Pn
j = 1Wij

Pn
i = 1

Pn
j = 1Wijðxi � xÞðxj � xÞ
Pn

i = 1ðxi � xÞ2
isj ðEquation 1Þ

Global Geary’s C

C =

ðn � 1ÞP
i

P
j

wijðxi � xjÞ2

2S0

P
i

ðxi � xÞ2
ðEquation 2Þ

Global Getis and Ord’s G

GðdÞ =

P
i

P
j

WijðdÞxixj
P
i

P
j

xixj
isj ðEquation 3Þ

Local Moran’s Ii Ii = zi
P
j

wijzj ðEquation 4Þ

Local Geary’s Ci Ci =
P
j

wijðzi � zjÞ2 ðEquation 5Þ

Local Getis and Ord’s Gi

GðdÞ =

P
j

wijðdÞxj � Wim

sf½ðn � 1ÞS1i � W2
i �=ðn � 1Þg2

jsi ðEquation 6Þ

The notation used is common throughout the table: n is the total number of observations for a variable, (i, j) are the locations of the observations,Wij is

the spatial weightsmatrix, x is the value of the variable on each location, x is themean of the variable, S0 is the sumof all weights
�P

i

P
j

wij

�
,Wij(d) is the

spatial weights matrix of one/zero with ones for all links that are within distance d from each other, zi and zj are the deviations from the mean,wijðdÞ is
the weights matrix with a threshold distance d that defines how far away the neighborhood reaches, Wi =

P
j

wij , S1i =
P
j

w2
ij, and m and s are the

classical sample mean and standard deviation, respectively, for sample size (n-1).
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between high and low values,35 but is useful for identifying non-

linear associations. Local Getis and Ord’s Gi distinguishes be-

tween high- and low-value clustered regions since the Z score

produced by the method informs whether a cluster of similar

values is relatively high (hot spot, positive Z score) or low

(cold spot, negative Z score)36 (Box 1). The individual compo-

nents of local Gi are not proportional to the global statistic,

but it is a commonly used measure where it is important to

distinguish between areas of clustered high and low values.

To visualize this, let’s imagine a gene exhibiting a pattern of

high and low expression in different parts of the tissue which re-

sults in positive spatial autocorrelation. A local Moran’s Ii and a

local Geary’s Ci will return a map of values that indicate the

parts of the tissue in which the positive spatial autocorrelation

is located (Figure 3Biii). In contrast to Moran’s Ii and Geary’s

Ci, Getis and Ord’s Gi can indicate not only where the positive

spatial autocorrelation is located but also whether it is a result of

high or low expression.

Spatial autocorrelation and statistical inference

Hypothesis testing for spatial autocorrelation statistics can be

achieved using either a Z score calculation or a Monte-Carlo

method of permutation simulation. Both of these cases involve

the estimation of a pseudo p value (Box 1) and should be treated

with caution, since this estimate is unlikely to be a true reflection

of the potential for type I error.34,35 This analysis therefore should

be considered strictly exploratory and subjected to rigorous

false discovery correction. This has direct relevance in cases

where global or local measures of spatial autocorrelation are em-

ployed to guide subsequent analyses. For instance, spatially var-

iable genes can be chosen independently or in conjunction with

highly variable genes to perform dimensionality reduction and
subsequent analysis. Failure to take into account the aforemen-

tioned statistical considerations can impact the quality of the

selected gene group, consequently influencing the downstream

results.

Multivariate spatial autocorrelation

The statistics described above are univariate, and thus would

need to be considered for every measurement in a spatial data-

set. Local indicators of multivariate spatial association (LIMSA)

(Box 1) would also have utility in biological systems, where the

observed phenotype is often the product of multiple co-regu-

lated variables. In LIMSA, the core concept is to measure the

extent to which neighbors in a multivariate feature space are

also neighbors in geographical space.35 LIMSA statistics are

adversely affected by dimensionality, because the number of

samples needed to estimate an arbitrary function with a given

level of accuracy grows exponentially with the number of input

variables (i.e., dimensionality) of the function (see Box 1, ‘‘curse

of dimensionality’’).37 If the number of features (i.e., genes) is

bigger than the number of observations, there is the risk of over-

fitting themodel. On the other hand, if there are toomany dimen-

sions, each observation is equidistant from the rest, resulting in

no meaningful clusters.

The dimensionality problem, coupled with the pseudo p value

estimation approach inherited from univariate measures of

spatial autocorrelation, means that care should be taken with

the interpretation of ‘‘statistically significant’’ locations in

LIMSA. Pseudo p values can only provide an indication of inter-

esting locations (Box 1). It is also important to note that signifi-

cantly clustered locations in the univariate case do not neces-

sarily translate to significantly clustered ones in multivariate

space.35
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Biological relevance of spatial autocorrelation

The behavior of cells in situ is influenced by their surrounding

environment, which includes intra-cellular signals and direct

contact with neighboring cells.28 Consequently this implies that

cell variables (e.g., expressed genes), when considered in their

spatial context, are dependent on their surroundings as opposed

to being independent variables. This suggests that well-

established statistical methods of RNA-seq analysis are not

perfectly suited to infer answers from spatially oriented spatial

transcriptomics experiments as they typically assume value in-

dependence.38–40

The canonical example of precise spatial patterns that arise as

a direct effect of spatial signalling is the embryonic development

process.41 Finely spatially organized cell blocks such as the

blastoderm or the gastrula exhibit positive spatial autocorrela-

tion due to the unique transcriptomic profile that each block

presents.42,43

Similar examples of spatially structured cell neighborhoods

that could exhibit spatial autocorrelation can be found in the

liver’s zonation system44 where marker genes for different liver

zones (e.g., central and portal vein proximity) are shown to

exhibit significant spatial autocorrelation. The concept of zona-

tion also applies to the bone marrow,45 which contains various

niches that are distinct in their cell-type composition. In the

lung,46 spatial profiling allowed the segregation of the lobar air-

ways into four distinct zones, with differing cell compositions

and consequently gene expression. A spatially ordered neigh-

borhood can also be found in the tumor microenvironment,47,48

which can exhibit coherent communities of different microenvi-

ronment subtypes that are spatially organized. As a result, a

proper investigation of the tissue cannot be undertaken without

taking spatial autocorrelation into consideration.

Spatial heterogeneity
Spatial heterogeneity (Box 1) describes the variation of a process

across different locations within a defined area. It is a concept

often used in geography, environmental science, and other fields

to describe how things change from place to place.49,50 Spatial

heterogeneity is important when trying to understand the under-

lying spatial pattern of a process.51 Conceptually, a single vari-

able like the expression of a single gene can change in different

parts of a tissue, in which case, this individual gene is said to be

displaying spatial heterogeneity. Intriguingly, spatial heteroge-

neity can also apply to relationships between variables, which

may not be constant across space. For example, as demon-

strated in Figure 4, the global relationship between a pair of

genes (in this case modelled by simple linear regression) may

not accurately summarize the local-level variation seen in this

relationship. In this example, few locations in the tissue have a

local relationship between the given pair of genes that resembles

the global regression estimates—and the local relationships are

varying between being strongly positive or strongly negative de-

pending on the location within the tissue.

Taking spatial heterogeneity into account in the analysis

allows for the relationships between the independent and

dependent variables to vary locally.51 Geographically weighted

regression (GWR) (Box 1) is one such method widely used in

geographical sciences. Essentially, GWR undertakes a series
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of local regressions using a moving window or kernel. In contrast

to standard linear regression, GWR includes a local spatial

weights matrix to represent the spatial relationships of the data

used in each local model. The output of GWR provides an esti-

mate of spatial heterogeneity by generating a regression esti-

mate per location, giving the ability to map the regression coef-

ficients over space to visualize the relationships (Figure 4). The

coefficients produced by GWR are the same as those derived

from simple linear regression. b0 is the intercept, the expected

expression of gene Y when gene X expression is zero; b1 is the

coefficient estimate, describing how much the expression of

gene Y changes for a single unit change in the expression of

gene X (i.e., the slope of the regression line).

A key consideration in GWR is in the determination of the

bandwidth (Box 1) for the analysis. The bandwidth defines the

kernel size and thus the distance decay in the spatial weights

matrix for data falling under the kernel. It is akin to a smoothing

function whereby a large value will reduce the observation of

local effects. Standard GWR identifies a single optimal band-

width for the entire space, thereby assuming that all relationships

between the dependent and independent variables operate at

the same spatial scale.52 However, in biology, this is rarely the

case,53 and as such a standard GWR identifies a best on average

scale for examining spatial heterogeneity.53 Alternatively, multi-

scale GWR (Box 1) defines a bandwidth for each covariate,

thereby allowing the scale of analysis to vary for each dependent

to independent variable relationship.54,55 Thus, in most cases

multi-scale GWR is likely the most appropriate approach since

it avoids the compromise of selecting a single scale for the whole

map.53

Biological relevance of spatial heterogeneity

In the biosciences, spatial heterogeneity is most commonly used

to describe an area of tissue that was expected to be homoge-

neous (for example with respect to the cell types in a given tissue)

but is found to be not homogeneous. Taking into consideration

the variation in space is common when studying phenomena

like variation exhibited by natural ecosystems. This is analogous

to the tumor microenvironment, which is often accompanied by

strong regional variation.56,57 For example, tumor-associated

macrophages (TAMs) exhibit multi-dimensional heterogeneity

in different cancer types like renal carcinoma, lung adenocarci-

noma, and gastric cancer.58–60 In gastric cancer, TAMs

were also found to be polarized according to their location

within the tumor microenvironment and display heterogeneity

in their phenotype depending on this location (core, edge, and

margin).60 This example highlights the importance of considering

spatial heterogeneity in the analysis of spatially resolved data,

since without doing so these subtleties in the organization of sys-

tems like the tumor microenvironment would be lost.

SPATIALLY AWARE SPATIAL TRANSCRIPTOMICS
ANALYSIS

The common features of geospatial data, discussed in the previ-

ous section, appear to be routinely exhibited by spatial transcrip-

tomics data. This implies that those features should be consid-

ered when developing approaches to analyze these data.

Several bioinformatics analysis packages exist that incorporate
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space, for example by calculating a distance-related covariance

matrix,61 by building a neural network that uses locational infor-

mation to construct itself,62 or by accounting for spatial correla-

tion of observations in a Bayesian model prior to clustering.63

Today, approximately one-third of spatial transcriptomics

tools incorporate space in oneway or another, andmore of these

tools are constantly being developed. Following, we discuss

common spatial applications that are addressed by such ap-

proaches.

Spatial clustering
Clustering for data exploration and inference is a primary anal-

ysis output for spatial transcriptomics data. Standard clustering

analysis doesn’t consider the spatial distribution of values but

only their similarity. As such, spatial autocorrelation is of partic-

ular concern with respect to clustering. Spatial autocorrelation

underpins spatial patterns of gene expression resulting in hot

and/or cold spots that can subsequently affect clustering. A

distinction should be drawn here between spatial clustering,

which seeks to define a geographically co-located group of

similar observations, and geographically weighted clustering,

which looks to account for spatial features of data (such as

spatial autocorrelation) when producing clusters.

An example of spatial clustering is themethod SpaGCN, which

integrates gene expression, spatial location, and histology data

to construct a network and detect spatially variable genes en-

riched in a specific spatial domain in order to generate clusters.64

Geographically weighted clustering can be found in MERINGUE,

which considers spatial positioning in addition to transcriptional

profiles by weighting the edges of a K-nearest neighbor graph

according to spatial adjacency, allowing spatially distinct cellular

subpopulations to be resolved.65

Mapping of spatially variable genes
All transcriptomics experiments, whether bulk, single-cell, or

spatial, are assaying gene expression. Spatial transcriptomics

presents the opportunity to map this expression to specific loca-

tions on the tissue, which may also be associated with the pres-

ence of specific processes or cells. Generating activity maps

of gene expression can reveal process-level insights into the

functioning of these genes. More importantly, by accounting

for spatial autocorrelation and examining spatial heterogeneity

at the proper scale (or set of scales), it is possible to explore

the underlying stationarity—or non-stationarity—of a process

over space.

Approaches to mapping spatially variable genes (SVGs)

include the modeling of gene expression with a generalized

linear spatial model (GLSM)—the underlying stationary spatial

process can be captured, and genes can be clustered based

on the patterns that emerge.66 An alternative approach uses a

self-organizing map to construct a condensed map of neigh-

boring cells clustered to nodes. Node-level spatial gene expres-

sion is used to identify SVGs using a Gaussian process.62

Spatial annotation
In a spatial transcriptomics experiment, the hematoxylin and

eosin image that accompanies the expression data can be

used for knowledge-driven segmentation. Once the tissue image
is annotated, gene expression across tissue domains can be

explicitly examined, and the coincidence between annotated re-

gions and statistically defined clusters can be explored. Spatial

transcriptomics studies often employ expert annotation to

provide context,63,67,68 though there is presently a lack of tools

to enable this annotation to be produced systematically.

SpatialLIBD is a method that offers functionalities that serve

some of these needs. It enables the interactive visualization of

spatial transcriptomics data and does provide for manual anno-

tation, spot-by-spot.69

OTHER METHODS FOR SPATIAL TRANSCRIPTOMICS
ANALYSIS

Spatial transcriptomics as a technique has a short history which

alsomeans that there is an ongoing proliferation of tools formany

aspects of spatial transcriptomics data analysis. In many cases,

these tools are leveraging techniquesdeveloped for bulk or,more

commonly, single-cell analysis and applying them directly to

spatial transcriptomics data. The plurality of analysis approaches

for spatial transcriptomics data cover many use cases including

clustering, deconvolution, image segmentation, 3D reconstruc-

tion, cell-cell interactions, and data integration, among others—

a brief overview of the some of these aspects is provided below.

Tools that fall outside of the category of spatially aware spatial

transcriptomics analysis go beyond the scope of this work and

have been well reviewed elsewhere.27,70,71

Clustering is a helpful tool because it structures and orders the

data, allowing useful insights to be gained from complex, multi-

variate datasets and, subsequently, allowing researchers to use

those insights to classify the observed data or to generate hy-

potheses. For example, in a study of inflammation in gingival tis-

sue, k-means clustering with t-distributed stochastic neighbor

embeddings (t-SNE) to group tissue locations identified three

distinct region types.72 Another method is Louvain clustering. It

is implemented in some of the most popular single-cell analysis

packages such as Seurat73 and Scran74 and has been used for

clustering in a number of spatial transcriptomics studies. For

example, Louvain clustering revealed the zonation patterns in

healthy and diseased liver tissue using Visium data.75

Spatial transcriptomics technologies with resolutions greater

than single cell, such as Visium, often require gene expression

deconvolution to help understand the cell type composition of

the captured regions. The most common approach to deconvo-

lution relies on a related scRNA-seq dataset that can be used as

a reference to identify the proportion of each cell type in the

spatial transcriptomics data aggregates. Many computational

approaches are taken to leverage this reference data to decon-

volve the spatial transcriptomics data, including deep learning

and AI,76,77 Bayesian models,78 and other statistical methods

like maximum-likelihood estimation.79

In contrast to deconvolution, high-resolution techniques often

require aggregation of data points at cell level. This can be

achieved using image segmentation approaches to identify cell

boundaries in the high-resolution microscope images of the tis-

sue. Segmentation approaches can use the distribution of de-

tected transcripts e.g., Baysor,80 or can combine histology im-

age data with the spatial transcriptomics output.81
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Spatial transcriptomics data rarely stand alone, and it is often

desirable to combine themwith other related data types to enrich

the interpretation of the individual datasets. CellTrek82 is a

computational method that uses a multivariate machine learning

model to combine scRNA-seq and spatial transcriptomics

datasets to achieve single-cell spatial mapping. Increasingly,

multi-modal integration will be required, as tissues are probed

with multiple technologies that produce different types and

resolutions of output. Platforms for this type of integration are

beginning to appear, such as Single-Cell Spatial Explorer83

and Tangram.76

Many spatial transcriptomics analysis tools can undertake

more than one analysis task or are designed with the whole

spatial transcriptomics analysis pipeline in mind. These toolkits

often provide a framework for the visualization of spatial tran-

scriptomics data, as well as a platform for exploratory and statis-

tical analysis. More than a dozen toolkits have been published

to date and they incorporate a wide range of common features,

including data preprocessing,73,84 visualization,85–87 data inte-

gration,73,88 clustering,73,87 and differential gene expression.89,90

Although toolkits often share features with one another, these

feature sets are not completely overlapping as each toolkit is

designed with a specific analysis pipeline in mind and will often

include bespoke methodologies.

Conclusions
As we have discussed, the considerations that arise from spatial

data—the modifiable areal unit problem, spatial autocorrelation,

and spatial heterogeneity—clearly manifest in spatial transcrip-

tomics data. The existence of these factors, which could be

seen as confounding to traditional analysis, is sufficient to sug-

gest that spatially aware analysis of spatial transcriptomics

data should be the default. There are instances of tools devel-

oped for spatial transcriptomics analysis that are essentially re-

deriving statistics that have been in common use in the

geographical sciences for decades. Notably, no specific aspects

of spatial transcriptomics data prevent the direct use of already

existing spatial models.

Around a third of the methods developed for spatial transcrip-

tomics analysis to date incorporate space in someway,mostly in

the identification of spatially variable genes and the spatial map-

ping of genes of interest. A minority of the tools that consider

space are making active use of methodologies developed and

proven in the geographical sciences. There are several tools

that identify spatially ‘‘interesting’’ genes via spatial autocorrela-

tion statistics such as Moran’s I or Geary’s C, but often the

logical extension of this principle—that the presence of spatial

autocorrelation undermines classical statistical models—is not

taken. It is common to identify differentially expressed genes be-

tween tissue areas, defined either by expert annotation or clus-

tering. Spatial autocorrelation informs us that these regions will

vary in their gene expression simply because they are varying

in space. Not accounting for this underlying variation will inevi-

tably lead to a host of false-positive observations, alongside

those genes that are genuinely changing expression.

To compound the effect of spatial autocorrelation, some of the

typical analysis decisions taken, such as the aggregation of

spots into zones of characterized biological function, introduce
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new challenges in terms of the choice of aggregation scale which

are not currently considered in the downstream analysis. Recent

advances in geography provide methods for determining the

impact of theMAUP for the chosen aggregation scale and for se-

lecting a more appropriate scale.26 That being said, often the

most rational way of dissecting a tissue region is by some known

biology, because the results obtained can best be understood in

light of that biology. However, the relationship between gene

expression, space, and phenotype is complicated and multivar-

iate. To rely on a one-to-one relationship between gene expres-

sion and observed biology is to make a big assumption. A data-

driven approach to aggregation, while not disregarding the

biology, could avoid these assumptions and consequently lead

to more interpretable results.

One of the features that can be observed in Figure 4 is that

even within biological ‘‘layers,’’ genes do not behave consis-

tently with respect to one another. This indicates that clusters

are not defined by immovable boundaries and that gene expres-

sion within a cluster is not always homogeneous. It is safe to as-

sume that the same principle applies at the edges of zones

(whether layers or clusters or some other aggregation of locales).

In ecology, these boundary regions have long been referred to as

ecotones91 and it is well recognized that borders are often not

sharp but exhibit a gradient from one phenotype to another

creating transition zones. This phenomenon is potentially ampli-

fied by the relatively low resolution of spatial transcriptomics

platforms like 10X Visium, where the observation-level data are

already an aggregate of around 10 cells that might span across

different biological regions. Caution is therefore required when

deriving conclusions based on the classification of spatial tran-

scriptomics observations that incorporate hard boundaries.

The most commonly used tools for spatial transcriptomics

analysis are not necessarily those that take a spatial approach.

While this may change with time and with more user-friendly

tools, it does not suggest that a ‘‘spatial by default’’ approach

is taken for analyzing these data at present. Spatial transcrip-

tomics data are bound to space. By properly considering the fea-

tures of spatial data that separate it from other ’omics data, it is

possible to improve the reliability of analysis output. Knowledge

gained from the field of geospatial data analysis indicates that to

fully explore the power offered by spatially resolved data, we

need to investigate biology locally rather than dataset-wide.

This reveals the existing heterogeneity over space that needs

to be accounted for in analyses.

The geographical sciences have been working with spatial

data for many decades and consequently have developed

countless statistical techniques that account for or actively

make use of space to understand a wide scope of processes.

Methods such as geographically weighted regression,55,92

geographically weighted principal component analysis,93

spatially weighted approaches to clustering,94 and generalized

additive models52 along with many more have all been exten-

sively explored and applied to a range of data. The analysis of

spatially resolved biomolecular data can be readily enhanced

by the incorporation of these methods and collaboration with

the scientists who have developed them. This inter-disciplinary

approach will help with realizing the full potential of spatial tran-

scriptomics data analysis.
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DATA AND CODE AVAILABILITY

The data used to produce the figures come from the human

dorsolateral prefrontal cortex (DLPFC) 10X Visium dataset65

and specifically tissue section 151673. The code and processed

data that produced the figures is available via Zenodo at: https://

doi.org/10.5281/zenodo.8333525.
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