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ABSTRACT

We use the method developed by Elnahhas and Johnson [“On the enhancement of boundary layer skin friction by turbulence: An angular
momentum approach,” J. Fluid Mech. 940, A36 (2022)] and Xu et al. [“Decomposition of the skin-friction coefficient of compressible bound-
ary layers,” Phys. Fluids 35, 035107 (2023)] for the decomposition of the skin-friction coefficient to integrate the mean temperature equation
for high-Reynolds-number compressible boundary layers and arrive at an identity for the decomposition of the wall-heat flux. The physical
interpretation of the identity and the limitations of this approach are discussed. We perform an integration on the mean temperature equa-
tion to obtain an identity that is the heat-transfer analog to the compressible von K�arm�an momentum integral equation for the skin-friction
coefficient. This identity is applied to numerical data for laminar and turbulent compressible boundary layers, revealing that the mean-flow
dissipation and production of turbulent kinetic energy given by the Favre–Reynolds stresses dominate the thermal-energy balance. The term
related to the growth of the turbulent boundary layer opposes the wall cooling. Other identities for the wall-heat flux, inspired by the method
of Fukagata et al. [“Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows,” Phys. Fluids 14(11), L73–L76
(2002)], are studied numerically and by asymptotic methods. The terms of these identities depend spuriously on the upper integration bound
because this bound is a mathematical quantity used in the derivation. When the bound is asymptotically large, the integral identities simplify
to the heat-transfer analog to the von K�arm�an momentum equation. We also prove that an existing multiple-integration identity reduces to
the definition of the wall-heat flux when the number of integrations is asymptotically large. No information about the wall-heat transfer is
extracted because the impact of the integration number is nonphysical.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0150696

I. INTRODUCTION

The wall-heat transfer of a turbulent boundary layer surpasses
that of a laminar boundary layer for the same external flow conditions.
In compressible flows, this phenomenon is exacerbated because of the
aerothermal heating caused by the viscous effects at very high speeds
(Van Driest, 1956; Hopkins and Inouye, 1971). Fundamental and
applied research efforts have, therefore, been devoted to the under-
standing of the heat-transfer mechanism near the wall and to the
development of flow control methods, mostly by wall heating and
cooling, aimed at protecting the wall from the excessive temperatures
(Smits and Dussauge, 2006).

Huang et al. (2022) utilized direct numerical simulations to study
the severe cooling of hypersonic boundary layers at moderately high
Reynolds numbers. The validity of the transformations by Van Driest
(1956) and Spalding and Chi (1964), which relate the skin friction of a

compressible boundary layer to that of an incompressible boundary
layer, was discussed. It was found that the skin-friction values based
on those transformations were in good agreement with the correla-
tions at Mach 2.5. However, for hypersonic cases with highly cooled
walls, neither of those theories provided a good prediction.

Empirical correlations involving the heat-transfer coefficient and
the skin-friction coefficient have also been used. A quantity of interest
is the Reynolds analogy factor Ra ¼ 2St=Cf (Roy and Blottner, 2006),
where St is the Stanton number and Cf is the skin-friction coefficient
(Hopkins and Inouye, 1971). The experimental measurement of Ra is
an immense challenge because of the difficulties related to the high
gradients of velocity and temperature at the wall (Goyne et al., 2003).

As alternatives to the direct measurement of wall friction and
wall-heat transfer, integral identities obtained from the momentum
and energy balances have been developed. The identities for the
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incompressible skin-friction coefficient discovered by Fukagata et al.
(2002) (FIK) have been widely utilized and extended to evince the
impact of the Reynolds stresses on the wall friction. For channel and
pipe flows, the wall-shear stress is decomposed in the sum of the lami-
nar wall-shear stress and an integral involving the Reynolds stresses. For
free-stream boundary layers, the identity includes an additional term
related to the streamwise inhomogeneity of the flow and the compo-
nents of the decomposition depend on the upper bound of integration
(Renard and Deck, 2016; Ricco and Skote, 2022). To deepen the under-
standing of the skin friction in high-speed flows, the FIK identity was
extended to the compressible case by performing a threefold integration
(Gomez et al., 2009) and a twofold integration (Wenzel et al., 2022; Xu
et al., 2022). The wall-heat transfer was also investigated by using the
FIK decomposition method. Zhang and Xia (2020) utilized the twofold
integration method to study the heat-transfer integral equation for tur-
bulent channel flows. For free-stream boundary layers, Wenzel et al.
(2022) (WGK) and Xu et al. (2022) also used twofold integration
identities to investigate the decomposition of the wall-heat transfer of
compressible flows. The impact of the integration upper bound in the
heat-transfer integral formula was discussed by WGK. Barone et al.
(2022) studied the decomposition of the internal energy by using the
method of WGK to study hypersonic turbulent boundary layers.

Renard and Deck (2016) (RD) proposed an alternative identity
based on the mean kinetic-energy equation to give a quantitative physi-
cal explanation to the impact of the energy budget on the skin-friction
coefficient of boundary-layer flows. The RD method was extended by
Sun et al. (2021) to study the heat-transfer coefficient of compressible
boundary layers. This approach was also utilized by Tong et al. (2022a;
2022b). The RD method, in the wall-friction case, offers a clear physical
interpretation for each term in the identity and bears no issues related
to the upper bound because the wall-normal integration is unbounded.
However, as discussed in the studies of Zhang et al. (2022) and Xu et al.
(2022), unlike the RD decomposition for the skin-friction coefficient,
the physical interpretation of the terms in the RD identity for the wall-
heat flux is not clear. The RD and FIK-like identities for the skin-
friction and wall-heat transfer coefficients in the case of free-stream
boundary layers do not isolate the laminar coefficients, as, instead, suc-
cessfully done in the original FIK identity for channel and pipe flows.

Elnahhas and Johnson (2022) (EJ) derived an identity for the
decomposition of the skin-friction coefficient of incompressible
boundary layers. They identified a quantity, function of the streamwise
direction, as a preferred wall-normal position inside the boundary
layer around which the angular momentum exerted by the flow is
computed. The wall-normal integration is unbounded and the identity
isolates the skin friction of the laminar Blasius boundary layer.
Following the same theoretical method of EJ, Kianfar et al. (2022b)
investigated the decomposition of the Stanton number in incompress-
ible turbulent boundary layers. Their integral equation for the heat-
transfer coefficient bears full analogy with the integral equation for the
skin-friction coefficient when the Prandtl number is unity. Xu et al.
(2023) used EJ’s method to study the wall friction of compressible
boundary layers and also investigated the impact of the wall-normal
integration bound in the existing compressible FIK-like identities.
Kianfar et al. (2022a) obtained an identity similar to that of Xu et al.
(2023), although the impact of the change of viscosity due to the tem-
perature gradient on the skin friction was treated differently in the two
formulations. The wall-normal gradient of the mean viscosity was

isolated in an integral term by Xu et al. (2023), while a reference mean
viscosity was used by Kianfar et al. (2022a).

In this paper, we study the impact of the energy-budget terms on
the wall-heat flux of compressible laminar and turbulent boundary
layers. In Sec. II, the Favre-averaged temperature equation is discussed.
In Sec. III, we integrate the Favre-averaged temperature equation, fol-
lowing the method of EJ and Xu et al. (2023) for the decomposition of
the wall friction. The physical interpretation and limitations of the
resulting identity are discussed. In Sec. IV, we integrate the tempera-
ture equation to obtain the heat-transfer analog to the von K�arm�an
momentum integral equation. Numerical results based on the latter
integral identity are presented for compressible laminar and turbulent
boundary layers. An evaluation of the existing FIK-like identities for
the wall-heat flux is found in Sec. V, where the focus is on the depen-
dence of those relations on the upper integration bound and the num-
ber of successive integrations. Conclusions are presented in Sec. VI.

II. THE TEMPERATURE BALANCE EQUATION

We consider a two-dimensional compressible boundary layer over
a flat plate, where x�; y�, and z� are the streamwise, the wall-normal,
and the spanwise directions, respectively. The flat plate is at y� ¼ 0, and
the leading edge of the plate is at x� ¼ 0. The wall temperature Tw

� is
constant (the subscript w denotes quantities at the wall). The Navier–
Stokes equations and the energy equation are scaled by the uniform
free-stream velocityU�

1 as the reference velocity and a lengthL� as the
reference length scale. The temperature T�; the density q�, the dynamic
viscosity l�, and the thermal conductivity j� are scaled by their respec-
tive constant free-stream values, T�

1; q�1;l�1, and j�1. The time t� and

the pressure p� are scaled by L�=U�
1 and q�1U�2

1, respectively. The

specific heat capacity c�p is scaled by U�2
1=T�

1: The asterisk � indicates

dimensional quantities, while quantities without any symbol are
nondimensional.

Reynolds averaging a quantity q over z along a distance Lz and
over t for a time interval T is defined as

�qðx; yÞ ¼ 1

LzT

ðT

0

ðLz

0

qðx; y; z; tÞdzdt: (2.1)

A Favre-averaged quantity is defined as hqi ¼ qq=�q (Favre, 1965;
1992). The flow is decomposed as follows:

qðx; y; z; tÞ ¼ �qðx; yÞ þ q0ðx; y; z; tÞ ¼ hqiðx; yÞ þ q00ðx; y; z; tÞ: (2.2)

The Favre-averaged continuity, momentum and energy equations for
compressible, statistical two-dimensional flows are (Adumitroaie et al.,
1999)

@�qhuji
@xj

¼ 0;

@�qhuiihuji
@xj

þ
@�qhu0i 0u0j 0i

@xj
¼ � @�p

@xi
þ @�r ji

@xj
;

@�qheihuji
@xj

þ
@�qhe00u00j i

@xj
¼ � 1

ðc� 1ÞRePrM2
1

@ �q jðTÞ
@xj

þ @

@xj
ðuirji � pujÞ;

(2.3)

where e is the total energy,
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e ¼ T

cðc� 1ÞM2
1
þ ujuj

2
¼ cpT

c
þ ujuj

2
; (2.4)

qjðTÞ ¼ �j@T=@xj is the heat flux, and the Mach number, the
Reynolds number, and the Prandtl number are defined as follows:

M1 ¼ U�
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cR�T�

1
p ; Re ¼ q�1U�

1L�

l�1
; and Pr ¼

c�p1l�1
j�1

;

(2.5)

where the ratio of specific heats is c ¼ c�p=c
�
v ¼ 1:4; c�v denotes the

specific heat capacity at constant volume and the ideal gas constant is
R� ¼ 287:05 Jkg�1K�1. The stress tensor is rij ¼ ð2l=ReÞ½Sij
�ðSkk=3Þdij�, where the stress rate is Sij ¼ ð@ui=@xj þ @uj=@xiÞ=2,
and dij is the Kronecker delta. The Einstein summation convention is
adopted to any Latin suffix occurring twice in an expression. The
Prandtl number and the specific heat capacities are constant and,
therefore, the scaled thermal conductivity j is equal to the scaled
dynamic viscosity l:

From the total energy balance, expressed by the total energy
equation in Eq. (2.3) and utilized in detail by Van Driest (1951), vari-
ous forms of the energy equation can be derived, such as the total
enthalpy/energy equation (WGK, Sun et al., 2021), the kinetic equa-
tion (Fan et al., 2022), the enthalpy equation, the internal equation
(Barone et al., 2022; Xu et al., 2022), and the temperature equation. It
is instructive to discuss which of those forms of the energy balance is
the most appropriate one for our analysis. As the total enthalpy/energy
balance does not separate the internal energy and the kinetic energy,
the total enthalpy/energy equation does not uncover the energy
exchanges among the components of the total energy, such as the heat
generation by the mean and turbulent viscous dissipations (Barone
et al., 2022). The internal energy equation or the temperature equation
is instead more suited to study the heat transfer within the flow, as
they contain terms related to the generation and transfer of internal
energy. We choose to utilize the mean temperature equation in our
heat-transfer study for three main reasons. First, the temperature,
which appears explicitly in the equation as the main unknown, can be
measured directly in an experiment. Second, the absence of the turbu-
lent dissipation term is an advantage because this quantity is very com-
plicated to measure experimentally as it involves correlations of the
instantaneous spatial gradients of the velocity fluctuations [refer to
Andreopoulos and Honkan (2001) for incompressible boundary layers
and Lapsa and Dahm (2011) for compressible boundary layers].
Third, the turbulent production term appears in the equation in lieu of
the turbulent dissipation term, as shown in Eq. (14) of Barone et al.
(2022) and Eq. (7–95d) in White (2006). This occurrence is conve-
nient because the turbulent production involves the Favre–Reynolds
stresses and the mean-velocity gradient, which are quantities that are
more readily obtainable experimentally than the turbulent dissipation.
Furthermore, the direct role of the Favre–Reynolds stresses on the
heat balance is revealed when the production of turbulent kinetic
energy is retained, while it would not be available if the total energy
equation were utilized.

In our integral analysis, we express the mean wall-heat flux as
�qw ¼ �lw@�T=@yjy¼0. It is useful to discuss why we choose not to
scale the wall-heat flux by using the Stanton number or the Nusselt
number. The Stanton number was used by Kianfar et al. (2022b) in
their identity involving the wall-heat transfer in incompressible

turbulent boundary layers. The Stanton number for compressible
boundary layers, given in Eq. (6.63) in Anderson (2000), is defined as
follows:

St ¼
j�w

q�1U�
1c�p1ðT�

ad � T�
wÞ

@�T
�

@y�

�
�
�
�
y�¼0

¼ jw

ðTad � TwÞRe Pr
@�T

@y

�
�
�
�
y¼0

¼ � �qw

ðTad � TwÞRe Pr
; (2.6)

where Tad denotes the adiabatic wall temperature, �j ¼ jw at y¼ 0
since the wall is isothermal (@�T

�
=@y� is instead different from

@T�=@y� as the temperature-gradient disturbances are not null at the
wall). The Nusselt number is defined as follows:

Nu ¼
x�j�w

j�1ðT�
ad � T�

wÞ
@�T

�

@y�

�
�
�
�
y�¼0

¼ StRexPr; (2.7)

where Rex ¼ q�1U�
1x�=l�1. It is noted that, as discussed in Anderson

(2000) on p. 298, the Stanton and Nusselt numbers have finite values
at any Mach number in the adiabatic wall case despite their indefinite

forms, given by @�T
�
=@y�jy�¼0 ¼ 0 at the numerator and T�

ad � T�
w

¼ 0 at the denominator. As we are interested in the physics of heat
transfer in boundary layers, it is important in our study to obtain an
integral relation where the constituent terms balance out to produce a
null wall-heat flux in the adiabatic wall case and not a finite value as in
the case of the Stanton and Nusselt numbers. The Stanton and Nusselt
numbers are more useful in empirical correlations as the wall-heat
convection coefficient can be readily computed as a function of Rex,
Pr, andM1.

In deriving the mean temperature equation used in our analysis,
we follow Van Driest (1951), who simplified the total energy equation

(2.3). The disturbance terms u02 and v02 are assumed to be negligibly

small compared to �u2 and all the triple correlations are also neglected.
In the limit of large Reynolds number, the boundary layer is assumed

to be thin and, therefore, @ðquÞ0T 0=@x � @ðquÞ0T 0=@y and
@�u=@x; @�v=@y; @�v=@x are all negligible with respect to @�u=@y. Van
Driest (1951) neglected the mean heat conduction and the viscous
heat generation, but we retain these effects because our focus is on the
large heat flux at the wall and on the heat generation, which is signifi-
cant at high Mach numbers. We have also verified numerically that

term @ðl0@T 0=@yÞ=@y is very small in the boundary layer (it is zero at
the isothermal wall because l0 ¼ 0). The flow is free from pressure-
gradient effects, which could be studied by retaining the term �ud�p=dx.
The resulting equation, also given as (7–95d) in White (2006), rewrit-
ten in Favre-averaged form, reads

@�qhTihui
@x

þ @�qhTihvi
@y

þ @�qhv00T 00i
@y

� 1

RePr

@

@y
�l
@�T

@y

 !

�M2
1ðc� 1Þ
Re

�l
@�u

@y

� �2

þM2
1ðc� 1Þ�qhu00v00i @�u

@y
¼ 0: (2.8)

The first two terms represent the convective transport by the
mean flow, the third term denotes the turbulent heat transport, the
fourth term is the mean heat conduction, the fifth term is the heat
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generation caused by the mean velocity gradient, and the last term is
the production of turbulent kinetic energy. The turbulent kinetic
energy budget for a hypersonic boundary layer [Fig. 14 in Zhang et al.
(2018)] shows that the production of turbulent kinetic energy balances
the viscous dissipation of turbulent kinetic energy into heat.

III. EXTENSION OF ELNAHHAS–JOHNSON METHOD
TO THE WALL-HEAT FLUX BALANCE

By using the temperature equation (2.8), we extend the method
of EJ and Xu et al. (2023) for the decomposition of the wall-friction
coefficient to derive an identity for the decomposition of the wall-heat
flux. Subtracting the continuity equation, given by the first Eq. (2.3),
from Eq. (2.8) leads to the temperature deficit equation,

@ðhTi � 1Þ�qhui
@x

þ @ðhTi � 1Þ�qhvi
@y

þ @�qhv00T 00i
@y

� 1

RePr

@

@y
�l
@�T

@y

 !

�M2
1ðc� 1Þ
Re

�l
@�u

@y

� �2

þM2
1ðc� 1Þ�qhu00v00i @�u

@y
¼ 0: (3.1)

The energy integral equation is obtained by multiplying (3.1) by y �
L and integrating from 0 to 1; where L is a length to be deter-
mined. Dividing the resulting expression byL =ðRe PrÞ leads to

�qw ¼ �lw
@�T

@y

�
�
�
�
y¼0

¼ � 1

L
|ffl{zffl}

�q l

þlwTw

L
þ 1

L

ð1

0

@�l

@y
�Tdy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�q�l

�PrM2
1ðc� 1Þ

ð1

0

1� y

L

� �

�l
@�u

@y

� �2

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�qu

þ RePrM2
1ðc� 1Þ

ð1

0

1� y

L

� �

�qhu00v00i@�u
@y

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�q tur

þ RePr

L

ð1

0

�qhv00T 00idy
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�qh

þ RePrðTw � 1Þdh
T
L

dx
� RePrðTw � 1Þ

L
hT � hT

L

� �
dL

dx
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�q
hT

þ RePrðTw � 1Þ
L

hTv
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

�q
hTv

; (3.2)

where

hTðxÞ �
ð1

0

hTi � 1

Tw � 1
�qhuidy; (3.3)

is the enthalpy thickness,

hT
L
ðxÞ �

ð1

0

1� y

L

� � hTi � 1

Tw � 1
�qhuidy; (3.4)

is the thermal boundary-layer thickness defined byL , and

hTv �
ð1

0

hTi � 1

Tw � 1
�qhvidy; (3.5)

is the thermal thickness related to the mean wall-normal velocity.
Note that, as in the identity (14) derived by Kianfar et al. (2022b) for
the incompressible heat-transfer case, Tw � 1 appears as a multiplica-
tive factor in the terms �qhT and �qhTv

in order to define the thicknesses
hT, hT

L
, and hTv .

In Eq. (3.2), term �q l is the laminar wall-heat flux, term �q�l

indicates the contribution of the mean flow due to the variation of
viscosity, term �qu represents the mean-flow dissipation, and term
�qtur quantifies the production of turbulent kinetic energy by the
Favre–Reynolds stresses. Term �qh is due to the turbulent heat
flux, while the remaining terms are related to the nonparallel
mean convective transport, i.e., �qhTv

is due to the wall-normal

velocity, and �qhT is due to the spatial evolution of the momentum

thickness and the length L . When the heat-transfer identity (3.2)
is compared to the compressible skin-friction identity, given by
Eq. (2.15) in Xu et al. (2023), we note that the first term of �q�l in

Eq. (3.2) bears no analog in the skin-friction identity because the
no-slip condition renders that term null in the momentum case,
while Tw is always a finite quantity. Analogs to the terms propor-
tional to the Mach number in Eq. (3.2), i.e., �qu and �qtur , are
absent in the skin-friction identity because no generation of
momentum occurs in that case.

Similar to the derivation of the skin-friction identities [EJ, Xu
et al. (2023)], the key step is to choose the length scaleL ðxÞ in such a
way to render �q l , the first term on the right-hand side of Eq. (3.2),
equal to the wall-heat flux of the laminar boundary layer. This proce-
dure is discussed in the Appendix. The length scale is found to be

L ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2x=Re
p

Tw

lwdT=dgjg¼0

; (3.6)

where g is the similarity co-ordinate for the laminar Blasius flow
defined in Eq. (A2).

We now discuss a number of issues that arise when identity (3.2)
is used for compressible boundary layers. We first note that, in the adi-
abatic wall case, even though the wall-heat flux is null, the exchanges
of thermal energy within the boundary layer are nevertheless signifi-
cant, especially in the hypersonic regime. However, in the adiabatic
wall case, the length (3.6) is infinite because dT=dgjg¼0 is zero and,
therefore, terms �q l; �q�l ; �qh, and �qhTv

in Eq. (3.2) vanish becauseL
appears at the denominators in those terms. The most relevant loss of
information is certainly given by the absence of �qh, i.e., it is not possi-
ble to quantify the role of the turbulent transport term hv00T 00i in the
heat-transfer balance.

We pointed out in Sec. II that scaling the wall-heat flux by the
Stanton number or the Nusselt number is not suitable because, in the
adiabatic wall case, these numbers are finite, while �qw ¼ 0 and, there-
fore, the physics of wall-heat transfer is not represented properly. If
these nondimensional numbers were nevertheless used to express the
wall-heat flux in identity (3.2), the adiabatic wall case could only be
treated mathematically in the limit of vanishingly small wall-heat flux
because St would be proportional to the ratio of dT=dgjg¼0 and
Tad � Tw, which are both null.
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Further problems arise for a hypersonic boundary layer subjected
to intense wall cooling. In this case,L becomes very small because, in
Eq. (3.6), Tw is small at the numerator and dT=dgjg¼0 is large at the
denominator. In the limit of asymptotically small L , all the terms in
Eq. (3.2) become asymptotically large, and it is thus not clear whether
the balance expressed in the identity is representative of the heat-
transfer physics.

Thoughts are also due about the interpretation of term �qh in Eq.
(3.2), involving the turbulent transport term hv00T 00i. As amply verified
over a large range of Mach numbers and wall-heat-transfer conditions,
the turbulent Prandtl number is between 0.8 and 1 across the bound-
ary layer (Huang et al., 2022), which means that �hv00T 00i and
@hTi=@y have the same sign at any wall-normal location because
�hu00v00i and @hui=@y are always positive. In hypersonic wall-cooling
conditions, �hv00T 00i is positive near the wall and, thus, gives a direct
contribution to the positive wall-temperature gradient there, analogous
to the role played by the Favre–Reynolds stresses �hu00v00i on the wall
friction. However, beyond this thin heat-conduction thickness,
@hTi=@y changes sign because of the viscous heat-generation effect,
and so does�hv00T 00i. As the Mach number grows, the near-wall heat-
conduction region becomes progressively thinner than the core of the
thermal boundary layer where the heat generation dominates the
energy balance. It follows that the integral contribution of �qhv00T 00i
near the wall may be less significant than that in the boundary-layer
core. The sign of �qh, i.e., the wall-normal integrated effect of �qhv00T 00i,
may thus be positive, i.e., opposite to that of the cooling heat transfer
at the wall. The integration may obscure the impact of hv00T 00i near the
wall and lead to the conclusion that hv00T 00i is not relevant for the
wall-heat transfer mechanism. Further research on the integrated
effect of hv00T 00i is certainly needed.

Another issue concerns the enthalpy thickness hT, defined in Eq.
(3.3), and appearing in term �qhT of the identity (3.2). Kays and
Crawford (1993) and Schlichting and Gersten (2016) suggest the use
of the enthalpy thickness as a measure of the wall-normal extent of the
thermal boundary layer for low-speed flows, i.e., for flows where the
exchange of thermal energy is only produced by the wall-heat flux and
the viscous heat-generation is negligible. As shown in Fig. 1, in wall-
cooling cases at M1 ¼ 0 and 2.5, the ratio ðhTi � 1Þ=ðTw � 1Þ is
always positive and, thus, the integral defining hT is representative of
the thermal-layer thickness. However, in the case of a hypersonic
boundary layer, where heat generation by viscous dissipation plays a
leading role in the energy balance, the enthalpy thickness can fail to
represent the thermal-layer thickness. We note that, at high Mach

numbers with Tw¼ 1, the thermal boundary layer does exist, but the
enthalpy thickness is not defined because of the singular denominator
Tw � 1. Furthermore, Fig. 1 shows that, in a laminar case with M1
¼ 10:9 and intense wall cooling (Tw < 1), the ratio ðhTi � 1Þ=
ðTw � 1Þ is negative except very near the wall. Since �q and hui are
always positive, it follows that hT, the integrated product of these three
quantities, is negative and, thus, it does not represent the wall-normal
region where temperature gradients are finite. We have indeed not
been able to find in the literature any study where the enthalpy thick-
ness has been employed to investigate hypersonic wall-bounded flows
in cooling conditions. We conclude that the use of the enthalpy thick-
ness in the identity (3.2) is questionable in these extreme cases. Similar
reasoning pertains to the other two thermal thicknesses involved in
the integral balance (3.2), i.e., hT

L
and hTv .

In the case of wall heating, the wall-heat flux �qw is positive and,
thus, the length L is negative as it has the same sign of dT=dgjg¼0.
The Reynolds number based on L , as defined in EJ, Kianfar et al.
(2022b) and Xu et al. (2023), would be negative and, therefore, mean-
ingless. Furthermore, a negative L refers to a wall-normal location
under the wall surface and, therefore, it is questionable how the physi-
cal interpretation of the wall-friction identity based on the angular
momentum, put forward by EJ, could be reinterpreted in this case. At
this point, it is not clear how the angular-momentum interpretation,
used by EJ to explain the momentum balance, could be extended in
the wall-heat flux case for any wall boundary conditions and Mach
numbers.

One idea to avoid the negative L would be to use the same L
adopted in the derivation of the identity for the skin-friction coeffi-
cient. At first, this choice appears to be physically reasonable because
the transfers of momentum and thermal energy are fully coupled in
the compressible regime. However, the first term on the right-hand
side of identity (3.2) would not represent the contribution of the lami-
nar wall-heat flux. This result is a major shortcoming because the iso-
lation of the laminar contribution is a unique feature of EJ’s method.

Most of the issues just discussed do not, however, pertain to the
identity (14) derived by Kianfar et al. (2022b), who investigated
the heat transfer in an incompressible boundary layer. In that case, the
energy equation in the incompressible regime is an independent trans-
port equation, decoupled from the continuity and momentum equa-
tions, as the temperature behaves as a passive scalar. We note, for
example, that the identity equation (14) in Kianfar et al. (2022b) does
not involve the mean-flow viscosity term �Re�1

�lð@�u=@yÞ2 and the
Favre–Reynolds stress term �qhu00v00i@�u=@y because those terms are

FIG. 1. (a) Temperature distributions of
laminar boundary layers at different Mach
numbers and wall-cooling conditions. (b)
Ratio ðT � 1Þ=ðTw � 1Þ for the same
flow conditions.
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proportional to the Mach number, which is null for the flow condi-
tions studied by Kianfar et al. (2022b).

IV. THE DIRECT INTEGRATION METHOD

A compressible temperature integral equation is obtained by inte-
grating (3.1) from 0 to 1 and multiplying both sides by RePr. The
wall-heat flux becomes

�qw ¼ �lw
@�T

@y

�
�
�
�
y¼0

¼ RePr
d

dx

ð1

0

hTi � 1ð Þ�qhuidy
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�qT
h

�PrM2
1ðc� 1Þ

ð1

0

�l
@�u

@y

� �2

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�qu

þ RePrM2
1ðc� 1Þ

ð1

0

�qhu00v00i @�u
@y

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�q tur

: (4.1)

To the best of our knowledge, identity (4.1) has never been used to study
the wall-heat flux. We note that term �q

T
h is written without using the

enthalpy thickness because this quantity may not represent the thickness
of the thermal boundary layer in some hypersonic cases, as discussed in
Sec. III. Equation (4.1) for the wall-heat transfer is analogous to the von
K�arm�an momentum integral equation for the skin friction,

Cf ¼ 2
dh

dx
; (4.2)

where Cf ¼ 2s�w=ðq�1U�2
1Þ is the skin-friction coefficient, s�w is the

time and spanwise-averaged wall-shear stress, and h ¼
Ð1
0

�qhuið1
�huiÞdy is the momentum thickness. Identity (4.2) is valid for com-
pressible boundary layers with a uniform free-stream flow and in the
high-Reynolds-number limit [refer to Eqs. (7)–(60) in White (2006)
for the generalized case with pressure variations and nonuniform free
stream]. Identity (4.1) is also obtained by taking the limitL ! 1 in
Eq. (3.2), as discussed in the Appendix. The Favre–Reynolds stresses
appear in Eq. (4.1), while they are absent in the von K�arm�an momen-
tum equation (4.2). Their role is, however, different in the two cases, i.e.,
production of kinetic energy (balanced by the heat generation via vis-
cous turbulent dissipation) in Eq. (4.1) and direct contribution to the
skin friction in the momentum equation, from which Eq. (4.2) is
derived. Analogous to the von K�arm�anmomentum equation, the turbu-
lent transport correlation hv00T 00i is absent from the balance (4.1) and
the laminar contribution to the wall-heat transfer is not isolated. The
domain of integration in Eq. (4.1) is unbounded, while the upper bound
instead plays a role in the FIK-like identities discussed in Sec. V.

For incompressible boundary layers, i.e.,M1 ! 0; the wall-heat
flux becomes

�qw ¼ RePrðTw � 1Þ dh
T

dx
; (4.3)

usually written in the literature as St ¼ dhT=dx (Kays and Crawford,
1993) [note that Tad in Eq. (2.6) simplifies to unity when M1 ! 0].
The enthalpy thickness hT may be used in Eq. (4.3) because it

represents the thickness of the thermal boundary layer in the incom-
pressible case (Kays and Crawford, 1993). The mean-flow dissipation
and the Favre–Reynolds stresses give no contribution to the wall-heat
flux in the incompressible case. For hypersonic boundary layers at
very large Mach number M1 � 1; the first and second terms on the
right-hand side of Eq. (4.1) are of order OðM2

1Þ. However, the first
term on the right-hand side of Eq. (4.1) cannot be neglected because it
involves the mean temperature, which also grows with M2

1. In the
hypersonic limit M1 � 1, the boundary-layer assumption may not
be valid because of the thickening of the boundary layer (Anderson,
2000) and, therefore, the terms neglected in the derivation of identity
(4.1) may have to be reinstated.

An alternative von K�arm�an-type integral equation for the wall-
heat transfer can be derived by using the total energy equation, i.e.,
(7–103) in White (2006), showing that the wall-heat transfer is induced
by the loss or gain of total energy. The main difference between (7–103)
in White (2006) and our (4.1) is the neglect of our mean-flow dissipa-
tion term �qu and the Favre–Reynolds-stress production term �qtur ,
which cannot be disregarded when M1 ¼ Oð1Þ. The thermal-energy-
integral equation (10.94) in Schlichting and Gersten (2016) is only valid
for laminar boundary layers, whereas our identity (4.1) can be utilized
for high-Reynolds-number wall-bounded flows at any regime.

A. Wall-heat flux of laminar boundary layers

We first present the decomposition of the wall-heat flux in com-
pressible self-similar laminar boundary layers with Mach numbers
ranging between 2.5 and 10.9. Boundary layers at Mach number 10.9
have been studied experimentally on cold walls (Tw=Tad ¼ 0:2) at the
Calspan-University of the Buffalo Research Center (Gnoffo et al.,
2011) and via direct numerical simulations (Huang et al., 2022). The
dynamic viscosity is related to the temperature through Sutherland’s
law (Stewartson, 1964). For a laminar boundary layer, the decomposi-
tion (4.1) simplifies to

�qw ¼ �PrM2
1ðc� 1Þ
sðxÞ

ð1

0

l

T

dU

dg

� �2

dg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�qu

þ Pr

sðxÞ

ð1

0

ðT � 1ÞUdg

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�q
hT

;

(4.4)

where sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2x=Re
p

. Equation (4.4) can also be obtained by inte-
grating the energy equation in Eq. (A3). For the case of a self-similar
Blasius laminar boundary layer, identity (4.4) can be simplified by
defining �qw;R ¼ sðxÞ �qw. The effects of the streamwise co-ordinate
and the Reynolds number are thus excluded, while information about
the heat-transfer physics is retained.

The flow parameters used to study identity (4.4) are listed in
Table I. Figures 2(a) and 2(b) present the dependence of d2F=dg2jg¼0

TABLE I. Free-stream and wall temperature conditions.

M1 T�
1 (K) T�

ad (K) T�
w=T

�
ad

2.5 270.0 270.0 1.0

4.9 66.2 348.4 0.91

7.87 51.8 620.8 0.48

10.9 66.5 1500 0.2
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and dT=dgjg¼0 on Tw=Tad . The quantity d2F=dg2jg¼0 is influenced
the most by Tw=Tad for M1 ¼ 10:9. The gradient dT=dgjg¼0 grows
significantly with the Mach number in the wall-cooling cases. Figures
2(c) and 2(d) display the decomposition of �qw;R for a supersonic case
(M1 ¼ 2:5) and a hypersonic case (M1 ¼ 10:9), respectively. For
0 � Tw � 6, wall cooling and wall heating are studied forM1 ¼ 2:5,
while only wall cooling is studied for M1 ¼ 10:9. For both Mach
numbers, the contribution of the dissipation term sðxÞ �qu depends
only mildly on Tw, while the spatial-growth term sðxÞ �qhT is more sig-
nificantly influenced by Tw. In the wall-cooling cases, the spatial-
growth term sðxÞ �qhT opposes the wall-heat transfer (except for
extremely low wall temperatures), while the dissipation term sðxÞ �qu

increases the wall-heat transfer.

B. Wall-heat flux of turbulent boundary layers

The decomposition of the wall-heat flux for fully developed tur-
bulent boundary layers is studied by using the direct numerical simu-
lation data of Huang et al. (2022). We choose the local density
boundary thickness d�q99 as the reference length for this analysis, as
explained in the Appendix. The Reynolds number is thus
Rd ¼ q�1d�q99U

�
1=l�1.

Figure 3 presents the magnitudes of the terms in the identity
(4.1) at three Reynolds numbers for M1 ¼ 10:9 with a cooled wall.
The terms �qu and �qtur dominate the balance and have the same sign
of the wall-heat flux. Term �qhT is instead opposed to the wall-heat
flux. Over this range, the Reynolds number of the turbulent boundary
layer only has a small impact on the relative contributions of each

term to the wall-heat flux. Figure 4 presents the magnitudes of the
terms in the identity (4.1) at three Reynolds numbers at M1 ¼ 2:5
for vanishingly small wall-heat flux. The mean-flow dissipation and
the turbulent kinetic energy production by the Favre–Reynolds stresses
are neutralized by the growth of the thermal boundary layer.

Zhang and Xia (2020) reported that, for subsonic and supersonic
channel flows with cooled walls, the energy dissipation into heat is also

FIG. 2. (a) and (b) Dependence of
d2F=dg2jg¼0 (a) and dT=dgjg¼0 (b) on
the wall temperature ratio Tw=Tad . The
circle indicates the result of Xu et al.

(2023), computed for M1 ¼ 2:5 and
using power law for the dependence of
the dynamic viscosity on the temperature,
Stewartson (1964). (c) and (d)
Decomposition of the wall-heat flux �qw;R

at different wall temperatures for
Pr¼ 0.71, c ¼ 1:4, M1 ¼ 2:5 (c), and
M1 ¼ 10:9 (d).

FIG. 3. Decomposition of the heat-transfer coefficient �qw into the terms of Eq. (4.1)
for turbulent boundary layers. The numerical data are from the direct numerical simula-
tions by Huang et al. (2022) at M1 ¼ 10:9 (wall-cooling case). The Reynolds num-
bers are Rd ¼ 566 533 (blue), Rd ¼ 722 422 (red), and Rd ¼ 930 733 (yellow).
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the dominant effect in the heat-transfer physics, although they did not
separate the mean-flow dissipation and the turbulent dissipation from
the total dissipation. Zhang and Xia (2020) also found that the dissipa-
tion term gives a 90% contribution to the total wall-heat flux because
of the absence of the streamwise inhomogeneity in their channel-flow
cases.

V. SIMPLIFICATION OF ALTERNATIVE FUKAGATA–

IWAMOTO–KASAGI IDENTITIES

Barone et al. (2022) and Wenzel et al. (2022) showed that all the
FIK-like identities for the skin-friction coefficient of free-stream
boundary layers depend on the upper bound of integration. In this sec-
tion, we study how the upper integration bound impacts the twofold
identities derived by Wenzel et al. (2022) and Xu et al. (2022) for the
decomposition of the wall-heat flux. We also investigate how the num-
ber of successive integrations used in the multifold identity derived by
Wenzel et al. (2022) influences the relative contribution of the terms
in the identity.

A. Simplification of the twofold Wenzel–Gibis–Kloker

identity

Integrating the energy equation (2.8) from 0 to y and multiplying
both sides by RdPr lead to

RdPr�qhv00T 00i � �l
@�T

@y
þ lw

@�T

@y

�
�
�
�
y¼0

þ RdPrM
2
1ðc� 1Þ

ðy

0

�qhu00v00i @�u
@y

dy

� PrM2
1ðc� 1Þ

ðy

0

�l
@�u

@y

� �2

dy þ RdPr

ðy

0

Hxdy ¼ 0; (5.1)

where

Hx ¼
@�qhTihui

@x
þ @�qhTihvi

@y
: (5.2)

Integrating (5.1) from 0 to a wall-normal location h in the free stream,
i.e., where Tu¼ 1 and Tv ¼ 0, leads to

�hlw
@�T

@y

�
�
�
�
y¼0

¼ RdPr

ðh

0

�qhv00T 00idy �
ðh

0

�l
@�T

@y
dy

� PrM2
1ðc� 1Þ

ðh

0

ðh� yÞ�l @�u

@y

� �2

dy

þ RdPrM
2
1ðc� 1Þ

ðh

0

ðh� yÞ�qhu00v00i @�u
@y

dy

þ RdPr

ðh

0

ðh� yÞHxdy: (5.3)

Dividing (5.3) by h leads to

�qw ¼ RdPr

h

ðh

0

�qhv00T 00idy
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term1

� 1

h

ðh

0

�l
@�T

@y
dy

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Term2

þ RdPrM
2
1ðc� 1Þ
h

ðh

0

ðh� yÞ�qhu00v00i@�u
@y

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term3

�PrM2
1ðc� 1Þ
h

ðh

0

ðh� yÞ�l @�u

@y

� �2

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term4

þRdPr

h

ðh

0

ðh� yÞHxdy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TermL

;

(5.4)

where the last term can be decomposed as follows:

TermL ¼ RdPr

h

ðh

0

ðh� yÞHxdy ¼
RdPr

h

ðh

0

hHxdy

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Term 5

�RdPr

h

ðh

0

yHxdy

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Term6

:

(5.5)

The terms on the right-hand side of Eq. (5.4) depend on the integra-
tion bound h, as shown in Fig. 2 of Barone et al. (2022). There is no
fixed rule on how to choose the upper integration bound h, except that
it must correspond to a location where the mean-flow temperature
matches the uniform free-stream temperature and the mean
boundary-layer velocity matches the uniform and wall-parallel free-
stream velocity.

Figure 5 presents the dependence of terms 1–6 in Eqs. (5.4) and
(5.5) on the upper bound of integration. The vertical line denotes the
location where the density is equal to 99% of the free-stream value.
The heat-transfer coefficients obtained by the twofold integration
identities, given by Eq. (A4) in WGK and by Eq. (3.9) in Xu et al.
(2022), are based on the equations of total enthalpy and internal equa-
tions, respectively. The wall-heat flux is instead derived here by using
the temperature equation. All the terms are found to depend heavily
on the upper bound h. Terms 1 and 2 vanish when the upper bound h
is large, which indicates that this limit rules out the turbulent heat flux
and the mean-flow heat transfer from the identity. The remaining con-
tributions are from term 3, involving the Favre–Reynolds stresses,
term 4, related to the mean-flow velocity, and term 5, part of the non-
homogeneous term. The present results are consistent with Fig. 16 of
Barone et al. (2022). Their turbulent term ITy

is our term 1 in which
we neglect the high-order terms according to the boundary-layer
assumption (White, 2006). The combination of terms ICy

and ICx
is

FIG. 4. Decomposition of the heat-transfer coefficient �qw into the terms of Eq. (4.1)
for turbulent boundary layers. The numerical data are from the direct numerical simu-
lations by Huang et al. (2022) at M1 ¼ 2:5 (adiabatic wall case). The Reynolds
numbers are Rd ¼ 71 606 (blue), Rd ¼ 89 863 (red), and Rd ¼ 114 564 (yellow).
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equivalent to the sum of terms 5 and 6 here. As shown by Barone et al.
(2022), if the upper bound of integration h becomes larger, term 1
decreases but the combination of ICy

and ICx
increases.

Figure 6(a) compares the contributions of the streamwise-
inhomogeneous term L with that of the turbulent-heat-transport term
1, while Fig. 6(b) compares the contributions of the Favre–Reynolds-
stress term 3 with that of the mean-flow dissipation term 4. As the
upper integration bound increases, the turbulent-heat-transport term 1
increases when h is confined within the boundary layer, but it eventually
drops as h ! 1. The key observation is that this trend causes term 1
to be smaller than term L for h¼ 1 and larger than term L for h¼ 2,
which means that the nonhomogeneous term L is dominant for large h.
A similar crossover happens for the Favre–Reynolds-stress term 3 and

the mean-flow dissipation term 4 for the larger Reynolds number case.
It follows that the upper integration bound h impacts qualitatively and
quantitatively on the role of the terms on the wall-heat transfer. The
crucial issue is that, since h is a mathematical quantity used to derive
the identity, we conclude that the dependence of the terms on h is
spurious.

Similar to the analysis by Ricco and Skote (2022) on the skin fric-
tion, the dependence of the heat flux on the upper bound of integra-
tion can also be removed by taking the upper bound h to be
asymptotically large. In this limit, the twofold identity derived by
Wenzel et al. (2022) reduces to our identity (4.1), as follows. Terms 1
and 2 on the right-hand side of Eq. (5.4) are null in the limit h ! 1;
because the integrals are finite as the components of the corresponding

FIG. 5. Dependence of terms in Eq. (5.4)
obtained by the twofold repeated integra-
tion on the upper integration bound h for
the turbulent boundary layers: (a) term 1,
(b) term 2, (c) term 3, (d) term 4, (e) term
5, and (f) term 6. The numerical data are
from the direct numerical simulations by
Huang et al. (2022) at M1 ¼ 10:9. The
vertical line indicates the wall-normal loca-
tions where h� ¼ d�q99ðh ¼ 1Þ:
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integrands, hv00T 00i and @�T=@y, are zero in the free stream. As
h ! 1, term 3 in Eq. (5.4) simplifies to term �qtur in Eq. (4.1) and
term 4 in Eq. (5.4) simplifies to term �qu in Eq. (4.1). In this limit,
term 5 in Eq. (5.5) simplifies to term �q

T
h in Eq. (4.1) because the term

involving @=@y in Eq. (5.2) is null due to the integration along y and
@=@x in the first term in Eq. (5.2), and can be taken outside of the
integral.

B. Simplification of the multifold Wenzel–Gibis–Kloker

identity

From the energy equation, Wenzel et al. (2022) obtained a heat-
transfer identity by carrying out a number of successive integrations n
between 0 and y performed before the final integration between 0 and
h. In this section, we prove that the multifold identity reduces to the
definition of the wall-heat flux when the number of integration is
asymptotically large. The Reynolds number is again defined by using
d�q99.

The infinite number of successive integrations between 0 and y
performed on Eq. (2.8) before the final integration between 0 and h
leads to

�qw ¼ nRdPr

hn

ðh

0

ðh� yÞn�1
qhv00T 00idy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term I

� n

hn

ðh

0

ðh� yÞn�1
�l
@�T

@y
dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term II

þ RdPrM
2
1ðc� 1Þ
hn

ðh

0

ðh� yÞn�qhu00v00i @�u
@y

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term III

�PrM2
1ðc� 1Þ
hn

ðh

0

ðh� yÞn�l @�u

@y

� �2

dy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term IV

þ RdPr

hn

ðh

0

ðh� yÞnHxdy

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TermV

: (5.6)

Figure 7 shows the heat flux terms I–V of Eq. (5.6) as a function
of the integration number n. The integration upper bound is chosen as
h¼ 1 (h� ¼ d�q99). All the terms approach zero as the integration num-
ber n increases, except for term II, which is related to the mean-flow
temperature. We now study the limit n ! 1 of Eq. (5.6) for h ¼ 1:
We adapt the method of Xu et al. (2023) for the analysis of the skin-

friction coefficient to the wall-heat flux case. By using the change of
variable n ¼ �ln ð1� yÞ, the wall-heat flux becomes

�qw ¼ nRdPr

ð1

0

qhv00T 00ie�nndn� n

ð1

0

�l
@�T

@y
e�nndn

þ RdPrM
2
1ðc� 1Þ

ð1

0

�qhu00v00i @�u
@y

e�ne�nndn

� PrM2
1ðc� 1Þ

ð1

0

�l
@�u

@y

� �2

e�ne�nndn

þ RdPr

ð1

0

Hxe
�ne�nndn: (5.7)

We focus on the only term remaining in the limit n ! 1, i.e., the sec-
ond term on the right-hand side of Eq. (5.7), i.e., the mean-flow term
II in Eq. (5.6). In the limit n ! 0þ,

�l
@�T

@y
	 B0 þ B1y þ B2y

2 þ Oðy3Þ

¼ B0 þ B1 1� e�nð Þ þ B2 1� e�nð Þ2 þ 
 
 


¼ B0 þ B1nþ B2 �
B1

2

� �

n2 þ Oðn3Þ: (5.8)

The coefficient BnðRdÞ can be determined numerically. Using
Watson’s lemma (Bender et al., 1999) leads to

�qw 	 
 
 
 � n
Cð1ÞB0

n
þ Cð2ÞB1

n2
þ B2 �

B1

2

� �
Cð3Þ
n3

þ 
 
 

	 


	 �B0 	 ��lw

@�T

@y

�
�
�
�
y¼0

; (5.9)

where C is the Gamma function. As n grows, the wall-heat flux
approaches B0; that is, the mean-flow temperature term II in Eq. (5.6)
is found to be asymptotically equal to the wall-heat flux when n ! 1,
ruling out the contributions of the turbulent heat flux, the Favre–
Reynolds stresses, the mean-flow dissipation, and the nonhomoge-
neous effects. As the identity collapses to the definition of the wall-heat
flux itself, no information is revealed about the heat-transfer physics,
proving that the dependence on n is spurious.

VI. CONCLUSIONS

We have studied integral formulas for the decomposition of the
wall-heat flux of high-Reynolds-number compressible boundary

FIG. 6. (a) Comparison of the turbulent
heat-transfer term 1 with the nonhomoge-
neous term L. (b) Comparison of the Favre–
Reynolds stress term 3 with the mean-flow
dissipation term 4. The numerical data are
from the direct numerical simulations by
Huang et al. (2022) at M1 ¼ 10:9. The
vertical line indicates the wall-normal loca-
tions where h� ¼ d�q99ðh ¼ 1Þ. The thin
and solid lines correspond to the two
Reynolds-number cases given in the legend
of Fig. 5.
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layers. The theoretical approach used to derive the identities of
Elnahhas and Johnson (2022) and Xu et al. (2023) for the decomposi-
tion of the skin-friction coefficient was utilized to obtain an integral
identity for the wall-heat flux that isolates the contributions of the lam-
inar wall-heat flux and the turbulent heat transport. We discussed the
physical meaning of the decomposition terms and the limitations of
the identity, focusing on adiabatic-wall and wall-cooling cases.

A simplified integral identity for the decomposition of the wall-
heat flux was obtained by direct integration of the mean temperature
equation. This identity is the heat-transfer analog to the von K�arm�an
momentum integral equation for the wall friction and it was used for
the first time to study compressible laminar and turbulent boundary
layers. It can be used in experimental studies on supersonic and hyper-
sonic boundary layers to obtain the wall-heat flux. For boundary layers

at Mach 2.5 with an adiabatic wall and at Mach 10.9 with a cooled
wall, the thermal balance is dominated by the production of turbulent
kinetic energy, ruled by the Favre–Reynolds stresses, and by the mean-
flow dissipation. The mean-flow streamwise inhomogeneity was
instead found to oppose the wall cooling. The absolute values of all the
terms in the identity increase with the Reynolds number.

We have also shown that, in the twofold integration identities
discovered byWenzel et al. (2022) and Xu et al. (2022), the upper inte-
gration bound used in those studies has a significant impact on the
terms of the identities. Being the bound a mathematical quantity, it fol-
lows that the dependence of the identity on this bound is nonphysical.
This problem prevents the use of these identities for the quantification
of the effects of the Favre–Reynolds stresses and the turbulent heat
transport on the wall-heat flux. In the limit of a large integration

FIG. 7. Dependence of terms in Eq. (5.6)
obtained by multifold repeated integration
on the integration number n for the turbu-
lent boundary layers: (a) term I, (b) term
II, (c) term III, (d) term IV, and (e) term V.
The numerical data are from the direct
numerical simulations by Huang et al.

(2022) at M1 ¼ 10:9. The dashed lines
indicate the corresponding local total heat
flux.
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bound, these identities simplify to our direct-integration heat-transfer
identity. The multifold integration identity proposed by Wenzel et al.
(2022) was also investigated. We have theoretically and numerically
proved that, as the number of integration becomes asymptotically
large, this multifold identity degenerates to the definition of the wall-
heat flux thus uncovering no information about the boundary-layer
physics and leading to the conclusion that the dependence of the mul-
tifold identity on the number of integrations is spurious.
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APPENDIX: DERIVATION OF INTEGRAL IDENTITY

(3.2)

The mathematical derivation of Eq. (3.2) is presented. It is first
instructive to detail the mathematical framework for the laminar
boundary layer. The compressible Blasius boundary layer without a
streamwise pressure gradient possesses a similarity solution
(Stewartson, 1964),

u ¼ U ¼ F0ðgÞ; v ¼ T gcF
0 � Fð Þ
ffiffiffiffiffiffiffiffiffiffi
2xRe

p ; T ¼ TðgÞ; (A1)

where gc ¼ T�1
Ð g

0
Tð�gÞd�g, and the similarity variable g is

g ¼
ffiffiffiffiffi

Re

2x

r ðy

0

qðx; �yÞd�y: (A2)

The prime denotes differentiation with respect to g: The compress-
ible Blasius functions FðgÞ and TðgÞ are determined by the
boundary-value problem,

ðlF00=TÞ0 þ FF00 ¼ 0;

ðlT 0=TÞ0 þ PrFT 0 þ lðc� 1ÞPrM2
1ðF00Þ2=T ¼ 0;

F ¼ F0 ¼ 0; T ¼ Tw at g ¼ 0;

F0 ¼ 1; T 0 ¼ 0; as g ! 1;

(A3)

where the Prandtl number Pr¼ 0.71. The dynamic viscosity is
described by Sutherland’s law (Stewartson, 1964) in the numerical
computations, although the theory is valid for any viscosity law.
The wall is isothermal as the wall temperature Tw is constant.

The following mathematical steps are used in the derivation of
Eq. (3.2):

• Heat conduction and laminar heat flux,

1

RePr

ð1

0

ðy �L Þ @

@y
�l
@�T

@y

 !

dy

¼ 1

RePr
L lw

@�T

@y

�
�
�
�
y¼0

�
ð1

0

�l
@�T

@y
dy

 !

¼ 1

RePr
L lw

@�T

@y

�
�
�
�
y¼0

� ð1� lwTwÞ þ
ð1

0

@�l

@y
�Tdy

 !

¼ L

RePr
� �qw � 1

L
þ lwTw

L
þ
ð1

0

1

L

@�l

@y
�Tdy

� �

: (A4)

The first term on the last line of Eq. (A4) is used to obtain the
wall-heat flux. The second term in Eq. (A4) is utilized to isolate
the laminar contribution. The third and fourth terms in Eq. (A4)
are included in the term related to the viscosity. We choose an
appropriateL for the wall-heat flux,

�qw ¼ �q l ¼ � 1

L
¼ �GðM1;TwÞ

ffiffiffiffiffiffiffi
Rex

p ¼�lw
@T

@y

�
�
�
�
y¼0

¼ � lw
sTw

dT

dg

�
�
�
�
g¼0

:

(A5)

The wall-heat flux of self-similar boundary layers is given by Eq.
(6.77) of Anderson (2000). The laminar contribution is isolated
from the wall-heat flux (A5) by choosing L ðxÞ as given in Eq.
(3.6):

• Favre–Reynolds stresses,

M2
1ðc� 1Þ

ð1

0

ðy �L Þ�qhu00v00i @�u
@y

dy

¼ �LM2
1ðc� 1Þ

ð1

0

1� y

L

� �

�qhu00v00i @�u
@y

dy: (A6)

• Turbulent heat-flux contribution,

ð1

0

ðy �L Þ @�qhT
00v00i

@y
dy ¼ �L

ð1

0

1

L
�qhT 00v00idy: (A7)

• Mean-flow dissipation,

ð1

0

ðL � yÞ 1

Re
�l

@�u

@y

� �2

dy ¼ L
ð1

0

1� y

L

� �
1

Re
�l

@�u

@y

� �2

dy:

(A8)
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• Streamwise convection,

ð1

0

ðy �L Þ @ðhTi � 1Þ�qhui
@x

dy

¼ �L ðTw � 1Þ dhT
L

dx
� hT � hT

L

L

dL

dx

� �

; (A9)

where hT and hT
L

are given in Eqs. (3.3) and (3.4), respectively.
• Wall-normal convection,

ð1

0

ðy �L Þ @ðhTi � 1Þ�qhvi
@y

dy ¼ �L ðTw � 1Þ h
T
v

L
; (A10)

where hTv is shown in Eq. (3.5).

The identity (3.2) is related to the identity (4.1). In the limit
L ! 1; terms �q l; �q�l ; �qh, and �qhTv

are null, while terms hT
L

reduces to the momentum thickness since y=L � 1. The term �qhT

simplifies to dhT=dx because the second term of �qhT is null. The
enthalpy thickness can be eliminated so that, forL ! 1; Eq. (3.2)
simplifies to Eq. (4.1).

In order to compare the wall-heat flux of a laminar boundary
layer with that of a turbulent boundary layer, a reference physical
quantity should be fixed for both flows, as in the incompressible
case studied by EJ for the skin friction. This reference length can be
the streamwise location x, the thermal displacement thickness, the
thermal momentum thickness, or the thermal boundary-layer thick-
ness dq99; i.e., the wall-normal distance where the streamwise mean
density reaches 99% of the free-stream density. We choose the ther-
mal momentum thickness d�q99 as the reference scale for our analy-
sis. It follows that we compare the wall-heat flux of a laminar flow
with that of a turbulent flow for the same thermal thickness. The
thermal thickness is a better choice than the streamwise location x
because a fully developed turbulent boundary layer may be induced
artificially at different streamwise locations. The streamwise loca-
tion x is obtained by the relation

dq99 ¼
ffiffiffiffiffi
2x

Rd

r ðg99

0

Tdg ¼ 1; (A11)

where Rd is the Reynolds number defined by d�q99, and g99 is the
wall-normal location where q ¼ 0:99. L ðxÞ is finally computed by
Eq. (3.6).
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